Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Hutchings | 2616 | 48.23% | 80 | 44.69% |
Alex Maftei (amaftei) | 1081 | 19.93% | 8 | 4.47% |
Charles McLachlan | 285 | 5.25% | 3 | 1.68% |
Jon Cooper | 283 | 5.22% | 5 | 2.79% |
Edward Cree | 152 | 2.80% | 17 | 9.50% |
Jonathan Cooper | 148 | 2.73% | 6 | 3.35% |
Bert Kenward | 133 | 2.45% | 7 | 3.91% |
Shradha Shah | 122 | 2.25% | 6 | 3.35% |
Andrew Rybchenko | 111 | 2.05% | 4 | 2.23% |
Alex Austin | 67 | 1.24% | 1 | 0.56% |
Stephen Hemminger | 58 | 1.07% | 2 | 1.12% |
Heiner Kallweit | 55 | 1.01% | 3 | 1.68% |
Alexandre Rames | 50 | 0.92% | 2 | 1.12% |
Daniel Pieczko | 49 | 0.90% | 4 | 2.23% |
Martin Habets | 39 | 0.72% | 1 | 0.56% |
Steve Hodgson | 36 | 0.66% | 6 | 3.35% |
Pieter Jansen van Vuuren | 36 | 0.66% | 1 | 0.56% |
Peter Dunning | 20 | 0.37% | 1 | 0.56% |
Christophe Jaillet | 15 | 0.28% | 1 | 0.56% |
Marek Majtyka | 10 | 0.18% | 1 | 0.56% |
Íñigo Huguet | 9 | 0.17% | 2 | 1.12% |
Neil Turton | 9 | 0.17% | 1 | 0.56% |
Jakub Kiciński | 8 | 0.15% | 3 | 1.68% |
Jiri Pirko | 4 | 0.07% | 2 | 1.12% |
Eric Dumazet | 3 | 0.06% | 1 | 0.56% |
Linus Torvalds (pre-git) | 3 | 0.06% | 1 | 0.56% |
Chuhong Yuan | 3 | 0.06% | 1 | 0.56% |
Alexey Dobriyan | 3 | 0.06% | 1 | 0.56% |
David S. Miller | 3 | 0.06% | 1 | 0.56% |
Avi Kivity | 3 | 0.06% | 1 | 0.56% |
Mateusz Wrzesinski | 3 | 0.06% | 1 | 0.56% |
Yue haibing | 2 | 0.04% | 1 | 0.56% |
Thomas Gleixner | 2 | 0.04% | 1 | 0.56% |
Wolfram Sang | 1 | 0.02% | 1 | 0.56% |
Tom Herbert | 1 | 0.02% | 1 | 0.56% |
Arnd Bergmann | 1 | 0.02% | 1 | 0.56% |
Total | 5424 | 179 |
// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2013 Solarflare Communications Inc. */ #include <linux/filter.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/delay.h> #include <linux/notifier.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/in.h> #include <linux/ethtool.h> #include <linux/topology.h> #include <linux/gfp.h> #include <linux/interrupt.h> #include "net_driver.h" #include <net/gre.h> #include <net/udp_tunnel.h> #include "efx.h" #include "efx_common.h" #include "efx_channels.h" #include "ef100.h" #include "rx_common.h" #include "tx_common.h" #include "nic.h" #include "io.h" #include "selftest.h" #include "sriov.h" #include "efx_devlink.h" #include "mcdi_port_common.h" #include "mcdi_pcol.h" #include "workarounds.h" /************************************************************************** * * Configurable values * *************************************************************************/ module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444); MODULE_PARM_DESC(interrupt_mode, "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); module_param(rss_cpus, uint, 0444); MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); /* * Use separate channels for TX and RX events * * Set this to 1 to use separate channels for TX and RX. It allows us * to control interrupt affinity separately for TX and RX. * * This is only used in MSI-X interrupt mode */ bool efx_separate_tx_channels; module_param(efx_separate_tx_channels, bool, 0444); MODULE_PARM_DESC(efx_separate_tx_channels, "Use separate channels for TX and RX"); /* Initial interrupt moderation settings. They can be modified after * module load with ethtool. * * The default for RX should strike a balance between increasing the * round-trip latency and reducing overhead. */ static unsigned int rx_irq_mod_usec = 60; /* Initial interrupt moderation settings. They can be modified after * module load with ethtool. * * This default is chosen to ensure that a 10G link does not go idle * while a TX queue is stopped after it has become full. A queue is * restarted when it drops below half full. The time this takes (assuming * worst case 3 descriptors per packet and 1024 descriptors) is * 512 / 3 * 1.2 = 205 usec. */ static unsigned int tx_irq_mod_usec = 150; static bool phy_flash_cfg; module_param(phy_flash_cfg, bool, 0644); MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR | NETIF_MSG_HW); module_param(debug, uint, 0); MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); /************************************************************************** * * Utility functions and prototypes * *************************************************************************/ static void efx_remove_port(struct efx_nic *efx); static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog); static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp); static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, u32 flags); /************************************************************************** * * Port handling * **************************************************************************/ static void efx_fini_port(struct efx_nic *efx); static int efx_probe_port(struct efx_nic *efx) { int rc; netif_dbg(efx, probe, efx->net_dev, "create port\n"); if (phy_flash_cfg) efx->phy_mode = PHY_MODE_SPECIAL; /* Connect up MAC/PHY operations table */ rc = efx->type->probe_port(efx); if (rc) return rc; /* Initialise MAC address to permanent address */ eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr); return 0; } static int efx_init_port(struct efx_nic *efx) { int rc; netif_dbg(efx, drv, efx->net_dev, "init port\n"); mutex_lock(&efx->mac_lock); efx->port_initialized = true; /* Ensure the PHY advertises the correct flow control settings */ rc = efx_mcdi_port_reconfigure(efx); if (rc && rc != -EPERM) goto fail; mutex_unlock(&efx->mac_lock); return 0; fail: mutex_unlock(&efx->mac_lock); return rc; } static void efx_fini_port(struct efx_nic *efx) { netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); if (!efx->port_initialized) return; efx->port_initialized = false; efx->link_state.up = false; efx_link_status_changed(efx); } static void efx_remove_port(struct efx_nic *efx) { netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); efx->type->remove_port(efx); } /************************************************************************** * * NIC handling * **************************************************************************/ static LIST_HEAD(efx_primary_list); static LIST_HEAD(efx_unassociated_list); static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) { return left->type == right->type && left->vpd_sn && right->vpd_sn && !strcmp(left->vpd_sn, right->vpd_sn); } static void efx_associate(struct efx_nic *efx) { struct efx_nic *other, *next; if (efx->primary == efx) { /* Adding primary function; look for secondaries */ netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); list_add_tail(&efx->node, &efx_primary_list); list_for_each_entry_safe(other, next, &efx_unassociated_list, node) { if (efx_same_controller(efx, other)) { list_del(&other->node); netif_dbg(other, probe, other->net_dev, "moving to secondary list of %s %s\n", pci_name(efx->pci_dev), efx->net_dev->name); list_add_tail(&other->node, &efx->secondary_list); other->primary = efx; } } } else { /* Adding secondary function; look for primary */ list_for_each_entry(other, &efx_primary_list, node) { if (efx_same_controller(efx, other)) { netif_dbg(efx, probe, efx->net_dev, "adding to secondary list of %s %s\n", pci_name(other->pci_dev), other->net_dev->name); list_add_tail(&efx->node, &other->secondary_list); efx->primary = other; return; } } netif_dbg(efx, probe, efx->net_dev, "adding to unassociated list\n"); list_add_tail(&efx->node, &efx_unassociated_list); } } static void efx_dissociate(struct efx_nic *efx) { struct efx_nic *other, *next; list_del(&efx->node); efx->primary = NULL; list_for_each_entry_safe(other, next, &efx->secondary_list, node) { list_del(&other->node); netif_dbg(other, probe, other->net_dev, "moving to unassociated list\n"); list_add_tail(&other->node, &efx_unassociated_list); other->primary = NULL; } } static int efx_probe_nic(struct efx_nic *efx) { int rc; netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); /* Carry out hardware-type specific initialisation */ rc = efx->type->probe(efx); if (rc) return rc; do { if (!efx->max_channels || !efx->max_tx_channels) { netif_err(efx, drv, efx->net_dev, "Insufficient resources to allocate" " any channels\n"); rc = -ENOSPC; goto fail1; } /* Determine the number of channels