Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
MD Danish Anwar | 1770 | 86.34% | 4 | 66.67% |
Diogo Ivo | 272 | 13.27% | 1 | 16.67% |
Roger Quadros | 8 | 0.39% | 1 | 16.67% |
Total | 2050 | 6 |
// SPDX-License-Identifier: GPL-2.0 /* Texas Instruments ICSSG Ethernet Driver * * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/ * */ #include <linux/etherdevice.h> #include <linux/types.h> #include <linux/regmap.h> #include "icssg_prueth.h" #define ICSSG_NUM_CLASSIFIERS 16 #define ICSSG_NUM_FT1_SLOTS 8 #define ICSSG_NUM_FT3_SLOTS 16 #define ICSSG_NUM_CLASSIFIERS_IN_USE 5 /* Filter 1 - FT1 */ #define FT1_NUM_SLOTS 8 #define FT1_SLOT_SIZE 0x10 /* bytes */ /* offsets from FT1 slot base i.e. slot 1 start */ #define FT1_DA0 0x0 #define FT1_DA1 0x4 #define FT1_DA0_MASK 0x8 #define FT1_DA1_MASK 0xc #define FT1_N_REG(slize, n, reg) \ (offs[slice].ft1_slot_base + FT1_SLOT_SIZE * (n) + (reg)) #define FT1_LEN_MASK GENMASK(19, 16) #define FT1_LEN_SHIFT 16 #define FT1_LEN(len) (((len) << FT1_LEN_SHIFT) & FT1_LEN_MASK) #define FT1_START_MASK GENMASK(14, 0) #define FT1_START(start) ((start) & FT1_START_MASK) #define FT1_MATCH_SLOT(n) (GENMASK(23, 16) & (BIT(n) << 16)) /* FT1 config type */ enum ft1_cfg_type { FT1_CFG_TYPE_DISABLED = 0, FT1_CFG_TYPE_EQ, FT1_CFG_TYPE_GT, FT1_CFG_TYPE_LT, }; #define FT1_CFG_SHIFT(n) (2 * (n)) #define FT1_CFG_MASK(n) (0x3 << FT1_CFG_SHIFT((n))) /* Filter 3 - FT3 */ #define FT3_NUM_SLOTS 16 #define FT3_SLOT_SIZE 0x20 /* bytes */ /* offsets from FT3 slot n's base */ #define FT3_START 0 #define FT3_START_AUTO 0x4 #define FT3_START_OFFSET 0x8 #define FT3_JUMP_OFFSET 0xc #define FT3_LEN 0x10 #define FT3_CFG 0x14 #define FT3_T 0x18 #define FT3_T_MASK 0x1c #define FT3_N_REG(slize, n, reg) \ (offs[slice].ft3_slot_base + FT3_SLOT_SIZE * (n) + (reg)) /* offsets from rx_class n's base */ #define RX_CLASS_AND_EN 0 #define RX_CLASS_OR_EN 0x4 #define RX_CLASS_NUM_SLOTS 16 #define RX_CLASS_EN_SIZE 0x8 /* bytes */ #define RX_CLASS_N_REG(slice, n, reg) \ (offs[slice].rx_class_base + RX_CLASS_EN_SIZE * (n) + (reg)) /* RX Class Gates */ #define RX_CLASS_GATES_SIZE 0x4 /* bytes */ #define RX_CLASS_GATES_N_REG(slice, n) \ (offs[slice].rx_class_gates_base + RX_CLASS_GATES_SIZE * (n)) #define RX_CLASS_GATES_ALLOW_MASK BIT(6) #define RX_CLASS_GATES_RAW_MASK BIT(5) #define RX_CLASS_GATES_PHASE_MASK BIT(4) /* RX Class traffic data matching bits */ #define RX_CLASS_FT_UC BIT(31) #define RX_CLASS_FT_MC BIT(30) #define RX_CLASS_FT_BC BIT(29) #define RX_CLASS_FT_FW BIT(28) #define RX_CLASS_FT_RCV BIT(27) #define RX_CLASS_FT_VLAN BIT(26) #define RX_CLASS_FT_DA_P BIT(25) #define RX_CLASS_FT_DA_I BIT(24) #define RX_CLASS_FT_FT1_MATCH_MASK GENMASK(23, 16) #define RX_CLASS_FT_FT1_MATCH_SHIFT 16 #define RX_CLASS_FT_FT3_MATCH_MASK GENMASK(15, 0) #define RX_CLASS_FT_FT3_MATCH_SHIFT 0 #define RX_CLASS_FT_FT1_MATCH(slot) \ ((BIT(slot) << RX_CLASS_FT_FT1_MATCH_SHIFT) & \ RX_CLASS_FT_FT1_MATCH_MASK) /* RX class type */ enum rx_class_sel_type { RX_CLASS_SEL_TYPE_OR = 0, RX_CLASS_SEL_TYPE_AND = 1, RX_CLASS_SEL_TYPE_OR_AND_AND = 2, RX_CLASS_SEL_TYPE_OR_OR_AND = 3, }; #define FT1_CFG_SHIFT(n) (2 * (n)) #define FT1_CFG_MASK(n) (0x3 << FT1_CFG_SHIFT((n))) #define RX_CLASS_SEL_SHIFT(n) (2 * (n)) #define RX_CLASS_SEL_MASK(n) (0x3 << RX_CLASS_SEL_SHIFT((n))) #define ICSSG_CFG_OFFSET 0 #define MAC_INTERFACE_0 0x18 #define MAC_INTERFACE_1 0x1c #define ICSSG_CFG_RX_L2_G_EN BIT(2) /* These are register offsets per PRU */ struct miig_rt_offsets { u32 mac0; u32 mac1; u32 ft1_start_len; u32 ft1_cfg; u32 ft1_slot_base; u32 ft3_slot_base; u32 ft3_p_base; u32 ft_rx_ptr; u32 rx_class_base; u32 rx_class_cfg1; u32 rx_class_cfg2; u32 rx_class_gates_base; u32 rx_green; u32 rx_rate_cfg_base; u32 rx_rate_src_sel0; u32 rx_rate_src_sel1; u32 tx_rate_cfg_base; u32 stat_base; u32 tx_hsr_tag; u32 tx_hsr_seq; u32 tx_vlan_type; u32 tx_vlan_ins; }; /* These are the offset values for miig_rt_offsets registers */ static const struct miig_rt_offsets offs[] = { /* PRU0 */ { 0x8, 0xc, 0x80, 0x84, 0x88, 0x108, 0x308, 0x408, 0x40c, 0x48c, 0x490, 0x494, 0x4d4, 0x4e4, 0x504, 0x508, 0x50c, 0x54c, 0x63c, 0x640, 0x644, 0x648, }, /* PRU1 */ { 0x10, 0x14, 0x64c, 0x650, 0x654, 0x6d4, 0x8d4, 0x9d4, 0x9d8, 0xa58, 0xa5c, 0xa60, 0xaa0, 0xab0, 0xad0, 0xad4, 0xad8, 0xb18, 0xc08, 0xc0c, 0xc10, 0xc14, }, }; static void rx_class_ft1_set_start_len(struct regmap *miig_rt, int slice, u16 start, u8 len) { u32 offset, val; offset = offs[slice].ft1_start_len; val = FT1_LEN(len) | FT1_START(start); regmap_write(miig_rt, offset, val); } static void rx_class_ft1_set_da(struct regmap *miig_rt, int slice, int n, const u8 *addr) { u32 offset; offset = FT1_N_REG(slice, n, FT1_DA0); regmap_write(miig_rt, offset, (u32)(addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24)); offset = FT1_N_REG(slice, n, FT1_DA1); regmap_write(miig_rt, offset, (u32)(addr[4] | addr[5] << 8)); } static void rx_class_ft1_set_da_mask(struct regmap *miig_rt, int slice, int n, const u8 *addr) { u32 offset; offset = FT1_N_REG(slice, n, FT1_DA0_MASK); regmap_write(miig_rt, offset, (u32)(addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24)); offset = FT1_N_REG(slice, n, FT1_DA1_MASK); regmap_write(miig_rt, offset, (u32)(addr[4] | addr[5] << 8)); } static void rx_class_ft1_cfg_set_type(struct regmap *miig_rt, int slice, int n, enum ft1_cfg_type type) { u32 offset; offset = offs[slice].ft1_cfg; regmap_update_bits(miig_rt, offset, FT1_CFG_MASK(n), type << FT1_CFG_SHIFT(n)); } static void rx_class_sel_set_type(struct regmap *miig_rt, int slice, int n, enum rx_class_sel_type type) { u32 offset; offset = offs[slice].rx_class_cfg1; regmap_update_bits(miig_rt, offset, RX_CLASS_SEL_MASK(n), type << RX_CLASS_SEL_SHIFT(n)); } static