Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexander Aring | 2794 | 50.44% | 14 | 32.56% |
Josef Filzmaier | 1229 | 22.19% | 1 | 2.33% |
Stefan Schmidt | 1139 | 20.56% | 20 | 46.51% |
Pavel Skripkin | 341 | 6.16% | 2 | 4.65% |
Alexander Smirnov | 27 | 0.49% | 1 | 2.33% |
Miquel Raynal | 3 | 0.05% | 1 | 2.33% |
Colin Ian King | 2 | 0.04% | 1 | 2.33% |
Thomas Gleixner | 2 | 0.04% | 1 | 2.33% |
Jia-Ju Bai | 1 | 0.02% | 1 | 2.33% |
Bhumika Goyal | 1 | 0.02% | 1 | 2.33% |
Total | 5539 | 43 |
// SPDX-License-Identifier: GPL-2.0-only /* * atusb.c - Driver for the ATUSB IEEE 802.15.4 dongle * * Written 2013 by Werner Almesberger <werner@almesberger.net> * * Copyright (c) 2015 - 2016 Stefan Schmidt <stefan@datenfreihafen.org> * * Based on at86rf230.c and spi_atusb.c. * at86rf230.c is * Copyright (C) 2009 Siemens AG * Written by: Dmitry Eremin-Solenikov <dmitry.baryshkov@siemens.com> * * spi_atusb.c is * Copyright (c) 2011 Richard Sharpe <realrichardsharpe@gmail.com> * Copyright (c) 2011 Stefan Schmidt <stefan@datenfreihafen.org> * Copyright (c) 2011 Werner Almesberger <werner@almesberger.net> * * USB initialization is * Copyright (c) 2013 Alexander Aring <alex.aring@gmail.com> * * Busware HUL support is * Copyright (c) 2017 Josef Filzmaier <j.filzmaier@gmx.at> */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/jiffies.h> #include <linux/usb.h> #include <linux/skbuff.h> #include <net/cfg802154.h> #include <net/mac802154.h> #include "at86rf230.h" #include "atusb.h" #define ATUSB_JEDEC_ATMEL 0x1f /* JEDEC manufacturer ID */ #define ATUSB_NUM_RX_URBS 4 /* allow for a bit of local latency */ #define ATUSB_ALLOC_DELAY_MS 100 /* delay after failed allocation */ #define ATUSB_TX_TIMEOUT_MS 200 /* on the air timeout */ struct atusb { struct ieee802154_hw *hw; struct usb_device *usb_dev; struct atusb_chip_data *data; int shutdown; /* non-zero if shutting down */ int err; /* set by first error */ /* RX variables */ struct delayed_work work; /* memory allocations */ struct usb_anchor idle_urbs; /* URBs waiting to be submitted */ struct usb_anchor rx_urbs; /* URBs waiting for reception */ /* TX variables */ struct usb_ctrlrequest tx_dr; struct urb *tx_urb; struct sk_buff *tx_skb; u8 tx_ack_seq; /* current TX ACK sequence number */ /* Firmware variable */ unsigned char fw_ver_maj; /* Firmware major version number */ unsigned char fw_ver_min; /* Firmware minor version number */ unsigned char fw_hw_type; /* Firmware hardware type */ }; struct atusb_chip_data { u16 t_channel_switch; int rssi_base_val; int (*set_channel)(struct ieee802154_hw*, u8, u8); int (*set_txpower)(struct ieee802154_hw*, s32); }; static int atusb_write_subreg(struct atusb *atusb, u8 reg, u8 mask, u8 shift, u8 value) { struct usb_device *usb_dev = atusb->usb_dev; u8 orig, tmp; int ret = 0; dev_dbg(&usb_dev->dev, "%s: 0x%02x <- 0x%02x\n", __func__, reg, value); ret = usb_control_msg_recv(usb_dev, 0, ATUSB_REG_READ, ATUSB_REQ_FROM_DEV, 0, reg, &orig, 1, 1000, GFP_KERNEL); if (ret < 0) return ret; /* Write the value only into that part of the register which is allowed * by the mask. All other bits stay as before. */ tmp = orig & ~mask; tmp |= (value << shift) & mask; if (tmp != orig) ret = usb_control_msg_send(usb_dev, 0, ATUSB_REG_WRITE, ATUSB_REQ_TO_DEV, tmp, reg, NULL, 0, 1000, GFP_KERNEL); return ret; } static int atusb_read_subreg(struct atusb *lp, unsigned int addr, unsigned int mask, unsigned int shift) { int reg, ret; ret = usb_control_msg_recv(lp->usb_dev, 0, ATUSB_REG_READ, ATUSB_REQ_FROM_DEV, 0, addr, ®, 1, 1000, GFP_KERNEL); if (ret < 0) return ret; reg = (reg & mask) >> shift; return reg; } static int