Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martin Habets | 9053 | 99.63% | 5 | 62.50% |
Alex Austin | 17 | 0.19% | 1 | 12.50% |
Jacob E Keller | 16 | 0.18% | 1 | 12.50% |
Kory Maincent | 1 | 0.01% | 1 | 12.50% |
Total | 9087 | 8 |
// SPDX-License-Identifier: GPL-2.0-only /**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2011-2013 Solarflare Communications Inc. */ /* Theory of operation: * * PTP support is assisted by firmware running on the MC, which provides * the hardware timestamping capabilities. Both transmitted and received * PTP event packets are queued onto internal queues for subsequent processing; * this is because the MC operations are relatively long and would block * block NAPI/interrupt operation. * * Receive event processing: * The event contains the packet's UUID and sequence number, together * with the hardware timestamp. The PTP receive packet queue is searched * for this UUID/sequence number and, if found, put on a pending queue. * Packets not matching are delivered without timestamps (MCDI events will * always arrive after the actual packet). * It is important for the operation of the PTP protocol that the ordering * of packets between the event and general port is maintained. * * Work queue processing: * If work waiting, synchronise host/hardware time * * Transmit: send packet through MC, which returns the transmission time * that is converted to an appropriate timestamp. * * Receive: the packet's reception time is converted to an appropriate * timestamp. */ #include <linux/ip.h> #include <linux/udp.h> #include <linux/time.h> #include <linux/ktime.h> #include <linux/module.h> #include <linux/pps_kernel.h> #include <linux/ptp_clock_kernel.h> #include "net_driver.h" #include "efx.h" #include "mcdi.h" #include "mcdi_pcol.h" #include "io.h" #include "farch_regs.h" #include "tx.h" #include "nic.h" /* indirectly includes ptp.h */ /* Maximum number of events expected to make up a PTP event */ #define MAX_EVENT_FRAGS 3 /* Maximum delay, ms, to begin synchronisation */ #define MAX_SYNCHRONISE_WAIT_MS 2 /* How long, at most, to spend synchronising */ #define SYNCHRONISE_PERIOD_NS 250000 /* How often to update the shared memory time */ #define SYNCHRONISATION_GRANULARITY_NS 200 /* Minimum permitted length of a (corrected) synchronisation time */ #define DEFAULT_MIN_SYNCHRONISATION_NS 120 /* Maximum permitted length of a (corrected) synchronisation time */ #define MAX_SYNCHRONISATION_NS 1000 /* How many (MC) receive events that can be queued */ #define MAX_RECEIVE_EVENTS 8 /* Length of (modified) moving average. */ #define AVERAGE_LENGTH 16 /* How long an unmatched event or packet can be held */ #define PKT_EVENT_LIFETIME_MS 10 /* Offsets into PTP packet for identification. These offsets are from the * start of the IP header, not the MAC header. Note that neither PTP V1 nor * PTP V2 permit the use of IPV4 options. */ #define PTP_DPORT_OFFSET 22 #define PTP_V1_VERSION_LENGTH 2 #define PTP_V1_VERSION_OFFSET 28 #define PTP_V1_UUID_LENGTH 6 #define PTP_V1_UUID_OFFSET 50 #define PTP_V1_SEQUENCE_LENGTH 2 #define PTP_V1_SEQUENCE_OFFSET 58 /* The minimum length of a PTP V1 packet for offsets, etc. to be valid: * includes IP header. */ #define PTP_V1_MIN_LENGTH 64 #define PTP_V2_VERSION_LENGTH 1 #define PTP_V2_VERSION_OFFSET 29 #define PTP_V2_UUID_LENGTH 8 #define PTP_V2_UUID_OFFSET 48 /* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2), * the MC only captures the last six bytes of the clock identity. These values * reflect those, not the ones used in the standard. The standard permits * mapping of V1 UUIDs to V2 UUIDs with these same values. */ #define PTP_V2_MC_UUID_LENGTH 6 #define PTP_V2_MC_UUID_OFFSET 50 #define PTP_V2_SEQUENCE_LENGTH 2 #define PTP_V2_SEQUENCE_OFFSET 58 /* The minimum length of a PTP V2 packet for offsets, etc. to be valid: * includes IP header. */ #define PTP_V2_MIN_LENGTH 63 #define PTP_MIN_LENGTH 63 #define PTP_ADDRESS 0xe0000181 /* 224.0.1.129 */ #define PTP_EVENT_PORT 319 #define PTP_GENERAL_PORT 320 /* Annoyingly the format of the version numbers are different between * versions 1 and 2 so it isn't possible to simply look for 1 or 2. */ #define PTP_VERSION_V1 1 #define PTP_VERSION_V2 2 #define PTP_VERSION_V2_MASK 0x0f enum ptp_packet_state { PTP_PACKET_STATE_UNMATCHED = 0, PTP_PACKET_STATE_MATCHED, PTP_PACKET_STATE_TIMED_OUT, PTP_PACKET_STATE_MATCH_UNWANTED }; /* NIC synchronised with single word of time only comprising * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds. */ #define MC_NANOSECOND_BITS 30 #define MC_NANOSECOND_MASK ((1 << MC_NANOSECOND_BITS) - 1) #define MC_SECOND_MASK ((1 << (32 - MC_NANOSECOND_BITS)) - 1) /* Maximum parts-per-billion adjustment that is acceptable */ #define MAX_PPB 1000000 /* Precalculate scale word to avoid long long division at runtime */ /* This is equivalent to 2^66 / 10^9. */ #define PPB_SCALE_WORD ((1LL << (57)) / 1953125LL) /* How much to shift down after scaling to convert to FP40 */ #define PPB_SHIFT_FP40 26 /* ... and FP44. */ #define PPB_SHIFT_FP44 22 #define PTP_SYNC_ATTEMPTS 4 /** * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area. * @words: UUID and (partial) sequence number * @expiry: Time after which the packet should be delivered irrespective of * event arrival. * @state: The state of the packet - whether it is ready for processing or * whether that is of no interest. */ struct efx_ptp_match { u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)]; unsigned long expiry; enum ptp_packet_state state; }; /** * struct efx_ptp_event_rx - A PTP receive event (from MC) * @link: list of events * @seq0: First part of (PTP) UUID * @seq1: Second part of (PTP) UUID and sequence number * @hwtimestamp: Event timestamp * @expiry: Time which the packet arrived */ struct efx_ptp_event_rx { struct list_head link; u32 seq0; u32 seq1; ktime_t hwtimestamp; unsigned long expiry; }; /** * struct efx_ptp_timeset - Synchronisation between host and MC * @host_start: Host time immediately before hardware timestamp taken * @major: Hardware timestamp, major * @minor: Hardware timestamp, minor * @host_end: Host time immediately after hardware timestamp taken * @wait: Number of NIC clock ticks between hardware timestamp being read and * host end time being seen * @window: Difference of host_end and host_start * @valid: Whether this timeset is valid */ struct efx_ptp_timeset { u32 host_start; u32 major; u32 minor; u32 host_end; u32 wait; u32 window; /* Derived: end - start, allowing for wrap */ }; /** * struct efx_ptp_data - Precision Time Protocol (PTP) state * @efx: The NIC context * @channel: The PTP channel (Siena only) * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are * separate events) * @rxq: Receive SKB queue (awaiting timestamps) * @txq: Transmit SKB queue * @evt_list: List of MC receive events awaiting packets * @evt_free_list: List of free events * @evt_lock: Lock for manipulating evt_list and evt_free_list * @rx_evts: Instantiated events (on evt_list and evt_free_list) * @workwq: Work queue for processing pending PTP operations * @work: Work task * @reset_required: A serious error has occurred and the PTP task needs to be * reset (disable, enable). * @rxfilter_event: Receive filter when operating * @rxfilter_general: Receive filter when operating * @rxfilter_installed: Receive filter installed * @config: Current timestamp configuration * @enabled: PTP operation enabled * @mode: Mode in which PTP operating (PTP version) * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time * @nic_to_kernel_time: Function to convert from NIC to kernel time * @nic_time: contains time details * @nic_time.minor_max: Wrap point for NIC minor times * @nic_time.sync_event_diff_min: Minimum acceptable difference between time * in packet prefix and last MCDI time sync event