Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Braun | 2444 | 28.08% | 1 | 0.43% |
Patrick McHardy | 1606 | 18.45% | 6 | 2.55% |
Herbert Xu | 773 | 8.88% | 12 | 5.11% |
Arnd Bergmann | 554 | 6.36% | 4 | 1.70% |
Vlad Yasevich | 425 | 4.88% | 14 | 5.96% |
Eric Dumazet | 397 | 4.56% | 29 | 12.34% |
John Fastabend | 299 | 3.43% | 4 | 1.70% |
Eric W. Biedermann | 243 | 2.79% | 6 | 2.55% |
Ding Tianhong | 227 | 2.61% | 3 | 1.28% |
Thomas Karlsson | 170 | 1.95% | 1 | 0.43% |
Stephen Hemminger | 124 | 1.42% | 7 | 2.98% |
Jiri Pirko | 119 | 1.37% | 13 | 5.53% |
Linus Torvalds (pre-git) | 112 | 1.29% | 22 | 9.36% |
Michael S. Tsirkin | 94 | 1.08% | 4 | 1.70% |
Sridhar Samudrala | 86 | 0.99% | 2 | 0.85% |
Hangbin Liu | 84 | 0.96% | 2 | 0.85% |
Alvin Šipraga | 81 | 0.93% | 1 | 0.43% |
David S. Miller | 78 | 0.90% | 9 | 3.83% |
Gao Feng | 75 | 0.86% | 5 | 2.13% |
Alexander Duyck | 73 | 0.84% | 5 | 2.13% |
Nicolas Dichtel | 49 | 0.56% | 3 | 1.28% |
Maxim Georgiev | 46 | 0.53% | 1 | 0.43% |
Jethro Beekman | 41 | 0.47% | 1 | 0.43% |
Américo Wang | 39 | 0.45% | 4 | 1.70% |
Ziyang Xuan | 36 | 0.41% | 2 | 0.85% |
Johannes Berg | 35 | 0.40% | 1 | 0.43% |
Jason Baron | 26 | 0.30% | 2 | 0.85% |
Michal Kubeček | 26 | 0.30% | 2 | 0.85% |
Jarod Wilson | 23 | 0.26% | 1 | 0.43% |
Florian Westphal | 21 | 0.24% | 1 | 0.43% |
Matteo Croce | 19 | 0.22% | 1 | 0.43% |
Christophe Jaillet | 19 | 0.22% | 1 | 0.43% |
Francesco Ruggeri | 17 | 0.20% | 2 | 0.85% |
Alexander Sverdlin | 15 | 0.17% | 1 | 0.43% |
Martin Willi | 14 | 0.16% | 1 | 0.43% |
Mahesh Bandewar | 14 | 0.16% | 3 | 1.28% |
Patrick Mullaney | 14 | 0.16% | 1 | 0.43% |
Chuang Wang | 13 | 0.15% | 2 | 0.85% |
Zhang Shengju | 11 | 0.13% | 3 | 1.28% |
Lin Ma | 11 | 0.13% | 1 | 0.43% |
David Lamparter | 10 | 0.11% | 1 | 0.43% |
Sabrina Dubroca | 10 | 0.11% | 1 | 0.43% |
Jakub Kiciński | 9 | 0.10% | 6 | 2.55% |
Peter Christensen | 9 | 0.10% | 1 | 0.43% |
Vlad Buslov | 8 | 0.09% | 1 | 0.43% |
Nikolay Aleksandrov | 8 | 0.09% | 1 | 0.43% |
Dimitris Michailidis | 8 | 0.09% | 1 | 0.43% |
Kevin Wallace | 6 | 0.07% | 1 | 0.43% |
Zhengchao Shao | 5 | 0.06% | 1 | 0.43% |
Shannon Nelson | 5 | 0.06% | 1 | 0.43% |
Toshiaki Makita | 5 | 0.06% | 1 | 0.43% |
David Decotigny | 5 | 0.06% | 1 | 0.43% |
Petr Machata | 4 | 0.05% | 1 | 0.43% |
Thomas Gleixner | 4 | 0.05% | 2 | 0.85% |
Joe Perches | 4 | 0.05% | 1 | 0.43% |
David Ahern | 4 | 0.05% | 1 | 0.43% |
Linus Torvalds | 3 | 0.03% | 1 | 0.43% |
Sebastian Andrzej Siewior | 3 | 0.03% | 2 | 0.85% |
Wang Chen | 3 | 0.03% | 1 | 0.43% |
Travis Brown | 3 | 0.03% | 1 | 0.43% |
zhangxiangqian | 3 | 0.03% | 1 | 0.43% |
David Ward | 3 | 0.03% | 2 | 0.85% |
Jarek Poplawski | 3 | 0.03% | 1 | 0.43% |
Taehee Yoo | 2 | 0.02% | 1 | 0.43% |
Sainath Grandhi | 2 | 0.02% | 1 | 0.43% |
Julian Wiedmann | 2 | 0.02% | 1 | 0.43% |
sg.tweak@gmail.com | 2 | 0.02% | 1 | 0.43% |
Rusty Russell | 2 | 0.02% | 1 | 0.43% |
Wolfram Sang | 2 | 0.02% | 1 | 0.43% |
Wei Yongjun | 2 | 0.02% | 1 | 0.43% |
Danny Kukawka | 1 | 0.01% | 1 | 0.43% |
Björn Mork | 1 | 0.01% | 1 | 0.43% |
Richard Cochran | 1 | 0.01% | 1 | 0.43% |
Debabrata Banerjee | 1 | 0.01% | 1 | 0.43% |
Franck Bui-Huu | 1 | 0.01% | 1 | 0.43% |
Kory Maincent | 1 | 0.01% | 1 | 0.43% |
Lutz Jaenicke | 1 | 0.01% | 1 | 0.43% |
Zheng Yongjun | 1 | 0.01% | 1 | 0.43% |
Neil Horman | 1 | 0.01% | 1 | 0.43% |
Li RongQing | 1 | 0.01% | 1 | 0.43% |
Lee Jones | 1 | 0.01% | 1 | 0.43% |
Wei Yang | 1 | 0.01% | 1 | 0.43% |
Alexey Kodanev | 1 | 0.01% | 1 | 0.43% |