and queues by trying * to hook in MSI-X interrupts. */ rc = efx_probe_interrupts(efx); if (rc) goto fail1; rc = efx_set_channels(efx); if (rc) goto fail1; /* dimension_resources can fail with EAGAIN */ rc = efx->type->dimension_resources(efx); if (rc != 0 && rc != -EAGAIN) goto fail2; if (rc == -EAGAIN) /* try again with new max_channels */ efx_remove_interrupts(efx); } while (rc == -EAGAIN); if (efx->n_channels > 1) netdev_rss_key_fill(efx->rss_context.rx_hash_key, sizeof(efx->rss_context.rx_hash_key)); efx_set_default_rx_indir_table(efx, efx->rss_context.rx_indir_table); /* Initialise the interrupt moderation settings */ efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, true); return 0; fail2: efx_remove_interrupts(efx); fail1: efx->type->remove(efx); return rc; } static void efx_remove_nic(struct efx_nic *efx) { netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); efx_remove_interrupts(efx); efx->type->remove(efx); } /************************************************************************** * * NIC startup/shutdown * *************************************************************************/ static int efx_probe_all(struct efx_nic *efx) { int rc; rc = efx_probe_nic(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); goto fail1; } rc = efx_probe_port(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create port\n"); goto fail2; } BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { rc = -EINVAL; goto fail3; } #ifdef CONFIG_SFC_SRIOV rc = efx->type->vswitching_probe(efx); if (rc) /* not fatal; the PF will still work fine */ netif_warn(efx, probe, efx->net_dev, "failed to setup vswitching rc=%d;" " VFs may not function\n", rc); #endif rc = efx_probe_filters(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create filter tables\n"); goto fail4; } rc = efx_probe_channels(efx); if (rc) goto fail5; efx->state = STATE_NET_DOWN; return 0; fail5: efx_remove_filters(efx); fail4: #ifdef CONFIG_SFC_SRIOV efx->type->vswitching_remove(efx); #endif fail3: efx_remove_port(efx); fail2: efx_remove_nic(efx); fail1: return rc; } static void efx_remove_all(struct efx_nic *efx) { rtnl_lock(); efx_xdp_setup_prog(efx, NULL); rtnl_unlock(); efx_remove_channels(efx); efx_remove_filters(efx); #ifdef CONFIG_SFC_SRIOV efx->type->vswitching_remove(efx); #endif efx_remove_port(efx); efx_remove_nic(efx); } /************************************************************************** * * Interrupt moderation * **************************************************************************/ unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs) { if (usecs == 0) return 0; if (usecs * 1000 < efx->timer_quantum_ns) return 1; /* never round down to 0 */ return usecs * 1000 / efx->timer_quantum_ns; } unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks) { /* We must round up when converting ticks to microseconds * because we round down when converting the other way. */ return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); } /* Set interrupt moderation parameters */ int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, unsigned int rx_usecs, bool rx_adaptive, bool rx_may_override_tx) { struct efx_channel *channel; unsigned int timer_max_us; EFX_ASSERT_RESET_SERIALISED(efx); timer_max_us = efx->timer_max_ns / 1000; if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) return -EINVAL; if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && !rx_may_override_tx) { netif_err(efx, drv, efx->net_dev, "Channels are shared. " "RX and TX IRQ moderation must be equal\n"); return -EINVAL; } efx->irq_rx_adaptive = rx_adaptive; efx->irq_rx_moderation_us = rx_usecs; efx_for_each_channel(channel, efx) { if (efx_channel_has_rx_queue(channel)) channel->irq_moderation_us = rx_usecs; else if (efx_channel_has_tx_queues(channel)) channel->irq_moderation_us = tx_usecs; else if (efx_channel_is_xdp_tx(channel)) channel->irq_moderation_us = tx_usecs; } return 0; } void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, unsigned int *rx_usecs, bool *rx_adaptive) { *rx_adaptive = efx->irq_rx_adaptive; *rx_usecs = efx->irq_rx_moderation_us; /* If