i.e. how much earlier than * the last sync event time a packet timestamp can be. * @nic_time.sync_event_diff_max: Maximum acceptable difference between time * in packet prefix and last MCDI time sync event i.e. how much later than * the last sync event time a packet timestamp can be. * @nic_time.sync_event_minor_shift: Shift required to make minor time from * field in MCDI time sync event. * @min_synchronisation_ns: Minimum acceptable corrected sync window * @capabilities: Capabilities flags from the NIC * @ts_corrections: contains corrections details * @ts_corrections.ptp_tx: Required driver correction of PTP packet transmit * timestamps * @ts_corrections.ptp_rx: Required driver correction of PTP packet receive * timestamps * @ts_corrections.pps_out: PPS output error (information only) * @ts_corrections.pps_in: Required driver correction of PPS input timestamps * @ts_corrections.general_tx: Required driver correction of general packet * transmit timestamps * @ts_corrections.general_rx: Required driver correction of general packet * receive timestamps * @evt_frags: Partly assembled PTP events * @evt_frag_idx: Current fragment number * @evt_code: Last event code * @start: Address at which MC indicates ready for synchronisation * @host_time_pps: Host time at last PPS * @adjfreq_ppb_shift: Shift required to convert scaled parts-per-billion * frequency adjustment into a fixed point fractional nanosecond format. * @current_adjfreq: Current ppb adjustment. * @phc_clock: Pointer to registered phc device (if primary function) * @phc_clock_info: Registration structure for phc device * @pps_work: pps work task for handling pps events * @pps_workwq: pps work queue * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids * allocations in main data path). * @good_syncs: Number of successful synchronisations. * @fast_syncs: Number of synchronisations requiring short delay * @bad_syncs: Number of failed synchronisations. * @sync_timeouts: Number of synchronisation timeouts * @no_time_syncs: Number of synchronisations with no good times. * @invalid_sync_windows: Number of sync windows with bad durations. * @undersize_sync_windows: Number of corrected sync windows that are too small * @oversize_sync_windows: Number of corrected sync windows that are too large * @rx_no_timestamp: Number of packets received without a timestamp. * @timeset: Last set of synchronisation statistics. * @xmit_skb: Transmit SKB function. */ struct efx_ptp_data { struct efx_nic *efx; struct efx_channel *channel; bool rx_ts_inline; struct sk_buff_head rxq; struct sk_buff_head txq; struct list_head evt_list; struct list_head evt_free_list; spinlock_t evt_lock; struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS]; struct workqueue_struct *workwq; struct work_struct work; bool reset_required; u32 rxfilter_event; u32 rxfilter_general; bool rxfilter_installed; struct kernel_hwtstamp_config config; bool enabled; unsigned int mode; void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor); ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor, s32 correction); struct { u32 minor_max; u32 sync_event_diff_min; u32 sync_event_diff_max; unsigned int sync_event_minor_shift; } nic_time; unsigned int min_synchronisation_ns; unsigned int capabilities; struct { s32 ptp_tx; s32 ptp_rx; s32 pps_out; s32 pps_in; s32 general_tx; s32 general_rx; } ts_corrections; efx_qword_t evt_frags[MAX_EVENT_FRAGS]; int evt_frag_idx; int evt_code; struct efx_buffer start; struct pps_event_time host_time_pps; unsigned int adjfreq_ppb_shift; s64 current_adjfreq; struct ptp_clock *phc_clock; struct ptp_clock_info phc_clock_info; struct work_struct pps_work; struct workqueue_struct *pps_workwq; bool nic_ts_enabled; efx_dword_t txbuf[MCDI_TX_BUF_LEN(MC_CMD_PTP_IN_TRANSMIT_LENMAX)]; unsigned int good_syncs; unsigned int fast_syncs; unsigned int bad_syncs; unsigned int sync_timeouts; unsigned int no_time_syncs; unsigned int invalid_sync_windows; unsigned int undersize_sync_windows; unsigned int oversize_sync_windows; unsigned int rx_no_timestamp; struct efx_ptp_timeset timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM]; void (*xmit_skb)(struct efx_nic *efx, struct sk_buff *skb); }; static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm); static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta); static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts); static int efx_phc_settime(struct ptp_clock_info *ptp, const struct timespec64 *e_ts); static int efx_phc_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *request, int on); bool efx_siena_ptp_use_mac_tx_timestamps(struct efx_nic *efx) { return efx_has_cap(efx, TX_MAC_TIMESTAMPING); } /* PTP 'extra' channel is still a traffic channel, but we only create TX queues * if PTP uses MAC TX timestamps, not if PTP uses the MC directly to transmit. */ static bool efx_ptp_want_txqs(struct efx_channel *channel) { return efx_siena_ptp_use_mac_tx_timestamps(channel->efx); } #define PTP_SW_STAT(ext_name, field_name) \ { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) } #define PTP_MC_STAT(ext_name, mcdi_name) \ { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST } static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = { PTP_SW_STAT(ptp_good_syncs, good_syncs), PTP_SW_STAT(ptp_fast_syncs, fast_syncs), PTP_SW_STAT(ptp_bad_syncs, bad_syncs), PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts), PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs), PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows), PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows), PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows), PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp), PTP_MC_STAT(ptp_tx_timestamp_packets, TX), PTP_MC_STAT(ptp_rx_timestamp_packets, RX), PTP_MC_STAT(ptp_timestamp_packets, TS), PTP_MC_STAT(ptp_filter_matches, FM), PTP_MC_STAT(ptp_non_filter_matches, NFM), }; #define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc) static const unsigned long efx_ptp_stat_mask[] = { [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL, }; size_t efx_siena_ptp_describe_stats(struct efx_nic *efx, u8 *strings) { if (!efx->ptp_data) return 0; return efx_siena_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, efx_ptp_stat_mask, strings); } size_t efx_siena_ptp_update_stats(struct efx_nic *efx, u64 *stats) { MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN); size_t i; int rc; if (!efx->ptp_data) return 0; /* Copy software statistics */ for (i = 0; i < PTP_STAT_COUNT; i++) { if (efx_ptp_stat_desc[i].dma_width) continue; stats[i] = *(unsigned int *)((char *)efx->ptp_data + efx_ptp_stat_desc[i].offset); } /* Fetch MC statistics. We *must* fill in all statistics or * risk leaking kernel memory to userland, so if the MCDI * request fails we pretend we got zeroes. */ MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS); MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); rc = efx_siena_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), NULL); if (rc) memset(outbuf, 0, sizeof(outbuf)); efx_siena_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT, efx_ptp_stat_mask, stats, _MCDI_PTR(outbuf, 0), false); return PTP_STAT_COUNT; } /* For Siena platforms NIC time is s and ns */ static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor) { struct timespec64 ts = ns_to_timespec64(ns); *nic_major = (u32)ts.tv_sec; *nic_minor = ts.tv_nsec; } static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor, s32 correction) { ktime_t kt = ktime_set(nic_major, nic_minor); if (correction >= 0) kt = ktime_add_ns(kt, (u64)correction); else kt = ktime_sub_ns(kt, (u64)-correction); return kt; } /* To convert from s27 format to ns we multiply then divide by a power of 2. * For the conversion from ns to s27, the operation is also