Total | 8705 | 235 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2007 Patrick McHardy <kaber@trash.net> * * The code this is based on carried the following copyright notice: * --- * (C) Copyright 2001-2006 * Alex Zeffertt, Cambridge Broadband Ltd, ajz@cambridgebroadband.com * Re-worked by Ben Greear <greearb@candelatech.com> * --- */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/module.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/rculist.h> #include <linux/notifier.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/net_tstamp.h> #include <linux/ethtool.h> #include <linux/if_arp.h> #include <linux/if_vlan.h> #include <linux/if_link.h> #include <linux/if_macvlan.h> #include <linux/hash.h> #include <linux/workqueue.h> #include <net/rtnetlink.h> #include <net/xfrm.h> #include <linux/netpoll.h> #include <linux/phy.h> #define MACVLAN_HASH_BITS 8 #define MACVLAN_HASH_SIZE (1<<MACVLAN_HASH_BITS) #define MACVLAN_DEFAULT_BC_QUEUE_LEN 1000 #define MACVLAN_F_PASSTHRU 1 #define MACVLAN_F_ADDRCHANGE 2 struct macvlan_port { struct net_device *dev; struct hlist_head vlan_hash[MACVLAN_HASH_SIZE]; struct list_head vlans; struct sk_buff_head bc_queue; struct work_struct bc_work; u32 bc_queue_len_used; int bc_cutoff; u32 flags; int count; struct hlist_head vlan_source_hash[MACVLAN_HASH_SIZE]; DECLARE_BITMAP(bc_filter, MACVLAN_MC_FILTER_SZ); DECLARE_BITMAP(mc_filter, MACVLAN_MC_FILTER_SZ); unsigned char perm_addr[ETH_ALEN]; }; struct macvlan_source_entry { struct hlist_node hlist; struct macvlan_dev *vlan; unsigned char addr[6+2] __aligned(sizeof(u16)); struct rcu_head rcu; }; struct macvlan_skb_cb { const struct macvlan_dev *src; }; #define MACVLAN_SKB_CB(__skb) ((struct macvlan_skb_cb *)&((__skb)->cb[0])) static void macvlan_port_destroy(struct net_device *dev); static void update_port_bc_queue_len(struct macvlan_port *port); static inline bool macvlan_passthru(const struct macvlan_port *port) { return port->flags & MACVLAN_F_PASSTHRU; } static inline void macvlan_set_passthru(struct macvlan_port *port) { port->flags |= MACVLAN_F_PASSTHRU; } static inline bool macvlan_addr_change(const struct macvlan_port *port) { return port->flags & MACVLAN_F_ADDRCHANGE; } static inline void macvlan_set_addr_change(struct macvlan_port *port) { port->flags |= MACVLAN_F_ADDRCHANGE; } static inline void macvlan_clear_addr_change(struct macvlan_port *port) { port->flags &= ~MACVLAN_F_ADDRCHANGE; } /* Hash Ethernet address */ static u32 macvlan_eth_hash(const unsigned char *addr) { u64 value = get_unaligned((u64 *)addr); /* only want 6 bytes */ #ifdef __BIG_ENDIAN value >>= 16; #else value <<= 16; #endif return hash_64(value, MACVLAN_HASH_BITS); } static struct macvlan_port *macvlan_port_get_rcu(const struct net_device *dev) { return rcu_dereference(dev->rx_handler_data); } static struct macvlan_port *macvlan_port_get_rtnl(const struct net_device *dev) { return rtnl_dereference(dev->rx_handler_data); } static struct macvlan_dev *macvlan_hash_lookup(const struct macvlan_port *port, const unsigned char *addr) { struct macvlan_dev *vlan; u32 idx = macvlan_eth_hash(addr); hlist_for_each_entry_rcu(vlan, &port->vlan_hash[idx], hlist, lockdep_rtnl_is_held()) { if (ether_addr_equal_64bits(vlan->dev->dev_addr, addr)) return vlan; } return NULL; } static struct macvlan_source_entry *macvlan_hash_lookup_source( const struct macvlan_dev *vlan, const unsigned char *addr) { struct macvlan_source_entry *entry; u32 idx = macvlan_eth_hash(addr); struct hlist_head *h = &vlan->port->vlan_source_hash[idx]; hlist_for_each_entry_rcu(entry, h, hlist, lockdep_rtnl_is_held()) { if (ether_addr_equal_64bits(entry->addr, addr) && entry->vlan == vlan) return entry; } return NULL; } static int macvlan_hash_add_source(struct macvlan_dev *vlan, const unsigned char *addr) { struct macvlan_port *port = vlan->port; struct macvlan_source_entry *entry; struct hlist_head *h; entry = macvlan_hash_lookup_source(vlan, addr); if (entry) return 0; entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; ether_addr_copy(entry->addr, addr); entry->vlan = vlan; h = &port->vlan_source_hash[macvlan_eth_hash(addr)]; hlist_add_head_rcu(&entry->hlist, h); vlan->macaddr_count++; return 0; } static void macvlan_hash_add(struct macvlan_dev *vlan) { struct macvlan_port *port = vlan->port; const unsigned char *addr = vlan->dev->dev_addr; u32 idx = macvlan_eth_hash(addr); hlist_add_head_rcu(&vlan->hlist, &port->vlan_hash[idx]); } static void macvlan_hash_del_source(struct macvlan_source_entry *entry) { hlist_del_rcu(&entry->hlist); kfree_rcu(entry, rcu); } static void macvlan_hash_del(struct macvlan_dev *vlan, bool sync) { hlist_del_rcu(&vlan->hlist); if (sync) synchronize_rcu(); } static void macvlan_hash_change_addr(struct macvlan_dev *vlan, const unsigned char *addr) { macvlan_hash_del(vlan, true); /* Now that we are unhashed it is safe to change the device * address without confusing packet delivery. */ eth_hw_addr_set(vlan->dev, addr); macvlan_hash_add(vlan); } static bool macvlan_addr_busy(const struct macvlan_port *port, const unsigned char *addr) { /* Test to see if the specified address is * currently in use by the underlying device or * another macvlan. */ if (!macvlan_passthru(port) && !macvlan_addr_change(port) && ether_addr_equal_64bits(port->dev->dev_addr, addr)) return true; if (macvlan_hash_lookup(port, addr)) return true; return false; } static int macvlan_broadcast_one(struct sk_buff *skb, const struct macvlan_dev *vlan, const struct ethhdr *eth, bool local) { struct net_device *dev = vlan->dev; if (local) return __dev_forward_skb(dev, skb); skb->dev = dev; if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast)) skb->pkt_type = PACKET_BROADCAST; else skb->pkt_type = PACKET_MULTICAST; return 0; } static u32 macvlan_hash_mix(const struct macvlan_dev *vlan) { return (u32)(((unsigned long)vlan) >> L1_CACHE_SHIFT); } static unsigned int mc_hash(const struct macvlan_dev *vlan, const unsigned char *addr) { u32 val = __get_unaligned_cpu32(addr + 2); val ^= macvlan_hash_mix(vlan); return hash_32(val, MACVLAN_MC_FILTER_BITS); } static void macvlan_broadcast(struct sk_buff *skb, const struct macvlan_port *port, struct net_device *src, enum macvlan_mode mode) { const struct ethhdr *eth = eth_hdr(skb); const struct macvlan_dev *vlan; struct sk_buff *nskb; unsigned int i; int err; unsigned int hash; if (skb->protocol == htons(ETH_P_PAUSE)) return; hash_for_each_rcu(port->vlan_hash, i, vlan, hlist) { if (vlan->dev == src || !(vlan->mode & mode)) continue; hash = mc_hash(vlan, eth->h_dest); if (!test_bit(hash, vlan->mc_filter)) continue; err = NET_RX_DROP; nskb = skb_clone(skb, GFP_ATOMIC); if (likely(nskb)) err = macvlan_broadcast_one(nskb, vlan, eth, mode == MACVLAN_MODE_BRIDGE) ?: netif_rx(nskb); macvlan_count_rx(vlan, skb->len + ETH_HLEN, err == NET_RX_SUCCESS, true); } } static void macvlan_multicast_rx(const struct macvlan_port *port, const struct macvlan_dev *src, struct sk_buff *skb) { if (!src) /* frame comes from an external address */ macvlan_broadcast(skb, port, NULL, MACVLAN_MODE_PRIVATE | MACVLAN_MODE_VEPA | MACVLAN_MODE_PASSTHRU| MACVLAN_MODE_BRIDGE); else if (src->mode == MACVLAN_MODE_VEPA) /* flood to everyone except source */ macvlan_broadcast(skb, port, src->dev, MACVLAN_MODE_VEPA | MACVLAN_MODE_BRIDGE); else /* * flood only to VEPA ports, bridge ports * already saw the frame on the way out. */ macvlan_broadcast(skb, port, src->dev, MACVLAN_MODE_VEPA); } static void macvlan_process_broadcast(struct work_struct *w) { struct macvlan_port *port = container_of(w, struct macvlan_port, bc_work); struct sk_buff *skb; struct sk_buff_head list; __skb_queue_head_init(&list); spin_lock_bh(&port->bc_queue.lock); skb_queue_splice_tail_init(&port->bc_queue, &list); spin_unlock_bh(&port->bc_queue.lock); while ((skb = __skb_dequeue(&list))) { const struct macvlan_dev *src = MACVLAN_SKB_CB(skb)->src; rcu_read_lock(); macvlan_multicast_rx(port, src, skb); rcu_read_unlock(); if (src) dev_put(src->dev); consume_skb(skb); cond_resched(); } } static void macvlan_broadcast_enqueue(struct macvlan_port *port, const struct macvlan_dev *src, struct sk_buff *skb) { struct sk_buff *nskb; int err = -ENOMEM; nskb = skb_clone(skb, GFP_ATOMIC); if (!nskb) goto err; MACVLAN_SKB_CB(nskb)->src = src; spin_lock(&port->bc_queue.lock); if (skb_queue_len(&port->bc_queue) < port->bc_queue_len_used) { if (src) dev_hold(src->dev); __skb_queue_tail(&port->bc_queue, nskb); err = 0; } spin_unlock(&port->bc_queue.lock); queue_work(system_unbound_wq, &port->bc_work); if (err) goto free_nskb; return; free_nskb: kfree_skb(nskb); err: dev_core_stats_rx_dropped_inc(skb->dev); } static void macvlan_flush_sources(struct macvlan_port *port, struct macvlan_dev *vlan) { struct macvlan_source_entry *entry; struct hlist_node *next; int i; hash_for_each_safe(port->vlan_source_hash, i, next, entry, hlist) if (entry->vlan == vlan) macvlan_hash_del_source(entry); vlan->macaddr_count = 0; } static void macvlan_forward_source_one(struct sk_buff *skb, struct macvlan_dev *vlan) { struct sk_buff *nskb; struct net_device *dev; int len; int ret; dev = vlan->dev; if (unlikely(!(dev->flags & IFF_UP))) return; nskb = skb_clone(skb, GFP_ATOMIC); if (!nskb) return; len = nskb->len + ETH_HLEN; nskb->dev = dev; if (ether_addr_equal_64bits(eth_hdr(skb)->h_dest, dev->dev_addr)) nskb->pkt_type = PACKET_HOST; ret = __netif_rx(nskb); macvlan_count_rx(vlan, len, ret == NET_RX_SUCCESS, false); } static bool macvlan_forward_source(struct sk_buff *skb, struct macvlan_port *port, const unsigned char *addr) { struct macvlan_source_entry *entry; u32 idx = macvlan_eth_hash(addr); struct hlist_head *h = &port->vlan_source_hash[idx]; bool consume = false; hlist_for_each_entry_rcu(entry, h, hlist) { if (ether_addr_equal_64bits(entry->addr, addr)) { if (entry->vlan->flags & MACVLAN_FLAG_NODST) consume = true; macvlan_forward_source_one(skb, entry->vlan); } } return consume; } /* called under rcu_read_lock() from netif_receive_skb */ static rx_handler_result_t macvlan_handle_frame(struct sk_buff **pskb) { struct macvlan_port *port; struct sk_buff *skb = *pskb; const struct ethhdr *eth = eth_hdr(skb); const struct macvlan_dev *vlan; const struct macvlan_dev *src; struct net_device *dev; unsigned int len = 0; int ret; rx_handler_result_t handle_res; /* Packets from dev_loopback_xmit() do not have L2 header, bail out */ if (unlikely(skb->pkt_type == PACKET_LOOPBACK)) return RX_HANDLER_PASS; port = macvlan_port_get_rcu(skb->dev); if (is_multicast_ether_addr(eth->h_dest)) { unsigned int hash; skb = ip_check_defrag(dev_net(skb->dev), skb, IP_DEFRAG_MACVLAN); if (!skb) return RX_HANDLER_CONSUMED; *pskb = skb; eth = eth_hdr(skb); if (macvlan_forward_source(skb, port, eth->h_source)) { kfree_skb(skb); return RX_HANDLER_CONSUMED; } src = macvlan_hash_lookup(port, eth->h_source); if (src && src->mode != MACVLAN_MODE_VEPA && src->mode != MACVLAN_MODE_BRIDGE) { /* forward to original port. */ vlan = src; ret = macvlan_broadcast_one(skb, vlan, eth, 0) ?: __netif_rx(skb); handle_res = RX_HANDLER_CONSUMED; goto out; } hash = mc_hash(NULL, eth->h_dest); if (test_bit(hash, port->bc_filter)) macvlan_broadcast_enqueue(port, src, skb); else if (test_bit(hash, port->mc_filter)) macvlan_multicast_rx(port, src, skb); return RX_HANDLER_PASS; } if (macvlan_forward_source(skb, port, eth->h_source)) { kfree_skb(skb); return RX_HANDLER_CONSUMED; } if (macvlan_passthru(port)) vlan = list_first_or_null_rcu(&port->vlans, struct macvlan_dev, list); else vlan = macvlan_hash_lookup(port, eth->h_dest); if (!vlan || vlan->mode == MACVLAN_MODE_SOURCE) return RX_HANDLER_PASS; dev = vlan->dev; if (unlikely(!(dev->flags & IFF_UP))) { kfree_skb(skb); return RX_HANDLER_CONSUMED; } len = skb->len + ETH_HLEN; skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) { ret = NET_RX_DROP; handle_res = RX_HANDLER_CONSUMED; goto out; } *pskb = skb; skb->dev = dev; skb->pkt_type = PACKET_HOST; ret = NET_RX_SUCCESS; handle_res = RX_HANDLER_ANOTHER; out: macvlan_count_rx(vlan, len, ret == NET_RX_SUCCESS, false); return handle_res; } static int macvlan_queue_xmit(struct sk_buff *skb, struct net_device *dev) { const struct macvlan_dev *vlan = netdev_priv(dev); const struct macvlan_port *port = vlan->port; const struct macvlan_dev *dest; if (vlan->mode == MACVLAN_MODE_BRIDGE) { const struct ethhdr *eth = skb_eth_hdr(skb); /* send to other bridge ports directly */ if (is_multicast_ether_addr(eth->h_dest)) { skb_reset_mac_header(skb); macvlan_broadcast(skb, port, dev, MACVLAN_MODE_BRIDGE); goto