Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Diogo Ivo | 5744 | 99.88% | 2 | 66.67% |
MD Danish Anwar | 7 | 0.12% | 1 | 33.33% |
Total | 5751 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* Texas Instruments ICSSG SR1.0 Ethernet Driver * * Copyright (C) 2018-2022 Texas Instruments Incorporated - https://www.ti.com/ * Copyright (c) Siemens AG, 2024 * */ #include <linux/etherdevice.h> #include <linux/genalloc.h> #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/phy.h> #include <linux/remoteproc/pruss.h> #include <linux/pruss_driver.h> #include "icssg_prueth.h" #include "icssg_mii_rt.h" #include "../k3-cppi-desc-pool.h" #define PRUETH_MODULE_DESCRIPTION "PRUSS ICSSG SR1.0 Ethernet driver" /* SR1: Set buffer sizes for the pools. There are 8 internal queues * implemented in firmware, but only 4 tx channels/threads in the Egress * direction to firmware. Need a high priority queue for management * messages since they shouldn't be blocked even during high traffic * situation. So use Q0-Q2 as data queues and Q3 as management queue * in the max case. However for ease of configuration, use the max * data queue + 1 for management message if we are not using max * case. * * Allocate 4 MTU buffers per data queue. Firmware requires * pool sizes to be set for internal queues. Set the upper 5 queue * pool size to min size of 128 bytes since there are only 3 tx * data channels and management queue requires only minimum buffer. * i.e lower queues are used by driver and highest priority queue * from that is used for management message. */ static int emac_egress_buf_pool_size[] = { PRUETH_EMAC_BUF_POOL_SIZE_SR1, PRUETH_EMAC_BUF_POOL_SIZE_SR1, PRUETH_EMAC_BUF_POOL_SIZE_SR1, PRUETH_EMAC_BUF_POOL_MIN_SIZE_SR1, PRUETH_EMAC_BUF_POOL_MIN_SIZE_SR1, PRUETH_EMAC_BUF_POOL_MIN_SIZE_SR1, PRUETH_EMAC_BUF_POOL_MIN_SIZE_SR1, PRUETH_EMAC_BUF_POOL_MIN_SIZE_SR1 }; static void icssg_config_sr1(struct prueth *prueth, struct prueth_emac *emac, int slice) { struct icssg_sr1_config config; void __iomem *va; int i, index; memset(&config, 0, sizeof(config)); config.addr_lo = cpu_to_le32(lower_32_bits(prueth->msmcram.pa)); config.addr_hi = cpu_to_le32(upper_32_bits(prueth->msmcram.pa)); config.rx_flow_id = cpu_to_le32(emac->rx_flow_id_base); /* flow id for host port */ config.rx_mgr_flow_id = cpu_to_le32(emac->rx_mgm_flow_id_base); /* for mgm ch */ config.rand_seed = cpu_to_le32(get_random_u32()); for (i = PRUETH_EMAC_BUF_POOL_START_SR1; i < PRUETH_NUM_BUF_POOLS_SR1; i++) { index = i - PRUETH_EMAC_BUF_POOL_START_SR1; config.tx_buf_sz[i] = cpu_to_le32(emac_egress_buf_pool_size[index]); } va = prueth->shram.va + slice * ICSSG_CONFIG_OFFSET_SLICE1; memcpy_toio(va, &config, sizeof(config)); emac->speed = SPEED_1000; emac->duplex = DUPLEX_FULL; } static int emac_send_command_sr1(struct prueth_emac *emac, u32 cmd) { struct cppi5_host_desc_t *first_desc; u32 pkt_len = sizeof(emac->cmd_data); __le32 *data = emac->cmd_data; dma_addr_t desc_dma, buf_dma; struct prueth_tx_chn *tx_chn; void **swdata; int ret = 0; u32 *epib; netdev_dbg(emac->ndev, "Sending cmd %x\n", cmd); /* only one command at a time allowed to firmware */ mutex_lock(&emac->cmd_lock); data[0] = cpu_to_le32(cmd); /* highest priority channel for management messages */ tx_chn = &emac->tx_chns[emac->tx_ch_num - 1]; /* Map the linear buffer */ buf_dma = dma_map_single(tx_chn->dma_dev, data, pkt_len, DMA_TO_DEVICE); if (dma_mapping_error(tx_chn->dma_dev, buf_dma)) { netdev_err(emac->ndev, "cmd %x: failed to map cmd buffer\n", cmd); ret = -EINVAL; goto err_unlock; } first_desc = k3_cppi_desc_pool_alloc(tx_chn->desc_pool); if (!first_desc) { netdev_err(emac->ndev, "cmd %x: failed to allocate descriptor\n", cmd); dma_unmap_single(tx_chn->dma_dev, buf_dma, pkt_len, DMA_TO_DEVICE); ret = -ENOMEM; goto err_unlock; } cppi5_hdesc_init(first_desc, CPPI5_INFO0_HDESC_EPIB_PRESENT, PRUETH_NAV_PS_DATA_SIZE); cppi5_hdesc_set_pkttype(first_desc, PRUETH_PKT_TYPE_CMD); epib = first_desc->epib; epib[0] = 0; epib[1] = 0; cppi5_hdesc_attach_buf(first_desc, buf_dma, pkt_len, buf_dma, pkt_len); swdata = cppi5_hdesc_get_swdata(first_desc); *swdata = data; cppi5_hdesc_set_pktlen(first_desc, pkt_len); desc_dma = k3_cppi_desc_pool_virt2dma(tx_chn->desc_pool, first_desc); /* send command */ reinit_completion(&emac->cmd_complete); ret = k3_udma_glue_push_tx_chn(tx_chn->tx_chn, first_desc, desc_dma); if (ret) { netdev_err(emac->ndev, "cmd %x: push failed: %d\n", cmd, ret); goto free_desc; } ret = wait_for_completion_timeout(&emac->cmd_complete, msecs_to_jiffies(100)); if (!ret) netdev_err(emac->ndev, "cmd %x: completion timeout\n", cmd); mutex_unlock(&emac->cmd_lock); return ret; free_desc: prueth_xmit_free(tx_chn, first_desc); err_unlock: mutex_unlock(&emac->cmd_lock); return ret; } static void icssg_config_set_speed_sr1(struct prueth_emac *emac) { u32 cmd = ICSSG_PSTATE_SPEED_DUPLEX_CMD_SR1, val; struct prueth *prueth = emac->prueth; int slice = prueth_emac_slice(emac); val = icssg_rgmii_get_speed(prueth->miig_rt, slice); /* firmware expects speed settings in bit 2-1 */ val <<= 1; cmd |= val; val = icssg_rgmii_get_fullduplex(prueth->miig_rt, slice); /* firmware expects full duplex settings in bit 3 */ val <<= 3; cmd |= val; emac_send_command_sr1(emac, cmd); } /* called back by PHY layer if there is change in link state of hw port*/ static void emac_adjust_link_sr1(struct net_device *ndev) { struct prueth_emac *emac = netdev_priv(ndev); struct phy_device *phydev = ndev->phydev; struct prueth *prueth = emac->prueth; bool new_state = false; unsigned long flags; if (phydev->link) { /* check the mode of operation - full/half duplex */ if (phydev->duplex != emac->duplex) { new_state = true; emac->duplex = phydev->duplex; } if (phydev->speed != emac->speed) { new_state = true; emac->speed = phydev->speed; } if (!emac->link) { new_state = true; emac->link = 1; } } else if (emac->link) { new_state = true; emac->link = 0; /* f/w should support 100 & 1000 */ emac->speed = SPEED_1000; /* half duplex may not be supported by f/w */ emac->duplex = DUPLEX_FULL; } if (new_state) { phy_print_status(phydev); /* update RGMII and MII configuration based on PHY negotiated * values */ if (emac->link) { /* Set the RGMII cfg for gig en and full duplex */ icssg_update_rgmii_cfg(prueth->miig_rt, emac); /* update the Tx IPG based on 100M/1G speed */ spin_lock_irqsave(&emac->lock, flags); icssg_config_ipg(emac); spin_unlock_irqrestore(&emac->lock, flags); icssg_config_set_speed_sr1(emac); } } if (emac->link) { /* reactivate the transmit queue */ netif_tx_wake_all_queues(ndev); } else { netif_tx_stop_all_queues(ndev); prueth_cleanup_tx_ts(emac); } } static int emac_phy_connect(struct prueth_emac *emac) { struct prueth *prueth = emac->prueth; struct net_device *ndev = emac->ndev; /* connect PHY */ ndev->phydev = of_phy_connect(emac->ndev, emac->phy_node, &emac_adjust_link_sr1, 0, emac->phy_if); if (!ndev->phydev) { dev_err(prueth->dev, "couldn't connect to phy %s\n", emac->phy_node->full_name); return -ENODEV; } if (!emac->half_duplex) { dev_dbg(prueth->dev, "half duplex mode is not supported\n"); phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT); } /* Remove 100Mbits half-duplex due to RGMII misreporting connection * as full duplex */ phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT); /* remove unsupported modes */ phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT); phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Pause_BIT); phy_remove_link_mode(ndev->phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT); if (emac->phy_if == PHY_INTERFACE_MODE_MII) phy_set_max_speed(ndev->phydev, SPEED_100); return 0; } /* get one packet from requested flow_id * * Returns skb pointer if packet found else NULL * Caller must free the returned skb. */ static struct