void rx_class_set_and(struct regmap *miig_rt, int slice, int n, u32 data) { u32 offset; offset = RX_CLASS_N_REG(slice, n, RX_CLASS_AND_EN); regmap_write(miig_rt, offset, data); } static void rx_class_set_or(struct regmap *miig_rt, int slice, int n, u32 data) { u32 offset; offset = RX_CLASS_N_REG(slice, n, RX_CLASS_OR_EN); regmap_write(miig_rt, offset, data); } static u32 rx_class_get_or(struct regmap *miig_rt, int slice, int n) { u32 offset, val; offset = RX_CLASS_N_REG(slice, n, RX_CLASS_OR_EN); regmap_read(miig_rt, offset, &val); return val; } void icssg_class_set_host_mac_addr(struct regmap *miig_rt, const u8 *mac) { regmap_write(miig_rt, MAC_INTERFACE_0, (u32)(mac[0] | mac[1] << 8 | mac[2] << 16 | mac[3] << 24)); regmap_write(miig_rt, MAC_INTERFACE_1, (u32)(mac[4] | mac[5] << 8)); } void icssg_class_set_mac_addr(struct regmap *miig_rt, int slice, u8 *mac) { regmap_write(miig_rt, offs[slice].mac0, (u32)(mac[0] | mac[1] << 8 | mac[2] << 16 | mac[3] << 24)); regmap_write(miig_rt, offs[slice].mac1, (u32)(mac[4] | mac[5] << 8)); } EXPORT_SYMBOL_GPL(icssg_class_set_mac_addr); static void icssg_class_ft1_add_mcast(struct regmap *miig_rt, int slice, int slot, const u8 *addr, const u8 *mask) { u32 val; int i; WARN(slot >= FT1_NUM_SLOTS, "invalid slot: %d\n", slot); rx_class_ft1_set_da(miig_rt, slice, slot, addr); rx_class_ft1_set_da_mask(miig_rt, slice, slot, mask); rx_class_ft1_cfg_set_type(miig_rt, slice, slot, FT1_CFG_TYPE_EQ); /* Enable the FT1 slot in OR enable for all classifiers */ for (i = 0; i < ICSSG_NUM_CLASSIFIERS_IN_USE; i++) { val = rx_class_get_or(miig_rt, slice, i); val |= RX_CLASS_FT_FT1_MATCH(slot); rx_class_set_or(miig_rt, slice, i, val); } } /* disable all RX traffic */ void icssg_class_disable(struct regmap *miig_rt, int slice) { u32 data, offset; int n; /* Enable RX_L2_G */ regmap_update_bits(miig_rt, ICSSG_CFG_OFFSET, ICSSG_CFG_RX_L2_G_EN, ICSSG_CFG_RX_L2_G_EN); for (n = 0; n < ICSSG_NUM_CLASSIFIERS; n++) { /* AND_EN = 0 */ rx_class_set_and(miig_rt, slice, n, 0); /* OR_EN = 0 */ rx_class_set_or(miig_rt, slice, n, 0); /* set CFG1 to OR */ rx_class_sel_set_type(miig_rt, slice, n, RX_CLASS_SEL_TYPE_OR); /* configure gate */ offset = RX_CLASS_GATES_N_REG(slice, n); regmap_read(miig_rt, offset, &data); /* clear class_raw so we go through filters */ data &= ~RX_CLASS_GATES_RAW_MASK; /* set allow and phase mask */ data |= RX_CLASS_GATES_ALLOW_MASK | RX_CLASS_GATES_PHASE_MASK; regmap_write(miig_rt, offset, data); } /* FT1 Disabled */ for (n = 0; n < ICSSG_NUM_FT1_SLOTS; n++) { const u8 addr[] = { 0, 0, 0, 0, 0, 0, }; rx_class_ft1_cfg_set_type(miig_rt, slice, n, FT1_CFG_TYPE_DISABLED); rx_class_ft1_set_da(miig_rt, slice, n, addr); rx_class_ft1_set_da_mask(miig_rt, slice, n, addr); } /* clear CFG2 */ regmap_write(miig_rt, offs[slice].rx_class_cfg2, 0); } EXPORT_SYMBOL_GPL(icssg_class_disable); void