converted to a * multiply and shift. */ #define S27_TO_NS_SHIFT (27) #define NS_TO_S27_MULT (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC) #define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT) #define S27_MINOR_MAX (1 << S27_TO_NS_SHIFT) /* For Huntington platforms NIC time is in seconds and fractions of a second * where the minor register only uses 27 bits in units of 2^-27s. */ static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor) { struct timespec64 ts = ns_to_timespec64(ns); u32 maj = (u32)ts.tv_sec; u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT + (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT); /* The conversion can result in the minor value exceeding the maximum. * In this case, round up to the next second. */ if (min >= S27_MINOR_MAX) { min -= S27_MINOR_MAX; maj++; } *nic_major = maj; *nic_minor = min; } static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor) { u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC + (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT); return ktime_set(nic_major, ns); } static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor, s32 correction) { /* Apply the correction and deal with carry */ nic_minor += correction; if ((s32)nic_minor < 0) { nic_minor += S27_MINOR_MAX; nic_major--; } else if (nic_minor >= S27_MINOR_MAX) { nic_minor -= S27_MINOR_MAX; nic_major++; } return efx_ptp_s27_to_ktime(nic_major, nic_minor); } /* For Medford2 platforms the time is in seconds and quarter nanoseconds. */ static void efx_ptp_ns_to_s_qns(s64 ns, u32 *nic_major, u32 *nic_minor) { struct timespec64 ts = ns_to_timespec64(ns); *nic_major = (u32)ts.tv_sec; *nic_minor = ts.tv_nsec * 4; } static ktime_t efx_ptp_s_qns_to_ktime_correction(u32 nic_major, u32 nic_minor, s32 correction) { ktime_t kt; nic_minor = DIV_ROUND_CLOSEST(nic_minor, 4); correction = DIV_ROUND_CLOSEST(correction, 4); kt = ktime_set(nic_major, nic_minor); if (correction >= 0) kt = ktime_add_ns(kt, (u64)correction); else kt = ktime_sub_ns(kt, (u64)-correction); return kt; } struct efx_channel *efx_siena_ptp_channel(struct efx_nic *efx) { return efx->ptp_data ? efx->ptp_data->channel : NULL; } static u32 last_sync_timestamp_major(struct efx_nic *efx) { struct efx_channel *channel = efx_siena_ptp_channel(efx); u32 major = 0; if (channel) major = channel->sync_timestamp_major; return major; } /* The 8000 series and later can provide the time from the MAC, which is only * 48 bits long and provides meta-information in the top 2 bits. */ static ktime_t efx_ptp_mac_nic_to_ktime_correction(struct efx_nic *efx, struct efx_ptp_data *ptp, u32 nic_major, u32 nic_minor, s32 correction) { u32 sync_timestamp; ktime_t kt = { 0 }; s16 delta; if (!(nic_major & 0x80000000)) { WARN_ON_ONCE(nic_major >> 16); /* Medford provides 48 bits of timestamp, so we must get the top * 16 bits from the timesync event state. * * We only have the lower 16 bits of the time now, but we do * have a full resolution timestamp at some point in past. As * long as the difference between the (real) now and the sync * is less than 2^15, then we can reconstruct the difference * between those two numbers using only the lower 16 bits of * each. * * Put another way * * a - b = ((a mod k) - b) mod k * * when -k/2 < (a-b) < k/2. In our case k is 2^16. We know * (a mod k) and b, so can calculate the delta, a - b. * */ sync_timestamp = last_sync_timestamp_major(efx); /* Because delta is s16 this does an implicit mask down to * 16 bits which is what we need, assuming * MEDFORD_TX_SECS_EVENT_BITS is 16. delta is signed so that * we can deal with the (unlikely) case of sync timestamps * arriving from the future. */ delta = nic_major - sync_timestamp; /* Recover the fully specified time now, by applying the offset * to the (fully specified) sync time. */ nic_major = sync_timestamp + delta; kt = ptp->nic_to_kernel_time(nic_major, nic_minor, correction); } return kt; } ktime_t efx_siena_ptp_nic_to_kernel_time(struct efx_tx_queue *tx_queue) { struct efx_nic *efx = tx_queue->efx; struct efx_ptp_data *ptp = efx->ptp_data; ktime_t kt; if (efx_siena_ptp_use_mac_tx_timestamps(efx)) kt = efx_ptp_mac_nic_to_ktime_correction(efx, ptp, tx_queue->completed_timestamp_major, tx_queue->completed_timestamp_minor, ptp->ts_corrections.general_tx); else kt = ptp->nic_to_kernel_time( tx_queue->completed_timestamp_major, tx_queue->completed_timestamp_minor, ptp->ts_corrections.general_tx); return kt; } /* Get PTP attributes and set up time conversions */ static int efx_ptp_get_attributes(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN); struct efx_ptp_data *ptp = efx->ptp_data; int rc; u32 fmt; size_t out_len; /* Get the PTP attributes. If the NIC doesn't support the operation we * use the default format for compatibility with older NICs i.e. * seconds and nanoseconds. */ MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES); MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &out_len); if (rc == 0) { fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT); } else if (rc == -EINVAL) { fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS; } else if (rc == -EPERM) { pci_info(efx->pci_dev, "no PTP support\n"); return rc; } else { efx_siena_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf, sizeof(outbuf), rc); return rc; } switch (fmt) { case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION: ptp->ns_to_nic_time = efx_ptp_ns_to_s27; ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction; ptp->nic_time.minor_max = 1 << 27; ptp->nic_time.sync_event_minor_shift = 19; break; case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS: ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns; ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction; ptp->nic_time.minor_max = 1000000000; ptp->nic_time.sync_event_minor_shift = 22; break; case MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_QTR_NANOSECONDS: ptp->ns_to_nic_time = efx_ptp_ns_to_s_qns; ptp->nic_to_kernel_time = efx_ptp_s_qns_to_ktime_correction; ptp->nic_time.minor_max = 4000000000UL; ptp->nic_time.sync_event_minor_shift = 24; break; default: return -ERANGE; } /* Precalculate acceptable difference between the minor time in the * packet prefix and the last MCDI time sync event. We expect the * packet prefix timestamp to be after of sync event by up to one * sync event interval (0.25s) but we allow it to exceed this by a * fuzz factor of (0.1s) */ ptp->nic_time.sync_event_diff_min = ptp->nic_time.minor_max - (ptp->nic_time.minor_max / 10); ptp->nic_time.sync_event_diff_max = (ptp->nic_time.minor_max / 4) + (ptp->nic_time.minor_max / 10); /* MC_CMD_PTP_OP_GET_ATTRIBUTES has been extended twice from an older * operation MC_CMD_PTP_OP_GET_TIME_FORMAT. The function now may return * a value to use for the minimum acceptable corrected synchronization * window and may return further capabilities. * If we have the extra information store it. For older firmware that * does not implement the extended command use the default value. */ if (rc == 0 && out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_CAPABILITIES_OFST) ptp->min_synchronisation_ns = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN); else ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS; if (rc == 0 && out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN) ptp->capabilities = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_CAPABILITIES); else ptp->capabilities = 0; /* Set up the shift for conversion between frequency * adjustments in parts-per-billion and the fixed-point * fractional ns format that the adapter uses. */ if (ptp->capabilities & (1 << MC_CMD_PTP_OUT_GET_ATTRIBUTES_FP44_FREQ_ADJ_LBN)) ptp->adjfreq_ppb_shift = PPB_SHIFT_FP44; else ptp->adjfreq_ppb_shift = PPB_SHIFT_FP40; return 0; } /* Get PTP timestamp