Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Edward Cree | 9841 | 79.63% | 3 | 3.06% |
Ben Hutchings | 2366 | 19.15% | 68 | 69.39% |
Steve Hodgson | 37 | 0.30% | 4 | 4.08% |
Bert Kenward | 29 | 0.23% | 2 | 2.04% |
Gustavo A. R. Silva | 14 | 0.11% | 1 | 1.02% |
Matthew Slattery | 9 | 0.07% | 2 | 2.04% |
Stuart Hodgson | 9 | 0.07% | 1 | 1.02% |
Jesse Brandeburg | 8 | 0.06% | 1 | 1.02% |
Jon Cooper | 8 | 0.06% | 2 | 2.04% |
Kees Cook | 7 | 0.06% | 1 | 1.02% |
Alexandre Rames | 5 | 0.04% | 2 | 2.04% |
Mark Rutland | 4 | 0.03% | 1 | 1.02% |
Eric Dumazet | 4 | 0.03% | 2 | 2.04% |
Jaswinder Singh Rajput | 3 | 0.02% | 1 | 1.02% |
Alexey Dobriyan | 3 | 0.02% | 1 | 1.02% |
Tom Herbert | 3 | 0.02% | 1 | 1.02% |
Arnd Bergmann | 2 | 0.02% | 1 | 1.02% |
Christophe Jaillet | 2 | 0.02% | 1 | 1.02% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.02% |
Peter Dunning | 1 | 0.01% | 1 | 1.02% |
Daniel Pieczko | 1 | 0.01% | 1 | 1.02% |
Total | 12358 | 98 |
// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2006-2013 Solarflare Communications Inc. */ #include <linux/bitops.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/module.h> #include <linux/seq_file.h> #include <linux/crc32.h> #include "net_driver.h" #include "bitfield.h" #include "efx.h" #include "nic.h" #include "farch_regs.h" #include "io.h" #include "workarounds.h" /* Falcon-architecture (SFC4000) support */ /************************************************************************** * * Configurable values * ************************************************************************** */ /* This is set to 16 for a good reason. In summary, if larger than * 16, the descriptor cache holds more than a default socket * buffer's worth of packets (for UDP we can only have at most one * socket buffer's worth outstanding). This combined with the fact * that we only get 1 TX event per descriptor cache means the NIC * goes idle. */ #define TX_DC_ENTRIES 16 #define TX_DC_ENTRIES_ORDER 1 #define RX_DC_ENTRIES 64 #define RX_DC_ENTRIES_ORDER 3 /* If EF4_MAX_INT_ERRORS internal errors occur within * EF4_INT_ERROR_EXPIRE seconds, we consider the NIC broken and * disable it. */ #define EF4_INT_ERROR_EXPIRE 3600 #define EF4_MAX_INT_ERRORS 5 /* Depth of RX flush request fifo */ #define EF4_RX_FLUSH_COUNT 4 /* Driver generated events */ #define _EF4_CHANNEL_MAGIC_TEST 0x000101 #define _EF4_CHANNEL_MAGIC_FILL 0x000102 #define _EF4_CHANNEL_MAGIC_RX_DRAIN 0x000103 #define _EF4_CHANNEL_MAGIC_TX_DRAIN 0x000104 #define _EF4_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data)) #define _EF4_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8) #define EF4_CHANNEL_MAGIC_TEST(_channel) \ _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TEST, (_channel)->channel) #define EF4_CHANNEL_MAGIC_FILL(_rx_queue) \ _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_FILL, \ ef4_rx_queue_index(_rx_queue)) #define EF4_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \ _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_RX_DRAIN, \ ef4_rx_queue_index(_rx_queue)) #define EF4_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \ _EF4_CHANNEL_MAGIC(_EF4_CHANNEL_MAGIC_TX_DRAIN, \ (_tx_queue)->queue) static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic); /************************************************************************** * * Hardware access * **************************************************************************/ static inline void ef4_write_buf_tbl(struct ef4_nic *efx, ef4_qword_t *value, unsigned int index) { ef4_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, value, index); } static bool ef4_masked_compare_oword(const ef4_oword_t *a, const ef4_oword_t *b, const ef4_oword_t *mask) { return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); } int ef4_farch_test_registers(struct ef4_nic *efx, const struct ef4_farch_register_test *regs, size_t n_regs) { unsigned address = 0; int i, j; ef4_oword_t mask, imask, original, reg, buf; for (i = 0; i < n_regs; ++i) { address = regs[i].address; mask = imask = regs[i].mask; EF4_INVERT_OWORD(imask); ef4_reado(efx, &original, address); /* bit sweep on and off */ for (j = 0; j < 128; j++) { if (!EF4_EXTRACT_OWORD32(mask, j, j)) continue; /* Test this testable bit can be set in isolation */ EF4_AND_OWORD(reg, original, mask); EF4_SET_OWORD32(reg, j, j, 1); ef4_writeo(efx, ®, address); ef4_reado(efx, &buf, address); if (ef4_masked_compare_oword(®, &buf, &mask)) goto fail; /* Test this testable bit can be cleared in isolation */ EF4_OR_OWORD(reg, original, mask); EF4_SET_OWORD32(reg, j, j, 0); ef4_writeo(efx, ®, address); ef4_reado(efx, &buf, address); if (ef4_masked_compare_oword(®, &buf, &mask)) goto fail; } ef4_writeo(efx, &original, address); } return 0; fail: netif_err(efx, hw, efx->net_dev, "wrote "EF4_OWORD_FMT" read "EF4_OWORD_FMT " at address 0x%x mask "EF4_OWORD_FMT"\n", EF4_OWORD_VAL(reg), EF4_OWORD_VAL(buf), address, EF4_OWORD_VAL(mask)); return -EIO; } /************************************************************************** * * Special buffer handling * Special buffers are used for event queues and the TX and RX * descriptor rings. * *************************************************************************/ /* * Initialise a special buffer * * This will define a buffer (previously allocated via * ef4_alloc_special_buffer()) in the buffer table, allowing * it to be used for event queues, descriptor rings etc. */ static void ef4_init_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer) { ef4_qword_t buf_desc; unsigned int index; dma_addr_t dma_addr; int i; EF4_BUG_ON_PARANOID(!buffer->buf.addr); /* Write buffer descriptors to NIC */ for (i = 0; i < buffer->entries; i++) { index = buffer->index + i; dma_addr = buffer->buf.dma_addr + (i * EF4_BUF_SIZE); netif_dbg(efx, probe, efx->net_dev, "mapping special buffer %d at %llx\n", index, (unsigned long long)dma_addr); EF4_POPULATE_QWORD_3(buf_desc, FRF_AZ_BUF_ADR_REGION, 0, FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, FRF_AZ_BUF_OWNER_ID_FBUF, 0); ef4_write_buf_tbl(efx, &buf_desc, index); } } /* Unmaps a buffer and clears the buffer table entries */ static void ef4_fini_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer) { ef4_oword_t buf_tbl_upd; unsigned int start = buffer->index; unsigned int end = (buffer->index + buffer->entries - 1); if (!buffer->entries) return; netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n", buffer->index, buffer->index + buffer->entries - 1); EF4_POPULATE_OWORD_4(buf_tbl_upd, FRF_AZ_BUF_UPD_CMD, 0, FRF_AZ_BUF_CLR_CMD, 1, FRF_AZ_BUF_CLR_END_ID, end, FRF_AZ_BUF_CLR_START_ID, start); ef4_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); } /* * Allocate a new special buffer * * This allocates memory for a new buffer, clears it and allocates a * new buffer ID range. It does not write into the buffer table. * * This call will allocate 4KB buffers, since 8KB buffers can't be * used for event queues and descriptor rings. */ static int ef4_alloc_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer, unsigned int len) { len = ALIGN(len, EF4_BUF_SIZE); if (ef4_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL)) return -ENOMEM; buffer->entries = len / EF4_BUF_SIZE; BUG_ON(buffer->buf.dma_addr & (EF4_BUF_SIZE - 1)); /* Select new buffer ID */ buffer->index = efx->next_buffer_table; efx->next_buffer_table += buffer->entries; netif_dbg(efx, probe, efx->net_dev, "allocating special buffers %d-%d at %llx+%x " "(virt %p phys %llx)\n", buffer->index, buffer->index + buffer->entries - 1, (u64)buffer->buf.dma_addr, len, buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr)); return 0; } static void ef4_free_special_buffer(struct ef4_nic *efx, struct ef4_special_buffer *buffer) { if (!buffer->buf.addr) return; netif_dbg(efx, hw, efx->net_dev, "deallocating special buffers %d-%d at %llx+%x " "(virt %p phys %llx)\n", buffer->index, buffer->index + buffer->entries - 1, (u64)buffer->buf.dma_addr, buffer->buf.len, buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr)); ef4_nic_free_buffer(efx, &buffer->buf); buffer->entries = 0; } /************************************************************************** * * TX path * **************************************************************************/ /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ static inline void ef4_farch_notify_tx_desc(struct ef4_tx_queue *tx_queue) { unsigned write_ptr; ef4_dword_t reg; write_ptr = tx_queue->write_count & tx_queue->ptr_mask; EF4_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); ef4_writed_page(tx_queue->efx, ®, FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); } /* Write pointer and first descriptor for TX descriptor ring */ static inline void ef4_farch_push_tx_desc(struct ef4_tx_queue *tx_queue, const ef4_qword_t *txd) { unsigned write_ptr; ef4_oword_t reg; BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0); BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0); write_ptr = tx_queue->write_count & tx_queue->ptr_mask; EF4_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true, FRF_AZ_TX_DESC_WPTR, write_ptr); reg.qword[0] = *txd; ef4_writeo_page(tx_queue->efx, ®, FR_BZ_TX_DESC_UPD_P0, tx_queue->queue); } /* For each entry inserted into the software descriptor ring, create a * descriptor in the hardware TX descriptor ring (in host memory), and * write a doorbell. */ void ef4_farch_tx_write(struct ef4_tx_queue *tx_queue) { struct ef4_tx_buffer *buffer; ef4_qword_t *txd; unsigned write_ptr; unsigned old_write_count = tx_queue->write_count; tx_queue->xmit_more_available = false; if (unlikely(tx_queue->write_count == tx_queue->insert_count)) return; do { write_ptr = tx_queue->write_count & tx_queue->ptr_mask; buffer = &tx_queue->buffer[write_ptr]; txd = ef4_tx_desc(tx_queue, write_ptr); ++tx_queue->write_count; EF4_BUG_ON_PARANOID(buffer->flags & EF4_TX_BUF_OPTION); /* Create TX descriptor ring entry */ BUILD_BUG_ON(EF4_TX_BUF_CONT != 1); EF4_POPULATE_QWORD_4(*txd, FSF_AZ_TX_KER_CONT, buffer->flags & EF4_TX_BUF_CONT, FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, FSF_AZ_TX_KER_BUF_REGION, 0, FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); } while (tx_queue->write_count != tx_queue->insert_count); wmb(); /* Ensure descriptors are written before they are fetched */ if (ef4_nic_may_push_tx_desc(tx_queue, old_write_count)) { txd = ef4_tx_desc(tx_queue, old_write_count & tx_queue->ptr_mask); ef4_farch_push_tx_desc(tx_queue, txd); ++tx_queue->pushes; } else { ef4_farch_notify_tx_desc(tx_queue); } } unsigned int ef4_farch_tx_limit_len(struct ef4_tx_queue *tx_queue, dma_addr_t dma_addr, unsigned int len) { /* Don't cross 4K boundaries with descriptors. */ unsigned int limit = (~dma_addr & (EF4_PAGE_SIZE - 1)) + 1; len = min(limit, len); if (EF4_WORKAROUND_5391(tx_queue->efx) && (dma_addr & 0xf)) len = min_t(unsigned int, len, 512 - (dma_addr & 0xf)); return len; } /* Allocate hardware resources for a TX queue */ int ef4_farch_tx_probe(struct ef4_tx_queue *tx_queue) { struct ef4_nic *efx = tx_queue->efx; unsigned entries; entries = tx_queue->ptr_mask + 1; return ef4_alloc_special_buffer(efx, &tx_queue->txd, entries * sizeof(ef4_qword_t)); } void ef4_farch_tx_init(struct ef4_tx_queue *tx_queue) { struct ef4_nic *efx = tx_queue->efx; ef4_oword_t reg; /* Pin TX descriptor ring */ ef4_init_special_buffer(efx, &tx_queue->txd); /* Push TX descriptor ring to card */ EF4_POPULATE_OWORD_10(reg, FRF_AZ_TX_DESCQ_EN, 1, FRF_AZ_TX_ISCSI_DDIG_EN, 0, FRF_AZ_TX_ISCSI_HDIG_EN, 0, FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, FRF_AZ_TX_DESCQ_EVQ_ID, tx_queue->channel->channel, FRF_AZ_TX_DESCQ_OWNER_ID, 0, FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, FRF_AZ_TX_DESCQ_SIZE, __ffs(tx_queue->txd.entries), FRF_AZ_TX_DESCQ_TYPE, 0, FRF_BZ_TX_NON_IP_DROP_DIS, 1); if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) { int csum = tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD; EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum); EF4_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, !csum); } ef4_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base, tx_queue->queue); if (ef4_nic_rev(efx) < EF4_REV_FALCON_B0) { /* Only 128 bits in this register */ BUILD_BUG_ON(EF4_MAX_TX_QUEUES > 128); ef4_reado(efx, ®, FR_AA_TX_CHKSM_CFG); if (tx_queue->queue & EF4_TXQ_TYPE_OFFLOAD) __clear_bit_le(tx_queue->queue, ®); else __set_bit_le(tx_queue->queue, ®); ef4_writeo(efx, ®, FR_AA_TX_CHKSM_CFG); } if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) { EF4_POPULATE_OWORD_1(reg, FRF_BZ_TX_PACE, (tx_queue->queue & EF4_TXQ_TYPE_HIGHPRI) ? FFE_BZ_TX_PACE_OFF : FFE_BZ_TX_PACE_RESERVED); ef4_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, tx_queue->queue); } } static void ef4_farch_flush_tx_queue(struct ef4_tx_queue *tx_queue) { struct ef4_nic *efx = tx_queue->efx; ef4_oword_t tx_flush_descq; WARN_ON(atomic_read(&tx_queue->flush_outstanding)); atomic_set(&tx_queue->flush_outstanding, 1); EF4_POPULATE_OWORD_2(tx_flush_descq, FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); ef4_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); } void ef4_farch_tx_fini(struct ef4_tx_queue *tx_queue) { struct ef4_nic *efx = tx_queue->efx; ef4_oword_t tx_desc_ptr; /* Remove TX descriptor ring from card */ EF4_ZERO_OWORD(tx_desc_ptr); ef4_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, tx_queue->queue); /* Unpin TX descriptor ring */ ef4_fini_special_buffer(efx, &tx_queue->txd); } /* Free buffers backing TX queue */ void ef4_farch_tx_remove(struct ef4_tx_queue *tx_queue) { ef4_free_special_buffer(tx_queue->efx, &tx_queue->txd); } /************************************************************************** * * RX path * **************************************************************************/ /* This creates an entry in the RX descriptor queue */ static inline void ef4_farch_build_rx_desc(struct ef4_rx_queue *rx_queue, unsigned index) { struct ef4_rx_buffer *rx_buf; ef4_qword_t *rxd; rxd = ef4_rx_desc(rx_queue, index); rx_buf = ef4_rx_buffer(rx_queue, index); EF4_POPULATE_QWORD_3(*rxd, FSF_AZ_RX_KER_BUF_SIZE, rx_buf->len - rx_queue->efx->type->rx_buffer_padding, FSF_AZ_RX_KER_BUF_REGION, 0, FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); } /* This writes to the RX_DESC_WPTR register for the specified receive * descriptor ring. */ void ef4_farch_rx_write(struct ef4_rx_queue *rx_queue) { struct ef4_nic *efx = rx_queue->efx; ef4_dword_t reg; unsigned write_ptr; while (rx_queue->notified_count != rx_queue->added_count) { ef4_farch_build_rx_desc( rx_queue, rx_queue->notified_count & rx_queue->ptr_mask); ++rx_queue->notified_count; } wmb(); write_ptr = rx_queue->added_count & rx_queue->ptr_mask; EF4_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); ef4_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, ef4_rx_queue_index(rx_queue)); } int ef4_farch_rx_probe(struct ef4_rx_queue *rx_queue) { struct ef4_nic *efx = rx_queue->efx; unsigned entries; entries = rx_queue->ptr_mask + 1; return ef4_alloc_special_buffer(efx, &rx_queue->rxd, entries * sizeof(ef4_qword_t)); } void ef4_farch_rx_init(struct ef4_rx_queue *rx_queue) { ef4_oword_t rx_desc_ptr; struct ef4_nic *efx = rx_queue->efx; bool is_b0 = ef4_nic_rev(efx) >= EF4_REV_FALCON_B0; bool iscsi_digest_en = is_b0; bool jumbo_en; /* For kernel-mode queues in Falcon A1, the JUMBO flag enables * DMA to continue after a PCIe page boundary (and scattering * is not possible). In Falcon B0 and Siena, it enables * scatter. */ jumbo_en = !is_b0 || efx->rx_scatter; netif_dbg(efx, hw, efx->net_dev, "RX queue %d ring in special buffers %d-%d\n", ef4_rx_queue_index(rx_queue), rx_queue->rxd.index, rx_queue->rxd.index + rx_queue->rxd.entries - 1); rx_queue->scatter_n = 0; /* Pin RX descriptor ring */ ef4_init_special_buffer(efx, &rx_queue->rxd); /* Push RX descriptor ring to card */ EF4_POPULATE_OWORD_10(rx_desc_ptr, FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en, FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en, FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, FRF_AZ_RX_DESCQ_EVQ_ID, ef4_rx_queue_channel(rx_queue)->channel, FRF_AZ_RX_DESCQ_OWNER_ID, 0, FRF_AZ_RX_DESCQ_LABEL, ef4_rx_queue_index(rx_queue), FRF_AZ_RX_DESCQ_SIZE, __ffs(rx_queue->rxd.entries), FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , FRF_AZ_RX_DESCQ_JUMBO, jumbo_en, FRF_AZ_RX_DESCQ_EN, 1); ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, ef4_rx_queue_index(rx_queue)); } static void ef4_farch_flush_rx_queue(struct ef4_rx_queue *rx_queue) { struct ef4_nic *efx = rx_queue->efx; ef4_oword_t rx_flush_descq; EF4_POPULATE_OWORD_2(rx_flush_descq, FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, FRF_AZ_RX_FLUSH_DESCQ, ef4_rx_queue_index(rx_queue)); ef4_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); } void ef4_farch_rx_fini(struct ef4_rx_queue *rx_queue) { ef4_oword_t rx_desc_ptr; struct ef4_nic *efx = rx_queue->efx; /* Remove RX descriptor ring from card */ EF4_ZERO_OWORD(rx_desc_ptr); ef4_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, ef4_rx_queue_index(rx_queue)); /* Unpin RX descriptor ring */ ef4_fini_special_buffer(efx, &rx_queue->rxd); } /* Free buffers backing RX queue */ void ef4_farch_rx_remove(struct ef4_rx_queue *rx_queue) { ef4_free_special_buffer(rx_queue->efx, &rx_queue->rxd); } /************************************************************************** * * Flush handling * **************************************************************************/ /* ef4_farch_flush_queues() must be woken up when all flushes are completed, * or more RX flushes can be kicked off. */ static bool ef4_farch_flush_wake(struct ef4_nic *efx) { /* Ensure that all updates are visible to ef4_farch_flush_queues() */ smp_mb(); return (atomic_read(&efx->active_queues) == 0 || (atomic_read(&efx->rxq_flush_outstanding) < EF4_RX_FLUSH_COUNT && atomic_read(&efx->rxq_flush_pending) > 0)); } static bool ef4_check_tx_flush_complete(struct ef4_nic *efx) { bool i = true; ef4_oword_t txd_ptr_tbl; struct ef4_channel *channel; struct ef4_tx_queue *tx_queue; ef4_for_each_channel(channel, efx) { ef4_for_each_channel_tx_queue(tx_queue, channel) { ef4_reado_table(efx, &txd_ptr_tbl, FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue); if (EF4_OWORD_FIELD(txd_ptr_tbl, FRF_AZ_TX_DESCQ_FLUSH) || EF4_OWORD_FIELD(txd_ptr_tbl, FRF_AZ_TX_DESCQ_EN)) { netif_dbg(efx, hw, efx->net_dev, "flush did not complete on TXQ %d\n", tx_queue->queue); i = false; } else if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) { /* The flush is complete, but we didn't * receive a flush completion event */ netif_dbg(efx, hw, efx->net_dev, "flush complete on TXQ %d, so drain " "the queue\n", tx_queue->queue); /* Don't need to increment active_queues as it * has already been incremented for the queues * which did not drain */ ef4_farch_magic_event(channel, EF4_CHANNEL_MAGIC_TX_DRAIN( tx_queue)); } } } return i; } /* Flush all the transmit queues, and continue flushing receive queues until * they're all flushed. Wait for the DRAIN events to be received so that there * are no more RX and TX events left on any channel. */ static int ef4_farch_do_flush(struct ef4_nic *efx) { unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */ struct ef4_channel *channel; struct ef4_rx_queue *rx_queue; struct ef4_tx_queue *tx_queue; int rc = 0; ef4_for_each_channel(channel, efx) { ef4_for_each_channel_tx_queue(tx_queue, channel) { ef4_farch_flush_tx_queue(tx_queue); } ef4_for_each_channel_rx_queue(rx_queue, channel) { rx_queue->flush_pending = true; atomic_inc(&efx->rxq_flush_pending); } } while (timeout && atomic_read(&efx->active_queues) > 0) { /* The hardware supports four concurrent rx flushes, each of * which may need to be retried if there is an outstanding * descriptor fetch */ ef4_for_each_channel(channel, efx) { ef4_for_each_channel_rx_queue(rx_queue, channel) { if (atomic_read(&efx->rxq_flush_outstanding) >= EF4_RX_FLUSH_COUNT) break; if (rx_queue->flush_pending) { rx_queue->flush_pending = false; atomic_dec(&efx->rxq_flush_pending); atomic_inc(&efx->rxq_flush_outstanding); ef4_farch_flush_rx_queue(rx_queue); } } } timeout = wait_event_timeout(efx->flush_wq, ef4_farch_flush_wake(efx), timeout); } if (atomic_read(&efx->active_queues) && !ef4_check_tx_flush_complete(efx)) { netif_err(efx, hw, efx->net_dev, "failed to flush %d queues " "(rx %d+%d)\n", atomic_read(&efx->active_queues), atomic_read(&efx->rxq_flush_outstanding), atomic_read(&efx->rxq_flush_pending)); rc = -ETIMEDOUT; atomic_set(&efx->active_queues, 0); atomic_set(&efx->rxq_flush_pending, 0); atomic_set(&efx->rxq_flush_outstanding, 0); } return rc; } int ef4_farch_fini_dmaq(struct ef4_nic *efx) { struct ef4_channel *channel; struct ef4_tx_queue *tx_queue; struct ef4_rx_queue *rx_queue; int rc = 0; /* Do not attempt to write to the NIC during EEH recovery */ if (efx->state != STATE_RECOVERY) { /* Only perform flush if DMA is enabled */ if (efx->pci_dev->is_busmaster) { efx->type->prepare_flush(efx); rc = ef4_farch_do_flush(efx); efx->type->finish_flush(efx); } ef4_for_each_channel(channel, efx) { ef4_for_each_channel_rx_queue(rx_queue, channel) ef4_farch_rx_fini(rx_queue); ef4_for_each_channel_tx_queue(tx_queue, channel) ef4_farch_tx_fini(tx_queue); } } return rc; } /* Reset queue and flush accounting after FLR * * One possible cause of FLR recovery is that DMA may be failing (eg. if bus * mastering was disabled), in which case we don't receive (RXQ) flush * completion events. This means that efx->rxq_flush_outstanding remained at 4 * after the FLR; also, efx->active_queues was non-zero (as no flush completion * events were received, and we didn't go through ef4_check_tx_flush_complete()) * If we don't fix this up, on the next call to ef4_realloc_channels() we won't * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4 * for batched flush requests; and the efx->active_queues gets messed up because * we keep incrementing for the newly initialised queues, but it never went to * zero previously. Then we get a timeout every time we try to restart the * queues, as it doesn't go back to zero when we should be flushing the queues. */ void ef4_farch_finish_flr(struct ef4_nic *efx) { atomic_set(&efx->rxq_flush_pending, 0); atomic_set(&efx->rxq_flush_outstanding, 0); atomic_set(&efx->active_queues, 0); } /************************************************************************** * * Event queue processing * Event queues are processed by per-channel tasklets. * **************************************************************************/ /* Update a channel's event queue's read pointer (RPTR) register * * This writes the EVQ_RPTR_REG register for the specified channel's * event queue. */ void ef4_farch_ev_read_ack(struct ef4_channel *channel) { ef4_dword_t reg; struct ef4_nic *efx = channel->efx; EF4_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr & channel->eventq_mask); /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size * of 4 bytes, but it is really 16 bytes just like later revisions. */ ef4_writed(efx, ®, efx->type->evq_rptr_tbl_base + FR_BZ_EVQ_RPTR_STEP * channel->channel); } /* Use HW to insert a SW defined event */ void ef4_farch_generate_event(struct ef4_nic *efx, unsigned int evq, ef4_qword_t *event) { ef4_oword_t drv_ev_reg; BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || FRF_AZ_DRV_EV_DATA_WIDTH != 64); drv_ev_reg.u32[0] = event->u32[0]; drv_ev_reg.u32[1] = event->u32[1]; drv_ev_reg.u32[2] = 0; drv_ev_reg.u32[3] = 0; EF4_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq); ef4_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV); } static void ef4_farch_magic_event(struct ef4_channel *channel, u32 magic) { ef4_qword_t event; EF4_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE, FSE_AZ_EV_CODE_DRV_GEN_EV, FSF_AZ_DRV_GEN_EV_MAGIC, magic); ef4_farch_generate_event(channel->efx, channel->channel, &event); } /* Handle a transmit completion event * * The NIC batches TX completion events; the message we receive is of * the form "complete all TX events up to this index". */ static int ef4_farch_handle_tx_event(struct ef4_channel *channel, ef4_qword_t *event) { unsigned int tx_ev_desc_ptr; unsigned int tx_ev_q_label; struct ef4_tx_queue *tx_queue; struct ef4_nic *efx = channel->efx; int tx_packets = 0; if (unlikely(READ_ONCE(efx->reset_pending))) return 0; if (likely(EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { /* Transmit completion */ tx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); tx_queue = ef4_channel_get_tx_queue( channel, tx_ev_q_label % EF4_TXQ_TYPES); tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) & tx_queue->ptr_mask); ef4_xmit_done(tx_queue, tx_ev_desc_ptr); } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { /* Rewrite the FIFO write pointer */ tx_ev_q_label = EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); tx_queue = ef4_channel_get_tx_queue( channel, tx_ev_q_label % EF4_TXQ_TYPES); netif_tx_lock(efx->net_dev); ef4_farch_notify_tx_desc(tx_queue); netif_tx_unlock(efx->net_dev); } else if (EF4_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) { ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR); } else { netif_err(efx, tx_err, efx->net_dev, "channel %d unexpected TX event " EF4_QWORD_FMT"\n", channel->channel, EF4_QWORD_VAL(*event)); } return tx_packets; } /* Detect errors included in the rx_evt_pkt_ok bit. */ static u16 ef4_farch_handle_rx_not_ok(struct ef4_rx_queue *rx_queue, const ef4_qword_t *event) { struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue); struct ef4_nic *efx = rx_queue->efx; bool __maybe_unused rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; bool rx_ev_pause_frm; rx_ev_tobe_disc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); rx_ev_buf_owner_id_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); rx_ev_ip_hdr_chksum_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); rx_ev_tcp_udp_chksum_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); rx_ev_eth_crc_err = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); rx_ev_frm_trunc = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); rx_ev_drib_nib = ((ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) ? 0 : EF4_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB)); rx_ev_pause_frm = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); /* Count errors that are not in MAC stats. Ignore expected * checksum errors during self-test. */ if (rx_ev_frm_trunc) ++channel->n_rx_frm_trunc; else if (rx_ev_tobe_disc) ++channel->n_rx_tobe_disc; else if (!efx->loopback_selftest) { if (rx_ev_ip_hdr_chksum_err) ++channel->n_rx_ip_hdr_chksum_err; else if (rx_ev_tcp_udp_chksum_err) ++channel->n_rx_tcp_udp_chksum_err; } /* TOBE_DISC is expected on unicast mismatches; don't print out an * error message. FRM_TRUNC indicates RXDP dropped the packet due * to a FIFO overflow. */ #ifdef DEBUG { /* Every error apart from tobe_disc and pause_frm */ bool rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); if (rx_ev_other_err && net_ratelimit()) { netif_dbg(efx, rx_err, efx->net_dev, " RX queue %d unexpected RX event " EF4_QWORD_FMT "%s%s%s%s%s%s%s%s\n", ef4_rx_queue_index(rx_queue), EF4_QWORD_VAL(*event), rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", rx_ev_ip_hdr_chksum_err ? " [IP_HDR_CHKSUM_ERR]" : "", rx_ev_tcp_udp_chksum_err ? " [TCP_UDP_CHKSUM_ERR]" : "", rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", rx_ev_drib_nib ? " [DRIB_NIB]" : "", rx_ev_tobe_disc ? " [TOBE_DISC]" : "", rx_ev_pause_frm ? " [PAUSE]" : ""); } } #endif /* The frame must be discarded if any of these are true. */ return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | rx_ev_tobe_disc | rx_ev_pause_frm) ? EF4_RX_PKT_DISCARD : 0; } /* Handle receive events that are not in-order. Return true if this * can be handled as a partial packet discard, false if it's more * serious. */ static bool ef4_farch_handle_rx_bad_index(struct ef4_rx_queue *rx_queue, unsigned index) { struct ef4_channel *channel = ef4_rx_queue_channel(rx_queue); struct ef4_nic *efx = rx_queue->efx; unsigned expected, dropped; if (rx_queue->scatter_n && index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) & rx_queue->ptr_mask)) { ++channel->n_rx_nodesc_trunc; return true; } expected = rx_queue->removed_count & rx_queue->ptr_mask; dropped = (index - expected) & rx_queue->ptr_mask; netif_info(efx, rx_err, efx->net_dev, "dropped %d events (index=%d expected=%d)\n", dropped, index, expected); ef4_schedule_reset(efx, EF4_WORKAROUND_5676(efx) ? RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); return false; } /* Handle a packet received event * * The NIC gives a "discard" flag if it's a unicast packet with the * wrong destination address * Also "is multicast" and "matches multicast filter" flags can be used to * discard non-matching multicast packets. */ static void ef4_farch_handle_rx_event(struct ef4_channel *channel, const ef4_qword_t *event) { unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; unsigned expected_ptr; bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont; u16 flags; struct ef4_rx_queue *rx_queue; struct ef4_nic *efx = channel->efx; if (unlikely(READ_ONCE(efx->reset_pending))) return; rx_ev_cont = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT); rx_ev_sop = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP); WARN_ON(EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != channel->channel); rx_queue = ef4_channel_get_rx_queue(channel); rx_ev_desc_ptr = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) & rx_queue->ptr_mask); /* Check for partial drops and other errors */ if (unlikely(rx_ev_desc_ptr != expected_ptr) || unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) { if (rx_ev_desc_ptr != expected_ptr && !ef4_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr)) return; /* Discard all pending fragments */ if (rx_queue->scatter_n) { ef4_rx_packet( rx_queue, rx_queue->removed_count & rx_queue->ptr_mask, rx_queue->scatter_n, 0, EF4_RX_PKT_DISCARD); rx_queue->removed_count += rx_queue->scatter_n; rx_queue->scatter_n = 0; } /* Return if there is no new fragment */ if (rx_ev_desc_ptr != expected_ptr) return; /* Discard new fragment if not SOP */ if (!rx_ev_sop) { ef4_rx_packet( rx_queue, rx_queue->removed_count & rx_queue->ptr_mask, 1, 0, EF4_RX_PKT_DISCARD); ++rx_queue->removed_count; return; } } ++rx_queue->scatter_n; if (rx_ev_cont) return; rx_ev_byte_cnt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); rx_ev_pkt_ok = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); rx_ev_hdr_type = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); if (likely(rx_ev_pkt_ok)) { /* If packet is marked as OK then we can rely on the * hardware checksum and classification. */ flags = 0; switch (rx_ev_hdr_type) { case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP: flags |= EF4_RX_PKT_TCP; fallthrough; case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP: flags |= EF4_RX_PKT_CSUMMED; fallthrough; case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER: case FSE_AZ_RX_EV_HDR_TYPE_OTHER: break; } } else { flags = ef4_farch_handle_rx_not_ok(rx_queue, event); } /* Detect multicast packets that didn't match the filter */ rx_ev_mcast_pkt = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); if (rx_ev_mcast_pkt) { unsigned int rx_ev_mcast_hash_match = EF4_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); if (unlikely(!rx_ev_mcast_hash_match)) { ++channel->n_rx_mcast_mismatch; flags |= EF4_RX_PKT_DISCARD; } } channel->irq_mod_score += 2; /* Handle received packet */ ef4_rx_packet(rx_queue, rx_queue->removed_count & rx_queue->ptr_mask, rx_queue->scatter_n, rx_ev_byte_cnt, flags); rx_queue->removed_count += rx_queue->scatter_n; rx_queue->scatter_n = 0; } /* If this flush done event corresponds to a &struct ef4_tx_queue, then * send an %EF4_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue * of all transmit completions. */ static void ef4_farch_handle_tx_flush_done(struct ef4_nic *efx, ef4_qword_t *event) { struct ef4_tx_queue *tx_queue; int qid; qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); if (qid < EF4_TXQ_TYPES * efx->n_tx_channels) { tx_queue = ef4_get_tx_queue(efx, qid / EF4_TXQ_TYPES, qid % EF4_TXQ_TYPES); if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) { ef4_farch_magic_event(tx_queue->channel, EF4_CHANNEL_MAGIC_TX_DRAIN(tx_queue)); } } } /* If this flush done event corresponds to a &struct ef4_rx_queue: If the flush * was successful then send an %EF4_CHANNEL_MAGIC_RX_DRAIN, otherwise add * the RX queue back to the mask of RX queues in need of flushing. */ static void ef4_farch_handle_rx_flush_done(struct ef4_nic *efx, ef4_qword_t *event) { struct ef4_channel *channel; struct ef4_rx_queue *rx_queue; int qid; bool failed; qid = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); failed = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); if (qid >= efx->n_channels) return; channel = ef4_get_channel(efx, qid); if (!ef4_channel_has_rx_queue(channel)) return; rx_queue = ef4_channel_get_rx_queue(channel); if (failed) { netif_info(efx, hw, efx->net_dev, "RXQ %d flush retry\n", qid); rx_queue->flush_pending = true; atomic_inc(&efx->rxq_flush_pending); } else { ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue), EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue)); } atomic_dec(&efx->rxq_flush_outstanding); if (ef4_farch_flush_wake(efx)) wake_up(&efx->flush_wq); } static void ef4_farch_handle_drain_event(struct ef4_channel *channel) { struct ef4_nic *efx = channel->efx; WARN_ON(atomic_read(&efx->active_queues) == 0); atomic_dec(&efx->active_queues); if (ef4_farch_flush_wake(efx)) wake_up(&efx->flush_wq); } static void ef4_farch_handle_generated_event(struct ef4_channel *channel, ef4_qword_t *event) { struct ef4_nic *efx = channel->efx; struct ef4_rx_queue *rx_queue = ef4_channel_has_rx_queue(channel) ? ef4_channel_get_rx_queue(channel) : NULL; unsigned magic, code; magic = EF4_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC); code = _EF4_CHANNEL_MAGIC_CODE(magic); if (magic == EF4_CHANNEL_MAGIC_TEST(channel)) { channel->event_test_cpu = raw_smp_processor_id(); } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_FILL(rx_queue)) { /* The queue must be empty, so we won't receive any rx * events, so ef4_process_channel() won't refill the * queue. Refill it here */ ef4_fast_push_rx_descriptors(rx_queue, true); } else if (rx_queue && magic == EF4_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) { ef4_farch_handle_drain_event(channel); } else if (code == _EF4_CHANNEL_MAGIC_TX_DRAIN) { ef4_farch_handle_drain_event(channel); } else { netif_dbg(efx, hw, efx->net_dev, "channel %d received " "generated event "EF4_QWORD_FMT"\n", channel->channel, EF4_QWORD_VAL(*event)); } } static void ef4_farch_handle_driver_event(struct ef4_channel *channel, ef4_qword_t *event) { struct ef4_nic *efx = channel->efx; unsigned int ev_sub_code; unsigned int ev_sub_data; ev_sub_code = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); ev_sub_data = EF4_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); switch (ev_sub_code) { case FSE_AZ_TX_DESCQ_FLS_DONE_EV: netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n", channel->channel, ev_sub_data); ef4_farch_handle_tx_flush_done(efx, event); break; case FSE_AZ_RX_DESCQ_FLS_DONE_EV: netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n", channel->channel, ev_sub_data); ef4_farch_handle_rx_flush_done(efx, event); break; case FSE_AZ_EVQ_INIT_DONE_EV: netif_dbg(efx, hw, efx->net_dev, "channel %d EVQ %d initialised\n", channel->channel, ev_sub_data); break; case FSE_AZ_SRM_UPD_DONE_EV: netif_vdbg(efx, hw, efx->net_dev, "channel %d SRAM update done\n", channel->channel); break; case FSE_AZ_WAKE_UP_EV: netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d wakeup event\n", channel->channel, ev_sub_data); break; case FSE_AZ_TIMER_EV: netif_vdbg(efx, hw, efx->net_dev, "channel %d RX queue %d timer expired\n", channel->channel, ev_sub_data); break; case FSE_AA_RX_RECOVER_EV: netif_err(efx, rx_err, efx->net_dev, "channel %d seen DRIVER RX_RESET event. " "Resetting.\n", channel->channel); atomic_inc(&efx->rx_reset); ef4_schedule_reset(efx, EF4_WORKAROUND_6555(efx) ? RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); break; case FSE_BZ_RX_DSC_ERROR_EV: netif_err(efx, rx_err, efx->net_dev, "RX DMA Q %d reports descriptor fetch error." " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data); ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR); break; case FSE_BZ_TX_DSC_ERROR_EV: netif_err(efx, tx_err, efx->net_dev, "TX DMA Q %d reports descriptor fetch error." " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data); ef4_schedule_reset(efx, RESET_TYPE_DMA_ERROR); break; default: netif_vdbg(efx, hw, efx->net_dev, "channel %d unknown driver event code %d " "data %04x\n", channel->channel, ev_sub_code, ev_sub_data); break; } } int ef4_farch_ev_process(struct ef4_channel *channel, int budget) { struct ef4_nic *efx = channel->efx; unsigned int read_ptr; ef4_qword_t event, *p_event; int ev_code; int tx_packets = 0; int spent = 0; if (budget <= 0) return spent; read_ptr = channel->eventq_read_ptr; for (;;) { p_event = ef4_event(channel, read_ptr); event = *p_event; if (!ef4_event_present(&event)) /* End of events */ break; netif_vdbg(channel->efx, intr, channel->efx->net_dev, "channel %d event is "EF4_QWORD_FMT"\n", channel->channel, EF4_QWORD_VAL(event)); /* Clear this event by marking it all ones */ EF4_SET_QWORD(*p_event); ++read_ptr; ev_code = EF4_QWORD_FIELD(event, FSF_AZ_EV_CODE); switch (ev_code) { case FSE_AZ_EV_CODE_RX_EV: ef4_farch_handle_rx_event(channel, &event); if (++spent == budget) goto out; break; case FSE_AZ_EV_CODE_TX_EV: tx_packets += ef4_farch_handle_tx_event(channel, &event); if (tx_packets > efx->txq_entries) { spent = budget; goto out; } break; case FSE_AZ_EV_CODE_DRV_GEN_EV: ef4_farch_handle_generated_event(channel, &event); break; case FSE_AZ_EV_CODE_DRIVER_EV: ef4_farch_handle_driver_event(channel, &event); break; case FSE_AZ_EV_CODE_GLOBAL_EV: if (efx->type->handle_global_event && efx->type->handle_global_event(channel, &event)) break; fallthrough; default: netif_err(channel->efx, hw, channel->efx->net_dev, "channel %d unknown event type %d (data " EF4_QWORD_FMT ")\n", channel->channel, ev_code, EF4_QWORD_VAL(event)); } } out: channel->eventq_read_ptr = read_ptr; return spent; } /* Allocate buffer table entries for event queue */ int ef4_farch_ev_probe(struct ef4_channel *channel) { struct ef4_nic *efx = channel->efx; unsigned entries; entries = channel->eventq_mask + 1; return ef4_alloc_special_buffer(efx, &channel->eventq, entries * sizeof(ef4_qword_t)); } int ef4_farch_ev_init(struct ef4_channel *channel) { ef4_oword_t reg; struct ef4_nic *efx = channel->efx; netif_dbg(efx, hw, efx->net_dev, "channel %d event queue in special buffers %d-%d\n", channel->channel, channel->eventq.index, channel->eventq.index + channel->eventq.entries - 1); /* Pin event queue buffer */ ef4_init_special_buffer(efx, &channel->eventq); /* Fill event queue with all ones (i.e. empty events) */ memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len); /* Push event queue to card */ EF4_POPULATE_OWORD_3(reg, FRF_AZ_EVQ_EN, 1, FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); ef4_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, channel->channel); return 0; } void ef4_farch_ev_fini(struct ef4_channel *channel) { ef4_oword_t reg; struct ef4_nic *efx = channel->efx; /* Remove event queue from card */ EF4_ZERO_OWORD(reg); ef4_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, channel->channel); /* Unpin event queue */ ef4_fini_special_buffer(efx, &channel->eventq); } /* Free buffers backing event queue */ void ef4_farch_ev_remove(struct ef4_channel *channel) { ef4_free_special_buffer(channel->efx, &channel->eventq); } void ef4_farch_ev_test_generate(struct ef4_channel *channel) { ef4_farch_magic_event(channel, EF4_CHANNEL_MAGIC_TEST(channel)); } void ef4_farch_rx_defer_refill(struct ef4_rx_queue *rx_queue) { ef4_farch_magic_event(ef4_rx_queue_channel(rx_queue), EF4_CHANNEL_MAGIC_FILL(rx_queue)); } /************************************************************************** * * Hardware interrupts * The hardware interrupt handler does very little work; all the event * queue processing is carried out by per-channel tasklets. * **************************************************************************/ /* Enable/disable/generate interrupts */ static inline void ef4_farch_interrupts(struct ef4_nic *efx, bool enabled, bool force) { ef4_oword_t int_en_reg_ker; EF4_POPULATE_OWORD_3(int_en_reg_ker, FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level, FRF_AZ_KER_INT_KER, force, FRF_AZ_DRV_INT_EN_KER, enabled); ef4_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); } void