xmit_world; } dest = macvlan_hash_lookup(port, eth->h_dest); if (dest && dest->mode == MACVLAN_MODE_BRIDGE) { /* send to lowerdev first for its network taps */ dev_forward_skb(vlan->lowerdev, skb); return NET_XMIT_SUCCESS; } } xmit_world: skb->dev = vlan->lowerdev; return dev_queue_xmit_accel(skb, netdev_get_sb_channel(dev) ? dev : NULL); } static inline netdev_tx_t macvlan_netpoll_send_skb(struct macvlan_dev *vlan, struct sk_buff *skb) { #ifdef CONFIG_NET_POLL_CONTROLLER return netpoll_send_skb(vlan->netpoll, skb); #else BUG(); return NETDEV_TX_OK; #endif } static netdev_tx_t macvlan_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct macvlan_dev *vlan = netdev_priv(dev); unsigned int len = skb->len; int ret; if (unlikely(netpoll_tx_running(dev))) return macvlan_netpoll_send_skb(vlan, skb); ret = macvlan_queue_xmit(skb, dev); if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { struct vlan_pcpu_stats *pcpu_stats; pcpu_stats = this_cpu_ptr(vlan->pcpu_stats); u64_stats_update_begin(&pcpu_stats->syncp); u64_stats_inc(&pcpu_stats->tx_packets); u64_stats_add(&pcpu_stats->tx_bytes, len); u64_stats_update_end(&pcpu_stats->syncp); } else { this_cpu_inc(vlan->pcpu_stats->tx_dropped); } return ret; } static int macvlan_hard_header(struct sk_buff *skb, struct net_device *dev, unsigned short type, const void *daddr, const void *saddr, unsigned len) { const struct macvlan_dev *vlan = netdev_priv(dev); struct net_device *lowerdev = vlan->lowerdev; return dev_hard_header(skb, lowerdev, type, daddr, saddr ? : dev->dev_addr, len); } static const struct header_ops macvlan_hard_header_ops = { .create = macvlan_hard_header, .parse = eth_header_parse, .cache = eth_header_cache, .cache_update = eth_header_cache_update, .parse_protocol = eth_header_parse_protocol, }; static int macvlan_open(struct net_device *dev) { struct macvlan_dev *vlan = netdev_priv(dev); struct net_device *lowerdev = vlan->lowerdev; int err; if (macvlan_passthru(vlan->port)) { if (!(vlan->flags & MACVLAN_FLAG_NOPROMISC)) { err = dev_set_promiscuity(lowerdev, 1); if (err < 0) goto out; } goto hash_add; } err = -EADDRINUSE; if (macvlan_addr_busy(vlan->port, dev->dev_addr)) goto out; /* Attempt to populate accel_priv which is used to offload the L2 * forwarding requests for unicast packets. */ if (lowerdev->features & NETIF_F_HW_L2FW_DOFFLOAD) vlan->accel_priv = lowerdev->netdev_ops->ndo_dfwd_add_station(lowerdev, dev); /* If earlier attempt to offload failed, or accel_priv is not * populated we must add the unicast address to the lower device. */ if (IS_ERR_OR_NULL(vlan->accel_priv)) { vlan->accel_priv = NULL; err = dev_uc_add(lowerdev, dev->dev_addr); if (err < 0) goto out; } if (dev->flags & IFF_ALLMULTI) { err = dev_set_allmulti(lowerdev, 1); if (err < 0) goto del_unicast; } if (dev->flags & IFF_PROMISC) { err = dev_set_promiscuity(lowerdev, 1); if (err < 0) goto clear_multi; } hash_add: macvlan_hash_add(vlan); return 0; clear_multi: if (dev->flags & IFF_ALLMULTI) dev_set_allmulti(lowerdev, -1); del_unicast: if (vlan->accel_priv) { lowerdev->netdev_ops->ndo_dfwd_del_station(lowerdev, vlan->accel_priv); vlan->accel_priv = NULL; } else { dev_uc_del(lowerdev, dev->dev_addr); } out: return err; } static int macvlan_stop(struct net_device *dev) { struct macvlan_dev *vlan = netdev_priv(dev); struct net_device *lowerdev = vlan->lowerdev; if (vlan->accel_priv) { lowerdev->netdev_ops->ndo_dfwd_del_station(lowerdev, vlan->accel_priv); vlan->accel_priv = NULL; } dev_uc_unsync(lowerdev, dev); dev_mc_unsync(lowerdev, dev); if (macvlan_passthru(vlan->port)) { if (!(vlan->flags & MACVLAN_FLAG_NOPROMISC)) dev_set_promiscuity(lowerdev, -1); goto hash_del; } if (dev->flags & IFF_ALLMULTI) dev_set_allmulti(lowerdev, -1); if (dev->flags & IFF_PROMISC) dev_set_promiscuity(lowerdev, -1); dev_uc_del(lowerdev, dev->dev_addr); hash_del: macvlan_hash_del(vlan, !dev->dismantle); return 0; } static int macvlan_sync_address(struct net_device *dev, const unsigned char *addr) { struct macvlan_dev *vlan = netdev_priv(dev); struct net_device *lowerdev = vlan->lowerdev; struct macvlan_port *port = vlan->port; int err; if (!