corrections */ static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN); int rc; size_t out_len; /* Get the timestamp corrections from the NIC. If this operation is * not supported (older NICs) then no correction is required. */ MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS); MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), &out_len); if (rc == 0) { efx->ptp_data->ts_corrections.ptp_tx = MCDI_DWORD(outbuf, PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT); efx->ptp_data->ts_corrections.ptp_rx = MCDI_DWORD(outbuf, PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE); efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf, PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT); efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf, PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN); if (out_len >= MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_LEN) { efx->ptp_data->ts_corrections.general_tx = MCDI_DWORD( outbuf, PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_TX); efx->ptp_data->ts_corrections.general_rx = MCDI_DWORD( outbuf, PTP_OUT_GET_TIMESTAMP_CORRECTIONS_V2_GENERAL_RX); } else { efx->ptp_data->ts_corrections.general_tx = efx->ptp_data->ts_corrections.ptp_tx; efx->ptp_data->ts_corrections.general_rx = efx->ptp_data->ts_corrections.ptp_rx; } } else if (rc == -EINVAL) { efx->ptp_data->ts_corrections.ptp_tx = 0; efx->ptp_data->ts_corrections.ptp_rx = 0; efx->ptp_data->ts_corrections.pps_out = 0; efx->ptp_data->ts_corrections.pps_in = 0; efx->ptp_data->ts_corrections.general_tx = 0; efx->ptp_data->ts_corrections.general_rx = 0; } else { efx_siena_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf, sizeof(outbuf), rc); return rc; } return 0; } /* Enable MCDI PTP support. */ static int efx_ptp_enable(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN); MCDI_DECLARE_BUF_ERR(outbuf); int rc; MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE); MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE, efx->ptp_data->channel ? efx->ptp_data->channel->channel : 0); MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode); rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), NULL); rc = (rc == -EALREADY) ? 0 : rc; if (rc) efx_siena_mcdi_display_error(efx, MC_CMD_PTP, MC_CMD_PTP_IN_ENABLE_LEN, outbuf, sizeof(outbuf), rc); return rc; } /* Disable MCDI PTP support. * * Note that this function should never rely on the presence of ptp_data - * may be called before that exists. */ static int efx_ptp_disable(struct efx_nic *efx) { MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN); MCDI_DECLARE_BUF_ERR(outbuf); int rc; MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE); MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); rc = efx_siena_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), NULL); rc = (rc == -EALREADY) ? 0 : rc; /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function * should only have been called during probe. */ if (rc == -ENOSYS || rc == -EPERM) pci_info(efx->pci_dev, "no PTP support\n"); else if (rc) efx_siena_mcdi_display_error(efx, MC_CMD_PTP, MC_CMD_PTP_IN_DISABLE_LEN, outbuf, sizeof(outbuf), rc); return rc; } static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q) { struct sk_buff *skb; while ((skb = skb_dequeue(q))) { local_bh_disable(); netif_receive_skb(skb); local_bh_enable(); } } static void efx_ptp_handle_no_channel(struct efx_nic *efx) { netif_err(efx, drv, efx->net_dev, "ERROR: PTP requires MSI-X and 1 additional interrupt" "vector. PTP disabled\n"); } /* Repeatedly send the host time to the MC which will capture the hardware * time. */ static void efx_ptp_send_times(struct efx_nic *efx, struct pps_event_time *last_time) { struct pps_event_time now; struct timespec64 limit; struct efx_ptp_data *ptp = efx->ptp_data; int *mc_running = ptp->start.addr; pps_get_ts(&now); limit = now.ts_real; timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS); /* Write host time for specified period or until MC is done */ while ((timespec64_compare(&now.ts_real, &limit) < 0) && READ_ONCE(*mc_running)) { struct timespec64 update_time; unsigned int host_time; /* Don't update continuously to avoid saturating the PCIe bus */ update_time = now.ts_real; timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS); do { pps_get_ts(&now); } while ((timespec64_compare(&now.ts_real, &update_time) < 0) && READ_ONCE(*mc_running)); /* Synchronise NIC with single word of time only */ host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS | now.ts_real.tv_nsec); /* Update host time in NIC memory */ efx->type->ptp_write_host_time(efx, host_time); } *last_time = now; } /* Read a timeset from the MC's results and partial process. */ static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data), struct efx_ptp_timeset *timeset) { unsigned start_ns, end_ns; timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART); timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR); timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR); timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND), timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS); /* Ignore seconds */ start_ns = timeset->host_start & MC_NANOSECOND_MASK; end_ns = timeset->host_end & MC_NANOSECOND_MASK; /* Allow for rollover */ if (end_ns < start_ns) end_ns += NSEC_PER_SEC; /* Determine duration of operation */ timeset->window = end_ns - start_ns; } /* Process times received from MC. * * Extract times from returned results, and establish the minimum value * seen. The minimum value represents the "best" possible time and events * too much greater than this are rejected - the machine is, perhaps, too * busy. A number of readings are taken so that, hopefully, at least one good * synchronisation will be seen in the results. */ static int efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf), size_t response_length, const struct pps_event_time *last_time) { unsigned number_readings = MCDI_VAR_ARRAY_LEN(response_length, PTP_OUT_SYNCHRONIZE_TIMESET); unsigned i; unsigned ngood = 0; unsigned last_good = 0; struct efx_ptp_data *ptp = efx->ptp_data; u32 last_sec; u32 start_sec; struct timespec64 delta; ktime_t mc_time; if (number_readings == 0) return -EAGAIN; /* Read the set of results and find the last good host-MC * synchronization result. The MC times when it finishes reading the * host time so the corrected window time should be fairly constant * for a given platform. Increment stats for any results that appear * to be erroneous. */ for (i = 0; i < number_readings; i++) { s32 window, corrected; struct timespec64 wait; efx_ptp_read_timeset( MCDI_ARRAY_STRUCT_PTR(synch_buf, PTP_OUT_SYNCHRONIZE_TIMESET, i), &ptp->timeset[i]); wait = ktime_to_timespec64( ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0)); window = ptp->timeset[i].window; corrected = window - wait.tv_nsec; /* We expect the uncorrected synchronization window to be at * least as large as the interval between host start and end * times. If it is smaller than this then this is mostly likely * to be a consequence of the host's time being adjusted. * Check that the corrected sync window is in a reasonable * range. If it is out of range it is likely to be because an * interrupt or other delay occurred between reading the system * time and writing it to MC memory. */ if (window < SYNCHRONISATION_GRANULARITY_NS) { ++ptp->invalid_sync_windows; } else if (corrected >= MAX_SYNCHRONISATION_NS) { ++ptp->oversize_sync_windows; } else if (corrected < ptp->min_synchronisation_ns) { ++ptp->undersize_sync_windows; } else { ngood++; last_good = i; } } if (ngood == 0) { netif_warn(efx, drv, efx->net_dev, "PTP no suitable synchronisations\n"); return -EAGAIN; } /* Calculate delay from last good sync (host time) to last_time. * It is possible