ef4_farch_irq_enable_master(struct ef4_nic *efx) { EF4_ZERO_OWORD(*((ef4_oword_t *) efx->irq_status.addr)); wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ ef4_farch_interrupts(efx, true, false); } void ef4_farch_irq_disable_master(struct ef4_nic *efx) { /* Disable interrupts */ ef4_farch_interrupts(efx, false, false); } /* Generate a test interrupt * Interrupt must already have been enabled, otherwise nasty things * may happen. */ int ef4_farch_irq_test_generate(struct ef4_nic *efx) { ef4_farch_interrupts(efx, true, true); return 0; } /* Process a fatal interrupt * Disable bus mastering ASAP and schedule a reset */ irqreturn_t ef4_farch_fatal_interrupt(struct ef4_nic *efx) { struct falcon_nic_data *nic_data = efx->nic_data; ef4_oword_t *int_ker = efx->irq_status.addr; ef4_oword_t fatal_intr; int error, mem_perr; ef4_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); error = EF4_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EF4_OWORD_FMT" status " EF4_OWORD_FMT ": %s\n", EF4_OWORD_VAL(*int_ker), EF4_OWORD_VAL(fatal_intr), error ? "disabling bus mastering" : "no recognised error"); /* If this is a memory parity error dump which blocks are offending */ mem_perr = (EF4_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) || EF4_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER)); if (mem_perr) { ef4_oword_t reg; ef4_reado(efx, ®, FR_AZ_MEM_STAT); netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR: memory parity error "EF4_OWORD_FMT"\n", EF4_OWORD_VAL(reg)); } /* Disable both devices */ pci_clear_master(efx->pci_dev); if (ef4_nic_is_dual_func(efx)) pci_clear_master(nic_data->pci_dev2); ef4_farch_irq_disable_master(efx); /* Count errors and reset or disable the NIC accordingly */ if (efx->int_error_count == 0 || time_after(jiffies, efx->int_error_expire)) { efx->int_error_count = 0; efx->int_error_expire = jiffies + EF4_INT_ERROR_EXPIRE * HZ; } if (++efx->int_error_count < EF4_MAX_INT_ERRORS) { netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR - reset scheduled\n"); ef4_schedule_reset(efx, RESET_TYPE_INT_ERROR); } else { netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR - max number of errors seen." "NIC will be disabled\n"); ef4_schedule_reset(efx, RESET_TYPE_DISABLE); } return IRQ_HANDLED; } /* Handle a legacy interrupt * Acknowledges the interrupt and schedule event queue processing. */ irqreturn_t ef4_farch_legacy_interrupt(int irq, void *dev_id) { struct ef4_nic *efx = dev_id; bool soft_enabled = READ_ONCE(efx->irq_soft_enabled); ef4_oword_t *int_ker = efx->irq_status.addr; irqreturn_t result = IRQ_NONE; struct ef4_channel *channel; ef4_dword_t reg; u32 queues; int syserr; /* Read the ISR which also ACKs the interrupts */ ef4_readd(efx, ®, FR_BZ_INT_ISR0); queues = EF4_EXTRACT_DWORD(reg, 0, 31); /* Legacy interrupts are disabled too late by the EEH kernel * code. Disable them earlier. * If an EEH error occurred, the read will have returned all ones. */ if (EF4_DWORD_IS_ALL_ONES(reg) && ef4_try_recovery(efx) && !efx->eeh_disabled_legacy_irq) { disable_irq_nosync(efx->legacy_irq); efx->eeh_disabled_legacy_irq = true; } /* Handle non-event-queue sources */ if (queues & (1U << efx->irq_level) && soft_enabled) { syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); if (unlikely(syserr)) return ef4_farch_fatal_interrupt(efx); efx->last_irq_cpu = raw_smp_processor_id(); } if (queues != 0) { efx->irq_zero_count = 0; /* Schedule processing of any interrupting queues */ if (likely(soft_enabled)) { ef4_for_each_channel(channel, efx) { if (queues & 1) ef4_schedule_channel_irq(channel); queues >>= 1; } } result = IRQ_HANDLED; } else { ef4_qword_t *event; /* Legacy ISR read can return zero once (SF bug 15783) */ /* We can't return IRQ_HANDLED more than once on seeing ISR=0 * because this might be a shared interrupt. */ if (efx->irq_zero_count++ == 0) result = IRQ_HANDLED; /* Ensure we schedule or rearm all event queues */ if (likely(soft_enabled)) { ef4_for_each_channel(channel, efx) { event = ef4_event(channel, channel->eventq_read_ptr); if (ef4_event_present(event)) ef4_schedule_channel_irq(channel); else ef4_farch_ev_read_ack(channel); } } } if (result == IRQ_HANDLED) netif_vdbg(efx, intr, efx->net_dev, "IRQ %d on CPU %d status " EF4_DWORD_FMT "\n", irq, raw_smp_processor_id(), EF4_DWORD_VAL(reg)); return result; } /* Handle an MSI interrupt * * Handle an MSI hardware interrupt. This routine schedules event * queue processing. No interrupt acknowledgement cycle is necessary. * Also, we never need to check that the interrupt is for us, since * MSI interrupts cannot be shared. */ irqreturn_t ef4_farch_msi_interrupt(int irq, void *dev_id) { struct ef4_msi_context *context = dev_id; struct ef4_nic *efx = context->efx; ef4_oword_t *int_ker = efx->irq_status.addr; int syserr; netif_vdbg(efx, intr, efx->net_dev, "IRQ %d on CPU %d status " EF4_OWORD_FMT "\n", irq, raw_smp_processor_id(), EF4_OWORD_VAL(*int_ker)); if (!likely(READ_ONCE(efx->irq_soft_enabled))) return IRQ_HANDLED; /* Handle non-event-queue sources */ if (context->index == efx->irq_level) { syserr = EF4_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); if (unlikely(syserr)) return ef4_farch_fatal_interrupt(efx); efx->last_irq_cpu = raw_smp_processor_id(); } /* Schedule processing of the channel */ ef4_schedule_channel_irq(efx->channel[context->index]); return IRQ_HANDLED; } /* Setup RSS indirection table. * This maps from the hash value of the packet to RXQ */ void ef4_farch_rx_push_indir_table(struct ef4_nic *efx) { size_t i = 0; ef4_dword_t dword; BUG_ON(ef4_nic_rev(efx) < EF4_REV_FALCON_B0); BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) != FR_BZ_RX_INDIRECTION_TBL_ROWS); for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { EF4_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, efx->rx_indir_table[i]); ef4_writed(efx, &dword, FR_BZ_RX_INDIRECTION_TBL + FR_BZ_RX_INDIRECTION_TBL_STEP * i); } } /* Looks at available SRAM resources and works out how many queues we * can support, and where things like descriptor caches should live. * * SRAM is split up as follows: * 0 buftbl entries for channels * efx->vf_buftbl_base buftbl entries for SR-IOV * efx->rx_dc_base RX descriptor caches * efx->tx_dc_base TX descriptor caches */ void ef4_farch_dimension_resources(struct ef4_nic *efx, unsigned sram_lim_qw) { unsigned vi_count; /* Account for the buffer table entries backing the datapath channels * and the descriptor caches for those channels. */ vi_count = max(efx->n_channels, efx->n_tx_channels * EF4_TXQ_TYPES); efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES; efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES; } u32 ef4_farch_fpga_ver(struct ef4_nic *efx) { ef4_oword_t altera_build; ef4_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); return EF4_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); } void ef4_farch_init_common(struct ef4_nic *efx) { ef4_oword_t temp; /* Set positions of descriptor caches in SRAM. */ EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base); ef4_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); EF4_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base); ef4_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); /* Set TX descriptor cache size. */ BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); EF4_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); ef4_writeo(efx, &temp, FR_AZ_TX_DC_CFG); /* Set RX descriptor cache size. Set low watermark to size-8, as * this allows most efficient prefetching. */ BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); ef4_writeo(efx, &temp, FR_AZ_RX_DC_CFG); EF4_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); ef4_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); /* Program INT_KER address */ EF4_POPULATE_OWORD_2(temp, FRF_AZ_NORM_INT_VEC_DIS_KER, EF4_INT_MODE_USE_MSI(efx), FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); ef4_writeo(efx, &temp, FR_AZ_INT_ADR_KER); /* Use a valid MSI-X vector */ efx->irq_level = 0; /* Enable all the genuinely fatal interrupts. (They are still * masked by the overall interrupt mask, controlled by * falcon_interrupts()). * * Note: All other fatal interrupts are enabled */ EF4_POPULATE_OWORD_3(temp, FRF_AZ_ILL_ADR_INT_KER_EN, 1, FRF_AZ_RBUF_OWN_INT_KER_EN, 1, FRF_AZ_TBUF_OWN_INT_KER_EN, 1); EF4_INVERT_OWORD(temp); ef4_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. */ ef4_reado(efx, &temp, FR_AZ_TX_RESERVED); EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1); EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); /* Enable SW_EV to inherit in char driver - assume harmless here */ EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); /* Prefetch threshold 2 => fetch when descriptor cache half empty */ EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); /* Disable hardware watchdog which can misfire */ EF4_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff); /* Squash TX of packets of 16 bytes or less */ if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) EF4_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); ef4_writeo(efx, &temp, FR_AZ_TX_RESERVED); if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) { EF4_POPULATE_OWORD_4(temp, /* Default values */ FRF_BZ_TX_PACE_SB_NOT_AF, 0x15, FRF_BZ_TX_PACE_SB_AF, 0xb, FRF_BZ_TX_PACE_FB_BASE, 0, /* Allow large pace values in the * fast bin. */ FRF_BZ_TX_PACE_BIN_TH, FFE_BZ_TX_PACE_RESERVED); ef4_writeo(efx, &temp, FR_BZ_TX_PACE); } } /************************************************************************** * * Filter tables * ************************************************************************** */ /* "Fudge factors" - difference between programmed value and actual depth. * Due to pipelined implementation we need to program H/W with a value that * is larger than the hop limit we want. */ #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3 #define EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1 /* Hard maximum search limit. Hardware will time-out beyond 200-something. * We also need to avoid infinite loops in ef4_farch_filter_search() when the * table is full. */ #define EF4_FARCH_FILTER_CTL_SRCH_MAX 200 /* Don't try very hard to