atusb_get_and_clear_error(struct atusb *atusb) { int err = atusb->err; atusb->err = 0; return err; } /* ----- skb allocation ---------------------------------------------------- */ #define MAX_PSDU 127 #define MAX_RX_XFER (1 + MAX_PSDU + 2 + 1) /* PHR+PSDU+CRC+LQI */ #define SKB_ATUSB(skb) (*(struct atusb **)(skb)->cb) static void atusb_in(struct urb *urb); static int atusb_submit_rx_urb(struct atusb *atusb, struct urb *urb) { struct usb_device *usb_dev = atusb->usb_dev; struct sk_buff *skb = urb->context; int ret; if (!skb) { skb = alloc_skb(MAX_RX_XFER, GFP_KERNEL); if (!skb) { dev_warn_ratelimited(&usb_dev->dev, "atusb_in: can't allocate skb\n"); return -ENOMEM; } skb_put(skb, MAX_RX_XFER); SKB_ATUSB(skb) = atusb; } usb_fill_bulk_urb(urb, usb_dev, usb_rcvbulkpipe(usb_dev, 1), skb->data, MAX_RX_XFER, atusb_in, skb); usb_anchor_urb(urb, &atusb->rx_urbs); ret = usb_submit_urb(urb, GFP_KERNEL); if (ret) { usb_unanchor_urb(urb); kfree_skb(skb); urb->context = NULL; } return ret; } static void atusb_work_urbs(struct work_struct *work) { struct atusb *atusb = container_of(to_delayed_work(work), struct atusb, work); struct usb_device *usb_dev = atusb->usb_dev; struct urb *urb; int ret; if (atusb->shutdown) return; do { urb = usb_get_from_anchor(&atusb->idle_urbs); if (!urb) return; ret = atusb_submit_rx_urb(atusb, urb); } while (!ret); usb_anchor_urb(urb, &atusb->idle_urbs); dev_warn_ratelimited(&usb_dev->dev, "atusb_in: can't allocate/submit URB (%d)\n", ret); schedule_delayed_work(&atusb->work, msecs_to_jiffies(ATUSB_ALLOC_DELAY_MS) + 1); } /* ----- Asynchronous USB -------------------------------------------------- */ static void atusb_tx_done(struct atusb *atusb, u8 seq, int reason) { struct usb_device *usb_dev = atusb->usb_dev; u8 expect = atusb->tx_ack_seq; dev_dbg(&usb_dev->dev, "%s (0x%02x/0x%02x)\n", __func__, seq, expect); if (seq == expect) { /* TODO check for ifs handling in firmware */ if (reason == IEEE802154_SUCCESS) ieee802154_xmit_complete(atusb->hw, atusb->tx_skb, false); else ieee802154_xmit_error(atusb->hw, atusb->tx_skb, reason); } else { /* TODO I experience this case when atusb has a tx complete * irq before probing, we should fix the firmware it's an * unlikely case now that seq == expect is then true, but can * happen and fail with a tx_skb = NULL; */ ieee802154_xmit_hw_error(atusb->hw, atusb->tx_skb); } } static void atusb_in_good(struct urb *urb) { struct usb_device *usb_dev = urb->dev; struct sk_buff *skb = urb->context; struct atusb *atusb = SKB_ATUSB(skb); int result = IEEE802154_SUCCESS; u8 len, lqi, trac; if (!urb->actual_length) { dev_dbg(&usb_dev->dev, "atusb_in: zero-sized URB ?\n"); return; } len = *skb->data; switch (urb->actual_length) { case 2: trac = TRAC_MASK(*(skb->data + 1)); switch (trac) { case TRAC_SUCCESS: case TRAC_SUCCESS_DATA_PENDING: /* already IEEE802154_SUCCESS */ break; case TRAC_CHANNEL_ACCESS_FAILURE: result = IEEE802154_CHANNEL_ACCESS_FAILURE; break; case TRAC_NO_ACK: result = IEEE802154_NO_ACK; break; default: result = IEEE802154_SYSTEM_ERROR; } fallthrough; case 1: atusb_tx_done(atusb, len, result); return; } if (len + 1 > urb->actual_length - 1) { dev_dbg(&usb_dev->dev, "atusb_in: frame len %d+1 > URB %u-1\n", len, urb->actual_length); return; } if (!ieee802154_is_valid_psdu_len(len)) { dev_dbg(&usb_dev->dev, "atusb_in: frame corrupted\n"); return; } lqi = skb->data[len + 1]; dev_dbg(&usb_dev->dev, "atusb_in: rx len %d lqi 0x%02x\n", len, lqi); skb_pull(skb, 1); /* remove PHR */ skb_trim(skb, len); /* get payload only */ ieee802154_rx_irqsafe(atusb->hw, skb, lqi); urb->context = NULL; /* skb is gone */ } static void atusb_in(struct