that the seconds rolled over between taking * the start reading and the last value written by the host. The * timescales are such that a gap of more than one second is never * expected. delta is *not* normalised. */ start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS; last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK; if (start_sec != last_sec && ((start_sec + 1) & MC_SECOND_MASK) != last_sec) { netif_warn(efx, hw, efx->net_dev, "PTP bad synchronisation seconds\n"); return -EAGAIN; } delta.tv_sec = (last_sec - start_sec) & 1; delta.tv_nsec = last_time->ts_real.tv_nsec - (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK); /* Convert the NIC time at last good sync into kernel time. * No correction is required - this time is the output of a * firmware process. */ mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major, ptp->timeset[last_good].minor, 0); /* Calculate delay from NIC top of second to last_time */ delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec; /* Set PPS timestamp to match NIC top of second */ ptp->host_time_pps = *last_time; pps_sub_ts(&ptp->host_time_pps, delta); return 0; } /* Synchronize times between the host and the MC */ static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings) { struct efx_ptp_data *ptp = efx->ptp_data; MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX); size_t response_length; int rc; unsigned long timeout; struct pps_event_time last_time = {}; unsigned int loops = 0; int *start = ptp->start.addr; MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE); MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0); MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS, num_readings); MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR, ptp->start.dma_addr); /* Clear flag that signals MC ready */ WRITE_ONCE(*start, 0); rc = efx_siena_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf, MC_CMD_PTP_IN_SYNCHRONIZE_LEN); EFX_WARN_ON_ONCE_PARANOID(rc); /* Wait for start from MCDI (or timeout) */ timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS); while (!READ_ONCE(*start) && (time_before(jiffies, timeout))) { udelay(20); /* Usually start MCDI execution quickly */ loops++; } if (loops <= 1) ++ptp->fast_syncs; if (!time_before(jiffies, timeout)) ++ptp->sync_timeouts; if (READ_ONCE(*start)) efx_ptp_send_times(efx, &last_time); /* Collect results */ rc = efx_siena_mcdi_rpc_finish(efx, MC_CMD_PTP, MC_CMD_PTP_IN_SYNCHRONIZE_LEN, synch_buf, sizeof(synch_buf), &response_length); if (rc == 0) { rc = efx_ptp_process_times(efx, synch_buf, response_length, &last_time); if (rc == 0) ++ptp->good_syncs; else ++ptp->no_time_syncs; } /* Increment the bad syncs counter if the synchronize fails, whatever * the reason. */ if (rc != 0) ++ptp->bad_syncs; return rc; } /* Transmit a PTP packet via the dedicated hardware timestamped queue. */ static void efx_ptp_xmit_skb_queue(struct efx_nic *efx, struct sk_buff *skb) { struct efx_ptp_data *ptp_data = efx->ptp_data; u8 type = efx_tx_csum_type_skb(skb); struct efx_tx_queue *tx_queue; tx_queue = efx_channel_get_tx_queue(ptp_data->channel, type); if (tx_queue && tx_queue->timestamping) { efx_enqueue_skb(tx_queue, skb); } else { WARN_ONCE(1, "PTP channel has no timestamped tx queue\n"); dev_kfree_skb_any(skb); } } /* Transmit a PTP packet, via the MCDI interface, to the wire. */ static void efx_ptp_xmit_skb_mc(struct efx_nic *efx, struct sk_buff *skb) { struct efx_ptp_data *ptp_data = efx->ptp_data; struct skb_shared_hwtstamps timestamps; int rc = -EIO; MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN); size_t len; MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT); MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0); MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len); if (skb_shinfo(skb)->nr_frags != 0) { rc = skb_linearize(skb); if (rc != 0) goto fail; } if (skb->ip_summed == CHECKSUM_PARTIAL) { rc = skb_checksum_help(skb); if (rc != 0) goto fail; } skb_copy_from_linear_data(skb, MCDI_PTR(ptp_data->txbuf, PTP_IN_TRANSMIT_PACKET), skb->len); rc = efx_siena_mcdi_rpc(efx, MC_CMD_PTP, ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len), txtime, sizeof(txtime), &len); if (rc != 0) goto fail; memset(×tamps, 0, sizeof(timestamps)); timestamps.hwtstamp = ptp_data->nic_to_kernel_time( MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR), MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR), ptp_data->ts_corrections.ptp_tx); skb_tstamp_tx(skb, ×tamps); rc = 0; fail: dev_kfree_skb_any(skb); return; } static void efx_ptp_drop_time_expired_events(struct efx_nic *efx) { struct efx_ptp_data *ptp = efx->ptp_data; struct list_head *cursor; struct list_head *next; if (ptp->rx_ts_inline) return; /* Drop time-expired events */ spin_lock_bh(&ptp->evt_lock); list_for_each_safe(cursor, next, &ptp->evt_list) { struct efx_ptp_event_rx *evt; evt = list_entry(cursor, struct efx_ptp_event_rx, link); if (time_after(jiffies, evt->expiry)) { list_move(&evt->link, &ptp->evt_free_list); netif_warn(efx, hw, efx->net_dev, "PTP rx event dropped\n"); } } spin_unlock_bh(&ptp->evt_lock); } static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx, struct sk_buff *skb) { struct efx_ptp_data *ptp = efx->ptp_data; bool evts_waiting; struct list_head *cursor; struct list_head *next; struct efx_ptp_match *match; enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED; WARN_ON_ONCE(ptp->rx_ts_inline); spin_lock_bh(&ptp->evt_lock); evts_waiting = !list_empty(&ptp->evt_list); spin_unlock_bh(&ptp->evt_lock); if (!evts_waiting) return PTP_PACKET_STATE_UNMATCHED; match = (struct efx_ptp_match *)skb->cb; /* Look for a matching timestamp in the event queue */ spin_lock_bh(&ptp->evt_lock); list_for_each_safe(cursor, next, &ptp->evt_list) { struct efx_ptp_event_rx *evt; evt = list_entry(cursor, struct efx_ptp_event_rx, link); if ((evt->seq0 == match->words[0]) && (evt->seq1 == match->words[1])) { struct skb_shared_hwtstamps *timestamps; /* Match - add in hardware timestamp */ timestamps = skb_hwtstamps(skb); timestamps->hwtstamp = evt->hwtimestamp; match->state = PTP_PACKET_STATE_MATCHED; rc = PTP_PACKET_STATE_MATCHED; list_move(&evt->link, &ptp->evt_free_list); break; } } spin_unlock_bh(&ptp->evt_lock); return rc; } /* Process any queued receive events and corresponding packets * * q is returned with all the packets that are ready for delivery. */ static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q) { struct efx_ptp_data *ptp = efx->ptp_data; struct sk_buff *skb; while ((skb = skb_dequeue(&ptp->rxq))) { struct efx_ptp_match *match; match = (struct efx_ptp_match *)skb->cb; if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) { __skb_queue_tail(q, skb); } else if (efx_ptp_match_rx(efx, skb) == PTP_PACKET_STATE_MATCHED) { __skb_queue_tail(q, skb); } else if (time_after(jiffies, match->expiry)) { match->state = PTP_PACKET_STATE_TIMED_OUT; ++ptp->rx_no_timestamp; __skb_queue_tail(q, skb); } else { /* Replace unprocessed entry and stop */ skb_queue_head(&ptp->rxq, skb); break; } } } /* Complete processing of a received packet */ static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb) { local_bh_disable(); netif_receive_skb(skb); local_bh_enable(); } static void efx_ptp_remove_multicast_filters(struct efx_nic *efx) { struct efx_ptp_data *ptp = efx->ptp_data; if (ptp->rxfilter_installed) { efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, ptp->rxfilter_general); efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, ptp->rxfilter_event); ptp->rxfilter_installed = false; } } static int efx_ptp_insert_multicast_filters(struct efx_nic *efx) { struct efx_ptp_data *ptp = efx->ptp_data; struct efx_filter_spec rxfilter; int rc; if (!ptp->channel || ptp->rxfilter_installed) return 0; /* Must filter on both event and general ports to