find space for performance hints, as this is * counter-productive. */ #define EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX 5 enum ef4_farch_filter_type { EF4_FARCH_FILTER_TCP_FULL = 0, EF4_FARCH_FILTER_TCP_WILD, EF4_FARCH_FILTER_UDP_FULL, EF4_FARCH_FILTER_UDP_WILD, EF4_FARCH_FILTER_MAC_FULL = 4, EF4_FARCH_FILTER_MAC_WILD, EF4_FARCH_FILTER_UC_DEF = 8, EF4_FARCH_FILTER_MC_DEF, EF4_FARCH_FILTER_TYPE_COUNT, /* number of specific types */ }; enum ef4_farch_filter_table_id { EF4_FARCH_FILTER_TABLE_RX_IP = 0, EF4_FARCH_FILTER_TABLE_RX_MAC, EF4_FARCH_FILTER_TABLE_RX_DEF, EF4_FARCH_FILTER_TABLE_TX_MAC, EF4_FARCH_FILTER_TABLE_COUNT, }; enum ef4_farch_filter_index { EF4_FARCH_FILTER_INDEX_UC_DEF, EF4_FARCH_FILTER_INDEX_MC_DEF, EF4_FARCH_FILTER_SIZE_RX_DEF, }; struct ef4_farch_filter_spec { u8 type:4; u8 priority:4; u8 flags; u16 dmaq_id; u32 data[3]; }; struct ef4_farch_filter_table { enum ef4_farch_filter_table_id id; u32 offset; /* address of table relative to BAR */ unsigned size; /* number of entries */ unsigned step; /* step between entries */ unsigned used; /* number currently used */ unsigned long *used_bitmap; struct ef4_farch_filter_spec *spec; unsigned search_limit[EF4_FARCH_FILTER_TYPE_COUNT]; }; struct ef4_farch_filter_state { struct ef4_farch_filter_table table[EF4_FARCH_FILTER_TABLE_COUNT]; }; static void ef4_farch_filter_table_clear_entry(struct ef4_nic *efx, struct ef4_farch_filter_table *table, unsigned int filter_idx); /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit * key derived from the n-tuple. The initial LFSR state is 0xffff. */ static u16 ef4_farch_filter_hash(u32 key) { u16 tmp; /* First 16 rounds */ tmp = 0x1fff ^ key >> 16; tmp = tmp ^ tmp >> 3 ^ tmp >> 6; tmp = tmp ^ tmp >> 9; /* Last 16 rounds */ tmp = tmp ^ tmp << 13 ^ key; tmp = tmp ^ tmp >> 3 ^ tmp >> 6; return tmp ^ tmp >> 9; } /* To allow for hash collisions, filter search continues at these * increments from the first possible entry selected by the hash. */ static u16 ef4_farch_filter_increment(u32 key) { return key * 2 - 1; } static enum ef4_farch_filter_table_id ef4_farch_filter_spec_table_id(const struct ef4_farch_filter_spec *spec) { BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP != (EF4_FARCH_FILTER_TCP_FULL >> 2)); BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP != (EF4_FARCH_FILTER_TCP_WILD >> 2)); BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP != (EF4_FARCH_FILTER_UDP_FULL >> 2)); BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_IP != (EF4_FARCH_FILTER_UDP_WILD >> 2)); BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC != (EF4_FARCH_FILTER_MAC_FULL >> 2)); BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_RX_MAC != (EF4_FARCH_FILTER_MAC_WILD >> 2)); BUILD_BUG_ON(EF4_FARCH_FILTER_TABLE_TX_MAC != EF4_FARCH_FILTER_TABLE_RX_MAC + 2); return (spec->type >> 2) + ((spec->flags & EF4_FILTER_FLAG_TX) ? 2 : 0); } static void ef4_farch_filter_push_rx_config(struct ef4_nic *efx) { struct ef4_farch_filter_state *state = efx->filter_state; struct ef4_farch_filter_table *table; ef4_oword_t filter_ctl; ef4_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP]; EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT, table->search_limit[EF4_FARCH_FILTER_TCP_FULL] + EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT, table->search_limit[EF4_FARCH_FILTER_TCP_WILD] + EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT, table->search_limit[EF4_FARCH_FILTER_UDP_FULL] + EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); EF4_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT, table->search_limit[EF4_FARCH_FILTER_UDP_WILD] + EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); table = &state->table[EF4_FARCH_FILTER_TABLE_RX_MAC]; if (table->size) { EF4_SET_OWORD_FIELD( filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT, table->search_limit[EF4_FARCH_FILTER_MAC_FULL] + EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); EF4_SET_OWORD_FIELD( filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT, table->search_limit[EF4_FARCH_FILTER_MAC_WILD] + EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); } table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF]; if (table->size) { EF4_SET_OWORD_FIELD( filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID, table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].dmaq_id); EF4_SET_OWORD_FIELD( filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED, !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags & EF4_FILTER_FLAG_RX_RSS)); EF4_SET_OWORD_FIELD( filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID, table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].dmaq_id); EF4_SET_OWORD_FIELD( filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED, !!(table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags & EF4_FILTER_FLAG_RX_RSS)); /* There is a single bit to enable RX scatter for all * unmatched packets. Only set it if scatter is * enabled in both filter specs. */ EF4_SET_OWORD_FIELD( filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q, !!(table->spec[EF4_FARCH_FILTER_INDEX_UC_DEF].flags & table->spec[EF4_FARCH_FILTER_INDEX_MC_DEF].flags & EF4_FILTER_FLAG_RX_SCATTER)); } else if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) { /* We don't expose 'default' filters because unmatched * packets always go to the queue number found in the * RSS table. But we still need to set the RX scatter * bit here. */ EF4_SET_OWORD_FIELD( filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q, efx->rx_scatter); } ef4_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); } static void ef4_farch_filter_push_tx_limits(struct ef4_nic *efx) { struct ef4_farch_filter_state *state = efx->filter_state; struct ef4_farch_filter_table *table; ef4_oword_t tx_cfg; ef4_reado(efx, &tx_cfg, FR_AZ_TX_CFG); table = &state->table[EF4_FARCH_FILTER_TABLE_TX_MAC]; if (table->size) { EF4_SET_OWORD_FIELD( tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE, table->search_limit[EF4_FARCH_FILTER_MAC_FULL] + EF4_FARCH_FILTER_CTL_SRCH_FUDGE_FULL); EF4_SET_OWORD_FIELD( tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE, table->search_limit[EF4_FARCH_FILTER_MAC_WILD] + EF4_FARCH_FILTER_CTL_SRCH_FUDGE_WILD); } ef4_writeo(efx, &tx_cfg, FR_AZ_TX_CFG); } static int ef4_farch_filter_from_gen_spec(struct ef4_farch_filter_spec *spec, const struct ef4_filter_spec *gen_spec) { bool is_full = false; if ((gen_spec->flags & EF4_FILTER_FLAG_RX_RSS) && gen_spec->rss_context != EF4_FILTER_RSS_CONTEXT_DEFAULT) return -EINVAL; spec->priority = gen_spec->priority; spec->flags = gen_spec->flags; spec->dmaq_id = gen_spec->dmaq_id; switch (gen_spec->match_flags) { case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO | EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT | EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT): is_full = true; fallthrough; case (EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO | EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT): { __be32 rhost, host1, host2; __be16 rport, port1, port2; EF4_BUG_ON_PARANOID(!(gen_spec->flags & EF4_FILTER_FLAG_RX)); if (gen_spec->ether_type != htons(ETH_P_IP)) return -EPROTONOSUPPORT; if (gen_spec->loc_port == 0 || (is_full && gen_spec->rem_port == 0)) return -EADDRNOTAVAIL; switch (gen_spec->ip_proto) { case IPPROTO_TCP: spec->type = (is_full ? EF4_FARCH_FILTER_TCP_FULL : EF4_FARCH_FILTER_TCP_WILD); break; case IPPROTO_UDP: spec->type = (is_full ? EF4_FARCH_FILTER_UDP_FULL : EF4_FARCH_FILTER_UDP_WILD); break; default: return -EPROTONOSUPPORT; } /* Filter is constructed in terms of source and destination, * with the odd wrinkle that the ports are swapped in a UDP * wildcard filter. We need to convert from local and remote * (= zero for wildcard) addresses. */ rhost = is_full ? gen_spec->rem_host[0] : 0; rport = is_full ? gen_spec->rem_port : 0; host1 = rhost; host2 = gen_spec->loc_host[0]; if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) { port1 = gen_spec->loc_port; port2 = rport; } else { port1 = rport; port2 = gen_spec->loc_port; } spec->data[0] = ntohl(host1) << 16 | ntohs(port1); spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16; spec->data[2] = ntohl(host2); break; } case EF4_FILTER_MATCH_LOC_MAC | EF4_FILTER_MATCH_OUTER_VID: is_full = true; fallthrough; case EF4_FILTER_MATCH_LOC_MAC: spec->type = (is_full ? EF4_FARCH_FILTER_MAC_FULL : EF4_FARCH_FILTER_MAC_WILD); spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0; spec->data[1] = (gen_spec->loc_mac[2] << 24 | gen_spec->loc_mac[3] << 16 | gen_spec->loc_mac[4] << 8 | gen_spec->loc_mac[5]); spec->data[2] = (gen_spec->loc_mac[0] << 8 | gen_spec->loc_mac[1]); break; case EF4_FILTER_MATCH_LOC_MAC_IG: spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ? EF4_FARCH_FILTER_MC_DEF : EF4_FARCH_FILTER_UC_DEF); memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */ break; default: return -EPROTONOSUPPORT; } return 0; } static void ef4_farch_filter_to_gen_spec(struct ef4_filter_spec *gen_spec, const struct ef4_farch_filter_spec *spec) { bool is_full = false; /* *gen_spec should be completely initialised, to be consistent * with ef4_filter_init_{rx,tx}() and in case we want to copy * it back to userland. */ memset(gen_spec, 0, sizeof(*gen_spec)); gen_spec->priority = spec->priority; gen_spec->flags = spec->flags; gen_spec->dmaq_id = spec->dmaq_id; switch (spec->type) { case EF4_FARCH_FILTER_TCP_FULL: case EF4_FARCH_FILTER_UDP_FULL: is_full = true; fallthrough; case EF4_FARCH_FILTER_TCP_WILD: case EF4_FARCH_FILTER_UDP_WILD: { __be32 host1, host2; __be16 port1, port2; gen_spec->match_flags = EF4_FILTER_MATCH_ETHER_TYPE | EF4_FILTER_MATCH_IP_PROTO | EF4_FILTER_MATCH_LOC_HOST | EF4_FILTER_MATCH_LOC_PORT; if (is_full) gen_spec->match_flags |= (EF4_FILTER_MATCH_REM_HOST | EF4_FILTER_MATCH_REM_PORT); gen_spec->ether_type = htons(ETH_P_IP); gen_spec->ip_proto = (spec->type == EF4_FARCH_FILTER_TCP_FULL || spec->type == EF4_FARCH_FILTER_TCP_WILD) ? IPPROTO_TCP : IPPROTO_UDP; host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16); port1 = htons(spec->data[0]); host2 = htonl(spec->data[2]); port2 = htons(spec->data[1] >> 16); if (spec->flags & EF4_FILTER_FLAG_TX) { gen_spec->loc_host[0] = host1; gen_spec->rem_host[0] = host2; } else { gen_spec->loc_host[0] = host2; gen_spec->rem_host[0] = host1; } if (!!