sk_buff *prueth_process_rx_mgm(struct prueth_emac *emac, u32 flow_id) { struct prueth_rx_chn *rx_chn = &emac->rx_mgm_chn; struct net_device *ndev = emac->ndev; struct cppi5_host_desc_t *desc_rx; struct sk_buff *skb, *new_skb; dma_addr_t desc_dma, buf_dma; u32 buf_dma_len, pkt_len; void **swdata; int ret; ret = k3_udma_glue_pop_rx_chn(rx_chn->rx_chn, flow_id, &desc_dma); if (ret) { if (ret != -ENODATA) netdev_err(ndev, "rx mgm pop: failed: %d\n", ret); return NULL; } if (cppi5_desc_is_tdcm(desc_dma)) /* Teardown */ return NULL; desc_rx = k3_cppi_desc_pool_dma2virt(rx_chn->desc_pool, desc_dma); /* Fix FW bug about incorrect PSDATA size */ if (cppi5_hdesc_get_psdata_size(desc_rx) != PRUETH_NAV_PS_DATA_SIZE) { cppi5_hdesc_update_psdata_size(desc_rx, PRUETH_NAV_PS_DATA_SIZE); } swdata = cppi5_hdesc_get_swdata(desc_rx); skb = *swdata; cppi5_hdesc_get_obuf(desc_rx, &buf_dma, &buf_dma_len); pkt_len = cppi5_hdesc_get_pktlen(desc_rx); dma_unmap_single(rx_chn->dma_dev, buf_dma, buf_dma_len, DMA_FROM_DEVICE); k3_cppi_desc_pool_free(rx_chn->desc_pool, desc_rx); new_skb = netdev_alloc_skb_ip_align(ndev, PRUETH_MAX_PKT_SIZE); /* if allocation fails we drop the packet but push the * descriptor back to the ring with old skb to prevent a stall */ if (!new_skb) { netdev_err(ndev, "skb alloc failed, dropped mgm pkt from flow %d\n", flow_id); new_skb = skb; skb = NULL; /* return NULL */ } else { /* return the filled skb */ skb_put(skb, pkt_len); } /* queue another DMA */ ret = prueth_dma_rx_push(emac, new_skb, &emac->rx_mgm_chn); if (WARN_ON(ret < 0)) dev_kfree_skb_any(new_skb); return skb; } static void prueth_tx_ts_sr1(struct prueth_emac *emac, struct emac_tx_ts_response_sr1 *tsr) { struct skb_shared_hwtstamps ssh; u32 hi_ts, lo_ts, cookie; struct sk_buff *skb; u64 ns; hi_ts = le32_to_cpu(tsr->hi_ts); lo_ts = le32_to_cpu(tsr->lo_ts); ns = (u64)hi_ts << 32 | lo_ts; cookie = le32_to_cpu(tsr->cookie); if (cookie >= PRUETH_MAX_TX_TS_REQUESTS) { netdev_dbg(emac->ndev, "Invalid TX TS cookie 0x%x\n", cookie); return; } skb = emac->tx_ts_skb[cookie]; emac->tx_ts_skb[cookie] = NULL; /* free slot */ memset(&ssh, 0, sizeof(ssh)); ssh.hwtstamp = ns_to_ktime(ns); skb_tstamp_tx(skb, &ssh); dev_consume_skb_any(skb); } static irqreturn_t prueth_rx_mgm_ts_thread_sr1(int irq, void *dev_id) { struct prueth_emac *emac = dev_id; struct sk_buff *skb; skb = prueth_process_rx_mgm(emac, PRUETH_RX_MGM_FLOW_TIMESTAMP_SR1); if (!skb) return IRQ_NONE; prueth_tx_ts_sr1(emac, (void *)skb->data); dev_kfree_skb_any(skb); return IRQ_HANDLED; } static irqreturn_t prueth_rx_mgm_rsp_thread(int irq, void *dev_id) { struct prueth_emac *emac = dev_id; struct sk_buff *skb; u32 rsp; skb = prueth_process_rx_mgm(emac, PRUETH_RX_MGM_FLOW_RESPONSE_SR1); if (!skb) return IRQ_NONE; /* Process command response */ rsp = le32_to_cpu(*(__le32 *)skb->data) & 0xffff0000; if (rsp == ICSSG_SHUTDOWN_CMD_SR1) { netdev_dbg(emac->ndev, "f/w Shutdown cmd resp %x\n", rsp); complete(&emac->cmd_complete); } else if (rsp == ICSSG_PSTATE_SPEED_DUPLEX_CMD_SR1) { netdev_dbg(emac->ndev, "f/w Speed/Duplex cmd rsp %x\n", rsp); complete(&emac->cmd_complete); } dev_kfree_skb_any(skb); return IRQ_HANDLED; } static struct icssg_firmwares icssg_sr1_emac_firmwares[] = { { .pru = "ti-pruss/am65x-pru0-prueth-fw.elf", .rtu = "ti-pruss/am65x-rtu0-prueth-fw.elf", }, { .pru = "ti-pruss/am65x-pru1-prueth-fw.elf", .rtu = "ti-pruss/am65x-rtu1-prueth-fw.elf", } }; static int prueth_emac_start(struct prueth *prueth, struct prueth_emac *emac) { struct icssg_firmwares *firmwares; struct device *dev = prueth->dev; int slice, ret; firmwares = icssg_sr1_emac_firmwares; slice = prueth_emac_slice(emac); if (slice < 0) { netdev_err(emac->ndev, "invalid port\n"); return -EINVAL; } icssg_config_sr1(prueth, emac, slice); ret = rproc_set_firmware(prueth->pru[slice], firmwares[slice].pru); ret = rproc_boot(prueth->pru[slice]); if (ret) { dev_err(dev, "failed to boot PRU%d: %d\n", slice, ret); return -EINVAL; } ret = rproc_set_firmware(prueth->rtu[slice], firmwares[slice].rtu); ret = rproc_boot(prueth->rtu[slice]); if (ret) { dev_err(dev, "failed to boot RTU%d: %d\n", slice, ret); goto halt_pru; } emac->fw_running = 1; return 0; halt_pru: rproc_shutdown(prueth->pru[slice]); return ret; } /** * emac_ndo_open - EMAC device open * @ndev: network adapter device * * Called when system wants to start the interface. * * Return: 0 for a successful open, or appropriate error code */ static int emac_ndo_open(struct net_device *ndev) { struct prueth_emac *emac = netdev_priv(ndev); int num_data_chn = emac->tx_ch_num - 1; struct prueth *prueth = emac->prueth; int slice = prueth_emac_slice(emac); struct device *dev = prueth->dev; int max_rx_flows, rx_flow; int ret, i; /* clear SMEM and MSMC settings for all slices */ if (!prueth->emacs_initialized) { memset_io(prueth->msmcram.va, 0, prueth->msmcram.size); memset_io(prueth->shram.va, 0, ICSSG_CONFIG_OFFSET_SLICE1 * PRUETH_NUM_MACS); } /* set h/w MAC as user might have re-configured */ ether_addr_copy(emac->mac_addr, ndev->dev_addr); icssg_class_set_mac_addr(prueth->miig_rt, slice, emac->mac_addr); icssg_class_default(prueth->miig_rt, slice, 0, true); /* Notify the stack of the actual queue counts. */ ret = netif_set_real_num_tx_queues(ndev, num_data_chn); if (ret) { dev_err(dev, "cannot set real number of tx queues\n"); return ret; } init_completion(&emac->cmd_complete); ret = prueth_init_tx_chns(emac); if (ret) { dev_err(dev, "failed to init tx channel: %d\n", ret); return ret; } max_rx_flows = PRUETH_MAX_RX_FLOWS_SR1; ret = prueth_init_rx_chns(emac, &emac->rx_chns, "rx", max_rx_flows, PRUETH_MAX_RX_DESC); if (ret) { dev_err(dev, "failed to init rx channel: %d\n", ret); goto cleanup_tx; } ret = prueth_init_rx_chns(emac, &emac->rx_mgm_chn, "rxmgm", PRUETH_MAX_RX_MGM_FLOWS_SR1, PRUETH_MAX_RX_MGM_DESC_SR1); if (ret) { dev_err(dev, "failed to init rx mgmt channel: %d\n", ret); goto cleanup_rx; } ret = prueth_ndev_add_tx_napi(emac); if (ret) goto cleanup_rx_mgm; /* we use only the highest priority flow for now i.e. @irq[3] */ rx_flow = PRUETH_RX_FLOW_DATA_SR1; ret = request_irq(emac->rx_chns.irq[rx_flow], prueth_rx_irq, IRQF_TRIGGER_HIGH, dev_name(dev), emac); if (ret) { dev_err(dev, "unable to request RX IRQ\n"); goto cleanup_napi; } ret = request_threaded_irq(emac->rx_mgm_chn.irq[PRUETH_RX_MGM_FLOW_RESPONSE_SR1], NULL, prueth_rx_mgm_rsp_thread, IRQF_ONESHOT | IRQF_TRIGGER_HIGH, dev_name(dev), emac); if (ret) { dev_err(dev, "unable to request RX Management RSP IRQ\n"); goto free_rx_irq; } ret = request_threaded_irq(emac->rx_mgm_chn.irq[PRUETH_RX_MGM_FLOW_TIMESTAMP_SR1], NULL, prueth_rx_mgm_ts_thread_sr1, IRQF_ONESHOT | IRQF_TRIGGER_HIGH, dev_name(dev), emac); if (ret) { dev_err(dev, "unable to request RX Management TS IRQ\n"); goto free_rx_mgm_rsp_irq; } /* reset and start PRU firmware */ ret = prueth_emac_start(prueth, emac); if (ret) goto free_rx_mgmt_ts_irq; icssg_mii_update_mtu(prueth->mii_rt, slice, ndev->max_mtu); /* Prepare RX */ ret = prueth_prepare_rx_chan(emac, &emac->rx_chns, PRUETH_MAX_PKT_SIZE); if (ret) goto stop; ret = prueth_prepare_rx_chan(emac, &emac->rx_mgm_chn, 64); if (ret) goto reset_rx_chn; ret = k3_udma_glue_enable_rx_chn(emac->rx_mgm_chn.rx_chn); if (ret) goto reset_rx_chn; ret = k3_udma_glue_enable_rx_chn(emac->rx_chns.rx_chn); if (ret) goto reset_rx_mgm_chn; for (i = 0; i < emac->tx_ch_num; i++) { ret = k3_udma_glue_enable_tx_chn(emac->tx_chns[i].tx_chn); if (ret) goto reset_tx_chan; } /* Enable NAPI in Tx and Rx direction */ for (i = 0; i < emac->tx_ch_num; i++) napi_enable(&emac->tx_chns[i].napi_tx); napi_enable(&emac->napi_rx); /* start PHY */ phy_start(ndev->phydev); prueth->emacs_initialized++; queue_work(system_long_wq, &emac->stats_work.work); return 0; reset_tx_chan: /* Since interface is not yet