urb *urb) { struct usb_device *usb_dev = urb->dev; struct sk_buff *skb = urb->context; struct atusb *atusb = SKB_ATUSB(skb); dev_dbg(&usb_dev->dev, "%s: status %d len %d\n", __func__, urb->status, urb->actual_length); if (urb->status) { if (urb->status == -ENOENT) { /* being killed */ kfree_skb(skb); urb->context = NULL; return; } dev_dbg(&usb_dev->dev, "%s: URB error %d\n", __func__, urb->status); } else { atusb_in_good(urb); } usb_anchor_urb(urb, &atusb->idle_urbs); if (!atusb->shutdown) schedule_delayed_work(&atusb->work, 0); } /* ----- URB allocation/deallocation --------------------------------------- */ static void atusb_free_urbs(struct atusb *atusb) { struct urb *urb; while (1) { urb = usb_get_from_anchor(&atusb->idle_urbs); if (!urb) break; kfree_skb(urb->context); usb_free_urb(urb); } } static int atusb_alloc_urbs(struct atusb *atusb, int n) { struct urb *urb; while (n) { urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { atusb_free_urbs(atusb); return -ENOMEM; } usb_anchor_urb(urb, &atusb->idle_urbs); usb_free_urb(urb); n--; } return 0; } /* ----- IEEE 802.15.4 interface operations -------------------------------- */ static void atusb_xmit_complete(struct urb *urb) { dev_dbg(&urb->dev->dev, "atusb_xmit urb completed"); } static int atusb_xmit(struct ieee802154_hw *hw, struct sk_buff *skb) { struct atusb *atusb = hw->priv; struct usb_device *usb_dev = atusb->usb_dev; int ret; dev_dbg(&usb_dev->dev, "%s (%d)\n", __func__, skb->len); atusb->tx_skb = skb; atusb->tx_ack_seq++; atusb->tx_dr.wIndex = cpu_to_le16(atusb->tx_ack_seq); atusb->tx_dr.wLength = cpu_to_le16(skb->len); usb_fill_control_urb(atusb->tx_urb, usb_dev, usb_sndctrlpipe(usb_dev, 0), (unsigned char *)&atusb->tx_dr, skb->data, skb->len, atusb_xmit_complete, NULL); ret = usb_submit_urb(atusb->tx_urb, GFP_ATOMIC); dev_dbg(&usb_dev->dev, "%s done (%d)\n", __func__, ret); return ret; } static int atusb_ed(struct ieee802154_hw *hw, u8 *level) { WARN_ON(!level); *level = 0xbe; return 0; } static int atusb_set_hw_addr_filt(struct ieee802154_hw *hw, struct ieee802154_hw_addr_filt *filt, unsigned long changed) { struct atusb *atusb = hw->priv; struct device *dev = &atusb->usb_dev->dev; if (changed & IEEE802154_AFILT_SADDR_CHANGED) { u16 addr = le16_to_cpu(filt->short_addr); dev_vdbg(dev, "%s called for saddr\n", __func__); usb_control_msg_send(atusb->usb_dev, 0, ATUSB_REG_WRITE, ATUSB_REQ_TO_DEV, addr, RG_SHORT_ADDR_0, NULL, 0, 1000, GFP_KERNEL); usb_control_msg_send(atusb->usb_dev, 0, ATUSB_REG_WRITE, ATUSB_REQ_TO_DEV, addr >> 8, RG_SHORT_ADDR_1, NULL, 0, 1000, GFP_KERNEL); } if (changed & IEEE802154_AFILT_PANID_CHANGED) { u16 pan = le16_to_cpu(filt->pan_id); dev_vdbg(dev, "%s called for pan id\n", __func__); usb_control_msg_send(atusb->usb_dev, 0, ATUSB_REG_WRITE, ATUSB_REQ_TO_DEV, pan, RG_PAN_ID_0, NULL, 0, 1000, GFP_KERNEL); usb_control_msg_send(atusb->usb_dev, 0, ATUSB_REG_WRITE, ATUSB_REQ_TO_DEV, pan >> 8, RG_PAN_ID_1, NULL, 0, 1000, GFP_KERNEL); } if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { u8 i, addr[IEEE802154_EXTENDED_ADDR_LEN]; memcpy(addr, &filt->ieee_addr, IEEE802154_EXTENDED_ADDR_LEN); dev_vdbg(dev, "%s called for IEEE addr\n", __func__); for (i = 0; i < 8; i++) usb_control_msg_send(atusb->usb_dev, 0, ATUSB_REG_WRITE, ATUSB_REQ_TO_DEV, addr[i], RG_IEEE_ADDR_0 + i, NULL, 0, 1000, GFP_KERNEL); } if (changed & IEEE802154_AFILT_PANC_CHANGED) { dev_vdbg(dev, "%s called for panc change\n", __func__); if (filt->pan_coord) atusb_write_subreg(atusb, SR_AACK_I_AM_COORD, 1); else atusb_write_subreg(atusb, SR_AACK_I_AM_COORD, 0); } return atusb_get_and_clear_error(atusb); } static int atusb_start(struct