(gen_spec->flags & EF4_FILTER_FLAG_TX) ^ (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) { gen_spec->loc_port = port1; gen_spec->rem_port = port2; } else { gen_spec->loc_port = port2; gen_spec->rem_port = port1; } break; } case EF4_FARCH_FILTER_MAC_FULL: is_full = true; fallthrough; case EF4_FARCH_FILTER_MAC_WILD: gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC; if (is_full) gen_spec->match_flags |= EF4_FILTER_MATCH_OUTER_VID; gen_spec->loc_mac[0] = spec->data[2] >> 8; gen_spec->loc_mac[1] = spec->data[2]; gen_spec->loc_mac[2] = spec->data[1] >> 24; gen_spec->loc_mac[3] = spec->data[1] >> 16; gen_spec->loc_mac[4] = spec->data[1] >> 8; gen_spec->loc_mac[5] = spec->data[1]; gen_spec->outer_vid = htons(spec->data[0]); break; case EF4_FARCH_FILTER_UC_DEF: case EF4_FARCH_FILTER_MC_DEF: gen_spec->match_flags = EF4_FILTER_MATCH_LOC_MAC_IG; gen_spec->loc_mac[0] = spec->type == EF4_FARCH_FILTER_MC_DEF; break; default: WARN_ON(1); break; } } static void ef4_farch_filter_init_rx_auto(struct ef4_nic *efx, struct ef4_farch_filter_spec *spec) { /* If there's only one channel then disable RSS for non VF * traffic, thereby allowing VFs to use RSS when the PF can't. */ spec->priority = EF4_FILTER_PRI_AUTO; spec->flags = (EF4_FILTER_FLAG_RX | (ef4_rss_enabled(efx) ? EF4_FILTER_FLAG_RX_RSS : 0) | (efx->rx_scatter ? EF4_FILTER_FLAG_RX_SCATTER : 0)); spec->dmaq_id = 0; } /* Build a filter entry and return its n-tuple key. */ static u32 ef4_farch_filter_build(ef4_oword_t *filter, struct ef4_farch_filter_spec *spec) { u32 data3; switch (ef4_farch_filter_spec_table_id(spec)) { case EF4_FARCH_FILTER_TABLE_RX_IP: { bool is_udp = (spec->type == EF4_FARCH_FILTER_UDP_FULL || spec->type == EF4_FARCH_FILTER_UDP_WILD); EF4_POPULATE_OWORD_7( *filter, FRF_BZ_RSS_EN, !!(spec->flags & EF4_FILTER_FLAG_RX_RSS), FRF_BZ_SCATTER_EN, !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER), FRF_BZ_TCP_UDP, is_udp, FRF_BZ_RXQ_ID, spec->dmaq_id, EF4_DWORD_2, spec->data[2], EF4_DWORD_1, spec->data[1], EF4_DWORD_0, spec->data[0]); data3 = is_udp; break; } case EF4_FARCH_FILTER_TABLE_RX_MAC: { bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD; EF4_POPULATE_OWORD_7( *filter, FRF_CZ_RMFT_RSS_EN, !!(spec->flags & EF4_FILTER_FLAG_RX_RSS), FRF_CZ_RMFT_SCATTER_EN, !!(spec->flags & EF4_FILTER_FLAG_RX_SCATTER), FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id, FRF_CZ_RMFT_WILDCARD_MATCH, is_wild, FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2], FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1], FRF_CZ_RMFT_VLAN_ID, spec->data[0]); data3 = is_wild; break; } case EF4_FARCH_FILTER_TABLE_TX_MAC: { bool is_wild = spec->type == EF4_FARCH_FILTER_MAC_WILD; EF4_POPULATE_OWORD_5(*filter, FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id, FRF_CZ_TMFT_WILDCARD_MATCH, is_wild, FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2], FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1], FRF_CZ_TMFT_VLAN_ID, spec->data[0]); data3 = is_wild | spec->dmaq_id << 1; break; } default: BUG(); } return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3; } static bool ef4_farch_filter_equal(const struct ef4_farch_filter_spec *left, const struct ef4_farch_filter_spec *right) { if (left->type != right->type || memcmp(left->data, right->data, sizeof(left->data))) return false; if (left->flags & EF4_FILTER_FLAG_TX && left->dmaq_id != right->dmaq_id) return false; return true; } /* * Construct/deconstruct external filter IDs. At least the RX filter * IDs must be ordered by matching priority, for RX NFC semantics. * * Deconstruction needs to be robust against invalid IDs so that * ef4_filter_remove_id_safe() and ef4_filter_get_filter_safe() can * accept user-provided IDs. */ #define EF4_FARCH_FILTER_MATCH_PRI_COUNT 5 static const u8 ef4_farch_filter_type_match_pri[EF4_FARCH_FILTER_TYPE_COUNT] = { [EF4_FARCH_FILTER_TCP_FULL] = 0, [EF4_FARCH_FILTER_UDP_FULL] = 0, [EF4_FARCH_FILTER_TCP_WILD] = 1, [EF4_FARCH_FILTER_UDP_WILD] = 1, [EF4_FARCH_FILTER_MAC_FULL] = 2, [EF4_FARCH_FILTER_MAC_WILD] = 3, [EF4_FARCH_FILTER_UC_DEF] = 4, [EF4_FARCH_FILTER_MC_DEF] = 4, }; static const enum ef4_farch_filter_table_id ef4_farch_filter_range_table[] = { EF4_FARCH_FILTER_TABLE_RX_IP, /* RX match pri 0 */ EF4_FARCH_FILTER_TABLE_RX_IP, EF4_FARCH_FILTER_TABLE_RX_MAC, EF4_FARCH_FILTER_TABLE_RX_MAC, EF4_FARCH_FILTER_TABLE_RX_DEF, /* RX match pri 4 */ EF4_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 0 */ EF4_FARCH_FILTER_TABLE_TX_MAC, /* TX match pri 1 */ }; #define EF4_FARCH_FILTER_INDEX_WIDTH 13 #define EF4_FARCH_FILTER_INDEX_MASK ((1 << EF4_FARCH_FILTER_INDEX_WIDTH) - 1) static inline u32 ef4_farch_filter_make_id(const struct ef4_farch_filter_spec *spec, unsigned int index) { unsigned int range; range = ef4_farch_filter_type_match_pri[spec->type]; if (!(spec->flags & EF4_FILTER_FLAG_RX)) range += EF4_FARCH_FILTER_MATCH_PRI_COUNT; return range << EF4_FARCH_FILTER_INDEX_WIDTH | index; } static inline enum ef4_farch_filter_table_id ef4_farch_filter_id_table_id(u32 id) { unsigned int range = id >> EF4_FARCH_FILTER_INDEX_WIDTH; if (range < ARRAY_SIZE(ef4_farch_filter_range_table)) return ef4_farch_filter_range_table[range]; else return EF4_FARCH_FILTER_TABLE_COUNT; /* invalid */ } static inline unsigned int ef4_farch_filter_id_index(u32 id) { return id & EF4_FARCH_FILTER_INDEX_MASK; } u32 ef4_farch_filter_get_rx_id_limit(struct ef4_nic *efx) { struct ef4_farch_filter_state *state = efx->filter_state; unsigned int range = EF4_FARCH_FILTER_MATCH_PRI_COUNT - 1; enum ef4_farch_filter_table_id table_id; do { table_id = ef4_farch_filter_range_table[range]; if (state->table[table_id].size != 0) return range << EF4_FARCH_FILTER_INDEX_WIDTH | state->table[table_id].size; } while (range--); return 0; } s32 ef4_farch_filter_insert(struct ef4_nic *efx, struct ef4_filter_spec *gen_spec, bool replace_equal) { struct ef4_farch_filter_state *state = efx->filter_state; struct ef4_farch_filter_table *table; struct ef4_farch_filter_spec spec; ef4_oword_t filter; int rep_index, ins_index; unsigned int depth = 0; int rc; rc = ef4_farch_filter_from_gen_spec(&spec, gen_spec); if (rc) return rc; table = &state->table[ef4_farch_filter_spec_table_id(&spec)]; if (table->size == 0) return -EINVAL; netif_vdbg(efx, hw, efx->net_dev, "%s: type %d search_limit=%d", __func__, spec.type, table->search_limit[spec.type]); if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) { /* One filter spec per type */ BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_UC_DEF != 0); BUILD_BUG_ON(EF4_FARCH_FILTER_INDEX_MC_DEF != EF4_FARCH_FILTER_MC_DEF - EF4_FARCH_FILTER_UC_DEF); rep_index = spec.type - EF4_FARCH_FILTER_UC_DEF; ins_index = rep_index; spin_lock_bh(&efx->filter_lock); } else { /* Search concurrently for * (1) a filter to be replaced (rep_index): any filter * with the same match values, up to the current * search depth for this type, and * (2) the insertion point (ins_index): (1) or any * free slot before it or up to the maximum search * depth for this priority * We fail if we cannot find (2). * * We can stop once either * (a) we find (1), in which case we have definitely * found (2) as well; or * (b) we have searched exhaustively for (1), and have * either found (2) or searched exhaustively for it */ u32 key = ef4_farch_filter_build(&filter, &spec); unsigned int hash = ef4_farch_filter_hash(key); unsigned int incr = ef4_farch_filter_increment(key); unsigned int max_rep_depth = table->search_limit[spec.type]; unsigned int max_ins_depth = spec.priority <= EF4_FILTER_PRI_HINT ? EF4_FARCH_FILTER_CTL_SRCH_HINT_MAX : EF4_FARCH_FILTER_CTL_SRCH_MAX; unsigned int i = hash & (table->size - 1); ins_index = -1; depth = 1; spin_lock_bh(&efx->filter_lock); for (;;) { if (!test_bit(i, table->used_bitmap)) { if (ins_index < 0) ins_index = i; } else if (ef4_farch_filter_equal(&spec, &table->spec[i])) { /* Case (a) */ if (ins_index < 0) ins_index = i; rep_index = i; break; } if (depth >= max_rep_depth && (ins_index >= 0 || depth >= max_ins_depth)) { /* Case (b) */ if (ins_index < 0) { rc = -EBUSY; goto out; } rep_index = -1; break; } i = (i + incr) & (table->size - 1); ++depth; } } /* If we found a filter to be replaced, check whether we * should do so */ if (rep_index >= 0) { struct ef4_farch_filter_spec *saved_spec = &table->spec[rep_index]; if (spec.priority == saved_spec->priority && !replace_equal) { rc = -EEXIST; goto out; } if (spec.priority < saved_spec->priority) { rc = -EPERM; goto out; } if (saved_spec->priority == EF4_FILTER_PRI_AUTO || saved_spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO) spec.flags |= EF4_FILTER_FLAG_RX_OVER_AUTO; } /* Insert the filter */ if (ins_index != rep_index) { __set_bit(ins_index, table->used_bitmap); ++table->used; } table->spec[ins_index] = spec; if (table->id == EF4_FARCH_FILTER_TABLE_RX_DEF) { ef4_farch_filter_push_rx_config(efx); } else { if (table->search_limit[spec.type] < depth) { table->search_limit[spec.type] = depth; if (spec.flags & EF4_FILTER_FLAG_TX) ef4_farch_filter_push_tx_limits(efx); else ef4_farch_filter_push_rx_config(efx); } ef4_writeo(efx, &filter, table->offset + table->step * ins_index); /* If we were able to replace a filter by inserting * at a lower depth, clear the replaced filter */ if (ins_index != rep_index && rep_index >= 0) ef4_farch_filter_table_clear_entry(efx, table, rep_index); } netif_vdbg(efx, hw, efx->net_dev, "%s: filter type %d index %d rxq %u set", __func__, spec.type, ins_index, spec.dmaq_id); rc = ef4_farch_filter_make_id(&spec, ins_index); out: spin_unlock_bh(&efx->filter_lock); return rc; } static void ef4_farch_filter_table_clear_entry(struct ef4_nic *efx, struct ef4_farch_filter_table *table, unsigned int filter_idx) { static ef4_oword_t filter; EF4_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap)); BUG_ON(table->offset == 0); /* can't clear MAC default filters */ __clear_bit(filter_idx, table->used_bitmap); --table->used; memset(&table->spec[filter_idx], 0, sizeof(table->spec[0])); ef4_writeo(efx, &filter, table->offset + table->step * filter_idx); /* If this filter required a