Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Edward Cree | 9279 | 73.01% | 5 | 3.31% |
Ben Hutchings | 2602 | 20.47% | 92 | 60.93% |
Alexandre Rames | 263 | 2.07% | 2 | 1.32% |
Bert Kenward | 171 | 1.35% | 3 | 1.99% |
Steve Hodgson | 88 | 0.69% | 5 | 3.31% |
Matthew Slattery | 67 | 0.53% | 2 | 1.32% |
Heiner Kallweit | 48 | 0.38% | 3 | 1.99% |
David S. Miller | 37 | 0.29% | 2 | 1.32% |
Stuart Hodgson | 32 | 0.25% | 1 | 0.66% |
Jon Cooper | 18 | 0.14% | 3 | 1.99% |
Robert Stonehouse | 17 | 0.13% | 1 | 0.66% |
Eric Dumazet | 11 | 0.09% | 4 | 2.65% |
Neil Turton | 10 | 0.08% | 1 | 0.66% |
Martin Habets | 9 | 0.07% | 1 | 0.66% |
Yang Guang | 8 | 0.06% | 1 | 0.66% |
Jakub Kiciński | 5 | 0.04% | 3 | 1.99% |
Michael S. Tsirkin | 4 | 0.03% | 1 | 0.66% |
FUJITA Tomonori | 4 | 0.03% | 1 | 0.66% |
Kees Cook | 4 | 0.03% | 1 | 0.66% |
Chuhong Yuan | 3 | 0.02% | 1 | 0.66% |
Alexey Dobriyan | 3 | 0.02% | 1 | 0.66% |
Avi Kivity | 3 | 0.02% | 1 | 0.66% |
Daniel Pieczko | 2 | 0.02% | 1 | 0.66% |
Christoph Hellwig | 2 | 0.02% | 2 | 1.32% |
Wolfram Sang | 2 | 0.02% | 1 | 0.66% |
Mark Rutland | 2 | 0.02% | 1 | 0.66% |
Yue haibing | 2 | 0.02% | 1 | 0.66% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.66% |
Andrew Rybchenko | 2 | 0.02% | 1 | 0.66% |
Peter Dunning | 2 | 0.02% | 1 | 0.66% |
Stephen Hemminger | 1 | 0.01% | 1 | 0.66% |
Philippe Reynes | 1 | 0.01% | 1 | 0.66% |
Luc Van Oostenryck | 1 | 0.01% | 1 | 0.66% |
Michał Mirosław | 1 | 0.01% | 1 | 0.66% |
Arnd Bergmann | 1 | 0.01% | 1 | 0.66% |
Benjamin Herrenschmidt | 1 | 0.01% | 1 | 0.66% |
Julia Lawall | 1 | 0.01% | 1 | 0.66% |
Total | 12709 | 151 |
// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2013 Solarflare Communications Inc. */ #include <linux/module.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/delay.h> #include <linux/notifier.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/in.h> #include <linux/ethtool.h> #include <linux/topology.h> #include <linux/gfp.h> #include <linux/interrupt.h> #include "net_driver.h" #include "efx.h" #include "nic.h" #include "selftest.h" #include "workarounds.h" /************************************************************************** * * Type name strings * ************************************************************************** */ /* Loopback mode names (see LOOPBACK_MODE()) */ const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX; const char *const ef4_loopback_mode_names[] = { [LOOPBACK_NONE] = "NONE", [LOOPBACK_DATA] = "DATAPATH", [LOOPBACK_GMAC] = "GMAC", [LOOPBACK_XGMII] = "XGMII", [LOOPBACK_XGXS] = "XGXS", [LOOPBACK_XAUI] = "XAUI", [LOOPBACK_GMII] = "GMII", [LOOPBACK_SGMII] = "SGMII", [LOOPBACK_XGBR] = "XGBR", [LOOPBACK_XFI] = "XFI", [LOOPBACK_XAUI_FAR] = "XAUI_FAR", [LOOPBACK_GMII_FAR] = "GMII_FAR", [LOOPBACK_SGMII_FAR] = "SGMII_FAR", [LOOPBACK_XFI_FAR] = "XFI_FAR", [LOOPBACK_GPHY] = "GPHY", [LOOPBACK_PHYXS] = "PHYXS", [LOOPBACK_PCS] = "PCS", [LOOPBACK_PMAPMD] = "PMA/PMD", [LOOPBACK_XPORT] = "XPORT", [LOOPBACK_XGMII_WS] = "XGMII_WS", [LOOPBACK_XAUI_WS] = "XAUI_WS", [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", [LOOPBACK_GMII_WS] = "GMII_WS", [LOOPBACK_XFI_WS] = "XFI_WS", [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", [LOOPBACK_PHYXS_WS] = "PHYXS_WS", }; const unsigned int ef4_reset_type_max = RESET_TYPE_MAX; const char *const ef4_reset_type_names[] = { [RESET_TYPE_INVISIBLE] = "INVISIBLE", [RESET_TYPE_ALL] = "ALL", [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", [RESET_TYPE_WORLD] = "WORLD", [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", [RESET_TYPE_DATAPATH] = "DATAPATH", [RESET_TYPE_DISABLE] = "DISABLE", [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", [RESET_TYPE_INT_ERROR] = "INT_ERROR", [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", [RESET_TYPE_TX_SKIP] = "TX_SKIP", }; /* Reset workqueue. If any NIC has a hardware failure then a reset will be * queued onto this work queue. This is not a per-nic work queue, because * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised. */ static struct workqueue_struct *reset_workqueue; /* How often and how many times to poll for a reset while waiting for a * BIST that another function started to complete. */ #define BIST_WAIT_DELAY_MS 100 #define BIST_WAIT_DELAY_COUNT 100 /************************************************************************** * * Configurable values * *************************************************************************/ /* * Use separate channels for TX and RX events * * Set this to 1 to use separate channels for TX and RX. It allows us * to control interrupt affinity separately for TX and RX. * * This is only used in MSI-X interrupt mode */ bool ef4_separate_tx_channels; module_param(ef4_separate_tx_channels, bool, 0444); MODULE_PARM_DESC(ef4_separate_tx_channels, "Use separate channels for TX and RX"); /* This is the time (in jiffies) between invocations of the hardware * monitor. * On Falcon-based NICs, this will: * - Check the on-board hardware monitor; * - Poll the link state and reconfigure the hardware as necessary. * On Siena-based NICs for power systems with EEH support, this will give EEH a * chance to start. */ static unsigned int ef4_monitor_interval = 1 * HZ; /* Initial interrupt moderation settings. They can be modified after * module load with ethtool. * * The default for RX should strike a balance between increasing the * round-trip latency and reducing overhead. */ static unsigned int rx_irq_mod_usec = 60; /* Initial interrupt moderation settings. They can be modified after * module load with ethtool. * * This default is chosen to ensure that a 10G link does not go idle * while a TX queue is stopped after it has become full. A queue is * restarted when it drops below half full. The time this takes (assuming * worst case 3 descriptors per packet and 1024 descriptors) is * 512 / 3 * 1.2 = 205 usec. */ static unsigned int tx_irq_mod_usec = 150; /* This is the first interrupt mode to try out of: * 0 => MSI-X * 1 => MSI * 2 => legacy */ static unsigned int interrupt_mode; /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), * i.e. the number of CPUs among which we may distribute simultaneous * interrupt handling. * * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. * The default (0) means to assign an interrupt to each core. */ static unsigned int rss_cpus; module_param(rss_cpus, uint, 0444); MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); static bool phy_flash_cfg; module_param(phy_flash_cfg, bool, 0644); MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); static unsigned irq_adapt_low_thresh = 8000; module_param(irq_adapt_low_thresh, uint, 0644); MODULE_PARM_DESC(irq_adapt_low_thresh, "Threshold score for reducing IRQ moderation"); static unsigned irq_adapt_high_thresh = 16000; module_param(irq_adapt_high_thresh, uint, 0644); MODULE_PARM_DESC(irq_adapt_high_thresh, "Threshold score for increasing IRQ moderation"); static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR | NETIF_MSG_HW); module_param(debug, uint, 0); MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); /************************************************************************** * * Utility functions and prototypes * *************************************************************************/ static int ef4_soft_enable_interrupts(struct ef4_nic *efx); static void ef4_soft_disable_interrupts(struct ef4_nic *efx); static void ef4_remove_channel(struct ef4_channel *channel); static void ef4_remove_channels(struct ef4_nic *efx); static const struct ef4_channel_type ef4_default_channel_type; static void ef4_remove_port(struct ef4_nic *efx); static void ef4_init_napi_channel(struct ef4_channel *channel); static void ef4_fini_napi(struct ef4_nic *efx); static void ef4_fini_napi_channel(struct ef4_channel *channel); static void ef4_fini_struct(struct ef4_nic *efx); static void ef4_start_all(struct ef4_nic *efx); static void ef4_stop_all(struct ef4_nic *efx); #define EF4_ASSERT_RESET_SERIALISED(efx) \ do { \ if ((efx->state == STATE_READY) || \ (efx->state == STATE_RECOVERY) || \ (efx->state == STATE_DISABLED)) \ ASSERT_RTNL(); \ } while (0) static int ef4_check_disabled(struct ef4_nic *efx) { if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { netif_err(efx, drv, efx->net_dev, "device is disabled due to earlier errors\n"); return -EIO; } return 0; } /************************************************************************** * * Event queue processing * *************************************************************************/ /* Process channel's event queue * * This function is responsible for processing the event queue of a * single channel. The caller must guarantee that this function will * never be concurrently called more than once on the same channel, * though different channels may be being processed concurrently. */ static int ef4_process_channel(struct ef4_channel *channel, int budget) { struct ef4_tx_queue *tx_queue; int spent; if (unlikely(!channel->enabled)) return 0; ef4_for_each_channel_tx_queue(tx_queue, channel) { tx_queue->pkts_compl = 0; tx_queue->bytes_compl = 0; } spent = ef4_nic_process_eventq(channel, budget); if (spent && ef4_channel_has_rx_queue(channel)) { struct ef4_rx_queue *rx_queue = ef4_channel_get_rx_queue(channel); ef4_rx_flush_packet(channel); ef4_fast_push_rx_descriptors(rx_queue, true); } /* Update BQL */ ef4_for_each_channel_tx_queue(tx_queue, channel) { if (tx_queue->bytes_compl) { netdev_tx_completed_queue(tx_queue->core_txq, tx_queue->pkts_compl, tx_queue->bytes_compl); } } return spent; } /* NAPI poll handler * * NAPI guarantees serialisation of polls of the same device, which * provides the guarantee required by ef4_process_channel(). */ static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel) { int step = efx->irq_mod_step_us; if (channel->irq_mod_score < irq_adapt_low_thresh) { if (channel->irq_moderation_us > step) { channel->irq_moderation_us -= step; efx->type->push_irq_moderation(channel); } } else if (channel->irq_mod_score > irq_adapt_high_thresh) { if (channel->irq_moderation_us < efx->irq_rx_moderation_us) { channel->irq_moderation_us += step; efx->type->push_irq_moderation(channel); } } channel->irq_count = 0; channel->irq_mod_score = 0; } static int ef4_poll(struct napi_struct *napi, int budget) { struct ef4_channel *channel = container_of(napi, struct ef4_channel, napi_str); struct ef4_nic *efx = channel->efx; int spent; netif_vdbg(efx, intr, efx->net_dev, "channel %d NAPI poll executing on CPU %d\n", channel->channel, raw_smp_processor_id()); spent = ef4_process_channel(channel, budget); if (spent < budget) { if (ef4_channel_has_rx_queue(channel) && efx->irq_rx_adaptive && unlikely(++channel->irq_count == 1000)) { ef4_update_irq_mod(efx, channel); } ef4_filter_rfs_expire(channel); /* There is no race here; although napi_disable() will * only wait for napi_complete(), this isn't a problem * since ef4_nic_eventq_read_ack() will have no effect if * interrupts have already been disabled. */ napi_complete_done(napi, spent); ef4_nic_eventq_read_ack(channel); } return spent; } /* Create event queue * Event queue memory allocations are done only once. If the channel * is reset, the memory buffer will be reused; this guards against * errors during channel reset and also simplifies interrupt handling. */ static int ef4_probe_eventq(struct ef4_channel *channel) { struct ef4_nic *efx = channel->efx; unsigned long entries; netif_dbg(efx, probe, efx->net_dev, "chan %d create event queue\n", channel->channel); /* Build an event queue with room for one event per tx and rx buffer, * plus some extra for link state events and MCDI completions. */ entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE); channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1; return ef4_nic_probe_eventq(channel); } /* Prepare channel's event queue */ static int ef4_init_eventq(struct ef4_channel *channel) { struct ef4_nic *efx = channel->efx; int rc; EF4_WARN_ON_PARANOID(channel->eventq_init); netif_dbg(efx, drv, efx->net_dev, "chan %d init event queue\n", channel->channel); rc = ef4_nic_init_eventq(channel); if (rc == 0) { efx->type->push_irq_moderation(channel); channel->eventq_read_ptr = 0; channel->eventq_init = true; } return rc; } /* Enable event queue processing and NAPI */ void ef4_start_eventq(struct ef4_channel *channel) { netif_dbg(channel->efx, ifup, channel->efx->net_dev, "chan %d start event queue\n", channel->channel); /* Make sure the NAPI handler sees the enabled flag set */ channel->enabled = true; smp_wmb(); napi_enable(&channel->napi_str); ef4_nic_eventq_read_ack(channel); } /* Disable event queue processing and NAPI */ void ef4_stop_eventq(struct ef4_channel *channel) { if (!channel->enabled) return; napi_disable(&channel->napi_str); channel->enabled = false; } static void ef4_fini_eventq(struct ef4_channel *channel) { if (!channel->eventq_init) return; netif_dbg(channel->efx, drv, channel->efx->net_dev, "chan %d fini event queue\n", channel->channel); ef4_nic_fini_eventq(channel); channel->eventq_init = false; } static void ef4_remove_eventq(struct ef4_channel *channel) { netif_dbg(channel->efx, drv, channel->efx->net_dev, "chan %d remove event queue\n", channel->channel); ef4_nic_remove_eventq(channel); } /************************************************************************** * * Channel handling * *************************************************************************/ /* Allocate and initialise a channel structure. */ static struct ef4_channel * ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel) { struct ef4_channel *channel; struct ef4_rx_queue *rx_queue; struct ef4_tx_queue *tx_queue; int j; channel = kzalloc(sizeof(*channel), GFP_KERNEL); if (!channel) return NULL; channel->efx = efx; channel->channel = i; channel->type = &ef4_default_channel_type; for (j = 0; j < EF4_TXQ_TYPES; j++) { tx_queue = &channel->tx_queue[j]; tx_queue->efx = efx; tx_queue->queue = i * EF4_TXQ_TYPES + j; tx_queue->channel = channel; } rx_queue = &channel->rx_queue; rx_queue->efx = efx; timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0); return channel; } /* Allocate and initialise a channel structure, copying parameters * (but not resources) from an old channel structure. */ static struct ef4_channel * ef4_copy_channel(const struct ef4_channel *old_channel) { struct ef4_channel *channel; struct ef4_rx_queue *rx_queue; struct ef4_tx_queue *tx_queue; int j; channel = kmalloc(sizeof(*channel), GFP_KERNEL); if (!channel) return NULL; *channel = *old_channel; channel->napi_dev = NULL; INIT_HLIST_NODE(&channel->napi_str.napi_hash_node); channel->napi_str.napi_id = 0; channel->napi_str.state = 0; memset(&channel->eventq, 0, sizeof(channel->eventq)); for (j = 0; j < EF4_TXQ_TYPES; j++) { tx_queue = &channel->tx_queue[j]; if (tx_queue->channel) tx_queue->channel = channel; tx_queue->buffer = NULL; memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); } rx_queue = &channel->rx_queue; rx_queue->buffer = NULL; memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0); return channel; } static int ef4_probe_channel(struct ef4_channel *channel) { struct ef4_tx_queue *tx_queue; struct ef4_rx_queue *rx_queue; int rc; netif_dbg(channel->efx, probe, channel->efx->net_dev, "creating channel %d\n", channel->channel); rc = channel->type->pre_probe(channel); if (rc) goto fail; rc = ef4_probe_eventq(channel); if (rc) goto fail; ef4_for_each_channel_tx_queue(tx_queue, channel) { rc = ef4_probe_tx_queue(tx_queue); if (rc) goto fail; } ef4_for_each_channel_rx_queue(rx_queue, channel) { rc = ef4_probe_rx_queue(rx_queue); if (rc) goto fail; } return 0; fail: ef4_remove_channel(channel); return rc; } static void ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len) { struct ef4_nic *efx = channel->efx; const char *type; int number; number = channel->channel; if (efx->tx_channel_offset == 0) { type = ""; } else if (channel->channel < efx->tx_channel_offset) { type = "-rx"; } else { type = "-tx"; number -= efx->tx_channel_offset; } snprintf(buf, len, "%s%s-%d", efx->name, type, number); } static void ef4_set_channel_names(struct ef4_nic *efx) { struct ef4_channel *channel; ef4_for_each_channel(channel, efx) channel->type->get_name(channel, efx->msi_context[channel->channel].name, sizeof(efx->msi_context[0].name)); } static int ef4_probe_channels(struct ef4_nic *efx) { struct ef4_channel *channel; int rc; /* Restart special buffer allocation */ efx->next_buffer_table = 0; /* Probe channels in reverse, so that any 'extra' channels * use the start of the buffer table. This allows the traffic * channels to be resized without moving them or wasting the * entries before them. */ ef4_for_each_channel_rev(channel, efx) { rc = ef4_probe_channel(channel); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create channel %d\n", channel->channel); goto fail; } } ef4_set_channel_names(efx); return 0; fail: ef4_remove_channels(efx); return rc; } /* Channels are shutdown and reinitialised whilst the NIC is running * to propagate configuration changes (mtu, checksum offload), or * to clear hardware error conditions */ static void ef4_start_datapath(struct ef4_nic *efx) { netdev_features_t old_features = efx->net_dev->features; bool old_rx_scatter = efx->rx_scatter; struct ef4_tx_queue *tx_queue; struct ef4_rx_queue *rx_queue; struct ef4_channel *channel; size_t rx_buf_len; /* Calculate the rx buffer allocation parameters required to * support the current MTU, including padding for header * alignment and overruns. */ efx->rx_dma_len = (efx->rx_prefix_size + EF4_MAX_FRAME_LEN(efx->net_dev->mtu) + efx->type->rx_buffer_padding); rx_buf_len = (sizeof(struct ef4_rx_page_state) + efx->rx_ip_align + efx->rx_dma_len); if (rx_buf_len <= PAGE_SIZE) { efx->rx_scatter = efx->type->always_rx_scatter; efx->rx_buffer_order = 0; } else if (efx->type->can_rx_scatter) { BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES); BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) + 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE, EF4_RX_BUF_ALIGNMENT) > PAGE_SIZE); efx->rx_scatter = true; efx->rx_dma_len = EF4_RX_USR_BUF_SIZE; efx->rx_buffer_order = 0; } else { efx->rx_scatter = false; efx->rx_buffer_order = get_order(rx_buf_len); } ef4_rx_config_page_split(efx); if (efx->rx_buffer_order) netif_dbg(efx, drv, efx->net_dev, "RX buf len=%u; page order=%u batch=%u\n", efx->rx_dma_len, efx->rx_buffer_order, efx->rx_pages_per_batch); else netif_dbg(efx, drv, efx->net_dev, "RX buf len=%u step=%u bpp=%u; page batch=%u\n", efx->rx_dma_len, efx->rx_page_buf_step, efx->rx_bufs_per_page, efx->rx_pages_per_batch); /* Restore previously fixed features in hw_features and remove * features which are fixed now */ efx->net_dev->hw_features |= efx->net_dev->features; efx->net_dev->hw_features &= ~efx->fixed_features; efx->net_dev->features |= efx->fixed_features; if (efx->net_dev->features != old_features) netdev_features_change(efx->net_dev); /* RX filters may also have scatter-enabled flags */ if (efx->rx_scatter != old_rx_scatter) efx->type->filter_update_rx_scatter(efx); /* We must keep at least one descriptor in a TX ring empty. * We could avoid this when the queue size does not exactly * match the hardware ring size, but it's not that important. * Therefore we stop the queue when one more skb might fill * the ring completely. We wake it when half way back to * empty. */ efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx); efx->txq_wake_thresh = efx->txq_stop_thresh / 2; /* Initialise the channels */ ef4_for_each_channel(channel, efx) { ef4_for_each_channel_tx_queue(tx_queue, channel) { ef4_init_tx_queue(tx_queue); atomic_inc(&efx->active_queues); } ef4_for_each_channel_rx_queue(rx_queue, channel) { ef4_init_rx_queue(rx_queue); atomic_inc(&efx->active_queues); ef4_stop_eventq(channel); ef4_fast_push_rx_descriptors(rx_queue, false); ef4_start_eventq(channel); } WARN_ON(channel->rx_pkt_n_frags); } if (netif_device_present(efx->net_dev)) netif_tx_wake_all_queues(efx->net_dev); } static void ef4_stop_datapath(struct ef4_nic *efx) { struct ef4_channel *channel; struct ef4_tx_queue *tx_queue; struct ef4_rx_queue *rx_queue; int rc; EF4_ASSERT_RESET_SERIALISED(efx); BUG_ON(efx->port_enabled); /* Stop RX refill */ ef4_for_each_channel(channel, efx) { ef4_for_each_channel_rx_queue(rx_queue, channel) rx_queue->refill_enabled = false; } ef4_for_each_channel(channel, efx) { /* RX packet processing is pipelined, so wait for the * NAPI handler to complete. At least event queue 0 * might be kept active by non-data events, so don't * use napi_synchronize() but actually disable NAPI * temporarily. */ if (ef4_channel_has_rx_queue(channel)) { ef4_stop_eventq(channel); ef4_start_eventq(channel); } } rc = efx->type->fini_dmaq(efx); if (rc && EF4_WORKAROUND_7803(efx)) { /* Schedule a reset to recover from the flush failure. The * descriptor caches reference memory we're about to free, * but falcon_reconfigure_mac_wrapper() won't reconnect * the MACs because of the pending reset. */ netif_err(efx, drv, efx->net_dev, "Resetting to recover from flush failure\n"); ef4_schedule_reset(efx, RESET_TYPE_ALL); } else if (rc) { netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); } else { netif_dbg(efx, drv, efx->net_dev, "successfully flushed all queues\n"); } ef4_for_each_channel(channel, efx) { ef4_for_each_channel_rx_queue(rx_queue, channel) ef4_fini_rx_queue(rx_queue); ef4_for_each_possible_channel_tx_queue(tx_queue, channel) ef4_fini_tx_queue(tx_queue); } } static void ef4_remove_channel(struct ef4_channel *channel) { struct ef4_tx_queue *tx_queue; struct ef4_rx_queue *rx_queue; netif_dbg(channel->efx, drv, channel->efx->net_dev, "destroy chan %d\n", channel->channel); ef4_for_each_channel_rx_queue(rx_queue, channel) ef4_remove_rx_queue(rx_queue); ef4_for_each_possible_channel_tx_queue(tx_queue, channel) ef4_remove_tx_queue(tx_queue); ef4_remove_eventq(channel); channel->type->post_remove(channel); } static void ef4_remove_channels(struct ef4_nic *efx) { struct ef4_channel *channel; ef4_for_each_channel(channel, efx) ef4_remove_channel(channel); } int ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries) { struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel; u32 old_rxq_entries, old_txq_entries; unsigned i, next_buffer_table = 0; int rc, rc2; rc = ef4_check_disabled(efx); if (rc) return rc; /* Not all channels should be reallocated. We must avoid * reallocating their buffer table entries. */ ef4_for_each_channel(channel, efx) { struct ef4_rx_queue *rx_queue; struct ef4_tx_queue *tx_queue; if (channel->type->copy) continue; next_buffer_table = max(next_buffer_table, channel->eventq.index + channel->eventq.entries); ef4_for_each_channel_rx_queue(rx_queue, channel) next_buffer_table = max(next_buffer_table, rx_queue->rxd.index + rx_queue->rxd.entries); ef4_for_each_channel_tx_queue(tx_queue, channel) next_buffer_table = max(next_buffer_table, tx_queue->txd.index + tx_queue->txd.entries); } ef4_device_detach_sync(efx); ef4_stop_all(efx); ef4_soft_disable_interrupts(efx); /* Clone channels (where possible) */ memset(other_channel, 0, sizeof(other_channel)); for (i = 0; i < efx->n_channels; i++) { channel = efx->channel[i]; if (channel->type->copy) channel = channel->type->copy(channel); if (!channel) { rc = -ENOMEM; goto out; } other_channel[i] = channel; } /* Swap entry counts and channel pointers */ old_rxq_entries = efx->rxq_entries; old_txq_entries = efx->txq_entries; efx->rxq_entries = rxq_entries; efx->txq_entries = txq_entries; for (i = 0; i < efx->n_channels; i++) { swap(efx->channel[i], other_channel[i]); } /* Restart buffer table allocation */ efx->next_buffer_table = next_buffer_table; for (i = 0; i < efx->n_channels; i++) { channel = efx->channel[i]; if (!channel->type->copy) continue; rc = ef4_probe_channel(channel); if (rc) goto rollback; ef4_init_napi_channel(efx->channel[i]); } out: /* Destroy unused channel structures */ for (i = 0; i < efx->n_channels; i++) { channel = other_channel[i]; if (channel && channel->type->copy) { ef4_fini_napi_channel(channel); ef4_remove_channel(channel); kfree(channel); } } rc2 = ef4_soft_enable_interrupts(efx); if (rc2) { rc = rc ? rc : rc2; netif_err(efx, drv, efx->net_dev, "unable to restart interrupts on channel reallocation\n"); ef4_schedule_reset(efx, RESET_TYPE_DISABLE); } else { ef4_start_all(efx); netif_device_attach(efx->net_dev); } return rc; rollback: /* Swap back */ efx->rxq_entries = old_rxq_entries; efx->txq_entries = old_txq_entries; for (i = 0; i < efx->n_channels; i++) { swap(efx->channel[i], other_channel[i]); } goto out; } void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue) { mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); } static const struct ef4_channel_type ef4_default_channel_type = { .pre_probe = ef4_channel_dummy_op_int, .post_remove = ef4_channel_dummy_op_void, .get_name = ef4_get_channel_name, .copy = ef4_copy_channel, .keep_eventq = false, }; int ef4_channel_dummy_op_int(struct ef4_channel *channel) { return 0; } void ef4_channel_dummy_op_void(struct ef4_channel *channel) { } /************************************************************************** * * Port handling * **************************************************************************/ /* This ensures that the kernel is kept informed (via * netif_carrier_on/off) of the link status, and also maintains the * link status's stop on the port's TX queue. */ void ef4_link_status_changed(struct ef4_nic *efx) { struct ef4_link_state *link_state = &efx->link_state; /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure * that no events are triggered between unregister_netdev() and the * driver unloading. A more general condition is that NETDEV_CHANGE * can only be generated between NETDEV_UP and NETDEV_DOWN */ if (!netif_running(efx->net_dev)) return; if (link_state->up != netif_carrier_ok(efx->net_dev)) { efx->n_link_state_changes++; if (link_state->up) netif_carrier_on(efx->net_dev); else netif_carrier_off(efx->net_dev); } /* Status message for kernel log */ if (link_state->up) netif_info(efx, link, efx->net_dev, "link up at %uMbps %s-duplex (MTU %d)\n", link_state->speed, link_state->fd ? "full" : "half", efx->net_dev->mtu); else netif_info(efx, link, efx->net_dev, "link down\n"); } void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising) { efx->link_advertising = advertising; if (advertising) { if (advertising & ADVERTISED_Pause) efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX); else efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX); if (advertising & ADVERTISED_Asym_Pause) efx->wanted_fc ^= EF4_FC_TX; } } void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc) { efx->wanted_fc = wanted_fc; if (efx->link_advertising) { if (wanted_fc & EF4_FC_RX) efx->link_advertising |= (ADVERTISED_Pause | ADVERTISED_Asym_Pause); else efx->link_advertising &= ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause); if (wanted_fc & EF4_FC_TX) efx->link_advertising ^= ADVERTISED_Asym_Pause; } } static void ef4_fini_port(struct ef4_nic *efx); /* We assume that efx->type->reconfigure_mac will always try to sync RX * filters and therefore needs to read-lock the filter table against freeing */ void ef4_mac_reconfigure(struct ef4_nic *efx) { down_read(&efx->filter_sem); efx->type->reconfigure_mac(efx); up_read(&efx->filter_sem); } /* Push loopback/power/transmit disable settings to the PHY, and reconfigure * the MAC appropriately. All other PHY configuration changes are pushed * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC * through ef4_monitor(). * * Callers must hold the mac_lock */ int __ef4_reconfigure_port(struct ef4_nic *efx) { enum ef4_phy_mode phy_mode; int rc; WARN_ON(!mutex_is_locked(&efx->mac_lock)); /* Disable PHY transmit in mac level loopbacks */ phy_mode = efx->phy_mode; if (LOOPBACK_INTERNAL(efx)) efx->phy_mode |= PHY_MODE_TX_DISABLED; else efx->phy_mode &= ~PHY_MODE_TX_DISABLED; rc = efx->type->reconfigure_port(efx); if (rc) efx->phy_mode = phy_mode; return rc; } /* Reinitialise the MAC to pick up new PHY settings, even if the port is * disabled. */ int ef4_reconfigure_port(struct ef4_nic *efx) { int rc; EF4_ASSERT_RESET_SERIALISED(efx); mutex_lock(&efx->mac_lock); rc = __ef4_reconfigure_port(efx); mutex_unlock(&efx->mac_lock); return rc; } /* Asynchronous work item for changing MAC promiscuity and multicast * hash. Avoid a drain/rx_ingress enable by reconfiguring the current * MAC directly. */ static void ef4_mac_work(struct work_struct *data) { struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work); mutex_lock(&efx->mac_lock); if (efx->port_enabled) ef4_mac_reconfigure(efx); mutex_unlock(&efx->mac_lock); } static int ef4_probe_port(struct ef4_nic *efx) { int rc; netif_dbg(efx, probe, efx->net_dev, "create port\n"); if (phy_flash_cfg) efx->phy_mode = PHY_MODE_SPECIAL; /* Connect up MAC/PHY operations table */ rc = efx->type->probe_port(efx); if (rc) return rc; /* Initialise MAC address to permanent address */ eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr); return 0; } static int ef4_init_port(struct ef4_nic *efx) { int rc; netif_dbg(efx, drv, efx->net_dev, "init port\n"); mutex_lock(&efx->mac_lock); rc = efx->phy_op->init(efx); if (rc) goto fail1; efx->port_initialized = true; /* Reconfigure the MAC before creating dma queues (required for * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ ef4_mac_reconfigure(efx); /* Ensure the PHY advertises the correct flow control settings */ rc = efx->phy_op->reconfigure(efx); if (rc && rc != -EPERM) goto fail2; mutex_unlock(&efx->mac_lock); return 0; fail2: efx->phy_op->fini(efx); fail1: mutex_unlock(&efx->mac_lock); return rc; } static void ef4_start_port(struct ef4_nic *efx) { netif_dbg(efx, ifup, efx->net_dev, "start port\n"); BUG_ON(efx->port_enabled); mutex_lock(&efx->mac_lock); efx->port_enabled = true; /* Ensure MAC ingress/egress is enabled */ ef4_mac_reconfigure(efx); mutex_unlock(&efx->mac_lock); } /* Cancel work for MAC reconfiguration, periodic hardware monitoring * and the async self-test, wait for them to finish and prevent them * being scheduled again. This doesn't cover online resets, which * should only be cancelled when removing the device. */ static void ef4_stop_port(struct ef4_nic *efx) { netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); EF4_ASSERT_RESET_SERIALISED(efx); mutex_lock(&efx->mac_lock); efx->port_enabled = false; mutex_unlock(&efx->mac_lock); /* Serialise against ef4_set_multicast_list() */ netif_addr_lock_bh(efx->net_dev); netif_addr_unlock_bh(efx->net_dev); cancel_delayed_work_sync(&efx->monitor_work); ef4_selftest_async_cancel(efx); cancel_work_sync(&efx->mac_work); } static void ef4_fini_port(struct ef4_nic *efx) { netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); if (!efx->port_initialized) return; efx->phy_op->fini(efx); efx->port_initialized = false; efx->link_state.up = false; ef4_link_status_changed(efx); } static void ef4_remove_port(struct ef4_nic *efx) { netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); efx->type->remove_port(efx); } /************************************************************************** * * NIC handling * **************************************************************************/ static LIST_HEAD(ef4_primary_list); static LIST_HEAD(ef4_unassociated_list); static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right) { return left->type == right->type && left->vpd_sn && right->vpd_sn && !strcmp(left->vpd_sn, right->vpd_sn); } static void ef4_associate(struct ef4_nic *efx) { struct ef4_nic *other, *next; if (efx->primary == efx) { /* Adding primary function; look for secondaries */ netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); list_add_tail(&efx->node, &ef4_primary_list); list_for_each_entry_safe(other, next, &ef4_unassociated_list, node) { if (ef4_same_controller(efx, other)) { list_del(&other->node); netif_dbg(other, probe, other->net_dev, "moving to secondary list of %s %s\n", pci_name(efx->pci_dev), efx->net_dev->name); list_add_tail(&other->node, &efx->secondary_list); other->primary = efx; } } } else { /* Adding secondary function; look for primary */ list_for_each_entry(other, &ef4_primary_list, node) { if (ef4_same_controller(efx, other)) { netif_dbg(efx, probe, efx->net_dev, "adding to secondary list of %s %s\n", pci_name(other->pci_dev), other->net_dev->name); list_add_tail(&efx->node, &other->secondary_list); efx->primary = other; return; } } netif_dbg(efx, probe, efx->net_dev, "adding to unassociated list\n"); list_add_tail(&efx->node, &ef4_unassociated_list); } } static void ef4_dissociate(struct ef4_nic *efx) { struct ef4_nic *other, *next; list_del(&efx->node); efx->primary = NULL; list_for_each_entry_safe(other, next, &efx->secondary_list, node) { list_del(&other->node); netif_dbg(other, probe, other->net_dev, "moving to unassociated list\n"); list_add_tail(&other->node, &ef4_unassociated_list); other->primary = NULL; } } /* This configures the PCI device to enable I/O and DMA. */ static int ef4_init_io(struct ef4_nic *efx) { struct pci_dev *pci_dev = efx->pci_dev; dma_addr_t dma_mask = efx->type->max_dma_mask; unsigned int mem_map_size = efx->type->mem_map_size(efx); int rc, bar; netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); bar = efx->type->mem_bar; rc = pci_enable_device(pci_dev); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to enable PCI device\n"); goto fail1; } pci_set_master(pci_dev); /* Set the PCI DMA mask. Try all possibilities from our genuine mask * down to 32 bits, because some architectures will allow 40 bit * masks event though they reject 46 bit masks. */ while (dma_mask > 0x7fffffffUL) { rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); if (rc == 0) break; dma_mask >>= 1; } if (rc) { netif_err(efx, probe, efx->net_dev, "could not find a suitable DMA mask\n"); goto fail2; } netif_dbg(efx, probe, efx->net_dev, "using DMA mask %llx\n", (unsigned long long) dma_mask); efx->membase_phys = pci_resource_start(efx->pci_dev, bar); rc = pci_request_region(pci_dev, bar, "sfc"); if (rc) { netif_err(efx, probe, efx->net_dev, "request for memory BAR failed\n"); rc = -EIO; goto fail3; } efx->membase = ioremap(efx->membase_phys, mem_map_size); if (!efx->membase) { netif_err(efx, probe, efx->net_dev, "could not map memory BAR at %llx+%x\n", (unsigned long long)efx->membase_phys, mem_map_size); rc = -ENOMEM; goto fail4; } netif_dbg(efx, probe, efx->net_dev, "memory BAR at %llx+%x (virtual %p)\n", (unsigned long long)efx->membase_phys, mem_map_size, efx->membase); return 0; fail4: pci_release_region(efx->pci_dev, bar); fail3: efx->membase_phys = 0; fail2: pci_disable_device(efx->pci_dev); fail1: return rc; } static void ef4_fini_io(struct ef4_nic *efx) { int bar; netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); if (efx->membase) { iounmap(efx->membase); efx->membase = NULL; } if (efx->membase_phys) { bar = efx->type->mem_bar; pci_release_region(efx->pci_dev, bar); efx->membase_phys = 0; } /* Don't disable bus-mastering if VFs are assigned */ if (!pci_vfs_assigned(efx->pci_dev)) pci_disable_device(efx->pci_dev); } void ef4_set_default_rx_indir_table(struct ef4_nic *efx) { size_t i; for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) efx->rx_indir_table[i] = ethtool_rxfh_indir_default(i, efx->rss_spread); } static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx) { cpumask_var_t thread_mask; unsigned int count; int cpu; if (rss_cpus) { count = rss_cpus; } else { if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { netif_warn(efx, probe, efx->net_dev, "RSS disabled due to allocation failure\n"); return 1; } count = 0; for_each_online_cpu(cpu) { if (!cpumask_test_cpu(cpu, thread_mask)) { ++count; cpumask_or(thread_mask, thread_mask, topology_sibling_cpumask(cpu)); } } free_cpumask_var(thread_mask); } if (count > EF4_MAX_RX_QUEUES) { netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn, "Reducing number of rx queues from %u to %u.\n", count, EF4_MAX_RX_QUEUES); count = EF4_MAX_RX_QUEUES; } return count; } /* Probe the number and type of interrupts we are able to obtain, and * the resulting numbers of channels and RX queues. */ static int ef4_probe_interrupts(struct ef4_nic *efx) { unsigned int extra_channels = 0; unsigned int i, j; int rc; for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) if (efx->extra_channel_type[i]) ++extra_channels; if (efx->interrupt_mode == EF4_INT_MODE_MSIX) { struct msix_entry xentries[EF4_MAX_CHANNELS]; unsigned int n_channels; n_channels = ef4_wanted_parallelism(efx); if (ef4_separate_tx_channels) n_channels *= 2; n_channels += extra_channels; n_channels = min(n_channels, efx->max_channels); for (i = 0; i < n_channels; i++) xentries[i].entry = i; rc = pci_enable_msix_range(efx->pci_dev, xentries, 1, n_channels); if (rc < 0) { /* Fall back to single channel MSI */ efx->interrupt_mode = EF4_INT_MODE_MSI; netif_err(efx, drv, efx->net_dev, "could not enable MSI-X\n"); } else if (rc < n_channels) { netif_err(efx, drv, efx->net_dev, "WARNING: Insufficient MSI-X vectors" " available (%d < %u).\n", rc, n_channels); netif_err(efx, drv, efx->net_dev, "WARNING: Performance may be reduced.\n"); n_channels = rc; } if (rc > 0) { efx->n_channels = n_channels; if (n_channels > extra_channels) n_channels -= extra_channels; if (ef4_separate_tx_channels) { efx->n_tx_channels = min(max(n_channels / 2, 1U), efx->max_tx_channels); efx->n_rx_channels = max(n_channels - efx->n_tx_channels, 1U); } else { efx->n_tx_channels = min(n_channels, efx->max_tx_channels); efx->n_rx_channels = n_channels; } for (i = 0; i < efx->n_channels; i++) ef4_get_channel(efx, i)->irq = xentries[i].vector; } } /* Try single interrupt MSI */ if (efx->interrupt_mode == EF4_INT_MODE_MSI) { efx->n_channels = 1; efx->n_rx_channels = 1; efx->n_tx_channels = 1; rc = pci_enable_msi(efx->pci_dev); if (rc == 0) { ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq; } else { netif_err(efx, drv, efx->net_dev, "could not enable MSI\n"); efx->interrupt_mode = EF4_INT_MODE_LEGACY; } } /* Assume legacy interrupts */ if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) { efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0); efx->n_rx_channels = 1; efx->n_tx_channels = 1; efx->legacy_irq = efx->pci_dev->irq; } /* Assign extra channels if possible */ j = efx->n_channels; for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) { if (!efx->extra_channel_type[i]) continue; if (efx->interrupt_mode != EF4_INT_MODE_MSIX || efx->n_channels <= extra_channels) { efx->extra_channel_type[i]->handle_no_channel(efx); } else { --j; ef4_get_channel(efx, j)->type = efx->extra_channel_type[i]; } } efx->rss_spread = efx->n_rx_channels; return 0; } static int ef4_soft_enable_interrupts(struct ef4_nic *efx) { struct ef4_channel *channel, *end_channel; int rc; BUG_ON(efx->state == STATE_DISABLED); efx->irq_soft_enabled = true; smp_wmb(); ef4_for_each_channel(channel, efx) { if (!channel->type->keep_eventq) { rc = ef4_init_eventq(channel); if (rc) goto fail; } ef4_start_eventq(channel); } return 0; fail: end_channel = channel; ef4_for_each_channel(channel, efx) { if (channel == end_channel) break; ef4_stop_eventq(channel); if (!channel->type->keep_eventq) ef4_fini_eventq(channel); } return rc; } static void ef4_soft_disable_interrupts(struct ef4_nic *efx) { struct ef4_channel *channel; if (efx->state == STATE_DISABLED) return; efx->irq_soft_enabled = false; smp_wmb(); if (efx->legacy_irq) synchronize_irq(efx->legacy_irq); ef4_for_each_channel(channel, efx) { if (channel->irq) synchronize_irq(channel->irq); ef4_stop_eventq(channel); if (!channel->type->keep_eventq) ef4_fini_eventq(channel); } } static int ef4_enable_interrupts(struct ef4_nic *efx) { struct ef4_channel *channel, *end_channel; int rc; BUG_ON(efx->state == STATE_DISABLED); if (efx->eeh_disabled_legacy_irq) { enable_irq(efx->legacy_irq); efx->eeh_disabled_legacy_irq = false; } efx->type->irq_enable_master(efx); ef4_for_each_channel(channel, efx) { if (channel->type->keep_eventq) { rc = ef4_init_eventq(channel); if (rc) goto fail; } } rc = ef4_soft_enable_interrupts(efx); if (rc) goto fail; return 0; fail: end_channel = channel; ef4_for_each_channel(channel, efx) { if (channel == end_channel) break; if (channel->type->keep_eventq) ef4_fini_eventq(channel); } efx->type->irq_disable_non_ev(efx); return rc; } static void ef4_disable_interrupts(struct ef4_nic *efx) { struct ef4_channel *channel; ef4_soft_disable_interrupts(efx); ef4_for_each_channel(channel, efx) { if (channel->type->keep_eventq) ef4_fini_eventq(channel); } efx->type->irq_disable_non_ev(efx); } static void ef4_remove_interrupts(struct ef4_nic *efx) { struct ef4_channel *channel; /* Remove MSI/MSI-X interrupts */ ef4_for_each_channel(channel, efx) channel->irq = 0; pci_disable_msi(efx->pci_dev); pci_disable_msix(efx->pci_dev); /* Remove legacy interrupt */ efx->legacy_irq = 0; } static void ef4_set_channels(struct ef4_nic *efx) { struct ef4_channel *channel; struct ef4_tx_queue *tx_queue; efx->tx_channel_offset = ef4_separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; /* We need to mark which channels really have RX and TX * queues, and adjust the TX queue numbers if we have separate * RX-only and TX-only channels. */ ef4_for_each_channel(channel, efx) { if (channel->channel < efx->n_rx_channels) channel->rx_queue.core_index = channel->channel; else channel->rx_queue.core_index = -1; ef4_for_each_channel_tx_queue(tx_queue, channel) tx_queue->queue -= (efx->tx_channel_offset * EF4_TXQ_TYPES); } } static int ef4_probe_nic(struct ef4_nic *efx) { int rc; netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); /* Carry out hardware-type specific initialisation */ rc = efx->type->probe(efx); if (rc) return rc; do { if (!efx->max_channels || !efx->max_tx_channels) { netif_err(efx, drv, efx->net_dev, "Insufficient resources to allocate" " any channels\n"); rc = -ENOSPC; goto fail1; } /* Determine the number of channels and queues by trying * to hook in MSI-X interrupts. */ rc = ef4_probe_interrupts(efx); if (rc) goto fail1; ef4_set_channels(efx); /* dimension_resources can fail with EAGAIN */ rc = efx->type->dimension_resources(efx); if (rc != 0 && rc != -EAGAIN) goto fail2; if (rc == -EAGAIN) /* try again with new max_channels */ ef4_remove_interrupts(efx); } while (rc == -EAGAIN); if (efx->n_channels > 1) netdev_rss_key_fill(&efx->rx_hash_key, sizeof(efx->rx_hash_key)); ef4_set_default_rx_indir_table(efx); netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); /* Initialise the interrupt moderation settings */ efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, true); return 0; fail2: ef4_remove_interrupts(efx); fail1: efx->type->remove(efx); return rc; } static void ef4_remove_nic(struct ef4_nic *efx) { netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); ef4_remove_interrupts(efx); efx->type->remove(efx); } static int ef4_probe_filters(struct ef4_nic *efx) { int rc; spin_lock_init(&efx->filter_lock); init_rwsem(&efx->filter_sem); mutex_lock(&efx->mac_lock); down_write(&efx->filter_sem); rc = efx->type->filter_table_probe(efx); if (rc) goto out_unlock; #ifdef CONFIG_RFS_ACCEL if (efx->type->offload_features & NETIF_F_NTUPLE) { struct ef4_channel *channel; int i, success = 1; ef4_for_each_channel(channel, efx) { channel->rps_flow_id = kcalloc(efx->type->max_rx_ip_filters, sizeof(*channel->rps_flow_id), GFP_KERNEL); if (!channel->rps_flow_id) success = 0; else for (i = 0; i < efx->type->max_rx_ip_filters; ++i) channel->rps_flow_id[i] = RPS_FLOW_ID_INVALID; } if (!success) { ef4_for_each_channel(channel, efx) kfree(channel->rps_flow_id); efx->type->filter_table_remove(efx); rc = -ENOMEM; goto out_unlock; } efx->rps_expire_index = efx->rps_expire_channel = 0; } #endif out_unlock: up_write(&efx->filter_sem); mutex_unlock(&efx->mac_lock); return rc; } static void ef4_remove_filters(struct ef4_nic *efx) { #ifdef CONFIG_RFS_ACCEL struct ef4_channel *channel; ef4_for_each_channel(channel, efx) kfree(channel->rps_flow_id); #endif down_write(&efx->filter_sem); efx->type->filter_table_remove(efx); up_write(&efx->filter_sem); } static void ef4_restore_filters(struct ef4_nic *efx) { down_read(&efx->filter_sem); efx->type->filter_table_restore(efx); up_read(&efx->filter_sem); } /************************************************************************** * * NIC startup/shutdown * *************************************************************************/ static int ef4_probe_all(struct ef4_nic *efx) { int rc; rc = ef4_probe_nic(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); goto fail1; } rc = ef4_probe_port(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create port\n"); goto fail2; } BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT); if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) { rc = -EINVAL; goto fail3; } efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE; rc = ef4_probe_filters(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to create filter tables\n"); goto fail4; } rc = ef4_probe_channels(efx); if (rc) goto fail5; return 0; fail5: ef4_remove_filters(efx); fail4: fail3: ef4_remove_port(efx); fail2: ef4_remove_nic(efx); fail1: return rc; } /* If the interface is supposed to be running but is not, start * the hardware and software data path, regular activity for the port * (MAC statistics, link polling, etc.) and schedule the port to be * reconfigured. Interrupts must already be enabled. This function * is safe to call multiple times, so long as the NIC is not disabled. * Requires the RTNL lock. */ static void ef4_start_all(struct ef4_nic *efx) { EF4_ASSERT_RESET_SERIALISED(efx); BUG_ON(efx->state == STATE_DISABLED); /* Check that it is appropriate to restart the interface. All * of these flags are safe to read under just the rtnl lock */ if (efx->port_enabled || !netif_running(efx->net_dev) || efx->reset_pending) return; ef4_start_port(efx); ef4_start_datapath(efx); /* Start the hardware monitor if there is one */ if (efx->type->monitor != NULL) queue_delayed_work(efx->workqueue, &efx->monitor_work, ef4_monitor_interval); efx->type->start_stats(efx); efx->type->pull_stats(efx); spin_lock_bh(&efx->stats_lock); efx->type->update_stats(efx, NULL, NULL); spin_unlock_bh(&efx->stats_lock); } /* Quiesce the hardware and software data path, and regular activity * for the port without bringing the link down. Safe to call multiple * times with the NIC in almost any state, but interrupts should be * enabled. Requires the RTNL lock. */ static void ef4_stop_all(struct ef4_nic *efx) { EF4_ASSERT_RESET_SERIALISED(efx); /* port_enabled can be read safely under the rtnl lock */ if (!efx->port_enabled) return; /* update stats before we go down so we can accurately count * rx_nodesc_drops */ efx->type->pull_stats(efx); spin_lock_bh(&efx->stats_lock); efx->type->update_stats(efx, NULL, NULL); spin_unlock_bh(&efx->stats_lock); efx->type->stop_stats(efx); ef4_stop_port(efx); /* Stop the kernel transmit interface. This is only valid if * the device is stopped or detached; otherwise the watchdog * may fire immediately. */ WARN_ON(netif_running(efx->net_dev) && netif_device_present(efx->net_dev)); netif_tx_disable(efx->net_dev); ef4_stop_datapath(efx); } static void ef4_remove_all(struct ef4_nic *efx) { ef4_remove_channels(efx); ef4_remove_filters(efx); ef4_remove_port(efx); ef4_remove_nic(efx); } /************************************************************************** * * Interrupt moderation * **************************************************************************/ unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs) { if (usecs == 0) return 0; if (usecs * 1000 < efx->timer_quantum_ns) return 1; /* never round down to 0 */ return usecs * 1000 / efx->timer_quantum_ns; } unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks) { /* We must round up when converting ticks to microseconds * because we round down when converting the other way. */ return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); } /* Set interrupt moderation parameters */ int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs, unsigned int rx_usecs, bool rx_adaptive, bool rx_may_override_tx) { struct ef4_channel *channel; unsigned int timer_max_us; EF4_ASSERT_RESET_SERIALISED(efx); timer_max_us = efx->timer_max_ns / 1000; if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) return -EINVAL; if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && !rx_may_override_tx) { netif_err(efx, drv, efx->net_dev, "Channels are shared. " "RX and TX IRQ moderation must be equal\n"); return -EINVAL; } efx->irq_rx_adaptive = rx_adaptive; efx->irq_rx_moderation_us = rx_usecs; ef4_for_each_channel(channel, efx) { if (ef4_channel_has_rx_queue(channel)) channel->irq_moderation_us = rx_usecs; else if (ef4_channel_has_tx_queues(channel)) channel->irq_moderation_us = tx_usecs; } return 0; } void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs, unsigned int *rx_usecs, bool *rx_adaptive) { *rx_adaptive = efx->irq_rx_adaptive; *rx_usecs = efx->irq_rx_moderation_us; /* If channels are shared between RX and TX, so is IRQ * moderation. Otherwise, IRQ moderation is the same for all * TX channels and is not adaptive. */ if (efx->tx_channel_offset == 0) { *tx_usecs = *rx_usecs; } else { struct ef4_channel *tx_channel; tx_channel = efx->channel[efx->tx_channel_offset]; *tx_usecs = tx_channel->irq_moderation_us; } } /************************************************************************** * * Hardware monitor * **************************************************************************/ /* Run periodically off the general workqueue */ static void ef4_monitor(struct work_struct *data) { struct ef4_nic *efx = container_of(data, struct ef4_nic, monitor_work.work); netif_vdbg(efx, timer, efx->net_dev, "hardware monitor executing on CPU %d\n", raw_smp_processor_id()); BUG_ON(efx->type->monitor == NULL); /* If the mac_lock is already held then it is likely a port * reconfiguration is already in place, which will likely do * most of the work of monitor() anyway. */ if (mutex_trylock(&efx->mac_lock)) { if (efx->port_enabled) efx->type->monitor(efx); mutex_unlock(&efx->mac_lock); } queue_delayed_work(efx->workqueue, &efx->monitor_work, ef4_monitor_interval); } /************************************************************************** * * ioctls * *************************************************************************/ /* Net device ioctl * Context: process, rtnl_lock() held. */ static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) { struct ef4_nic *efx = netdev_priv(net_dev); struct mii_ioctl_data *data = if_mii(ifr); /* Convert phy_id from older PRTAD/DEVAD format */ if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && (data->phy_id & 0xfc00) == 0x0400) data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; return mdio_mii_ioctl(&efx->mdio, data, cmd); } /************************************************************************** * * NAPI interface * **************************************************************************/ static void ef4_init_napi_channel(struct ef4_channel *channel) { struct ef4_nic *efx = channel->efx; channel->napi_dev = efx->net_dev; netif_napi_add(channel->napi_dev, &channel->napi_str, ef4_poll); } static void ef4_init_napi(struct ef4_nic *efx) { struct ef4_channel *channel; ef4_for_each_channel(channel, efx) ef4_init_napi_channel(channel); } static void ef4_fini_napi_channel(struct ef4_channel *channel) { if (channel->napi_dev) netif_napi_del(&channel->napi_str); channel->napi_dev = NULL; } static void ef4_fini_napi(struct ef4_nic *efx) { struct ef4_channel *channel; ef4_for_each_channel(channel, efx) ef4_fini_napi_channel(channel); } /************************************************************************** * * Kernel net device interface * *************************************************************************/ /* Context: process, rtnl_lock() held. */ int ef4_net_open(struct net_device *net_dev) { struct ef4_nic *efx = netdev_priv(net_dev); int rc; netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", raw_smp_processor_id()); rc = ef4_check_disabled(efx); if (rc) return rc; if (efx->phy_mode & PHY_MODE_SPECIAL) return -EBUSY; /* Notify the kernel of the link state polled during driver load, * before the monitor starts running */ ef4_link_status_changed(efx); ef4_start_all(efx); ef4_selftest_async_start(efx); return 0; } /* Context: process, rtnl_lock() held. * Note that the kernel will ignore our return code; this method * should really be a void. */ int ef4_net_stop(struct net_device *net_dev) { struct ef4_nic *efx = netdev_priv(net_dev); netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", raw_smp_processor_id()); /* Stop the device and flush all the channels */ ef4_stop_all(efx); return 0; } /* Context: process, rcu_read_lock or RTNL held, non-blocking. */ static void ef4_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats) { struct ef4_nic *efx = netdev_priv(net_dev); spin_lock_bh(&efx->stats_lock); efx->type->update_stats(efx, NULL, stats); spin_unlock_bh(&efx->stats_lock); } /* Context: netif_tx_lock held, BHs disabled. */ static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue) { struct ef4_nic *efx = netdev_priv(net_dev); netif_err(efx, tx_err, efx->net_dev, "TX stuck with port_enabled=%d: resetting channels\n", efx->port_enabled); ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); } /* Context: process, rtnl_lock() held. */ static int ef4_change_mtu(struct net_device *net_dev, int new_mtu) { struct ef4_nic *efx = netdev_priv(net_dev); int rc; rc = ef4_check_disabled(efx); if (rc) return rc; netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); ef4_device_detach_sync(efx); ef4_stop_all(efx); mutex_lock(&efx->mac_lock); WRITE_ONCE(net_dev->mtu, new_mtu); ef4_mac_reconfigure(efx); mutex_unlock(&efx->mac_lock); ef4_start_all(efx); netif_device_attach(efx->net_dev); return 0; } static int ef4_set_mac_address(struct net_device *net_dev, void *data) { struct ef4_nic *efx = netdev_priv(net_dev); struct sockaddr *addr = data; u8 *new_addr = addr->sa_data; u8 old_addr[6]; int rc; if (!is_valid_ether_addr(new_addr)) { netif_err(efx, drv, efx->net_dev, "invalid ethernet MAC address requested: %pM\n", new_addr); return -EADDRNOTAVAIL; } /* save old address */ ether_addr_copy(old_addr, net_dev->dev_addr); eth_hw_addr_set(net_dev, new_addr); if (efx->type->set_mac_address) { rc = efx->type->set_mac_address(efx); if (rc) { eth_hw_addr_set(net_dev, old_addr); return rc; } } /* Reconfigure the MAC */ mutex_lock(&efx->mac_lock); ef4_mac_reconfigure(efx); mutex_unlock(&efx->mac_lock); return 0; } /* Context: netif_addr_lock held, BHs disabled. */ static void ef4_set_rx_mode(struct net_device *net_dev) { struct ef4_nic *efx = netdev_priv(net_dev); if (efx->port_enabled) queue_work(efx->workqueue, &efx->mac_work); /* Otherwise ef4_start_port() will do this */ } static int ef4_set_features(struct net_device *net_dev, netdev_features_t data) { struct ef4_nic *efx = netdev_priv(net_dev); int rc; /* If disabling RX n-tuple filtering, clear existing filters */ if (net_dev->features & ~data & NETIF_F_NTUPLE) { rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL); if (rc) return rc; } /* If Rx VLAN filter is changed, update filters via mac_reconfigure */ if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) { /* ef4_set_rx_mode() will schedule MAC work to update filters * when a new features are finally set in net_dev. */ ef4_set_rx_mode(net_dev); } return 0; } static const struct net_device_ops ef4_netdev_ops = { .ndo_open = ef4_net_open, .ndo_stop = ef4_net_stop, .ndo_get_stats64 = ef4_net_stats, .ndo_tx_timeout = ef4_watchdog, .ndo_start_xmit = ef4_hard_start_xmit, .ndo_validate_addr = eth_validate_addr, .ndo_eth_ioctl = ef4_ioctl, .ndo_change_mtu = ef4_change_mtu, .ndo_set_mac_address = ef4_set_mac_address, .ndo_set_rx_mode = ef4_set_rx_mode, .ndo_set_features = ef4_set_features, .ndo_setup_tc = ef4_setup_tc, #ifdef CONFIG_RFS_ACCEL .ndo_rx_flow_steer = ef4_filter_rfs, #endif }; static void ef4_update_name(struct ef4_nic *efx) { strcpy(efx->name, efx->net_dev->name); ef4_mtd_rename(efx); ef4_set_channel_names(efx); } static int ef4_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); if ((net_dev->netdev_ops == &ef4_netdev_ops) && event == NETDEV_CHANGENAME) ef4_update_name(netdev_priv(net_dev)); return NOTIFY_DONE; } static struct notifier_block ef4_netdev_notifier = { .notifier_call = ef4_netdev_event, }; static ssize_t phy_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ef4_nic *efx = dev_get_drvdata(dev); return sprintf(buf, "%d\n", efx->phy_type); } static DEVICE_ATTR_RO(phy_type); static int ef4_register_netdev(struct ef4_nic *efx) { struct net_device *net_dev = efx->net_dev; struct ef4_channel *channel; int rc; net_dev->watchdog_timeo = 5 * HZ; net_dev->irq = efx->pci_dev->irq; net_dev->netdev_ops = &ef4_netdev_ops; net_dev->ethtool_ops = &ef4_ethtool_ops; netif_set_tso_max_segs(net_dev, EF4_TSO_MAX_SEGS); net_dev->min_mtu = EF4_MIN_MTU; net_dev->max_mtu = EF4_MAX_MTU; rtnl_lock(); /* Enable resets to be scheduled and check whether any were * already requested. If so, the NIC is probably hosed so we * abort. */ efx->state = STATE_READY; smp_mb(); /* ensure we change state before checking reset_pending */ if (efx->reset_pending) { netif_err(efx, probe, efx->net_dev, "aborting probe due to scheduled reset\n"); rc = -EIO; goto fail_locked; } rc = dev_alloc_name(net_dev, net_dev->name); if (rc < 0) goto fail_locked; ef4_update_name(efx); /* Always start with carrier off; PHY events will detect the link */ netif_carrier_off(net_dev); rc = register_netdevice(net_dev); if (rc) goto fail_locked; ef4_for_each_channel(channel, efx) { struct ef4_tx_queue *tx_queue; ef4_for_each_channel_tx_queue(tx_queue, channel) ef4_init_tx_queue_core_txq(tx_queue); } ef4_associate(efx); rtnl_unlock(); rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to init net dev attributes\n"); goto fail_registered; } return 0; fail_registered: rtnl_lock(); ef4_dissociate(efx); unregister_netdevice(net_dev); fail_locked: efx->state = STATE_UNINIT; rtnl_unlock(); netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); return rc; } static void ef4_unregister_netdev(struct ef4_nic *efx) { if (!efx->net_dev) return; BUG_ON(netdev_priv(efx->net_dev) != efx); if (ef4_dev_registered(efx)) { strscpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); unregister_netdev(efx->net_dev); } } /************************************************************************** * * Device reset and suspend * **************************************************************************/ /* Tears down the entire software state and most of the hardware state * before reset. */ void ef4_reset_down(struct ef4_nic *efx, enum reset_type method) { EF4_ASSERT_RESET_SERIALISED(efx); ef4_stop_all(efx); ef4_disable_interrupts(efx); mutex_lock(&efx->mac_lock); if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && method != RESET_TYPE_DATAPATH) efx->phy_op->fini(efx); efx->type->fini(efx); } /* This