ieee802154_hw *hw) { struct atusb *atusb = hw->priv; struct usb_device *usb_dev = atusb->usb_dev; int ret; dev_dbg(&usb_dev->dev, "%s\n", __func__); schedule_delayed_work(&atusb->work, 0); usb_control_msg_send(atusb->usb_dev, 0, ATUSB_RX_MODE, ATUSB_REQ_TO_DEV, 1, 0, NULL, 0, 1000, GFP_KERNEL); ret = atusb_get_and_clear_error(atusb); if (ret < 0) usb_kill_anchored_urbs(&atusb->idle_urbs); return ret; } static void atusb_stop(struct ieee802154_hw *hw) { struct atusb *atusb = hw->priv; struct usb_device *usb_dev = atusb->usb_dev; dev_dbg(&usb_dev->dev, "%s\n", __func__); usb_kill_anchored_urbs(&atusb->idle_urbs); usb_control_msg_send(atusb->usb_dev, 0, ATUSB_RX_MODE, ATUSB_REQ_TO_DEV, 0, 0, NULL, 0, 1000, GFP_KERNEL); atusb_get_and_clear_error(atusb); } #define ATUSB_MAX_TX_POWERS 0xF static const s32 atusb_powers[ATUSB_MAX_TX_POWERS + 1] = { 300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700, -900, -1200, -1700, }; static int atusb_txpower(struct ieee802154_hw *hw, s32 mbm) { struct atusb *atusb = hw->priv; if (atusb->data) return atusb->data->set_txpower(hw, mbm); else return -ENOTSUPP; } static int atusb_set_txpower(struct ieee802154_hw *hw, s32 mbm) { struct atusb *atusb = hw->priv; u32 i; for (i = 0; i < hw->phy->supported.tx_powers_size; i++) { if (hw->phy->supported.tx_powers[i] == mbm) return atusb_write_subreg(atusb, SR_TX_PWR_23X, i); } return -EINVAL; } static int hulusb_set_txpower(struct ieee802154_hw *hw, s32 mbm) { u32 i; for (i = 0; i < hw->phy->supported.tx_powers_size; i++) { if (hw->phy->supported.tx_powers[i] == mbm) return atusb_write_subreg(hw->priv, SR_TX_PWR_212, i); } return -EINVAL; } #define ATUSB_MAX_ED_LEVELS 0xF static const s32 atusb_ed_levels[ATUSB_MAX_ED_LEVELS + 1] = { -9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300, -7100, -6900, -6700, -6500, -6300, -6100, }; #define AT86RF212_MAX_TX_POWERS 0x1F static const s32 at86rf212_powers[AT86RF212_MAX_TX_POWERS + 1] = { 500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700, -800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700, -1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600, }; #define AT86RF2XX_MAX_ED_LEVELS 0xF static const s32 at86rf212_ed_levels_100[AT86RF2XX_MAX_ED_LEVELS + 1] = { -10000, -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, -7800, -7600, -7400, -7200, -7000, }; static const s32 at86rf212_ed_levels_98[AT86RF2XX_MAX_ED_LEVELS + 1] = { -9800, -9600, -9400, -9200, -9000, -8800, -8600, -8400, -8200, -8000, -7800, -7600, -7400, -7200, -7000, -6800, }; static int atusb_set_cca_mode(struct ieee802154_hw *hw, const struct wpan_phy_cca *cca) { struct atusb *atusb = hw->priv; u8 val; /* mapping 802.15.4 to driver spec */ switch (cca->mode) { case NL802154_CCA_ENERGY: val = 1; break; case NL802154_CCA_CARRIER: val = 2; break; case NL802154_CCA_ENERGY_CARRIER: switch (cca->opt) { case NL802154_CCA_OPT_ENERGY_CARRIER_AND: val = 3; break; case NL802154_CCA_OPT_ENERGY_CARRIER_OR: val = 0; break; default: return -EINVAL; } break; default: return -EINVAL; } return atusb_write_subreg(atusb, SR_CCA_MODE, val); } static int hulusb_set_cca_ed_level(struct atusb *lp, int rssi_base_val) { int cca_ed_thres; cca_ed_thres = atusb_read_subreg(lp, SR_CCA_ED_THRES); if (cca_ed_thres < 0) return cca_ed_thres; switch (rssi_base_val) { case -98: lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_98; lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_98); lp->hw->phy->cca_ed_level = at86rf212_ed_levels_98[cca_ed_thres]; break; case -100: lp->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100; lp->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100); lp->hw->phy->cca_ed_level = at86rf212_ed_levels_100[cca_ed_thres]; break; default: WARN_ON(1); } return 0; } static int atusb_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm) { struct atusb *atusb = hw->priv; u32 i; for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) { if (hw->phy->supported.cca_ed_levels[i] == mbm) return atusb_write_subreg(atusb, SR_CCA_ED_THRES, i); } return -EINVAL; } static int atusb_channel(struct ieee802154_hw *hw, u8 page, u8 channel) { struct atusb *atusb = hw->priv; int ret = -ENOTSUPP; if (atusb->data) { ret = atusb->data->set_channel(hw, page, channel); /* @@@ ugly synchronization */ msleep(atusb->data->t_channel_switch); } return ret; } static int atusb_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel) { struct atusb *atusb = hw->priv; int ret; ret = atusb_write_subreg(atusb, SR_CHANNEL, channel); if (ret < 0) return ret; return 0; } static int hulusb_set_channel(struct ieee802154_hw *hw, u8 page, u8 channel) { int rc; int rssi_base_val; struct atusb *lp = hw->priv; if (channel == 0) rc = atusb_write_subreg(lp, SR_SUB_MODE, 0); else rc = atusb_write_subreg(lp, SR_SUB_MODE, 1); if (rc < 0) return rc; if (page == 0) { rc = atusb_write_subreg(lp, SR_BPSK_QPSK, 0); rssi_base_val = -100; } else { rc = atusb_write_subreg(lp, SR_BPSK_QPSK, 1); rssi_base_val = -98; } if (rc < 0) return rc; rc = hulusb_set_cca_ed_level(lp, rssi_base_val); if (rc < 0) return rc; return atusb_write_subreg(lp, SR_CHANNEL, channel); } static int atusb_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be, u8 retries) { struct atusb *atusb = hw->priv; int ret; ret = atusb_write_subreg(atusb, SR_MIN_BE, min_be); if (ret) return ret; ret = atusb_write_subreg(atusb, SR_MAX_BE, max_be); if (ret) return ret; return atusb_write_subreg(atusb, SR_MAX_CSMA_RETRIES, retries); } static int hulusb_set_lbt(struct ieee802154_hw *hw, bool on) { struct atusb *atusb = hw->priv; return atusb_write_subreg(atusb, SR_CSMA_LBT_MODE, on); } static int atusb_set_frame_retries(struct ieee802154_hw *hw, s8 retries) { struct atusb *atusb = hw->priv; return atusb_write_subreg(atusb, SR_MAX_FRAME_RETRIES, retries); } static int atusb_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on) { struct atusb *atusb = hw->priv; int ret; if (on) { ret = atusb_write_subreg(atusb, SR_AACK_DIS_ACK, 1); if (ret < 0) return ret; ret = atusb_write_subreg(atusb, SR_AACK_PROM_MODE, 1); if (ret < 0) return ret; } else { ret = atusb_write_subreg(atusb, SR_AACK_PROM_MODE, 0); if (ret < 0) return ret; ret = atusb_write_subreg(atusb, SR_AACK_DIS_ACK, 0); if (ret < 0) return ret; } return 0; } static struct atusb_chip_data atusb_chip_data = { .t_channel_switch = 1, .rssi_base_val = -91, .set_txpower = atusb_set_txpower, .set_channel = atusb_set_channel, }; static struct atusb_chip_data hulusb_chip_data = { .t_channel_switch = 11, .rssi_base_val = -100, .set_txpower = hulusb_set_txpower, .set_channel = hulusb_set_channel, }; static const struct ieee802154_ops atusb_ops = { .owner = THIS_MODULE, .xmit_async = atusb_xmit, .ed = atusb_ed, .set_channel = atusb_channel, .start = atusb_start, .stop = atusb_stop, .set_hw_addr_filt = atusb_set_hw_addr_filt, .set_txpower = atusb_txpower, .set_lbt = hulusb_set_lbt, .set_cca_mode = atusb_set_cca_mode, .set_cca_ed_level = atusb_set_cca_ed_level, .set_csma_params = atusb_set_csma_params, .set_frame_retries = atusb_set_frame_retries, .set_promiscuous_mode = atusb_set_promiscuous_mode, }; /* ----- Firmware and chip version information ----------------------------- */ static int atusb_get_and_show_revision(struct atusb *atusb) { struct usb_device *usb_dev = atusb->usb_dev; char *hw_name; unsigned char buffer[3]; int ret; /* Get a couple of the ATMega Firmware values */ ret = usb_control_msg_recv(atusb->usb_dev, 0, ATUSB_ID, ATUSB_REQ_FROM_DEV, 0, 0, buffer, 3, 1000, GFP_KERNEL); if (!ret) { atusb->fw_ver_maj = buffer[0]; atusb->fw_ver_min = buffer[1]; atusb->fw_hw_type = buffer[2]; switch (atusb->fw_hw_type) { case ATUSB_HW_TYPE_100813: case ATUSB_HW_TYPE_101216: case ATUSB_HW_TYPE_110131: hw_name = "ATUSB"; atusb->data = &atusb_chip_data; break; case ATUSB_HW_TYPE_RZUSB: hw_name = "RZUSB"; atusb->data = &atusb_chip_data; break; case ATUSB_HW_TYPE_HULUSB: hw_name = "HULUSB"; atusb->data = &hulusb_chip_data; break; default: hw_name = "UNKNOWN"; atusb->err = -ENOTSUPP; ret = -ENOTSUPP; break; } dev_info(&usb_dev->dev, "Firmware: major: %u, minor: %u, hardware type: %s (%d)\n", atusb->fw_ver_maj, atusb->fw_ver_min, hw_name, atusb->fw_hw_type); } if (atusb->fw_ver_maj == 0 && atusb->fw_ver_min < 2) { dev_info(&usb_dev->dev, "Firmware version (%u.%u) predates our first public release.", atusb->fw_ver_maj, atusb->fw_ver_min); dev_info(&usb_dev->dev, "Please update to version 0.2 or newer"); } return ret; } static int atusb_get_and_show_build(struct atusb *atusb) { struct usb_device *usb_dev = atusb->usb_dev; char *build; int ret; build = kmalloc(ATUSB_BUILD_SIZE + 1, GFP_KERNEL); if (!build) return -ENOMEM; ret = usb_control_msg(atusb->usb_dev, usb_rcvctrlpipe(usb_dev, 0), ATUSB_BUILD, ATUSB_REQ_FROM_DEV, 0, 0, build, ATUSB_BUILD_SIZE, 1000); if (ret >= 0) { build[ret] = 0; dev_info(&usb_dev->dev, "Firmware: build %s\n", build); } kfree(build); return ret; } static int atusb_get_and_conf_chip(struct atusb *atusb) { struct usb_device *usb_dev = atusb->usb_dev; u8 man_id_0, man_id_1, part_num, version_num; const char *chip; struct ieee802154_hw *hw = atusb->hw; int ret; ret = usb_control_msg_recv(usb_dev, 0, ATUSB_REG_READ, ATUSB_REQ_FROM_DEV, 0, RG_MAN_ID_0, &man_id_0, 1, 1000, GFP_KERNEL); if (ret < 0) return ret; ret = usb_control_msg_recv(usb_dev, 0, ATUSB_REG_READ, ATUSB_REQ_FROM_DEV, 0, RG_MAN_ID_1, &man_id_1, 1, 1000, GFP_KERNEL); if (ret < 0) return ret; ret = usb_control_msg_recv(usb_dev, 0, ATUSB_REG_READ, ATUSB_REQ_FROM_DEV, 0, RG_PART_NUM, &part_num, 1, 1000, GFP_KERNEL); if (ret < 0) return ret; ret = usb_control_msg_recv(usb_dev, 0, ATUSB_REG_READ, ATUSB_REQ_FROM_DEV, 0, RG_VERSION_NUM, &version_num, 1, 1000, GFP_KERNEL); if (ret < 0) return ret; hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT | IEEE802154_HW_PROMISCUOUS | IEEE802154_HW_CSMA_PARAMS; hw->phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL | WPAN_PHY_FLAG_CCA_MODE; hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) | BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER); hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) | BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR); hw->phy->cca.mode = NL802154_CCA_ENERGY; hw->phy->current_page = 0; if ((man_id_1 << 8 | man_id_0) != ATUSB_JEDEC_ATMEL) { dev_err(&usb_dev->dev, "non-Atmel transceiver xxxx%02x%02x\n", man_id_1, man_id_0); goto fail; } switch (part_num) { case 2: chip = "AT86RF230"; atusb->hw->phy->supported.channels[0] = 0x7FFF800; atusb->hw->phy->current_channel = 11; /* reset default */ atusb->hw->phy->supported.tx_powers = atusb_powers; atusb->hw->phy->supported.tx_powers_size = ARRAY_SIZE(atusb_powers); hw->phy->supported.cca_ed_levels = atusb_ed_levels; hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(atusb_ed_levels); break; case 3: chip = "AT86RF231"; atusb->hw->phy->supported.channels[0] = 0x7FFF800; atusb->hw->phy->current_channel = 11; /* reset default */ atusb->hw->phy->supported.tx_powers = atusb_powers; atusb->hw->phy->supported.tx_powers_size = ARRAY_SIZE(atusb_powers); hw->phy->supported.cca_ed_levels = atusb_ed_levels; hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(atusb_ed_levels); break; case 7: chip = "AT86RF212"; atusb->hw->flags |= IEEE802154_HW_LBT; atusb->hw->phy->supported.channels[0] = 0x00007FF; atusb->hw->phy->supported.channels[2] = 0x00007FF; atusb->hw->phy->current_channel = 5; atusb->hw->phy->supported.lbt = NL802154_SUPPORTED_BOOL_BOTH; atusb->hw->phy->supported.tx_powers = at86rf212_powers; atusb->hw->phy->supported.tx_powers_size = ARRAY_SIZE(at86rf212_powers); atusb->hw->phy->supported.cca_ed_levels = at86rf212_ed_levels_100; atusb->hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(at86rf212_ed_levels_100); break; default: dev_err(&usb_dev->dev, "unexpected transceiver, part 0x%02x version 0x%02x\n", part_num, version_num); goto fail; } hw->phy->transmit_power = hw->phy->supported.tx_powers[0]; hw->phy->cca_ed_level = hw->phy->supported.cca_ed_levels[7]; dev_info(&usb_dev->dev, "ATUSB: %s version %d\n", chip, version_num); return 0; fail: atusb->err = -ENODEV; return -ENODEV; } static int atusb_set_extended_addr(struct atusb *atusb) { struct usb_device *usb_dev = atusb->usb_dev; unsigned char buffer[IEEE802154_EXTENDED_ADDR_LEN]; __le64 extended_addr; u64 addr; int ret; /* Firmware versions before 0.3 do not support the EUI64_READ command. * Just use a random address and be done. */ if (atusb->fw_ver_maj == 0 && atusb->fw_ver_min < 3) { ieee802154_random_extended_addr(&atusb->hw->phy->perm_extended_addr); return 0; } /* Firmware is new enough so we fetch the address from EEPROM */ ret = usb_control_msg_recv(atusb->usb_dev, 0, ATUSB_EUI64_READ, ATUSB_REQ_FROM_DEV, 0, 0, buffer, IEEE802154_EXTENDED_ADDR_LEN, 1000, GFP_KERNEL); if (ret < 0) { dev_err(&usb_dev->dev, "failed to fetch extended address, random address set\n"); ieee802154_random_extended_addr(&atusb->hw->phy->perm_extended_addr); return ret; } memcpy(&extended_addr, buffer, IEEE802154_EXTENDED_ADDR_LEN); /* Check if read address is not empty and the unicast bit is set correctly */ if (!ieee802154_is_valid_extended_unicast_addr(extended_addr)) { dev_info(&usb_dev->dev, "no permanent extended address found, random address set\n"); ieee802154_random_extended_addr(&atusb->hw->phy->perm_extended_addr); } else { atusb->hw->phy->perm_extended_addr = extended_addr; addr = swab64((__force u64)atusb->hw->phy->perm_extended_addr); dev_info(&usb_dev->dev, "Read permanent extended address %8phC from device\n", &addr); } return ret; } /* ----- Setup ------------------------------------------------------------- */ static int atusb_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *usb_dev = interface_to_usbdev(interface); struct ieee802154_hw *hw; struct atusb *atusb = NULL; int ret = -ENOMEM; hw = ieee802154_alloc_hw(sizeof(struct atusb), &atusb_ops); if (!hw) return -ENOMEM; atusb = hw->priv; atusb->hw = hw; atusb->usb_dev = usb_get_dev(usb_dev); usb_set_intfdata(interface, atusb); atusb->shutdown = 0; atusb->err = 0; INIT_DELAYED_WORK(&atusb->work, atusb_work_urbs); init_usb_anchor(&atusb->idle_urbs); init_usb_anchor(&atusb->rx_urbs); if (atusb_alloc_urbs(atusb, ATUSB_NUM_RX_URBS)) goto fail; atusb->tx_dr.bRequestType = ATUSB_REQ_TO_DEV; atusb->tx_dr.bRequest = ATUSB_TX; atusb->tx_dr.wValue = cpu_to_le16(0); atusb->tx_urb = usb_alloc_urb(0, GFP_KERNEL); if (!atusb->tx_urb) goto fail; hw->parent = &usb_dev->dev; usb_control_msg_send(atusb->usb_dev, 0, ATUSB_RF_RESET, ATUSB_REQ_TO_DEV, 0, 0, NULL, 0, 