channels are shared between RX and TX, so is IRQ * moderation. Otherwise, IRQ moderation is the same for all * TX channels and is not adaptive. */ if (efx->tx_channel_offset == 0) { *tx_usecs = *rx_usecs; } else { struct efx_channel *tx_channel; tx_channel = efx->channel[efx->tx_channel_offset]; *tx_usecs = tx_channel->irq_moderation_us; } } /************************************************************************** * * ioctls * *************************************************************************/ /* Net device ioctl * Context: process, rtnl_lock() held. */ static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) { struct efx_nic *efx = efx_netdev_priv(net_dev); struct mii_ioctl_data *data = if_mii(ifr); /* Convert phy_id from older PRTAD/DEVAD format */ if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && (data->phy_id & 0xfc00) == 0x0400) data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; return mdio_mii_ioctl(&efx->mdio, data, cmd); } /************************************************************************** * * Kernel net device interface * *************************************************************************/ /* Context: process, rtnl_lock() held. */ int efx_net_open(struct net_device *net_dev) { struct efx_nic *efx = efx_netdev_priv(net_dev); int rc; netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", raw_smp_processor_id()); rc = efx_check_disabled(efx); if (rc) return rc; if (efx->phy_mode & PHY_MODE_SPECIAL) return -EBUSY; if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) return -EIO; /* Notify the kernel of the link state polled during driver load, * before the monitor starts running */ efx_link_status_changed(efx); efx_start_all(efx); if (efx->state == STATE_DISABLED || efx->reset_pending) netif_device_detach(efx->net_dev); else efx->state = STATE_NET_UP; return 0; } /* Context: process, rtnl_lock() held. * Note that the kernel will ignore our return code; this method * should really be a void. */ int efx_net_stop(struct net_device *net_dev) { struct efx_nic *efx = efx_netdev_priv(net_dev); netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", raw_smp_processor_id()); /* Stop the device and flush all the channels */ efx_stop_all(efx); return 0; } static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid) { struct efx_nic *efx = efx_netdev_priv(net_dev); if (efx->type->vlan_rx_add_vid) return efx->type->vlan_rx_add_vid(efx, proto, vid); else return -EOPNOTSUPP; } static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid) { struct efx_nic *efx = efx_netdev_priv(net_dev); if (efx->type->vlan_rx_kill_vid) return efx->type->vlan_rx_kill_vid(efx, proto, vid); else return -EOPNOTSUPP; } static int efx_hwtstamp_set(struct net_device *net_dev, struct kernel_hwtstamp_config *config, struct netlink_ext_ack *extack) { struct efx_nic *efx = efx_netdev_priv(net_dev); return efx_ptp_set_ts_config(efx, config, extack); } static int efx_hwtstamp_get(struct net_device *net_dev, struct kernel_hwtstamp_config *config) { struct efx_nic *efx = efx_netdev_priv(net_dev); return efx_ptp_get_ts_config(efx, config); } static const struct net_device_ops efx_netdev_ops = { .ndo_open = efx_net_open, .ndo_stop = efx_net_stop, .ndo_get_stats64 = efx_net_stats, .ndo_tx_timeout = efx_watchdog, .ndo_start_xmit = efx_hard_start_xmit, .ndo_validate_addr = eth_validate_addr, .ndo_eth_ioctl = efx_ioctl, .ndo_change_mtu = efx_change_mtu, .ndo_set_mac_address = efx_set_mac_address, .ndo_set_rx_mode = efx_set_rx_mode, .ndo_set_features = efx_set_features, .ndo_features_check = efx_features_check, .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid, .ndo_hwtstamp_set = efx_hwtstamp_set, .ndo_hwtstamp_get = efx_hwtstamp_get, #ifdef CONFIG_SFC_SRIOV .ndo_set_vf_mac = efx_sriov_set_vf_mac, .