Contributors: 24
Author |
Tokens |
Token Proportion |
Commits |
Commit Proportion |
Rayagond Kokatanur |
442 |
40.70% |
2 |
5.56% |
Johannes Zink |
166 |
15.29% |
1 |
2.78% |
Tan, Tee Min |
156 |
14.36% |
2 |
5.56% |
Giuseppe Cavallaro |
109 |
10.04% |
8 |
22.22% |
Jose Abreu |
38 |
3.50% |
1 |
2.78% |
Wong Vee Khee |
36 |
3.31% |
2 |
5.56% |
Yannick Vignon |
36 |
3.31% |
2 |
5.56% |
Oleksij Rempel |
29 |
2.67% |
1 |
2.78% |
Dejin Zheng |
13 |
1.20% |
1 |
2.78% |
Fredrik Hallenberg |
10 |
0.92% |
1 |
2.78% |
Piergiorgio Beruto |
8 |
0.74% |
1 |
2.78% |
Weifeng Voon |
8 |
0.74% |
1 |
2.78% |
Bartosz Golaszewski |
6 |
0.55% |
2 |
5.56% |
Phil Reid |
5 |
0.46% |
1 |
2.78% |
Sonic Zhang |
4 |
0.37% |
1 |
2.78% |
Julien Beraud |
3 |
0.28% |
1 |
2.78% |
Joao Pinto |
3 |
0.28% |
1 |
2.78% |
Lai Peter Jun Ann |
3 |
0.28% |
1 |
2.78% |
Rusaimi Amira Ruslan |
3 |
0.28% |
1 |
2.78% |
Kevin Hao |
2 |
0.18% |
1 |
2.78% |
Thomas Gleixner |
2 |
0.18% |
1 |
2.78% |
Andrew Halaney |
2 |
0.18% |
1 |
2.78% |
Konstantin Khlebnikov |
1 |
0.09% |
1 |
2.78% |
Vince Bridgers |
1 |
0.09% |
1 |
2.78% |
Total |
1086 |
|
36 |
|
// SPDX-License-Identifier: GPL-2.0-only
/*******************************************************************************
Copyright (C) 2013 Vayavya Labs Pvt Ltd
This implements all the API for managing HW timestamp & PTP.
Author: Rayagond Kokatanur <rayagond@vayavyalabs.com>
Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
*******************************************************************************/
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/delay.h>
#include <linux/ptp_clock_kernel.h>
#include "common.h"
#include "stmmac_ptp.h"
#include "dwmac4.h"
#include "stmmac.h"
static void config_hw_tstamping(void __iomem *ioaddr, u32 data)
{
writel(data, ioaddr + PTP_TCR);
}
static void config_sub_second_increment(void __iomem *ioaddr,
u32 ptp_clock, int gmac4, u32 *ssinc)
{
u32 value = readl(ioaddr + PTP_TCR);
unsigned long data;
u32 reg_value;
/* For GMAC3.x, 4.x versions, in "fine adjustement mode" set sub-second
* increment to twice the number of nanoseconds of a clock cycle.
* The calculation of the default_addend value by the caller will set it
* to mid-range = 2^31 when the remainder of this division is zero,
* which will make the accumulator overflow once every 2 ptp_clock
* cycles, adding twice the number of nanoseconds of a clock cycle :
* 2000000000ULL / ptp_clock.
*/
if (value & PTP_TCR_TSCFUPDT)
data = (2000000000ULL / ptp_clock);
else
data = (1000000000ULL / ptp_clock);
/* 0.465ns accuracy */
if (!(value & PTP_TCR_TSCTRLSSR))
data = (data * 1000) / 465;
if (data > PTP_SSIR_SSINC_MAX)
data = PTP_SSIR_SSINC_MAX;
reg_value = data;
if (gmac4)
reg_value <<= GMAC4_PTP_SSIR_SSINC_SHIFT;
writel(reg_value, ioaddr + PTP_SSIR);
if (ssinc)
*ssinc = data;
}
static void hwtstamp_correct_latency(struct stmmac_priv *priv)
{
void __iomem *ioaddr = priv->ptpaddr;
u32 reg_tsic, reg_tsicsns;
u32 reg_tsec, reg_tsecsns;
u64 scaled_ns;
u32 val;
/* MAC-internal ingress latency */
scaled_ns = readl(ioaddr + PTP_TS_INGR_LAT);
/* See section 11.7.2.5.3.1 "Ingress Correction" on page 4001 of
* i.MX8MP Applications Processor Reference Manual Rev. 1, 06/2021
*/
val = readl(ioaddr + PTP_TCR);
if (val & PTP_TCR_TSCTRLSSR)
/* nanoseconds field is in decimal format with granularity of 1ns/bit */
scaled_ns = ((u64)NSEC_PER_SEC << 16) - scaled_ns;
else
/* nanoseconds field is in binary format with granularity of ~0.466ns/bit */
scaled_ns = ((1ULL << 31) << 16) -
DIV_U64_ROUND_CLOSEST(scaled_ns * PSEC_PER_NSEC, 466U);
reg_tsic = scaled_ns >> 16;
reg_tsicsns = scaled_ns & 0xff00;
/* set bit 31 for 2's compliment */
reg_tsic |= BIT(31);
writel(reg_tsic, ioaddr + PTP_TS_INGR_CORR_NS);
writel(reg_tsicsns, ioaddr + PTP_TS_INGR_CORR_SNS);
/* MAC-internal egress latency */
scaled_ns = readl(ioaddr + PTP_TS_EGR_LAT);
reg_tsec = scaled_ns >> 16;
reg_tsecsns = scaled_ns & 0xff00;