ensure * that there is no packet re-ordering. */ efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, efx_rx_queue_index( efx_channel_get_rx_queue(ptp->channel))); rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, htonl(PTP_ADDRESS), htons(PTP_EVENT_PORT)); if (rc != 0) return rc; rc = efx_filter_insert_filter(efx, &rxfilter, true); if (rc < 0) return rc; ptp->rxfilter_event = rc; efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0, efx_rx_queue_index( efx_channel_get_rx_queue(ptp->channel))); rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP, htonl(PTP_ADDRESS), htons(PTP_GENERAL_PORT)); if (rc != 0) goto fail; rc = efx_filter_insert_filter(efx, &rxfilter, true); if (rc < 0) goto fail; ptp->rxfilter_general = rc; ptp->rxfilter_installed = true; return 0; fail: efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED, ptp->rxfilter_event); return rc; } static int efx_ptp_start(struct efx_nic *efx) { struct efx_ptp_data *ptp = efx->ptp_data; int rc; ptp->reset_required = false; rc = efx_ptp_insert_multicast_filters(efx); if (rc) return rc; rc = efx_ptp_enable(efx); if (rc != 0) goto fail; ptp->evt_frag_idx = 0; ptp->current_adjfreq = 0; return 0; fail: efx_ptp_remove_multicast_filters(efx); return rc; } static int efx_ptp_stop(struct efx_nic *efx) { struct efx_ptp_data *ptp = efx->ptp_data; struct list_head *cursor; struct list_head *next; int rc; if (ptp == NULL) return 0; rc = efx_ptp_disable(efx); efx_ptp_remove_multicast_filters(efx); /* Make sure RX packets are really delivered */ efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq); skb_queue_purge(&efx->ptp_data->txq); /* Drop any pending receive events */ spin_lock_bh(&efx->ptp_data->evt_lock); list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) { list_move(cursor, &efx->ptp_data->evt_free_list); } spin_unlock_bh(&efx->ptp_data->evt_lock); return rc; } static int efx_ptp_restart(struct efx_nic *efx) { if (efx->ptp_data && efx->ptp_data->enabled) return efx_ptp_start(efx); return 0; } static void efx_ptp_pps_worker(struct work_struct *work) { struct efx_ptp_data *ptp = container_of(work, struct efx_ptp_data, pps_work); struct efx_nic *efx = ptp->efx; struct ptp_clock_event ptp_evt; if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS)) return; ptp_evt.type = PTP_CLOCK_PPSUSR; ptp_evt.pps_times = ptp->host_time_pps; ptp_clock_event(ptp->phc_clock, &ptp_evt); } static void efx_ptp_worker(struct work_struct *work) { struct efx_ptp_data *ptp_data = container_of(work, struct efx_ptp_data, work); struct efx_nic *efx = ptp_data->efx; struct sk_buff *skb; struct sk_buff_head tempq; if (ptp_data->reset_required) { efx_ptp_stop(efx); efx_ptp_start(efx); return; } efx_ptp_drop_time_expired_events(efx); __skb_queue_head_init(&tempq); efx_ptp_process_events(efx, &tempq); while ((skb = skb_dequeue(&ptp_data->txq))) ptp_data->xmit_skb(efx, skb); while ((skb = __skb_dequeue(&tempq))) efx_ptp_process_rx(efx, skb); } static const struct ptp_clock_info efx_phc_clock_info = { .owner = THIS_MODULE, .name = "sfc_siena", .max_adj = MAX_PPB, .n_alarm = 0, .n_ext_ts = 0, .n_per_out = 0, .n_pins = 0, .pps = 1, .adjfine = efx_phc_adjfine, .adjtime = efx_phc_adjtime, .gettime64 = efx_phc_gettime, .settime64 = efx_phc_settime, .enable = efx_phc_enable, }; /* Initialise PTP state. */ static int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel) { struct efx_ptp_data *ptp; int rc = 0; unsigned int pos; ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL); efx->ptp_data = ptp; if (!efx->ptp_data) return -ENOMEM; ptp->efx = efx; ptp->channel = channel; ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0; rc = efx_siena_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL); if (rc != 0) goto fail1; skb_queue_head_init(&ptp->rxq); skb_queue_head_init(&ptp->txq); ptp->workwq = create_singlethread_workqueue("sfc_siena_ptp"); if (!ptp->workwq) { rc = -ENOMEM; goto fail2; } if (efx_siena_ptp_use_mac_tx_timestamps(efx)) { ptp->xmit_skb = efx_ptp_xmit_skb_queue; /* Request sync events on this channel. */ channel->sync_events_state = SYNC_EVENTS_QUIESCENT; } else { ptp->xmit_skb = efx_ptp_xmit_skb_mc; } INIT_WORK(&ptp->work, efx_ptp_worker); ptp->config.flags = 0; ptp->config.tx_type = HWTSTAMP_TX_OFF; ptp->config.rx_filter = HWTSTAMP_FILTER_NONE; INIT_LIST_HEAD(&ptp->evt_list); INIT_LIST_HEAD(&ptp->evt_free_list); spin_lock_init(&ptp->evt_lock); for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++) list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list); /* Get the NIC PTP attributes and set up time conversions */ rc = efx_ptp_get_attributes(efx); if (rc < 0) goto fail3; /* Get the timestamp corrections */ rc = efx_ptp_get_timestamp_corrections(efx); if (rc < 0) goto fail3; if (efx->mcdi->fn_flags & (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) { ptp->phc_clock_info = efx_phc_clock_info; ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info, &efx->pci_dev->dev); if (IS_ERR(ptp->phc_clock)) { rc = PTR_ERR(ptp->phc_clock); goto fail3; } else if (ptp->phc_clock) { INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker); ptp->pps_workwq = create_singlethread_workqueue("sfc_siena_pps"); if (!ptp->pps_workwq) { rc = -ENOMEM; goto fail4; } } } ptp->nic_ts_enabled = false; return 0; fail4: ptp_clock_unregister(efx->ptp_data->phc_clock); fail3: destroy_workqueue(efx->ptp_data->workwq); fail2: efx_siena_free_buffer(efx, &ptp->start); fail1: kfree(efx->ptp_data); efx->ptp_data = NULL; return rc; } /* Initialise PTP channel. * * Setting core_index to zero causes the queue to be initialised and doesn't * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue. */ static int efx_ptp_probe_channel(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; int rc; channel->irq_moderation_us = 0; channel->rx_queue.core_index = 0; rc = efx_ptp_probe(efx, channel); /* Failure to probe PTP is not fatal; this channel will just not be * used for anything. * In the case of EPERM, efx_ptp_probe will print its own message (in * efx_ptp_get_attributes()), so we don't need to. */ if (rc && rc != -EPERM) netif_warn(efx, drv, efx->net_dev, "Failed to probe PTP, rc=%d\n", rc); return 0; } static void efx_ptp_remove(struct efx_nic *efx) { if (!efx->ptp_data) return; (void)efx_ptp_disable(efx); cancel_work_sync(&efx->ptp_data->work); if (efx->ptp_data->pps_workwq) cancel_work_sync(&efx->ptp_data->pps_work); skb_queue_purge(&efx->ptp_data->rxq); skb_queue_purge(&efx->ptp_data->txq); if (efx->ptp_data->phc_clock) { destroy_workqueue(efx->ptp_data->pps_workwq); ptp_clock_unregister(efx->ptp_data->phc_clock); } destroy_workqueue(efx->ptp_data->workwq); efx_siena_free_buffer(efx, &efx->ptp_data->start); kfree(efx->ptp_data); efx->ptp_data = NULL; } static void efx_ptp_remove_channel(struct efx_channel *channel) { efx_ptp_remove(channel->efx); } static void efx_ptp_get_channel_name(struct efx_channel *channel, char *buf, size_t len) { snprintf(buf, len, "%s-ptp", channel->efx->name); } /* Determine whether this packet should be processed by the PTP module * or transmitted conventionally. */ bool efx_siena_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) { return efx->ptp_data && efx->ptp_data->enabled && skb->len >= PTP_MIN_LENGTH && skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM && likely(skb->protocol == htons(ETH_P_IP)) && skb_transport_header_was_set(skb) && skb_network_header_len(skb) >= sizeof(struct iphdr) && ip_hdr(skb)->protocol == IPPROTO_UDP && skb_headlen(skb) >= skb_transport_offset(skb) + sizeof(struct udphdr) && udp_hdr(skb)->dest == htons(PTP_EVENT_PORT); } /* Receive a PTP packet. Packets are queued until the arrival of * the receive timestamp from the MC - this will probably occur after the * packet arrival because of the processing in the MC. */ static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb) { struct efx_nic *efx = channel->efx; struct efx_ptp_data *ptp = efx->ptp_data; struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb; u8 *match_data_012, *match_data_345; unsigned int version; u8 *data; match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); /* Correct version? */ if (ptp->mode == MC_CMD_PTP_MODE_V1) { if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) { return false; } data = skb->data; version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]); if (version != PTP_VERSION_V1) { return false; } /* PTP V1 uses all six bytes of the UUID to match the packet * to the timestamp */ match_data_012 = data + PTP_V1_UUID_OFFSET; match_data_345 = data + PTP_V1_UUID_OFFSET + 3; } else { if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) { return false; } data = skb->data; version = data[PTP_V2_VERSION_OFFSET]; if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) { return false; } /* The original V2 implementation uses bytes 2-7 of * the UUID to match the packet to the timestamp. This * discards two of the bytes of the MAC address used * to create the UUID (SF bug 33070). The PTP V2 * enhanced mode fixes this issue and uses bytes 0-2 * and byte 5-7 of the UUID. */ match_data_345 = data + PTP_V2_UUID_OFFSET + 5; if (ptp->mode == MC_CMD_PTP_MODE_V2) { match_data_012 = data + PTP_V2_UUID_OFFSET + 2; } else { match_data_012 = data + PTP_V2_UUID_OFFSET + 0; BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED); } } /* Does this packet require timestamping? */ if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) { match->state = PTP_PACKET_STATE_UNMATCHED; /* We expect the sequence number to be in the same position in * the packet for PTP V1 and V2 */ BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET); BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH); /* Extract UUID/Sequence information */ match->words[0] = (match_data_012[0] | (match_data_012[1] << 8) | (match_data_012[2] << 16) | (match_data_345[0] << 24)); match->words[1] = (match_data_345[1] | (match_data_345[2] << 8) | (data[PTP_V1_SEQUENCE_OFFSET + PTP_V1_SEQUENCE_LENGTH - 1] << 16)); } else { match->state = PTP_PACKET_STATE_MATCH_UNWANTED; } skb_queue_tail(&ptp->rxq, skb); queue_work(ptp->workwq, &ptp->work); return true; } /* Transmit a PTP packet. This has to be transmitted by the MC * itself, through an MCDI call. MCDI calls aren't permitted * in the transmit path so defer the actual transmission to a suitable worker. */ int efx_siena_ptp_tx(struct efx_nic *efx, struct sk_buff *skb) { struct efx_ptp_data *ptp = efx->ptp_data; skb_queue_tail(&ptp->txq, skb); if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) && (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM)) efx_xmit_hwtstamp_pending(skb); queue_work(ptp->workwq, &ptp->work); return NETDEV_TX_OK; } int efx_siena_ptp_get_mode(struct efx_nic *efx) { return efx->ptp_data->mode; } int efx_siena_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, unsigned int new_mode) { if ((enable_wanted != efx->ptp_data->enabled) || (enable_wanted && (efx->ptp_data->mode != new_mode))) { int rc = 0; if (enable_wanted) { /* Change of mode requires disable */ if (efx->ptp_data->enabled && (efx->ptp_data->mode != new_mode)) { efx->ptp_data->enabled = false; rc = efx_ptp_stop(efx); if (rc != 0) return rc; } /* Set new operating mode and establish * baseline synchronisation, which must * succeed. */ efx->ptp_data->mode = new_mode; if (netif_running(efx->net_dev)) rc = efx_ptp_start(efx); if (rc == 0) { rc = efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS * 2); if (rc != 0) efx_ptp_stop(efx); } } else { rc = efx_ptp_stop(efx); } if (rc != 0) return rc; efx->ptp_data->enabled = enable_wanted; } return 0; } static int efx_ptp_ts_init(struct efx_nic *efx, struct kernel_hwtstamp_config *init) { int rc; if ((init->tx_type != HWTSTAMP_TX_OFF) && (init->tx_type != HWTSTAMP_TX_ON)) return -ERANGE; rc = efx->type->ptp_set_ts_config(efx, init); if (rc) return rc; efx->ptp_data->config = *init; return 0; } void efx_siena_ptp_get_ts_info(struct efx_nic *efx, struct kernel_ethtool_ts_info *ts_info) { struct efx_ptp_data *ptp = efx->ptp_data; struct efx_nic *primary = efx->primary; ASSERT_RTNL(); if (!ptp) return; ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE); if (primary && primary->ptp_data && primary->ptp_data->phc_clock) ts_info->phc_index = ptp_clock_index(primary->ptp_data->phc_clock); ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON; ts_info->rx_filters = ptp->efx->type->hwtstamp_filters; } int efx_siena_ptp_set_ts_config(struct efx_nic *efx, struct kernel_hwtstamp_config *config, struct netlink_ext_ack __always_unused *extack) { /* Not a PTP enabled port */ if (!efx->ptp_data) return -EOPNOTSUPP; return efx_ptp_ts_init(efx, config); } int efx_siena_ptp_get_ts_config(struct efx_nic *efx, struct kernel_hwtstamp_config *config) { /* Not a PTP enabled port */ if (!efx->ptp_data) return -EOPNOTSUPP; *config = efx->ptp_data->config; return 0; } static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len) { struct efx_ptp_data *ptp = efx->ptp_data; netif_err(efx, hw, efx->net_dev, "PTP unexpected event length: got %d expected %d\n", ptp->evt_frag_idx, expected_frag_len); ptp->reset_required = true; queue_work(ptp->workwq, &ptp->work); } /* Process a completed receive event. Put it on the event queue and * start worker thread. This is required because event and their * correspoding packets may come in either order. */ static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp) { struct efx_ptp_event_rx *evt = NULL; if (WARN_ON_ONCE(ptp->rx_ts_inline)) return; if (ptp->evt_frag_idx != 3) { ptp_event_failure(efx, 3); return; } spin_lock_bh(&ptp->evt_lock); if (!list_empty(&ptp->evt_free_list)) { evt = list_first_entry(&ptp->evt_free_list, struct efx_ptp_event_rx, link); list_del(&evt->link); evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA); evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_SRC) | (EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_SRC) << 8) | (EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_SRC) << 16)); evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time( EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA), EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA), ptp->ts_corrections.ptp_rx); evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS); list_add_tail(&evt->link, &ptp->evt_list); queue_work(ptp->workwq, &ptp->work); } else if (net_ratelimit()) { /* Log a rate-limited warning message. */ netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n"); } spin_unlock_bh(&ptp->evt_lock); } static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp) { int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA); if (ptp->evt_frag_idx != 1) { ptp_event_failure(efx, 1); return; } netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code); } static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp) { if (ptp->nic_ts_enabled) queue_work(ptp->pps_workwq, &ptp->pps_work); } void efx_siena_ptp_event(struct efx_nic *efx, efx_qword_t *ev) { struct efx_ptp_data *ptp = efx->ptp_data; int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE); if (!ptp) { if (!efx->ptp_warned) { netif_warn(efx, drv, efx->net_dev, "Received PTP event but PTP not set up\n"); efx->ptp_warned = true; } return; } if (!ptp->enabled) return; if (ptp->evt_frag_idx == 0) { ptp->evt_code = code; } else if (ptp->evt_code != code) { netif_err(efx, hw, efx->net_dev, "PTP out of sequence event %d\n", code); ptp->evt_frag_idx = 0; } ptp->evt_frags[ptp->evt_frag_idx++] = *ev; if (!MCDI_EVENT_FIELD(*ev, CONT)) { /* Process resulting event */ switch (code) { case MCDI_EVENT_CODE_PTP_RX: ptp_event_rx(efx, ptp); break; case