icssg_class_default(struct regmap *miig_rt, int slice, bool allmulti, bool is_sr1) { int num_classifiers = is_sr1 ? ICSSG_NUM_CLASSIFIERS_IN_USE : 1; u32 data; int n; /* defaults */ icssg_class_disable(miig_rt, slice); /* Setup Classifier */ for (n = 0; n < num_classifiers; n++) { /* match on Broadcast or MAC_PRU address */ data = RX_CLASS_FT_BC | RX_CLASS_FT_DA_P; /* multicast */ if (allmulti) data |= RX_CLASS_FT_MC; rx_class_set_or(miig_rt, slice, n, data); /* set CFG1 for OR_OR_AND for classifier */ rx_class_sel_set_type(miig_rt, slice, n, RX_CLASS_SEL_TYPE_OR_OR_AND); } /* clear CFG2 */ regmap_write(miig_rt, offs[slice].rx_class_cfg2, 0); } EXPORT_SYMBOL_GPL(icssg_class_default); void icssg_class_promiscuous_sr1(struct regmap *miig_rt, int slice) { u32 data, offset; int n; /* defaults */ icssg_class_disable(miig_rt, slice); /* Setup Classifier */ for (n = 0; n < ICSSG_NUM_CLASSIFIERS_IN_USE; n++) { /* set RAW_MASK to bypass filters */ offset = RX_CLASS_GATES_N_REG(slice, n); regmap_read(miig_rt, offset, &data); data |= RX_CLASS_GATES_RAW_MASK; regmap_write(miig_rt, offset, data); } } EXPORT_SYMBOL_GPL(icssg_class_promiscuous_sr1); void icssg_class_add_mcast_sr1(struct regmap *miig_rt, int slice, struct net_device *ndev) { u8 mask_addr[6] = { 0, 0, 0, 0, 0, 0xff }; struct netdev_hw_addr *ha; int slot = 2; rx_class_ft1_set_start_len(miig_rt, slice, 0, 6); /* reserve first 2 slots for * 1) 01-80-C2-00-00-XX Known Service Ethernet Multicast addresses * 2) 01-00-5e-00-00-XX Local Network Control Block * (224.0.0.0 - 224.0.0.255 (224.0.0/24)) */ icssg_class_ft1_add_mcast(miig_rt, slice, 0, eth_reserved_addr_base, mask_addr); icssg_class_ft1_add_mcast(miig_rt, slice, 1, eth_ipv4_mcast_addr_base, mask_addr); mask_addr[5] = 0; netdev_for_each_mc_addr(ha, ndev) { /* skip addresses matching reserved slots */ if (!memcmp(eth_reserved_addr_base, ha->addr, 5) || !memcmp(eth_ipv4_mcast_addr_base, ha->addr, 5)) { netdev_dbg(ndev, "mcast skip %pM\n", ha->addr); continue; } if (slot >= FT1_NUM_SLOTS) { netdev_dbg(ndev, "can't add more than %d MC addresses, enabling allmulti\n", FT1_NUM_SLOTS); icssg_class_default(miig_rt, slice, 1, true); break; } netdev_dbg(ndev, "mcast add %pM\n", ha->addr); icssg_class_ft1_add_mcast(miig_rt, slice, slot, ha->addr, mask_addr); slot++; } } EXPORT_SYMBOL_GPL(icssg_class_add_mcast_sr1); /* required for SAV check */ void icssg_ft1_set_mac_addr(struct regmap *miig_rt, int slice, u8 *mac_addr) { const u8 mask_addr[] = { 0, 0, 0, 0, 0, 0, }; rx_class_ft1_set_start_len(miig_rt, slice, ETH_ALEN, ETH_ALEN); rx_class_ft1_set_da(miig_rt, slice, 0, mac_addr); rx_class_ft1_set_da_mask(miig_rt, slice, 0, mask_addr); rx_class_ft1_cfg_set_type(miig_rt, slice, 0, FT1_CFG_TYPE_EQ); } EXPORT_SYMBOL_GPL(icssg_ft1_set_mac_addr);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1