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, .ndo_get_vf_config = efx_sriov_get_vf_config, .ndo_set_vf_link_state = efx_sriov_set_vf_link_state, #endif .ndo_get_phys_port_id = efx_get_phys_port_id, .ndo_get_phys_port_name = efx_get_phys_port_name, #ifdef CONFIG_RFS_ACCEL .ndo_rx_flow_steer = efx_filter_rfs, #endif .ndo_xdp_xmit = efx_xdp_xmit, .ndo_bpf = efx_xdp }; static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog) { struct bpf_prog *old_prog; if (efx->xdp_rxq_info_failed) { netif_err(efx, drv, efx->net_dev, "Unable to bind XDP program due to previous failure of rxq_info\n"); return -EINVAL; } if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) { netif_err(efx, drv, efx->net_dev, "Unable to configure XDP with MTU of %d (max: %d)\n", efx->net_dev->mtu, efx_xdp_max_mtu(efx)); return -EINVAL; } old_prog = rtnl_dereference(efx->xdp_prog); rcu_assign_pointer(efx->xdp_prog, prog); /* Release the reference that was originally passed by the caller. */ if (old_prog) bpf_prog_put(old_prog); return 0; } /* Context: process, rtnl_lock() held. */ static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp) { struct efx_nic *efx = efx_netdev_priv(dev); switch (xdp->command) { case XDP_SETUP_PROG: return efx_xdp_setup_prog(efx, xdp->prog); default: return -EINVAL; } } static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, u32 flags) { struct efx_nic *efx = efx_netdev_priv(dev); if (!netif_running(dev)) return -EINVAL; return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH); } static void efx_update_name(struct efx_nic *efx) { strcpy(efx->name, efx->net_dev->name); efx_mtd_rename(efx); efx_set_channel_names(efx); } static int efx_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); if ((net_dev->netdev_ops == &efx_netdev_ops) && event == NETDEV_CHANGENAME) efx_update_name(efx_netdev_priv(net_dev)); return NOTIFY_DONE; } static struct notifier_block efx_netdev_notifier = { .notifier_call = efx_netdev_event, }; static ssize_t phy_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct efx_nic *efx = dev_get_drvdata(dev); return sprintf(buf, "%d\n", efx->phy_type); } static DEVICE_ATTR_RO(phy_type); static int efx_register_netdev(struct efx_nic *efx) { struct net_device *net_dev = efx->net_dev; struct efx_channel *channel; int rc; net_dev->watchdog_timeo = 5 * HZ; net_dev->irq = efx->pci_dev->irq; net_dev->netdev_ops = &efx_netdev_ops; if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) net_dev->priv_flags |= IFF_UNICAST_FLT; net_dev->ethtool_ops = &efx_ethtool_ops; netif_set_tso_max_segs(net_dev, EFX_TSO_MAX_SEGS); net_dev->min_mtu = EFX_MIN_MTU; net_dev->max_mtu = EFX_MAX_MTU; rtnl_lock(); /* Enable resets to be scheduled and check whether any were * already requested. If so, the NIC is probably hosed so we * abort. */ if (efx->reset_pending) { pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n"); rc = -EIO; goto fail_locked; } rc = dev_alloc_name(net_dev, net_dev->name); if (rc < 0) goto fail_locked; efx_update_name(efx); /* Always start with carrier off; PHY events will detect the link */ netif_carrier_off(net_dev); rc = register_netdevice(net_dev); if (rc) goto fail_locked; efx_for_each_channel(channel, efx) { struct efx_tx_queue *tx_queue; efx_for_each_channel_tx_queue(tx_queue, channel) efx_init_tx_queue_core_txq(tx_queue); } efx_associate(efx); efx->state = STATE_NET_DOWN; rtnl_unlock(); rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to init net dev attributes\n"); goto fail_registered; } efx_init_mcdi_logging(efx); return 0; fail_registered: rtnl_lock(); efx_dissociate(efx); unregister_netdevice(net_dev); fail_locked: efx->state = STATE_UNINIT; rtnl_unlock(); netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); return rc; } static void efx_unregister_netdev(struct efx_nic *efx) { if (!efx->net_dev) return; if (WARN_ON(efx_netdev_priv(efx->net_dev) != efx)) return; if (efx_dev_registered(efx)) { strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); efx_fini_mcdi_logging(efx); device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); unregister_netdev(efx->net_dev); } } /************************************************************************** * * List of NICs we support * **************************************************************************/ /* PCI device ID table */ static const struct pci_device_id efx_pci_table[] = { {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */ .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */ .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */ .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */ .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */ .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */ .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */ .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */ .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, {0} /* end of list */ }; /************************************************************************** * * Data housekeeping * **************************************************************************/ void efx_update_sw_stats(struct efx_nic *efx, u64 *stats) { u64 n_rx_nodesc_trunc = 0; struct efx_channel *channel; efx_for_each_channel(channel, efx) n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); } /************************************************************************** * * PCI interface * **************************************************************************/ /* Main body of final NIC shutdown code * This is called only at module unload (or hotplug removal). */ static void efx_pci_remove_main(struct efx_nic *efx) { /* Flush reset_work. It can no longer be scheduled since we * are not READY. */ WARN_ON(efx_net_active(efx->state)); efx_flush_reset_workqueue(efx); efx_disable_interrupts(efx); efx_clear_interrupt_affinity(efx); efx_nic_fini_interrupt(efx); efx_fini_port(efx); efx->type->fini(efx); efx_fini_napi(efx); efx_remove_all(efx); } /* Final NIC shutdown * This is called only at module unload (or hotplug removal). A PF can call * this on its VFs to ensure they are unbound first. */ static void efx_pci_remove(struct pci_dev *pci_dev) { struct efx_probe_data *probe_data; struct efx_nic *efx; efx = pci_get_drvdata(pci_dev); if (!efx) return; /* Mark the NIC as fini, then stop the interface */ rtnl_lock(); efx_dissociate(efx); dev_close(efx->net_dev); efx_disable_interrupts(efx); efx->state = STATE_UNINIT; rtnl_unlock(); if (efx->type->sriov_fini) efx->type->sriov_fini(efx); efx_fini_devlink_lock(efx); efx_unregister_netdev(efx); efx_mtd_remove(efx); efx_pci_remove_main(efx); efx_fini_io(efx); pci_dbg(efx->pci_dev, "shutdown successful\n"); efx_fini_devlink_and_unlock(efx); efx_fini_struct(efx); free_netdev(efx->net_dev); probe_data = container_of(efx, struct efx_probe_data, efx); kfree(probe_data); }; /* NIC VPD information * Called during probe to display the part number of the * installed NIC. */ static void efx_probe_vpd_strings(struct efx_nic *efx) { struct pci_dev *dev = efx->pci_dev; unsigned int vpd_size, kw_len; u8 *vpd_data; int start; vpd_data = pci_vpd_alloc(dev, &vpd_size); if (IS_ERR(vpd_data)) { pci_warn(dev, "Unable to read VPD\n"); return; } start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); if (start < 0) pci_err(dev, "Part number not found or incomplete\n"); else pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start); start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len); if (start < 0) pci_err(dev, "Serial number not found or incomplete\n"); else efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL); kfree(vpd_data); } /* Main body of NIC initialisation * This is called at module load (or hotplug insertion, theoretically). */ static int efx_pci_probe_main(struct efx_nic *efx) { int rc; /* Do start-of-day initialisation */ rc = efx_probe_all(efx); if (rc) goto fail1; efx_init_napi(efx); down_write(&efx->filter_sem); rc = efx->type->init(efx); up_write(&efx->filter_sem); if (rc) { pci_err(efx->pci_dev, "failed to initialise NIC\n"); goto fail3; } rc = efx_init_port(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to initialise port\n"); goto fail4; } rc = efx_nic_init_interrupt(efx); if (rc) goto fail5; efx_set_interrupt_affinity(efx); rc = efx_enable_interrupts(efx); if (rc) goto fail6; return 0; fail6: efx_clear_interrupt_affinity(efx); efx_nic_fini_interrupt(efx); fail5: efx_fini_port(efx); fail4: efx->type->fini(efx); fail3: efx_fini_napi(efx); efx_remove_all(efx); fail1: return rc; } static int efx_pci_probe_post_io(struct efx_nic *efx) { struct net_device *net_dev = efx->net_dev; int rc = efx_pci_probe_main(efx); if (rc) return rc; if (efx->type->sriov_init) { rc = efx->type->sriov_init(efx); if (rc) pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n", rc); } /* Determine netdevice features */ net_dev->features |= efx->type->offload_features; /* Add TSO features */ if (efx->type->tso_versions && efx->type->tso_versions(efx)) net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6; /* Mask for features that also apply to VLAN devices */ net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | NETIF_F_RXCSUM); /* Determine user configurable features */ net_dev->hw_features |= net_dev->features & ~efx->fixed_features; /* Disable receiving frames with bad FCS, by default. */ net_dev->features &= ~NETIF_F_RXALL; /* Disable VLAN filtering by default. It may be enforced if * the feature is fixed (i.e. VLAN filters are required to * receive VLAN tagged packets due to vPort restrictions). */ net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; net_dev->features |= efx->fixed_features; net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | NETDEV_XDP_ACT_NDO_XMIT; /* devlink creation, registration and lock */ rc = efx_probe_devlink_and_lock(efx); if (rc) pci_err(efx->pci_dev, "devlink registration failed"); rc = efx_register_netdev(efx); efx_probe_devlink_unlock(efx); if (!rc) return 0; efx_pci_remove_main(efx); return rc; } /* NIC initialisation * * This is called at module load (or hotplug insertion, * theoretically). It sets up PCI mappings, resets the NIC, * sets up and registers the network devices with the kernel and hooks * the interrupt service routine. It does not prepare the device for * transmission; this is left to the first time one of the network * interfaces is brought up (i.e. efx_net_open). */ static int efx_pci_probe(struct pci_dev *pci_dev, const struct pci_device_id *entry) { struct efx_probe_data *probe_data, **probe_ptr; struct net_device *net_dev; struct efx_nic *efx; int rc; /* Allocate probe data and struct efx_nic */ probe_data = kzalloc(sizeof(*probe_data), GFP_KERNEL); if (!probe_data) return -ENOMEM; probe_data->pci_dev = pci_dev; efx = &probe_data->efx; /* Allocate and initialise a struct net_device */ net_dev = alloc_etherdev_mq(sizeof(probe_data), EFX_MAX_CORE_TX_QUEUES); if (!net_dev) { rc = -ENOMEM; goto fail0; } probe_ptr = netdev_priv(net_dev); *probe_ptr = probe_data; efx->net_dev = net_dev; efx->type = (const struct efx_nic_type *) entry->driver_data; efx->fixed_features |= NETIF_F_HIGHDMA; pci_set_drvdata(pci_dev, efx); SET_NETDEV_DEV(net_dev, &pci_dev->dev); rc = efx_init_struct(efx, pci_dev); if (rc) goto fail1; efx->mdio.dev = net_dev; pci_info(pci_dev, "Solarflare NIC detected\n"); if (!efx->type->is_vf) efx_probe_vpd_strings(efx); /* Set up basic I/O (BAR mappings etc) */ rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask, efx->type->mem_map_size(efx)); if (rc) goto fail2; rc = efx_pci_probe_post_io(efx); if (rc) { /* On failure, retry once immediately. * If we aborted probe due to a scheduled reset, dismiss it. */ efx->reset_pending = 0; rc = efx_pci_probe_post_io(efx); if (rc) { /* On another failure, retry once more * after a 50-305ms delay. */ unsigned char r; get_random_bytes(&r, 1); msleep((unsigned int)r + 50); efx->reset_pending = 0; rc = efx_pci_probe_post_io(efx); } } if (rc) goto fail3; netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); /* Try to create MTDs, but allow this to fail */ rtnl_lock(); rc = efx_mtd_probe(efx); rtnl_unlock(); if (rc && rc != -EPERM) netif_warn(efx, probe, efx->net_dev, "failed to create MTDs (%d)\n", rc); if (efx->type->udp_tnl_push_ports) efx->type->udp_tnl_push_ports(efx); return 0; fail3: efx_fini_io(efx); fail2: efx_fini_struct(efx); fail1: WARN_ON(rc > 0); netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); free_netdev(net_dev); fail0: kfree(probe_data); return rc; } /* efx_pci_sriov_configure returns the actual number of Virtual Functions * enabled on success */ #ifdef