MCDI_EVENT_CODE_PTP_FAULT: ptp_event_fault(efx, ptp); break; case MCDI_EVENT_CODE_PTP_PPS: ptp_event_pps(efx, ptp); break; default: netif_err(efx, hw, efx->net_dev, "PTP unknown event %d\n", code); break; } ptp->evt_frag_idx = 0; } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) { netif_err(efx, hw, efx->net_dev, "PTP too many event fragments\n"); ptp->evt_frag_idx = 0; } } void efx_siena_time_sync_event(struct efx_channel *channel, efx_qword_t *ev) { struct efx_nic *efx = channel->efx; struct efx_ptp_data *ptp = efx->ptp_data; /* When extracting the sync timestamp minor value, we should discard * the least significant two bits. These are not required in order * to reconstruct full-range timestamps and they are optionally used * to report status depending on the options supplied when subscribing * for sync events. */ channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR); channel->sync_timestamp_minor = (MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_MS_8BITS) & 0xFC) << ptp->nic_time.sync_event_minor_shift; /* if sync events have been disabled then we want to silently ignore * this event, so throw away result. */ (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED, SYNC_EVENTS_VALID); } static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh) { #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset)); #else const u8 *data = eh + efx->rx_packet_ts_offset; return (u32)data[0] | (u32)data[1] << 8 | (u32)data[2] << 16 | (u32)data[3] << 24; #endif } void __efx_siena_rx_skb_attach_timestamp(struct efx_channel *channel, struct sk_buff *skb) { struct efx_nic *efx = channel->efx; struct efx_ptp_data *ptp = efx->ptp_data; u32 pkt_timestamp_major, pkt_timestamp_minor; u32 diff, carry; struct skb_shared_hwtstamps *timestamps; if (channel->sync_events_state != SYNC_EVENTS_VALID) return; pkt_timestamp_minor = efx_rx_buf_timestamp_minor(efx, skb_mac_header(skb)); /* get the difference between the packet and sync timestamps, * modulo one second */ diff = pkt_timestamp_minor - channel->sync_timestamp_minor; if (pkt_timestamp_minor < channel->sync_timestamp_minor) diff += ptp->nic_time.minor_max; /* do we roll over a second boundary and need to carry the one? */ carry = (channel->sync_timestamp_minor >= ptp->nic_time.minor_max - diff) ? 1 : 0; if (diff <= ptp->nic_time.sync_event_diff_max) { /* packet is ahead of the sync event by a quarter of a second or * less (allowing for fuzz) */ pkt_timestamp_major = channel->sync_timestamp_major + carry; } else if (diff >= ptp->nic_time.sync_event_diff_min) { /* packet is behind the sync event but within the fuzz factor. * This means the RX packet and sync event crossed as they were * placed on the event queue, which can sometimes happen. */ pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry; } else { /* it's outside tolerance in both directions. this might be * indicative of us missing sync events for some reason, so * we'll call it an error rather than risk giving a bogus * timestamp. */ netif_vdbg(efx, drv, efx->net_dev, "packet timestamp %x too far from sync event %x:%x\n", pkt_timestamp_minor, channel->sync_timestamp_major, channel->sync_timestamp_minor); return; } /* attach the timestamps to the skb */ timestamps = skb_hwtstamps(skb); timestamps->hwtstamp = ptp->nic_to_kernel_time(pkt_timestamp_major, pkt_timestamp_minor, ptp->ts_corrections.general_rx); } static int efx_phc_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct efx_ptp_data *ptp_data = container_of(ptp, struct efx_ptp_data, phc_clock_info); s32 delta = scaled_ppm_to_ppb(scaled_ppm); struct efx_nic *efx = ptp_data->efx; MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN); s64 adjustment_ns; int rc; if (delta > MAX_PPB) delta = MAX_PPB; else if (delta < -MAX_PPB) delta = -MAX_PPB; /* Convert ppb to fixed point ns taking care to round correctly. */ adjustment_ns = ((s64)delta * PPB_SCALE_WORD + (1 << (ptp_data->adjfreq_ppb_shift - 1))) >> ptp_data->adjfreq_ppb_shift; MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0); MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns); MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0); MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0); rc = efx_siena_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj), NULL, 0, NULL); if (rc != 0) return rc; ptp_data->current_adjfreq = adjustment_ns; return 0; } static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta) { u32 nic_major, nic_minor; struct efx_ptp_data *ptp_data = container_of(ptp, struct efx_ptp_data, phc_clock_info); struct efx_nic *efx = ptp_data->efx; MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN); efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor); MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST); MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq); MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major); MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor); return efx_siena_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), NULL, 0, NULL); } static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct efx_ptp_data *ptp_data = container_of(ptp, struct efx_ptp_data, phc_clock_info); struct efx_nic *efx = ptp_data->efx; MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN); MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN); int rc; ktime_t kt; MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME); MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0); rc = efx_siena_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf), outbuf, sizeof(outbuf), NULL); if (rc != 0) return rc; kt = ptp_data->nic_to_kernel_time( MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR), MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0); *ts = ktime_to_timespec64(kt); return 0; } static int efx_phc_settime(struct ptp_clock_info *ptp, const struct timespec64 *e_ts) { /* Get the current NIC time, efx_phc_gettime. * Subtract from the desired time to get the offset * call efx_phc_adjtime with the offset */ int rc; struct timespec64 time_now; struct timespec64 delta; rc = efx_phc_gettime(ptp, &time_now); if (rc != 0) return rc; delta = timespec64_sub(*e_ts, time_now); rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta)); if (rc != 0) return rc; return 0; } static int efx_phc_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *request, int enable) { struct efx_ptp_data *ptp_data = container_of(ptp, struct efx_ptp_data, phc_clock_info); if (request->type != PTP_CLK_REQ_PPS) return -EOPNOTSUPP; ptp_data->nic_ts_enabled = !!enable; return 0; } static const struct efx_channel_type efx_ptp_channel_type = { .handle_no_channel = efx_ptp_handle_no_channel, .pre_probe = efx_ptp_probe_channel, .post_remove = efx_ptp_remove_channel, .get_name = efx_ptp_get_channel_name, /* no copy operation; there is no need to reallocate this channel */ .receive_skb = efx_ptp_rx, .want_txqs = efx_ptp_want_txqs, .keep_eventq = false, }; void efx_siena_ptp_defer_probe_with_channel(struct efx_nic *efx) { /* Check whether PTP is implemented on this NIC. The DISABLE * operation will succeed if and only if it is implemented. */ if (efx_ptp_disable(efx) == 0) efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] = &efx_ptp_channel_type; } void efx_siena_ptp_start_datapath(struct efx_nic *efx) { if (efx_ptp_restart(efx)) netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n"); /* re-enable timestamping if it was previously enabled */ if (efx->type->ptp_set_ts_sync_events) efx->type->ptp_set_ts_sync_events(efx, true, true); } void efx_siena_ptp_stop_datapath(struct efx_nic *efx) { /* temporarily disable timestamping */ if (efx->type->ptp_set_ts_sync_events) efx->type->ptp_set_ts_sync_events(efx, false, true); efx_ptp_stop(efx); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1