writel(reg_tsec, ioaddr + PTP_TS_EGR_CORR_NS);
writel(reg_tsecsns, ioaddr + PTP_TS_EGR_CORR_SNS);
}
static int init_systime(void __iomem *ioaddr, u32 sec, u32 nsec)
{
u32 value;
writel(sec, ioaddr + PTP_STSUR);
writel(nsec, ioaddr + PTP_STNSUR);
/* issue command to initialize the system time value */
value = readl(ioaddr + PTP_TCR);
value |= PTP_TCR_TSINIT;
writel(value, ioaddr + PTP_TCR);
/* wait for present system time initialize to complete */
return readl_poll_timeout_atomic(ioaddr + PTP_TCR, value,
!(value & PTP_TCR_TSINIT),
10, 100000);
}
static int config_addend(void __iomem *ioaddr, u32 addend)
{
u32 value;
int limit;
writel(addend, ioaddr + PTP_TAR);
/* issue command to update the addend value */
value = readl(ioaddr + PTP_TCR);
value |= PTP_TCR_TSADDREG;
writel(value, ioaddr + PTP_TCR);
/* wait for present addend update to complete */
limit = 10;
while (limit--) {
if (!(readl(ioaddr + PTP_TCR) & PTP_TCR_TSADDREG))
break;
mdelay(10);
}
if (limit < 0)
return -EBUSY;
return 0;
}
static int adjust_systime(void __iomem *ioaddr, u32 sec, u32 nsec,
int add_sub, int gmac4)
{
u32 value;
int limit;
if (add_sub) {
/* If the new sec value needs to be subtracted with
* the system time, then MAC_STSUR reg should be
* programmed with (2^32 – <new_sec_value>)
*/
if (gmac4)
sec = -sec;
value = readl(ioaddr + PTP_TCR);
if (value & PTP_TCR_TSCTRLSSR)
nsec = (PTP_DIGITAL_ROLLOVER_MODE - nsec);
else
nsec = (PTP_BINARY_ROLLOVER_MODE - nsec);
}
writel(sec, ioaddr + PTP_STSUR);
value = (add_sub << PTP_STNSUR_ADDSUB_SHIFT) | nsec;
writel(value, ioaddr + PTP_STNSUR);
/* issue command to initialize the system time value */
value = readl(ioaddr + PTP_TCR);
value |= PTP_TCR_TSUPDT;
writel(value, ioaddr + PTP_TCR);
/* wait for present system time adjust/update to complete */
limit = 10;
while (limit--) {
if (!(readl(ioaddr + PTP_TCR) & PTP_TCR_TSUPDT))
break;
mdelay(10);
}
if (limit < 0)
return -EBUSY;
return 0;
}
static void get_systime(void __iomem *ioaddr, u64 *systime)
{
u64 ns, sec0, sec1;
/* Get the TSS value */
sec1 = readl_relaxed(ioaddr + PTP_STSR);
do {
sec0 = sec1;
/* Get the TSSS value */
ns = readl_relaxed(ioaddr + PTP_STNSR);
/* Get the TSS value */
sec1 = readl_relaxed(ioaddr + PTP_STSR);
} while (sec0 != sec1);
if (systime)
*systime = ns + (sec1 * 1000000000ULL);
}
static void get_ptptime(void __iomem *ptpaddr, u64 *ptp_time)
{
u64 ns;
ns = readl(ptpaddr + PTP_ATNR);
ns += readl(ptpaddr + PTP_ATSR) * NSEC_PER_SEC;
*ptp_time = ns;
}
static void timestamp_interrupt(struct stmmac_priv *priv)
{
u32 num_snapshot, ts_status, tsync_int;
struct ptp_clock_event event;
u32 acr_value, channel;
unsigned long flags;
u64 ptp_time;
int i;
if (priv->plat->flags & STMMAC_FLAG_INT_SNAPSHOT_EN) {
wake_up(&priv->tstamp_busy_wait);
return;
}
tsync_int = readl(priv->ioaddr + GMAC_INT_STATUS) & GMAC_INT_TSIE;
if (!tsync_int)
return;
/* Read timestamp status to clear interrupt from either external
* timestamp or start/end of PPS.
*/
ts_status = readl(priv->ioaddr + GMAC_TIMESTAMP_STATUS);
if (!(priv->plat->flags & STMMAC_FLAG_EXT_SNAPSHOT_EN))
return;
num_snapshot = (ts_status & GMAC_TIMESTAMP_ATSNS_MASK) >>
GMAC_TIMESTAMP_ATSNS_SHIFT;
acr_value = readl(priv->ptpaddr + PTP_ACR);
channel = ilog2(FIELD_GET(PTP_ACR_MASK, acr_value));
for (i = 0; i < num_snapshot; i++) {
read_lock_irqsave(&priv->ptp_lock, flags);
get_ptptime(priv->ptpaddr, &ptp_time);
read_unlock_irqrestore(&priv->ptp_lock, flags);
event.type = PTP_CLOCK_EXTTS;
event.index = channel;
event.timestamp = ptp_time;
ptp_clock_event(priv->ptp_clock, &event);
}
}
const struct stmmac_hwtimestamp stmmac_ptp = {
.config_hw_tstamping = config_hw_tstamping,
.init_systime = init_systime,
.config_sub_second_increment = config_sub_second_increment,
.config_addend = config_addend,
.adjust_systime = adjust_systime,
.get_systime = get_systime,
.get_ptptime = get_ptptime,
.timestamp_interrupt = timestamp_interrupt,
.hwtstamp_correct_latency = hwtstamp_correct_latency,
};