1000, GFP_KERNEL); atusb_get_and_conf_chip(atusb); atusb_get_and_show_revision(atusb); atusb_get_and_show_build(atusb); atusb_set_extended_addr(atusb); if ((atusb->fw_ver_maj == 0 && atusb->fw_ver_min >= 3) || atusb->fw_ver_maj > 0) hw->flags |= IEEE802154_HW_FRAME_RETRIES; ret = atusb_get_and_clear_error(atusb); if (ret) { dev_err(&atusb->usb_dev->dev, "%s: initialization failed, error = %d\n", __func__, ret); goto fail; } ret = ieee802154_register_hw(hw); if (ret) goto fail; /* If we just powered on, we're now in P_ON and need to enter TRX_OFF * explicitly. Any resets after that will send us straight to TRX_OFF, * making the command below redundant. */ usb_control_msg_send(atusb->usb_dev, 0, ATUSB_REG_WRITE, ATUSB_REQ_TO_DEV, STATE_FORCE_TRX_OFF, RG_TRX_STATE, NULL, 0, 1000, GFP_KERNEL); msleep(1); /* reset => TRX_OFF, tTR13 = 37 us */ #if 0 /* Calculating the maximum time available to empty the frame buffer * on reception: * * According to [1], the inter-frame gap is * R * 20 * 16 us + 128 us * where R is a random number from 0 to 7. Furthermore, we have 20 bit * times (80 us at 250 kbps) of SHR of the next frame before the * transceiver begins storing data in the frame buffer. * * This yields a minimum time of 208 us between the last data of a * frame and the first data of the next frame. This time is further * reduced by interrupt latency in the atusb firmware. * * atusb currently needs about 500 us to retrieve a maximum-sized * frame. We therefore have to allow reception of a new frame to begin * while we retrieve the previous frame. * * [1] "JN-AN-1035 Calculating data rates in an IEEE 802.15.4-based * network", Jennic 2006. * http://www.jennic.com/download_file.php?supportFile=JN-AN-1035%20Calculating%20802-15-4%20Data%20Rates-1v0.pdf */ atusb_write_subreg(atusb, SR_RX_SAFE_MODE, 1); #endif usb_control_msg_send(atusb->usb_dev, 0, ATUSB_REG_WRITE, ATUSB_REQ_TO_DEV, 0xff, RG_IRQ_MASK, NULL, 0, 1000, GFP_KERNEL); ret = atusb_get_and_clear_error(atusb); if (!ret) return 0; dev_err(&atusb->usb_dev->dev, "%s: setup failed, error = %d\n", __func__, ret); ieee802154_unregister_hw(hw); fail: atusb_free_urbs(atusb); usb_kill_urb(atusb->tx_urb); usb_free_urb(atusb->tx_urb); usb_put_dev(usb_dev); ieee802154_free_hw(hw); return ret; } static void atusb_disconnect(struct usb_interface *interface) { struct atusb *atusb = usb_get_intfdata(interface); dev_dbg(&atusb->usb_dev->dev, "%s\n", __func__); atusb->shutdown = 1; cancel_delayed_work_sync(&atusb->work); usb_kill_anchored_urbs(&atusb->rx_urbs); atusb_free_urbs(atusb); usb_kill_urb(atusb->tx_urb); usb_free_urb(atusb->tx_urb); ieee802154_unregister_hw(atusb->hw); usb_put_dev(atusb->usb_dev); ieee802154_free_hw(atusb->hw); usb_set_intfdata(interface, NULL); pr_debug("%s done\n", __func__); } /* The devices we work with */ static const struct usb_device_id atusb_device_table[] = { { .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_INFO, .idVendor = ATUSB_VENDOR_ID, .idProduct = ATUSB_PRODUCT_ID, .bInterfaceClass = USB_CLASS_VENDOR_SPEC }, /* end with null element */ {} }; MODULE_DEVICE_TABLE(usb, atusb_device_table); static struct usb_driver atusb_driver = { .name = "atusb", .probe = atusb_probe, .disconnect = atusb_disconnect, .id_table = atusb_device_table, }; module_usb_driver(atusb_driver); MODULE_AUTHOR("Alexander Aring <alex.aring@gmail.com>"); MODULE_AUTHOR("Richard Sharpe <realrichardsharpe@gmail.com>"); MODULE_AUTHOR("Stefan Schmidt <stefan@datenfreihafen.org>"); MODULE_AUTHOR("Werner Almesberger <werner@almesberger.net>"); MODULE_AUTHOR("Josef Filzmaier <j.filzmaier@gmx.at>"); MODULE_DESCRIPTION("ATUSB IEEE 802.15.4 Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1