function will always ensure that the locks acquired in * ef4_reset_down() are released. A failure return code indicates * that we were unable to reinitialise the hardware, and the * driver should be disabled. If ok is false, then the rx and tx * engines are not restarted, pending a RESET_DISABLE. */ int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok) { int rc; EF4_ASSERT_RESET_SERIALISED(efx); /* Ensure that SRAM is initialised even if we're disabling the device */ rc = efx->type->init(efx); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); goto fail; } if (!ok) goto fail; if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && method != RESET_TYPE_DATAPATH) { rc = efx->phy_op->init(efx); if (rc) goto fail; rc = efx->phy_op->reconfigure(efx); if (rc && rc != -EPERM) netif_err(efx, drv, efx->net_dev, "could not restore PHY settings\n"); } rc = ef4_enable_interrupts(efx); if (rc) goto fail; down_read(&efx->filter_sem); ef4_restore_filters(efx); up_read(&efx->filter_sem); mutex_unlock(&efx->mac_lock); ef4_start_all(efx); return 0; fail: efx->port_initialized = false; mutex_unlock(&efx->mac_lock); return rc; } /* Reset the NIC using the specified method. Note that the reset may * fail, in which case the card will be left in an unusable state. * * Caller must hold the rtnl_lock. */ int ef4_reset(struct ef4_nic *efx, enum reset_type method) { int rc, rc2; bool disabled; netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", RESET_TYPE(method)); ef4_device_detach_sync(efx); ef4_reset_down(efx, method); rc = efx->type->reset(efx, method); if (rc) { netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); goto out; } /* Clear flags for the scopes we covered. We assume the NIC and * driver are now quiescent so that there is no race here. */ if (method < RESET_TYPE_MAX_METHOD) efx->reset_pending &= -(1 << (method + 1)); else /* it doesn't fit into the well-ordered scope hierarchy */ __clear_bit(method, &efx->reset_pending); /* Reinitialise bus-mastering, which may have been turned off before * the reset was scheduled. This is still appropriate, even in the * RESET_TYPE_DISABLE since this driver generally assumes the hardware * can respond to requests. */ pci_set_master(efx->pci_dev); out: /* Leave device stopped if necessary */ disabled = rc || method == RESET_TYPE_DISABLE || method == RESET_TYPE_RECOVER_OR_DISABLE; rc2 = ef4_reset_up(efx, method, !disabled); if (rc2) { disabled = true; if (!rc) rc = rc2; } if (disabled) { dev_close(efx->net_dev); netif_err(efx, drv, efx->net_dev, "has been disabled\n"); efx->state = STATE_DISABLED; } else { netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); netif_device_attach(efx->net_dev); } return rc; } /* Try recovery mechanisms. * For now only EEH is supported. * Returns 0 if the recovery mechanisms are unsuccessful. * Returns a non-zero value otherwise. */ int ef4_try_recovery(struct ef4_nic *efx) { #ifdef CONFIG_EEH /* A PCI error can occur and not be seen by EEH because nothing * happens on the PCI bus. In this case the driver may fail and * schedule a 'recover or reset', leading to this recovery handler. * Manually call the eeh failure check function. */ struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); if (eeh_dev_check_failure(eehdev)) { /* The EEH mechanisms will handle the error and reset the * device if necessary. */ return 1; } #endif return 0; } /* The worker thread exists so that code that cannot sleep can * schedule a reset for later. */ static void ef4_reset_work(struct work_struct *data) { struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work); unsigned long pending; enum reset_type method; pending = READ_ONCE(efx->reset_pending); method = fls(pending) - 1; if ((method == RESET_TYPE_RECOVER_OR_DISABLE || method == RESET_TYPE_RECOVER_OR_ALL) && ef4_try_recovery(efx)) return; if (!pending) return; rtnl_lock(); /* We checked the state in ef4_schedule_reset() but it may * have changed by now. Now that we have the RTNL lock, * it cannot change again. */ if (efx->state == STATE_READY) (void)ef4_reset(efx, method); rtnl_unlock(); } void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type) { enum reset_type method; if (efx->state == STATE_RECOVERY) { netif_dbg(efx, drv, efx->net_dev, "recovering: skip scheduling %s reset\n", RESET_TYPE(type)); return; } switch (type) { case RESET_TYPE_INVISIBLE: case RESET_TYPE_ALL: case RESET_TYPE_RECOVER_OR_ALL: case RESET_TYPE_WORLD: case RESET_TYPE_DISABLE: case RESET_TYPE_RECOVER_OR_DISABLE: case RESET_TYPE_DATAPATH: method = type; netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", RESET_TYPE(method)); break; default: method = efx->type->map_reset_reason(type); netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset for %s\n", RESET_TYPE(method), RESET_TYPE(type)); break; } set_bit(method, &efx->reset_pending); smp_mb(); /* ensure we change reset_pending before checking state */ /* If we're not READY then just leave the flags set as the cue * to abort probing or reschedule the reset later. */ if (READ_ONCE(efx->state) != STATE_READY) return; queue_work(reset_workqueue, &efx->reset_work); } /************************************************************************** * * List of NICs we support * **************************************************************************/ /* PCI device ID table */ static const struct pci_device_id ef4_pci_table[] = { {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0), .driver_data = (unsigned long) &falcon_a1_nic_type}, {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, PCI_DEVICE_ID_SOLARFLARE_SFC4000B), .driver_data = (unsigned long) &falcon_b0_nic_type}, {0} /* end of list */ }; /************************************************************************** * * Dummy PHY/MAC operations * * Can be used for some unimplemented operations * Needed so all function pointers are valid and do not have to be tested * before use * **************************************************************************/ int ef4_port_dummy_op_int(struct ef4_nic *efx) { return 0; } void ef4_port_dummy_op_void(struct ef4_nic *efx) {} static bool ef4_port_dummy_op_poll(struct ef4_nic *efx) { return false; } static const struct ef4_phy_operations ef4_dummy_phy_operations = { .init = ef4_port_dummy_op_int, .reconfigure = ef4_port_dummy_op_int, .poll = ef4_port_dummy_op_poll, .fini = ef4_port_dummy_op_void, }; /************************************************************************** * * Data housekeeping * **************************************************************************/ /* This zeroes out and then fills in the invariants in a struct * ef4_nic (including all sub-structures). */ static int ef4_init_struct(struct ef4_nic *efx, struct pci_dev *pci_dev, struct net_device *net_dev) { int i; /* Initialise common structures */ INIT_LIST_HEAD(&efx->node); INIT_LIST_HEAD(&efx->secondary_list); spin_lock_init(&efx->biu_lock); #ifdef CONFIG_SFC_FALCON_MTD INIT_LIST_HEAD(&efx->mtd_list); #endif INIT_WORK(&efx->reset_work, ef4_reset_work); INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor); INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work); efx->pci_dev = pci_dev; efx->msg_enable = debug; efx->state = STATE_UNINIT; strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); efx->net_dev = net_dev; efx->rx_prefix_size = efx->type->rx_prefix_size; efx->rx_ip_align = NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; efx->rx_packet_hash_offset = efx->type->rx_hash_offset - efx->type->rx_prefix_size; efx->rx_packet_ts_offset = efx->type->rx_ts_offset - efx->type->rx_prefix_size; spin_lock_init(&efx->stats_lock); mutex_init(&efx->mac_lock); efx->phy_op = &ef4_dummy_phy_operations; efx->mdio.dev = net_dev; INIT_WORK(&efx->mac_work, ef4_mac_work); init_waitqueue_head(&efx->flush_wq); for (i = 0; i < EF4_MAX_CHANNELS; i++) { efx->channel[i] = ef4_alloc_channel(efx, i, NULL); if (!efx->channel[i]) goto fail; efx->msi_context[i].efx = efx; efx->msi_context[i].index = i; } /* Higher numbered interrupt modes are less capable! */ efx->interrupt_mode = max(efx->type->max_interrupt_mode, interrupt_mode); /* Would be good to use the net_dev name, but we're too early */ snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", pci_name(pci_dev)); efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); if (!efx->workqueue) goto fail; return 0; fail: ef4_fini_struct(efx); return -ENOMEM; } static void ef4_fini_struct(struct ef4_nic *efx) { int i; for (i = 0; i < EF4_MAX_CHANNELS; i++) kfree(efx->channel[i]); kfree(efx->vpd_sn); if (efx->workqueue) { destroy_workqueue(efx->workqueue); efx->workqueue = NULL; } } void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats) { u64 n_rx_nodesc_trunc = 0; struct ef4_channel *channel; ef4_for_each_channel(channel, efx) n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); } /************************************************************************** * * PCI interface * **************************************************************************/ /* Main body of final NIC shutdown code * This is called only at module unload (or hotplug removal). */ static void ef4_pci_remove_main(struct ef4_nic *efx) { /* Flush reset_work. It can no longer be scheduled since we * are not READY. */ BUG_ON(efx->state == STATE_READY); cancel_work_sync(&efx->reset_work); ef4_disable_interrupts(efx); ef4_nic_fini_interrupt(efx); ef4_fini_port(efx); efx->type->fini(efx); ef4_fini_napi(efx); ef4_remove_all(efx); } /* Final NIC shutdown * This is called only at module unload (or hotplug removal). A PF can call * this on its VFs to ensure they are unbound first. */ static void ef4_pci_remove(struct pci_dev *pci_dev) { struct ef4_nic *efx; efx = pci_get_drvdata(pci_dev); if (!efx) return; /* Mark the NIC as fini, then stop the interface */ rtnl_lock(); ef4_dissociate(efx); dev_close(efx->net_dev); ef4_disable_interrupts(efx); efx->state = STATE_UNINIT; rtnl_unlock(); ef4_unregister_netdev(efx); ef4_mtd_remove(efx); ef4_pci_remove_main(efx); ef4_fini_io(efx); netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); ef4_fini_struct(efx); free_netdev(efx->net_dev); }; /* NIC VPD information * Called during probe to display the part number of the installed NIC. */ static void ef4_probe_vpd_strings(struct ef4_nic *efx) { struct pci_dev *dev = efx->pci_dev; unsigned int vpd_size, kw_len; u8 *vpd_data; int start; vpd_data = pci_vpd_alloc(dev, &vpd_size); if (IS_ERR(vpd_data)) { pci_warn(dev, "Unable to read VPD\n"); return; } start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); if (start < 0) pci_warn(dev, "Part number not found or incomplete\n"); else pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start); start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len); if (start < 0) pci_warn(dev, "Serial number not found or incomplete\n"); else efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL); kfree(vpd_data); } /* Main body of NIC initialisation * This is called at module load (or hotplug insertion, theoretically). */ static int ef4_pci_probe_main(struct ef4_nic *efx) { int rc; /* Do start-of-day initialisation */ rc = ef4_probe_all(efx); if (rc) goto fail1; ef4_init_napi(efx); rc = efx->type->init(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to initialise NIC\n"); goto fail3; } rc = ef4_init_port(efx); if (rc) { netif_err(efx, probe, efx->net_dev, "failed to initialise port\n"); goto fail4; } rc = ef4_nic_init_interrupt(efx); if (rc) goto fail5; rc = ef4_enable_interrupts(efx); if (rc) goto fail6; return 0; fail6: ef4_nic_fini_interrupt(efx); fail5: ef4_fini_port(efx); fail4: efx->type->fini(efx); fail3: ef4_fini_napi(efx); ef4_remove_all(efx); fail1: return rc; } /* NIC initialisation * * This is called at module load (or hotplug insertion, * theoretically). It sets up PCI mappings, resets the NIC, * sets up and registers the network devices with the kernel and hooks * the interrupt service routine. It does not prepare the device for * transmission; this is left to the first time one of the network * interfaces is brought up (i.e. ef4_net_open). */ static int ef4_pci_probe(struct pci_dev *pci_dev, const struct pci_device_id *entry) { struct net_device *net_dev; struct ef4_nic *efx; int rc; /* Allocate and initialise a struct net_device and struct ef4_nic */ net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES, EF4_MAX_RX_QUEUES); if (!net_dev) return -ENOMEM; efx = netdev_priv(net_dev); efx->type = (const struct ef4_nic_type *) entry->driver_data; efx->fixed_features |= NETIF_F_HIGHDMA; pci_set_drvdata(pci_dev, efx); SET_NETDEV_DEV(net_dev, &pci_dev->dev); rc = ef4_init_struct(efx, pci_dev, net_dev); if (rc) goto fail1; netif_info(efx, probe, efx->net_dev, "Solarflare NIC detected\n"); ef4_probe_vpd_strings(efx); /* Set up basic I/O (BAR mappings etc) */ rc = ef4_init_io(efx); if (rc) goto fail2; rc = ef4_pci_probe_main(efx); if (rc) goto fail3; net_dev->features |= (efx->type->offload_features | NETIF_F_SG | NETIF_F_RXCSUM); /* Mask for features that also apply to VLAN devices */ net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_RXCSUM); net_dev->hw_features = net_dev->features & ~efx->fixed_features; /* Disable VLAN filtering by default. It may be enforced if * the feature is fixed (i.e. VLAN filters are required to * receive VLAN tagged packets due to vPort restrictions). */ net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; net_dev->features |= efx->fixed_features; rc = ef4_register_netdev(efx); if (rc) goto fail4; netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); /* Try to create MTDs, but allow this to fail */ rtnl_lock(); rc = ef4_mtd_probe(efx); rtnl_unlock(); if (rc && rc != -EPERM) netif_warn(efx, probe, efx->net_dev, "failed to create MTDs (%d)\n", rc); return 0; fail4: ef4_pci_remove_main(efx); fail3: ef4_fini_io(efx); fail2: ef4_fini_struct(efx); fail1: WARN_ON(rc > 0); netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); free_netdev(net_dev); return rc; } static int ef4_pm_freeze(struct device *dev) { struct ef4_nic *efx = dev_get_drvdata(dev); rtnl_lock(); if (efx->state != STATE_DISABLED) { efx->state = STATE_UNINIT; ef4_device_detach_sync(efx); ef4_stop_all(efx); ef4_disable_interrupts(efx); } rtnl_unlock(); return 0; } static int ef4_pm_thaw(struct device *dev) { int rc; struct ef4_nic *efx = dev_get_drvdata(dev); rtnl_lock(); if (efx->state != STATE_DISABLED) { rc = ef4_enable_interrupts(efx); if (rc) goto fail; mutex_lock(&efx->mac_lock); efx->phy_op->reconfigure(efx); mutex_unlock(&efx->mac_lock); ef4_start_all(efx); netif_device_attach(efx->net_dev); efx->state = STATE_READY; efx->type->resume_wol(efx); } rtnl_unlock(); /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */ queue_work(reset_workqueue, &efx->reset_work); return 0; fail: rtnl_unlock(); return rc; } static int ef4_pm_poweroff(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct ef4_nic *efx = pci_get_drvdata(pci_dev); efx->type->fini(efx); efx->reset_pending = 0; pci_save_state(pci_dev); return pci_set_power_state(pci_dev, PCI_D3hot); } /* Used for both resume and restore */ static int ef4_pm_resume(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct ef4_nic *efx = pci_get_drvdata(pci_dev); int rc; rc = pci_set_power_state(pci_dev, PCI_D0); if (rc) return rc; pci_restore_state(pci_dev); rc = pci_enable_device(pci_dev); if (rc) return rc; pci_set_master(efx->pci_dev); rc = efx->type->reset(efx, RESET_TYPE_ALL); if (rc) return rc; rc = efx->type->init(efx); if (rc) return rc; rc = ef4_pm_thaw(dev); return rc; } static int ef4_pm_suspend(struct device *dev) { int rc; ef4_pm_freeze(dev); rc = ef4_pm_poweroff(dev); if (rc) ef4_pm_resume(dev); return rc; } static const struct dev_pm_ops ef4_pm_ops = { .suspend = ef4_pm_suspend, .resume = ef4_pm_resume, .freeze = ef4_pm_freeze, .thaw = ef4_pm_thaw, .poweroff = ef4_pm_poweroff, .restore = ef4_pm_resume, }; /* A PCI error affecting this device was detected. * At this point MMIO and DMA may be disabled. * Stop the software path and request a slot reset. */ static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; struct ef4_nic *efx = pci_get_drvdata(pdev); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; rtnl_lock(); if (efx->state != STATE_DISABLED) { efx->state = STATE_RECOVERY; efx->reset_pending = 0; ef4_device_detach_sync(efx); ef4_stop_all(efx); ef4_disable_interrupts(efx); status = PCI_ERS_RESULT_NEED_RESET; } else { /* If the interface is disabled we don't want to do anything * with it. */ status = PCI_ERS_RESULT_RECOVERED; } rtnl_unlock(); pci_disable_device(pdev); return status; } /* Fake a successful reset, which will be performed later in ef4_io_resume. */ static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev) { struct ef4_nic *efx = pci_get_drvdata(pdev); pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; if (pci_enable_device(pdev)) { netif_err(efx, hw, efx->net_dev, "Cannot re-enable PCI device after reset.\n"); status = PCI_ERS_RESULT_DISCONNECT; } return status; } /* Perform the actual reset and resume I/O operations. */ static void ef4_io_resume(struct pci_dev *pdev) { struct ef4_nic *efx = pci_get_drvdata(pdev); int rc; rtnl_lock(); if (efx->state == STATE_DISABLED) goto out; rc = ef4_reset(efx, RESET_TYPE_ALL); if (rc) { netif_err(efx, hw, efx->net_dev, "ef4_reset failed after PCI error (%d)\n", rc); } else { efx->state = STATE_READY; netif_dbg(efx, hw, efx->net_dev, "Done resetting and resuming IO after PCI error.\n"); } out: rtnl_unlock(); } /* For simplicity and reliability, we always require a slot reset and try to * reset the hardware when a pci error affecting the device is detected. * We leave both the link_reset and mmio_enabled callback unimplemented: * with our request for slot reset the mmio_enabled callback will never be * called, and the link_reset callback is not used by AER or EEH mechanisms. */ static const struct pci_error_handlers ef4_err_handlers = { .error_detected = ef4_io_error_detected, .slot_reset = ef4_io_slot_reset, .resume = ef4_io_resume, }; static struct pci_driver ef4_pci_driver = { .name = KBUILD_MODNAME, .id_table = ef4_pci_table, .probe = ef4_pci_probe, .remove = ef4_pci_remove, .driver.pm = &ef4_pm_ops, .err_handler = &ef4_err_handlers, }; /************************************************************************** * * Kernel module interface * *************************************************************************/ module_param(interrupt_mode, uint, 0444); MODULE_PARM_DESC(interrupt_mode, "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); static int __init ef4_init_module(void) { int rc; printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n"); rc = register_netdevice_notifier(&ef4_netdev_notifier); if (rc) goto err_notifier; reset_workqueue = create_singlethread_workqueue("sfc_reset"); if (!reset_workqueue) { rc = -ENOMEM; goto err_reset; } rc = pci_register_driver(&ef4_pci_driver); if (rc < 0) goto err_pci; return 0; err_pci: destroy_workqueue(reset_workqueue); err_reset: unregister_netdevice_notifier(&ef4_netdev_notifier); err_notifier: return rc; } static void __exit ef4_exit_module(void) { printk(KERN_INFO "Solarflare Falcon driver unloading\n"); pci_unregister_driver(&ef4_pci_driver); destroy_workqueue(reset_workqueue); unregister_netdevice_notifier(&ef4_netdev_notifier); } module_init(ef4_init_module); module_exit(ef4_exit_module); MODULE_AUTHOR("Solarflare Communications and " "Michael Brown <mbrown@fensystems.co.uk>"); MODULE_DESCRIPTION("Solarflare Falcon network driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, ef4_pci_table); MODULE_VERSION(EF4_DRIVER_VERSION);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1