(dev->flags & IFF_UP)) { /* Just copy in the new address */ eth_hw_addr_set(dev, addr); } else { /* Rehash and update the device filters */ if (macvlan_addr_busy(vlan->port, addr)) return -EADDRINUSE; if (!macvlan_passthru(port)) { err = dev_uc_add(lowerdev, addr); if (err) return err; dev_uc_del(lowerdev, dev->dev_addr); } macvlan_hash_change_addr(vlan, addr); } if (macvlan_passthru(port) && !macvlan_addr_change(port)) { /* Since addr_change isn't set, we are here due to lower * device change. Save the lower-dev address so we can * restore it later. */ ether_addr_copy(vlan->port->perm_addr, lowerdev->dev_addr); } macvlan_clear_addr_change(port); return 0; } static int macvlan_set_mac_address(struct net_device *dev, void *p) { struct macvlan_dev *vlan = netdev_priv(dev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; /* If the addresses are the same, this is a no-op */ if (ether_addr_equal(dev->dev_addr, addr->sa_data)) return 0; if (vlan->mode == MACVLAN_MODE_PASSTHRU) { macvlan_set_addr_change(vlan->port); return dev_set_mac_address(vlan->lowerdev, addr, NULL); } if (macvlan_addr_busy(vlan->port, addr->sa_data)) return -EADDRINUSE; return macvlan_sync_address(dev, addr->sa_data); } static void macvlan_change_rx_flags(struct net_device *dev, int change) { struct macvlan_dev *vlan = netdev_priv(dev); struct net_device *lowerdev = vlan->lowerdev; if (dev->flags & IFF_UP) { if (change & IFF_ALLMULTI) dev_set_allmulti(lowerdev, dev->flags & IFF_ALLMULTI ? 1 : -1); if (!macvlan_passthru(vlan->port) && change & IFF_PROMISC) dev_set_promiscuity(lowerdev, dev->flags & IFF_PROMISC ? 1 : -1); } } static void macvlan_compute_filter(unsigned long *mc_filter, struct net_device *dev, struct macvlan_dev *vlan, int cutoff) { if (dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) { bitmap_fill(mc_filter, MACVLAN_MC_FILTER_SZ); } else { DECLARE_BITMAP(filter, MACVLAN_MC_FILTER_SZ); struct netdev_hw_addr *ha; bitmap_zero(filter, MACVLAN_MC_FILTER_SZ); netdev_for_each_mc_addr(ha, dev) { if (!vlan && ha->synced <= cutoff) continue; __set_bit(mc_hash(vlan, ha->addr), filter); } __set_bit(mc_hash(vlan, dev->broadcast), filter); bitmap_copy(mc_filter, filter, MACVLAN_MC_FILTER_SZ); } } static void macvlan_recompute_bc_filter(struct macvlan_dev *vlan) { if (vlan->port->bc_cutoff < 0) { bitmap_zero(vlan->port->bc_filter, MACVLAN_MC_FILTER_SZ); return; } macvlan_compute_filter(vlan->port->bc_filter, vlan->lowerdev, NULL, vlan->port->bc_cutoff); } static void macvlan_set_mac_lists(struct net_device *dev) { struct macvlan_dev *vlan = netdev_priv(dev); macvlan_compute_filter(vlan->mc_filter, dev, vlan, 0); dev_uc_sync(vlan->lowerdev, dev); dev_mc_sync(vlan->lowerdev, dev); /* This is slightly inaccurate as we're including the subscription * list of vlan->lowerdev too. * * Bug alert: This only works if everyone has the same broadcast * address as lowerdev. As soon as someone changes theirs this * will break. * * However, this is already broken as when you change your broadcast * address we don't get called. * * The solution is to maintain a list of broadcast addresses like * we do for uc/mc, if you care. */ macvlan_compute_filter(vlan->port->mc_filter, vlan->lowerdev, NULL, 0); macvlan_recompute_bc_filter(vlan); } static void update_port_bc_cutoff(struct macvlan_dev *vlan, int cutoff) { if (vlan->port->bc_cutoff == cutoff) return; vlan->port->bc_cutoff = cutoff; macvlan_recompute_bc_filter(vlan); } static int macvlan_change_mtu(struct net_device *dev, int new_mtu) { struct macvlan_dev *vlan = netdev_priv(dev); if (vlan->lowerdev->mtu < new_mtu) return -EINVAL; WRITE_ONCE(dev->mtu, new_mtu); return 0; } static int macvlan_hwtstamp_get(struct net_device *dev, struct kernel_hwtstamp_config *cfg) { struct net_device *real_dev = macvlan_dev_real_dev(dev); return generic_hwtstamp_get_lower(real_dev, cfg); } static int macvlan_hwtstamp_set(struct