CONFIG_SFC_SRIOV static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs) { int rc; struct efx_nic *efx = pci_get_drvdata(dev); if (efx->type->sriov_configure) { rc = efx->type->sriov_configure(efx, num_vfs); if (rc) return rc; else return num_vfs; } else return -EOPNOTSUPP; } #endif static int efx_pm_freeze(struct device *dev) { struct efx_nic *efx = dev_get_drvdata(dev); rtnl_lock(); if (efx_net_active(efx->state)) { efx_device_detach_sync(efx); efx_stop_all(efx); efx_disable_interrupts(efx); efx->state = efx_freeze(efx->state); } rtnl_unlock(); return 0; } static void efx_pci_shutdown(struct pci_dev *pci_dev) { struct efx_nic *efx = pci_get_drvdata(pci_dev); if (!efx) return; efx_pm_freeze(&pci_dev->dev); pci_disable_device(pci_dev); } static int efx_pm_thaw(struct device *dev) { int rc; struct efx_nic *efx = dev_get_drvdata(dev); rtnl_lock(); if (efx_frozen(efx->state)) { rc = efx_enable_interrupts(efx); if (rc) goto fail; mutex_lock(&efx->mac_lock); efx_mcdi_port_reconfigure(efx); mutex_unlock(&efx->mac_lock); efx_start_all(efx); efx_device_attach_if_not_resetting(efx); efx->state = efx_thaw(efx->state); efx->type->resume_wol(efx); } rtnl_unlock(); /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ efx_queue_reset_work(efx); return 0; fail: rtnl_unlock(); return rc; } static int efx_pm_poweroff(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct efx_nic *efx = pci_get_drvdata(pci_dev); efx->type->fini(efx); efx->reset_pending = 0; pci_save_state(pci_dev); return pci_set_power_state(pci_dev, PCI_D3hot); } /* Used for both resume and restore */ static int efx_pm_resume(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct efx_nic *efx = pci_get_drvdata(pci_dev); int rc; rc = pci_set_power_state(pci_dev, PCI_D0); if (rc) return rc; pci_restore_state(pci_dev); rc = pci_enable_device(pci_dev); if (rc) return rc; pci_set_master(efx->pci_dev); rc = efx->type->reset(efx, RESET_TYPE_ALL); if (rc) return rc; down_write(&efx->filter_sem); rc = efx->type->init(efx); up_write(&efx->filter_sem); if (rc) return rc; rc = efx_pm_thaw(dev); return rc; } static int efx_pm_suspend(struct device *dev) { int rc; efx_pm_freeze(dev); rc = efx_pm_poweroff(dev); if (rc) efx_pm_resume(dev); return rc; } static const struct dev_pm_ops efx_pm_ops = { .suspend = efx_pm_suspend, .resume = efx_pm_resume, .freeze = efx_pm_freeze, .thaw = efx_pm_thaw, .poweroff = efx_pm_poweroff, .restore = efx_pm_resume, }; static struct pci_driver efx_pci_driver = { .name = KBUILD_MODNAME, .id_table = efx_pci_table, .probe = efx_pci_probe, .remove = efx_pci_remove, .driver.pm = &efx_pm_ops, .shutdown = efx_pci_shutdown, .err_handler = &efx_err_handlers, #ifdef CONFIG_SFC_SRIOV .sriov_configure = efx_pci_sriov_configure, #endif }; /************************************************************************** * * Kernel module interface * *************************************************************************/ static int __init efx_init_module(void) { int rc; printk(KERN_INFO "Solarflare NET driver\n"); rc = register_netdevice_notifier(&efx_netdev_notifier); if (rc) goto err_notifier; rc = efx_create_reset_workqueue(); if (rc) goto err_reset; rc = pci_register_driver(&efx_pci_driver); if (rc < 0) goto err_pci; rc = pci_register_driver(&ef100_pci_driver); if (rc < 0) goto err_pci_ef100; return 0; err_pci_ef100: pci_unregister_driver(&efx_pci_driver); err_pci: efx_destroy_reset_workqueue(); err_reset: unregister_netdevice_notifier(&efx_netdev_notifier); err_notifier: return rc; } static void __exit efx_exit_module(void) { printk(KERN_INFO "Solarflare NET driver unloading\n"); pci_unregister_driver(&ef100_pci_driver); pci_unregister_driver(&efx_pci_driver); efx_destroy_reset_workqueue(); unregister_netdevice_notifier(&efx_netdev_notifier); } module_init(efx_init_module); module_exit(efx_exit_module); MODULE_AUTHOR("Solarflare Communications and " "Michael Brown <mbrown@fensystems.co.uk>"); MODULE_DESCRIPTION("Solarflare network driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, efx_pci_table);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1