up, there is wouldn't be * any SKB for completion. So set false to free_skb */ prueth_reset_tx_chan(emac, i, false); reset_rx_mgm_chn: prueth_reset_rx_chan(&emac->rx_mgm_chn, PRUETH_MAX_RX_MGM_FLOWS_SR1, true); reset_rx_chn: prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, false); stop: prueth_emac_stop(emac); free_rx_mgmt_ts_irq: free_irq(emac->rx_mgm_chn.irq[PRUETH_RX_MGM_FLOW_TIMESTAMP_SR1], emac); free_rx_mgm_rsp_irq: free_irq(emac->rx_mgm_chn.irq[PRUETH_RX_MGM_FLOW_RESPONSE_SR1], emac); free_rx_irq: free_irq(emac->rx_chns.irq[rx_flow], emac); cleanup_napi: prueth_ndev_del_tx_napi(emac, emac->tx_ch_num); cleanup_rx_mgm: prueth_cleanup_rx_chns(emac, &emac->rx_mgm_chn, PRUETH_MAX_RX_MGM_FLOWS_SR1); cleanup_rx: prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows); cleanup_tx: prueth_cleanup_tx_chns(emac); return ret; } /** * emac_ndo_stop - EMAC device stop * @ndev: network adapter device * * Called when system wants to stop or down the interface. * * Return: Always 0 (Success) */ static int emac_ndo_stop(struct net_device *ndev) { struct prueth_emac *emac = netdev_priv(ndev); int rx_flow = PRUETH_RX_FLOW_DATA_SR1; struct prueth *prueth = emac->prueth; int max_rx_flows; int ret, i; /* inform the upper layers. */ netif_tx_stop_all_queues(ndev); /* block packets from wire */ if (ndev->phydev) phy_stop(ndev->phydev); icssg_class_disable(prueth->miig_rt, prueth_emac_slice(emac)); emac_send_command_sr1(emac, ICSSG_SHUTDOWN_CMD_SR1); atomic_set(&emac->tdown_cnt, emac->tx_ch_num); /* ensure new tdown_cnt value is visible */ smp_mb__after_atomic(); /* tear down and disable UDMA channels */ reinit_completion(&emac->tdown_complete); for (i = 0; i < emac->tx_ch_num; i++) k3_udma_glue_tdown_tx_chn(emac->tx_chns[i].tx_chn, false); ret = wait_for_completion_timeout(&emac->tdown_complete, msecs_to_jiffies(1000)); if (!ret) netdev_err(ndev, "tx teardown timeout\n"); prueth_reset_tx_chan(emac, emac->tx_ch_num, true); for (i = 0; i < emac->tx_ch_num; i++) napi_disable(&emac->tx_chns[i].napi_tx); max_rx_flows = PRUETH_MAX_RX_FLOWS_SR1; k3_udma_glue_tdown_rx_chn(emac->rx_chns.rx_chn, true); prueth_reset_rx_chan(&emac->rx_chns, max_rx_flows, true); /* Teardown RX MGM channel */ k3_udma_glue_tdown_rx_chn(emac->rx_mgm_chn.rx_chn, true); prueth_reset_rx_chan(&emac->rx_mgm_chn, PRUETH_MAX_RX_MGM_FLOWS_SR1, true); napi_disable(&emac->napi_rx); /* Destroying the queued work in ndo_stop() */ cancel_delayed_work_sync(&emac->stats_work); /* stop PRUs */ prueth_emac_stop(emac); free_irq(emac->rx_mgm_chn.irq[PRUETH_RX_MGM_FLOW_TIMESTAMP_SR1], emac); free_irq(emac->rx_mgm_chn.irq[PRUETH_RX_MGM_FLOW_RESPONSE_SR1], emac); free_irq(emac->rx_chns.irq[rx_flow], emac); prueth_ndev_del_tx_napi(emac, emac->tx_ch_num); prueth_cleanup_tx_chns(emac); prueth_cleanup_rx_chns(emac, &emac->rx_mgm_chn, PRUETH_MAX_RX_MGM_FLOWS_SR1); prueth_cleanup_rx_chns(emac, &emac->rx_chns, max_rx_flows); prueth->emacs_initialized--; return 0; } static void emac_ndo_set_rx_mode_sr1(struct net_device *ndev) { struct prueth_emac *emac = netdev_priv(ndev); bool allmulti = ndev->flags & IFF_ALLMULTI; bool promisc = ndev->flags & IFF_PROMISC; struct prueth *prueth = emac->prueth; int slice = prueth_emac_slice(emac); if (promisc) { icssg_class_promiscuous_sr1(prueth->miig_rt, slice); return; } if (allmulti) { icssg_class_default(prueth->miig_rt, slice, 1, true); return; } icssg_class_default(prueth->miig_rt, slice, 0, true); if (!netdev_mc_empty(ndev)) { /* program multicast address list into Classifier */ icssg_class_add_mcast_sr1(prueth->miig_rt, slice, ndev); } } static const struct net_device_ops emac_netdev_ops = { .ndo_open = emac_ndo_open, .ndo_stop = emac_ndo_stop, .ndo_start_xmit = icssg_ndo_start_xmit, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_tx_timeout = icssg_ndo_tx_timeout, .ndo_set_rx_mode = emac_ndo_set_rx_mode_sr1, .ndo_eth_ioctl = icssg_ndo_ioctl, .ndo_get_stats64 = icssg_ndo_get_stats64, .ndo_get_phys_port_name = icssg_ndo_get_phys_port_name, }; static int prueth_netdev_init(struct prueth *prueth, struct device_node *eth_node) { struct prueth_emac *emac; struct net_device *ndev; enum prueth_port port; enum prueth_mac mac; /* Only enable one TX channel due to timeouts when * using multiple channels */ int num_tx_chn = 1; int ret; port = prueth_node_port(eth_node); if (port == PRUETH_PORT_INVALID) return -EINVAL; mac = prueth_node_mac(eth_node); if (mac == PRUETH_MAC_INVALID) return -EINVAL; ndev = alloc_etherdev_mq(sizeof(*emac), num_tx_chn); if (!ndev) return -ENOMEM; emac = netdev_priv(ndev); emac->is_sr1 = 1; emac->prueth = prueth; emac->ndev = ndev; emac->port_id = port; emac->cmd_wq = create_singlethread_workqueue("icssg_cmd_wq"); if (!emac->cmd_wq) { ret = -ENOMEM; goto free_ndev; } INIT_DELAYED_WORK(&emac->stats_work, icssg_stats_work_handler); ret = pruss_request_mem_region(prueth->pruss, port == PRUETH_PORT_MII0 ? PRUSS_MEM_DRAM0 : PRUSS_MEM_DRAM1, &emac->dram); if (ret) { dev_err(prueth->dev, "unable to get DRAM: %d\n", ret); ret = -ENOMEM; goto free_wq; } /* SR1.0 uses a dedicated high priority channel * to send commands to the firmware */ emac->tx_ch_num = 2; SET_NETDEV_DEV(ndev, prueth->dev); spin_lock_init(&emac->lock); mutex_init(&emac->cmd_lock); emac->phy_node = of_parse_phandle(eth_node, "phy-handle", 0); if (!emac->phy_node && !of_phy_is_fixed_link(eth_node)) { dev_err(prueth->dev, "couldn't find phy-handle\n"); ret = -ENODEV; goto free; } else if (of_phy_is_fixed_link(eth_node)) { ret = of_phy_register_fixed_link(eth_node); if (ret) { ret = dev_err_probe(prueth->dev, ret, "failed to register fixed-link phy\n"); goto free; } emac->phy_node = eth_node; } ret = of_get_phy_mode(eth_node, &emac->phy_if); if (ret) { dev_err(prueth->dev, "could not get phy-mode property\n"); goto free; } if (emac->phy_if != PHY_INTERFACE_MODE_MII && !phy_interface_mode_is_rgmii(emac->phy_if)) { dev_err(prueth->dev, "PHY mode unsupported %s\n", phy_modes(emac->phy_if)); ret = -EINVAL; goto free; } /* AM65 SR2.0 has TX Internal delay always enabled by hardware * and it is not possible to disable TX Internal delay. The below * switch case block describes how we handle different phy modes * based on hardware restriction. */ switch (emac->phy_if) { case PHY_INTERFACE_MODE_RGMII_ID: emac->phy_if = PHY_INTERFACE_MODE_RGMII_RXID; break; case PHY_INTERFACE_MODE_RGMII_TXID: emac->phy_if = PHY_INTERFACE_MODE_RGMII; break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_RXID: dev_err(prueth->dev, "RGMII mode without TX delay is not supported"); ret = -EINVAL; goto free; default: break; } /* get mac address from DT and set private and netdev addr */ ret = of_get_ethdev_address(eth_node, ndev); if (!is_valid_ether_addr(ndev->dev_addr)) { eth_hw_addr_random(ndev); dev_warn(prueth->dev, "port %d: using random MAC addr: %pM\n", port, ndev->dev_addr); } ether_addr_copy(emac->mac_addr, ndev->dev_addr); ndev->min_mtu = PRUETH_MIN_PKT_SIZE; ndev->max_mtu = PRUETH_MAX_MTU; ndev->netdev_ops = &emac_netdev_ops; ndev->ethtool_ops = &icssg_ethtool_ops; ndev->hw_features = NETIF_F_SG; ndev->features = ndev->hw_features; netif_napi_add(ndev, &emac->napi_rx, icssg_napi_rx_poll); prueth->emac[mac] = emac; return 0; free: pruss_release_mem_region(prueth->pruss, &emac->dram); free_wq: destroy_workqueue(emac->cmd_wq); free_ndev: emac->ndev = NULL; prueth->emac[mac] = NULL; free_netdev(ndev); return ret; } static int prueth_probe(struct platform_device *pdev) { struct device_node *eth_node, *eth_ports_node; struct device_node *eth0_node = NULL; struct device_node *eth1_node = NULL; struct device *dev = &pdev->dev; struct device_node *np; struct prueth *prueth; struct pruss *pruss; u32 msmc_ram_size; int i, ret; np = dev->of_node; prueth = devm_kzalloc(dev, sizeof(*prueth), GFP_KERNEL); if (!prueth) return -ENOMEM; dev_set_drvdata(dev, prueth); prueth->pdev = pdev; prueth->pdata = *(const struct prueth_pdata *)device_get_match_data(dev); prueth->dev = dev; eth_ports_node = of_get_child_by_name(np, "ethernet-ports"); if (!eth_ports_node) return -ENOENT; for_each_child_of_node(eth_ports_node, eth_node) { u32 reg; if (strcmp(eth_node->name, "port")) continue; ret = of_property_read_u32(eth_node, "reg", ®); if (ret < 0) { dev_err(dev, "%pOF error reading port_id %d\n", eth_node, ret); } of_node_get(eth_node); if (reg == 0) { eth0_node = eth_node; if (!of_device_is_available(eth0_node)) { of_node_put(eth0_node); eth0_node = NULL; } } else if (reg == 1) { eth1_node = eth_node; if (!of_device_is_available(eth1_node)) { of_node_put(eth1_node); eth1_node = NULL; } } else { dev_err(dev, "port reg should be 0 or 1\n"); } } of_node_put(eth_ports_node); /* At least one node must be present and available else we fail */ if (!eth0_node && !eth1_node) { dev_err(dev, "neither port0 nor port1 node available\n"); return -ENODEV; } if (eth0_node == eth1_node) { dev_err(dev, "port0 and port1 can't have same reg\n"); of_node_put(eth0_node); return -ENODEV; } prueth->eth_node[PRUETH_MAC0] = eth0_node; prueth->eth_node[PRUETH_MAC1] = eth1_node; prueth->miig_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-g-rt"); if (IS_ERR(prueth->miig_rt)) { dev_err(dev, "couldn't get ti,mii-g-rt syscon regmap\n"); return -ENODEV; } prueth->mii_rt = syscon_regmap_lookup_by_phandle(np, "ti,mii-rt"); if (IS_ERR(prueth->mii_rt)) { dev_err(dev, "couldn't get ti,mii-rt syscon regmap\n"); return -ENODEV; } if (eth0_node) { ret = prueth_get_cores(prueth, ICSS_SLICE0, true); if (ret) goto put_cores; } if (eth1_node) { ret = prueth_get_cores(prueth, ICSS_SLICE1, true); if (ret) goto put_cores; } pruss = pruss_get(eth0_node ? prueth->pru[ICSS_SLICE0] : prueth->pru[ICSS_SLICE1]); if (IS_ERR(pruss)) { ret = PTR_ERR(pruss); dev_err(dev, "unable to get pruss handle\n"); goto put_cores; } prueth->pruss = pruss; ret = pruss_request_mem_region(pruss, PRUSS_MEM_SHRD_RAM2, &prueth->shram); if (ret) { dev_err(dev, "unable to get PRUSS SHRD RAM2: %d\n", ret); goto put_pruss; } prueth->sram_pool = of_gen_pool_get(np, "sram", 0); if (!prueth->sram_pool) { dev_err(dev, "unable to get SRAM pool\n"); ret = -ENODEV; goto put_mem; } msmc_ram_size = MSMC_RAM_SIZE_SR1; prueth->msmcram.va = (void __iomem *)gen_pool_alloc(prueth->sram_pool, msmc_ram_size); if (!prueth->msmcram.va) { ret = -ENOMEM; dev_err(dev, "unable to allocate MSMC resource\n"); goto put_mem; } prueth->msmcram.pa = gen_pool_virt_to_phys(prueth->sram_pool, (unsigned long)prueth->msmcram.va); prueth->msmcram.size = msmc_ram_size; memset_io(prueth->msmcram.va, 0, msmc_ram_size); dev_dbg(dev, "sram: pa %llx va %p size %zx\n", prueth->msmcram.pa, prueth->msmcram.va, prueth->msmcram.size); prueth->iep0 = icss_iep_get_idx(np, 0); if (IS_ERR(prueth->iep0)) { ret = dev_err_probe(dev, PTR_ERR(prueth->iep0), "iep0 get failed\n"); goto free_pool; } prueth->iep1 = icss_iep_get_idx(np, 1); if (IS_ERR(prueth->iep1)) { ret = dev_err_probe(dev, PTR_ERR(prueth->iep1), "iep1 get failed\n"); goto put_iep0; } ret = icss_iep_init(prueth->iep0, NULL, NULL, 0); if (ret) { dev_err_probe(dev, ret, "failed to init iep0\n"); goto put_iep; } ret = icss_iep_init(prueth->iep1, NULL, NULL, 0); if (ret) { dev_err_probe(dev, ret, "failed to init iep1\n"); goto exit_iep0; } if (eth0_node) { ret = prueth_netdev_init(prueth, eth0_node); if (ret) { dev_err_probe(dev, ret, "netdev init %s failed\n", eth0_node->name); goto exit_iep; } if (of_find_property(eth0_node, "ti,half-duplex-capable", NULL)) prueth->emac[PRUETH_MAC0]->half_duplex = 1; prueth->emac[PRUETH_MAC0]->iep = prueth->iep0; } if (eth1_node) { ret = prueth_netdev_init(prueth, eth1_node); if (ret) { dev_err_probe(dev, ret, "netdev init %s failed\n", eth1_node->name); goto netdev_exit; } if (of_find_property(eth1_node, "ti,half-duplex-capable", NULL)) prueth->emac[PRUETH_MAC1]->half_duplex = 1; prueth->emac[PRUETH_MAC1]->iep = prueth->iep1; } /* register the network devices */ if (eth0_node) { ret = register_netdev(prueth->emac[PRUETH_MAC0]->ndev); if (ret) { dev_err(dev, "can't register netdev for port MII0\n"); goto netdev_exit; } prueth->registered_netdevs[PRUETH_MAC0] = prueth->emac[PRUETH_MAC0]->ndev; emac_phy_connect(prueth->emac[PRUETH_MAC0]); phy_attached_info(prueth->emac[PRUETH_MAC0]->ndev->phydev); } if (eth1_node) { ret = register_netdev(prueth->emac[PRUETH_MAC1]->ndev); if (ret) { dev_err(dev, "can't register netdev for port MII1\n"); goto netdev_unregister; } prueth->registered_netdevs[PRUETH_MAC1] = prueth->emac[PRUETH_MAC1]->ndev; emac_phy_connect(prueth->emac[PRUETH_MAC1]); phy_attached_info(prueth->emac[PRUETH_MAC1]->ndev->phydev); } dev_info(dev, "TI PRU SR1.0 ethernet driver initialized: %s EMAC mode\n", (!eth0_node || !eth1_node) ? "single" : "dual"); if (eth1_node) of_node_put(eth1_node); if (eth0_node) of_node_put(eth0_node); return 0; netdev_unregister: for (i = 0; i < PRUETH_NUM_MACS; i++) { if (!prueth->registered_netdevs[i]) continue; if (prueth->emac[i]->ndev->phydev) { phy_disconnect(prueth->emac[i]->ndev->phydev); prueth->emac[i]->ndev->phydev = NULL; } unregister_netdev(prueth->registered_netdevs[i]); } netdev_exit: for (i = 0; i < PRUETH_NUM_MACS; i++) { eth_node = prueth->eth_node[i]; if (!eth_node) continue; prueth_netdev_exit(prueth, eth_node); } exit_iep: icss_iep_exit(prueth->iep1); exit_iep0: icss_iep_exit(prueth->iep0); put_iep: icss_iep_put(prueth->iep1); put_iep0: icss_iep_put(prueth->iep0); prueth->iep0 = NULL; prueth->iep1 = NULL; free_pool: gen_pool_free(prueth->sram_pool, (unsigned long)prueth->msmcram.va, msmc_ram_size); put_mem: pruss_release_mem_region(prueth->pruss, &prueth->shram); put_pruss: pruss_put(prueth->pruss); put_cores: if (eth1_node) { prueth_put_cores(prueth, ICSS_SLICE1); of_node_put(eth1_node); } if (eth0_node) { prueth_put_cores(prueth, ICSS_SLICE0); of_node_put(eth0_node); } return ret; } static void prueth_remove(struct platform_device *pdev) { struct prueth *prueth = platform_get_drvdata(pdev); struct device_node *eth_node; int i; for (i = 0; i < PRUETH_NUM_MACS; i++) { if (!prueth->registered_netdevs[i]) continue; phy_stop(prueth->emac[i]->ndev->phydev); phy_disconnect(prueth->emac[i]->ndev->phydev); prueth->emac[i]->ndev->phydev = NULL; unregister_netdev(prueth->registered_netdevs[i]); } for (i = 0; i < PRUETH_NUM_MACS; i++) { eth_node = prueth->eth_node[i]; if (!eth_node) continue; prueth_netdev_exit(prueth, eth_node); } icss_iep_exit(prueth->iep1); icss_iep_exit(prueth->iep0); icss_iep_put(prueth->iep1); icss_iep_put(prueth->iep0); gen_pool_free(prueth->sram_pool, (unsigned long)prueth->msmcram.va, MSMC_RAM_SIZE_SR1); pruss_release_mem_region(prueth->pruss, &prueth->shram); pruss_put(prueth->pruss); if (prueth->eth_node[PRUETH_MAC1]) prueth_put_cores(prueth, ICSS_SLICE1); if (prueth->eth_node[PRUETH_MAC0]) prueth_put_cores(prueth, ICSS_SLICE0); } static const struct prueth_pdata am654_sr1_icssg_pdata = { .fdqring_mode = K3_RINGACC_RING_MODE_MESSAGE, }; static const struct of_device_id prueth_dt_match[] = { { .compatible = "ti,am654-sr1-icssg-prueth", .data = &am654_sr1_icssg_pdata }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, prueth_dt_match); static struct platform_driver prueth_driver = { .probe = prueth_probe, .remove_new = prueth_remove, .driver = { .name = "icssg-prueth-sr1", .of_match_table = prueth_dt_match, .pm = &prueth_dev_pm_ops, }, }; module_platform_driver(prueth_driver); MODULE_AUTHOR("Roger Quadros <rogerq@ti.com>"); MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>"); MODULE_AUTHOR("Diogo Ivo <diogo.ivo@siemens.com>"); MODULE_DESCRIPTION(PRUETH_MODULE_DESCRIPTION); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1