net_device *dev, struct kernel_hwtstamp_config *cfg, struct netlink_ext_ack *extack) { struct net_device *real_dev = macvlan_dev_real_dev(dev); if (!net_eq(dev_net(dev), &init_net)) return -EOPNOTSUPP; return generic_hwtstamp_set_lower(real_dev, cfg, extack); } /* * macvlan network devices have devices nesting below it and are a special * "super class" of normal network devices; split their locks off into a * separate class since they always nest. */ static struct lock_class_key macvlan_netdev_addr_lock_key; #define ALWAYS_ON_OFFLOADS \ (NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_GSO_SOFTWARE | \ NETIF_F_GSO_ROBUST | NETIF_F_GSO_ENCAP_ALL) #define ALWAYS_ON_FEATURES (ALWAYS_ON_OFFLOADS | NETIF_F_LLTX) #define MACVLAN_FEATURES \ (NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | \ NETIF_F_GSO | NETIF_F_TSO | NETIF_F_LRO | \ NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_GRO | NETIF_F_RXCSUM | \ NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER) #define MACVLAN_STATE_MASK \ ((1<<__LINK_STATE_NOCARRIER) | (1<<__LINK_STATE_DORMANT)) static void macvlan_set_lockdep_class(struct net_device *dev) { netdev_lockdep_set_classes(dev); lockdep_set_class(&dev->addr_list_lock, &macvlan_netdev_addr_lock_key); } static int macvlan_init(struct net_device *dev) { struct macvlan_dev *vlan = netdev_priv(dev); struct net_device *lowerdev = vlan->lowerdev; struct macvlan_port *port = vlan->port; dev->state = (dev->state & ~MACVLAN_STATE_MASK) | (lowerdev->state & MACVLAN_STATE_MASK); dev->features = lowerdev->features & MACVLAN_FEATURES; dev->features |= ALWAYS_ON_FEATURES; dev->hw_features |= NETIF_F_LRO; dev->vlan_features = lowerdev->vlan_features & MACVLAN_FEATURES; dev->vlan_features |= ALWAYS_ON_OFFLOADS; dev->hw_enc_features |= dev->features; netif_inherit_tso_max(dev, lowerdev); dev->hard_header_len = lowerdev->hard_header_len; macvlan_set_lockdep_class(dev); vlan->pcpu_stats = netdev_alloc_pcpu_stats(struct vlan_pcpu_stats); if (!vlan->pcpu_stats) return -ENOMEM; port->count += 1; /* Get macvlan's reference to lowerdev */ netdev_hold(lowerdev, &vlan->dev_tracker, GFP_KERNEL); return 0; } static void macvlan_uninit(struct net_device *dev) { struct macvlan_dev *vlan = netdev_priv(dev); struct macvlan_port *port = vlan->port; free_percpu(vlan->pcpu_stats); macvlan_flush_sources(port, vlan); port->count -= 1; if (!port->count) macvlan_port_destroy(port->dev); } static void macvlan_dev_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct macvlan_dev *vlan = netdev_priv(dev); if (vlan->pcpu_stats) { struct vlan_pcpu_stats *p; u64 rx_packets, rx_bytes, rx_multicast, tx_packets, tx_bytes; u32 rx_errors = 0, tx_dropped = 0; unsigned int start; int i; for_each_possible_cpu(i) { p = per_cpu_ptr(vlan->pcpu_stats, i); do { start = u64_stats_fetch_begin(&p->syncp); rx_packets = u64_stats_read(&p->rx_packets); rx_bytes = u64_stats_read(&p->rx_bytes); rx_multicast = u64_stats_read(&p->rx_multicast); tx_packets = u64_stats_read(&p->tx_packets); tx_bytes = u64_stats_read(&p->tx_bytes); } while (u64_stats_fetch_retry(&p->syncp, start)); stats->rx_packets += rx_packets; stats->rx_bytes += rx_bytes; stats->multicast += rx_multicast; stats->tx_packets += tx_packets; stats->tx_bytes += tx_bytes; /* rx_errors & tx_dropped are u32, updated * without syncp protection. */ rx_errors += READ_ONCE(p->rx_errors); tx_dropped += READ_ONCE(p->tx_dropped); } stats->rx_errors = rx_errors; stats->rx_dropped = rx_errors; stats->tx_dropped = tx_dropped; } } static int macvlan_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) { struct macvlan_dev *vlan = netdev_priv(dev); struct net_device *lowerdev = vlan->lowerdev; return vlan_vid_add(lowerdev, proto, vid); } static int macvlan_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) { struct macvlan_dev *vlan = netdev_priv(dev); struct net_device *lowerdev = vlan->lowerdev; vlan_vid_del(lowerdev, proto, vid); return 0; } static int macvlan_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u16 