greater search depth than * any other, the search limit for its type can now be * decreased. However, it is hard to determine that * unless the table has become completely empty - in * which case, all its search limits can be set to 0. */ if (unlikely(table->used == 0)) { memset(table->search_limit, 0, sizeof(table->search_limit)); if (table->id == EF4_FARCH_FILTER_TABLE_TX_MAC) ef4_farch_filter_push_tx_limits(efx); else ef4_farch_filter_push_rx_config(efx); } } static int ef4_farch_filter_remove(struct ef4_nic *efx, struct ef4_farch_filter_table *table, unsigned int filter_idx, enum ef4_filter_priority priority) { struct ef4_farch_filter_spec *spec = &table->spec[filter_idx]; if (!test_bit(filter_idx, table->used_bitmap) || spec->priority != priority) return -ENOENT; if (spec->flags & EF4_FILTER_FLAG_RX_OVER_AUTO) { ef4_farch_filter_init_rx_auto(efx, spec); ef4_farch_filter_push_rx_config(efx); } else { ef4_farch_filter_table_clear_entry(efx, table, filter_idx); } return 0; } int ef4_farch_filter_remove_safe(struct ef4_nic *efx, enum ef4_filter_priority priority, u32 filter_id) { struct ef4_farch_filter_state *state = efx->filter_state; enum ef4_farch_filter_table_id table_id; struct ef4_farch_filter_table *table; unsigned int filter_idx; int rc; table_id = ef4_farch_filter_id_table_id(filter_id); if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT) return -ENOENT; table = &state->table[table_id]; filter_idx = ef4_farch_filter_id_index(filter_id); if (filter_idx >= table->size) return -ENOENT; spin_lock_bh(&efx->filter_lock); rc = ef4_farch_filter_remove(efx, table, filter_idx, priority); spin_unlock_bh(&efx->filter_lock); return rc; } int ef4_farch_filter_get_safe(struct ef4_nic *efx, enum ef4_filter_priority priority, u32 filter_id, struct ef4_filter_spec *spec_buf) { struct ef4_farch_filter_state *state = efx->filter_state; enum ef4_farch_filter_table_id table_id; struct ef4_farch_filter_table *table; struct ef4_farch_filter_spec *spec; unsigned int filter_idx; int rc; table_id = ef4_farch_filter_id_table_id(filter_id); if ((unsigned int)table_id >= EF4_FARCH_FILTER_TABLE_COUNT) return -ENOENT; table = &state->table[table_id]; filter_idx = ef4_farch_filter_id_index(filter_id); if (filter_idx >= table->size) return -ENOENT; spec = &table->spec[filter_idx]; spin_lock_bh(&efx->filter_lock); if (test_bit(filter_idx, table->used_bitmap) && spec->priority == priority) { ef4_farch_filter_to_gen_spec(spec_buf, spec); rc = 0; } else { rc = -ENOENT; } spin_unlock_bh(&efx->filter_lock); return rc; } static void ef4_farch_filter_table_clear(struct ef4_nic *efx, enum ef4_farch_filter_table_id table_id, enum ef4_filter_priority priority) { struct ef4_farch_filter_state *state = efx->filter_state; struct ef4_farch_filter_table *table = &state->table[table_id]; unsigned int filter_idx; spin_lock_bh(&efx->filter_lock); for (filter_idx = 0; filter_idx < table->size; ++filter_idx) { if (table->spec[filter_idx].priority != EF4_FILTER_PRI_AUTO) ef4_farch_filter_remove(efx, table, filter_idx, priority); } spin_unlock_bh(&efx->filter_lock); } int ef4_farch_filter_clear_rx(struct ef4_nic *efx, enum ef4_filter_priority priority) { ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_IP, priority); ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_MAC, priority); ef4_farch_filter_table_clear(efx, EF4_FARCH_FILTER_TABLE_RX_DEF, priority); return 0; } u32 ef4_farch_filter_count_rx_used(struct ef4_nic *efx, enum ef4_filter_priority priority) { struct ef4_farch_filter_state *state = efx->filter_state; enum ef4_farch_filter_table_id table_id; struct ef4_farch_filter_table *table; unsigned int filter_idx; u32 count = 0; spin_lock_bh(&efx->filter_lock); for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP; table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF; table_id++) { table = &state->table[table_id]; for (filter_idx = 0; filter_idx < table->size; filter_idx++) { if (test_bit(filter_idx, table->used_bitmap) && table->spec[filter_idx].priority == priority) ++count; } } spin_unlock_bh(&efx->filter_lock); return count; } s32 ef4_farch_filter_get_rx_ids(struct ef4_nic *efx, enum ef4_filter_priority priority, u32 *buf, u32 size) { struct ef4_farch_filter_state *state = efx->filter_state; enum ef4_farch_filter_table_id table_id; struct ef4_farch_filter_table *table; unsigned int filter_idx; s32 count = 0; spin_lock_bh(&efx->filter_lock); for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP; table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF; table_id++) { table = &state->table[table_id]; for (filter_idx = 0; filter_idx < table->size; filter_idx++) { if (test_bit(filter_idx, table->used_bitmap) && table->spec[filter_idx].priority == priority) { if (count == size) { count = -EMSGSIZE; goto out; } buf[count++] = ef4_farch_filter_make_id( &table->spec[filter_idx], filter_idx); } } } out: spin_unlock_bh(&efx->filter_lock); return count; } /* Restore filter stater after reset */ void ef4_farch_filter_table_restore(struct ef4_nic *efx) { struct ef4_farch_filter_state *state = efx->filter_state; enum ef4_farch_filter_table_id table_id; struct ef4_farch_filter_table *table; ef4_oword_t filter; unsigned int filter_idx; spin_lock_bh(&efx->filter_lock); for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) { table = &state->table[table_id]; /* Check whether this is a regular register table */ if (table->step == 0) continue; for (filter_idx = 0; filter_idx < table->size; filter_idx++) { if (!test_bit(filter_idx, table->used_bitmap)) continue; ef4_farch_filter_build(&filter, &table->spec[filter_idx]); ef4_writeo(efx, &filter, table->offset + table->step * filter_idx); } } ef4_farch_filter_push_rx_config(efx); ef4_farch_filter_push_tx_limits(efx); spin_unlock_bh(&efx->filter_lock); } void ef4_farch_filter_table_remove(struct ef4_nic *efx) { struct ef4_farch_filter_state *state = efx->filter_state; enum ef4_farch_filter_table_id table_id; for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) { bitmap_free(state->table[table_id].used_bitmap); vfree(state->table[table_id].spec); } kfree(state); } int ef4_farch_filter_table_probe(struct ef4_nic *efx) { struct ef4_farch_filter_state *state; struct ef4_farch_filter_table *table; unsigned table_id; state = kzalloc(sizeof(struct ef4_farch_filter_state), GFP_KERNEL); if (!state) return -ENOMEM; efx->filter_state = state; if (ef4_nic_rev(efx) >= EF4_REV_FALCON_B0) { table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP]; table->id = EF4_FARCH_FILTER_TABLE_RX_IP; table->offset = FR_BZ_RX_FILTER_TBL0; table->size = FR_BZ_RX_FILTER_TBL0_ROWS; table->step = FR_BZ_RX_FILTER_TBL0_STEP; } for (table_id = 0; table_id < EF4_FARCH_FILTER_TABLE_COUNT; table_id++) { table = &state->table[table_id]; if (table->size == 0) continue; table->used_bitmap = bitmap_zalloc(table->size, GFP_KERNEL); if (!table->used_bitmap) goto fail; table->spec = vzalloc(array_size(sizeof(*table->spec), table->size)); if (!table->spec) goto fail; } table = &state->table[EF4_FARCH_FILTER_TABLE_RX_DEF]; if (table->size) { /* RX default filters must always exist */ struct ef4_farch_filter_spec *spec; unsigned i; for (i = 0; i < EF4_FARCH_FILTER_SIZE_RX_DEF; i++) { spec = &table->spec[i]; spec->type = EF4_FARCH_FILTER_UC_DEF + i; ef4_farch_filter_init_rx_auto(efx, spec); __set_bit(i, table->used_bitmap); } } ef4_farch_filter_push_rx_config(efx); return 0; fail: ef4_farch_filter_table_remove(efx); return -ENOMEM; } /* Update scatter enable flags for filters pointing to our own RX queues */ void ef4_farch_filter_update_rx_scatter(struct ef4_nic *efx) { struct ef4_farch_filter_state *state = efx->filter_state; enum ef4_farch_filter_table_id table_id; struct ef4_farch_filter_table *table; ef4_oword_t filter; unsigned int filter_idx; spin_lock_bh(&efx->filter_lock); for (table_id = EF4_FARCH_FILTER_TABLE_RX_IP; table_id <= EF4_FARCH_FILTER_TABLE_RX_DEF; table_id++) { table = &state->table[table_id]; for (filter_idx = 0; filter_idx < table->size; filter_idx++) { if (!test_bit(filter_idx, table->used_bitmap) || table->spec[filter_idx].dmaq_id >= efx->n_rx_channels) continue; if (efx->rx_scatter) table->spec[filter_idx].flags |= EF4_FILTER_FLAG_RX_SCATTER; else table->spec[filter_idx].flags &= ~EF4_FILTER_FLAG_RX_SCATTER; if (table_id == EF4_FARCH_FILTER_TABLE_RX_DEF) /* Pushed by ef4_farch_filter_push_rx_config() */ continue; ef4_farch_filter_build(&filter, &table->spec[filter_idx]); ef4_writeo(efx, &filter, table->offset + table->step * filter_idx); } } ef4_farch_filter_push_rx_config(efx); spin_unlock_bh(&efx->filter_lock); } #ifdef CONFIG_RFS_ACCEL s32 ef4_farch_filter_rfs_insert(struct ef4_nic *efx, struct ef4_filter_spec *gen_spec) { return ef4_farch_filter_insert(efx, gen_spec, true); } bool ef4_farch_filter_rfs_expire_one(struct ef4_nic *efx, u32 flow_id, unsigned int index) { struct ef4_farch_filter_state *state = efx->filter_state; struct ef4_farch_filter_table *table = &state->table[EF4_FARCH_FILTER_TABLE_RX_IP]; if (test_bit(index, table->used_bitmap) && table->spec[index].priority == EF4_FILTER_PRI_HINT && rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id, flow_id, index)) { ef4_farch_filter_table_clear_entry(efx, table, index); return true; } return false; } #endif /* CONFIG_RFS_ACCEL */ void ef4_farch_filter_sync_rx_mode(struct ef4_nic *efx) { struct net_device *net_dev = efx->net_dev; struct netdev_hw_addr *ha; union ef4_multicast_hash *mc_hash = &efx->multicast_hash; u32 crc; int bit; if (!ef4_dev_registered(efx)) return; netif_addr_lock_bh(net_dev); efx->unicast_filter = !(net_dev->flags & IFF_PROMISC); /* Build multicast hash table */ if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) { memset(mc_hash, 0xff, sizeof(*mc_hash)); } else { memset(mc_hash, 0x00, sizeof(*mc_hash)); netdev_for_each_mc_addr(ha, net_dev) { crc = ether_crc_le(ETH_ALEN, ha->addr); bit = crc & (EF4_MCAST_HASH_ENTRIES - 1); __set_bit_le(bit, mc_hash); } /* Broadcast packets go through the multicast hash filter. * ether_crc_le() of the broadcast address is 0xbe2612ff * so we always add bit 0xff to the mask. */ __set_bit_le(0xff, mc_hash); } netif_addr_unlock_bh(net_dev); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1