flags, struct netlink_ext_ack *extack) { struct macvlan_dev *vlan = netdev_priv(dev); int err = -EINVAL; /* Support unicast filter only on passthru devices. * Multicast filter should be allowed on all devices. */ if (!macvlan_passthru(vlan->port) && is_unicast_ether_addr(addr)) return -EOPNOTSUPP; if (flags & NLM_F_REPLACE) return -EOPNOTSUPP; if (is_unicast_ether_addr(addr)) err = dev_uc_add_excl(dev, addr); else if (is_multicast_ether_addr(addr)) err = dev_mc_add_excl(dev, addr); return err; } static int macvlan_fdb_del(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, struct netlink_ext_ack *extack) { struct macvlan_dev *vlan = netdev_priv(dev); int err = -EINVAL; /* Support unicast filter only on passthru devices. * Multicast filter should be allowed on all devices. */ if (!macvlan_passthru(vlan->port) && is_unicast_ether_addr(addr)) return -EOPNOTSUPP; if (is_unicast_ether_addr(addr)) err = dev_uc_del(dev, addr); else if (is_multicast_ether_addr(addr)) err = dev_mc_del(dev, addr); return err; } static void macvlan_ethtool_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *drvinfo) { strscpy(drvinfo->driver, "macvlan", sizeof(drvinfo->driver)); strscpy(drvinfo->version, "0.1", sizeof(drvinfo->version)); } static int macvlan_ethtool_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { const struct macvlan_dev *vlan = netdev_priv(dev); return __ethtool_get_link_ksettings(vlan->lowerdev, cmd); } static int macvlan_ethtool_get_ts_info(struct net_device *dev, struct kernel_ethtool_ts_info *info) { struct net_device *real_dev = macvlan_dev_real_dev(dev); return ethtool_get_ts_info_by_layer(real_dev, info); } static netdev_features_t macvlan_fix_features(struct net_device *dev, netdev_features_t features) { struct macvlan_dev *vlan = netdev_priv(dev); netdev_features_t lowerdev_features = vlan->lowerdev->features; netdev_features_t mask; features |= NETIF_F_ALL_FOR_ALL; features &= (vlan->set_features | ~MACVLAN_FEATURES); mask = features; lowerdev_features &= (features | ~NETIF_F_LRO); features = netdev_increment_features(lowerdev_features, features, mask); features |= ALWAYS_ON_FEATURES; features &= (ALWAYS_ON_FEATURES | MACVLAN_FEATURES); return features; } #ifdef CONFIG_NET_POLL_CONTROLLER static void macvlan_dev_poll_controller(struct net_device *dev) { return; } static int macvlan_dev_netpoll_setup(struct net_device *dev, struct netpoll_info *npinfo) { struct macvlan_dev *vlan = netdev_priv(dev); struct net_device *real_dev = vlan->lowerdev; struct netpoll *netpoll; int err; netpoll = kzalloc(sizeof(*netpoll), GFP_KERNEL); err = -ENOMEM; if (!netpoll) goto out; err = __netpoll_setup(netpoll, real_dev); if (err) { kfree(netpoll); goto out; } vlan->netpoll = netpoll; out: return err; } static void macvlan_dev_netpoll_cleanup(struct net_device *dev) { struct macvlan_dev *vlan = netdev_priv(dev); struct netpoll *netpoll = vlan->netpoll; if (!netpoll) return; vlan->netpoll = NULL; __netpoll_free(netpoll); } #endif /* CONFIG_NET_POLL_CONTROLLER */ static int macvlan_dev_get_iflink(const struct net_device *dev) { struct macvlan_dev *vlan = netdev_priv(dev); return READ_ONCE(vlan->lowerdev->ifindex); } static const struct ethtool_ops macvlan_ethtool_ops = { .get_link = ethtool_op_get_link, .get_link_ksettings = macvlan_ethtool_get_link_ksettings, .get_drvinfo = macvlan_ethtool_get_drvinfo, .get_ts_info = macvlan_ethtool_get_ts_info, }; static const struct net_device_ops macvlan_netdev_ops = { .ndo_init = macvlan_init, .ndo_uninit = macvlan_uninit, .ndo_open = macvlan_open, .ndo_stop = macvlan_stop, .ndo_start_xmit = macvlan_start_xmit, .ndo_change_mtu = macvlan_change_mtu, .ndo_fix_features = macvlan_fix_features, .ndo_change_rx_flags = macvlan_change_rx_flags, .ndo_set_mac_address = macvlan_set_mac_address, .ndo_set_rx_mode = macvlan_set_mac_lists, .ndo_get_stats64 = macvlan_dev_get_stats64, .ndo_validate_addr = eth_validate_addr, .ndo_vlan_rx_add_vid = macvlan_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = macvlan_vlan_rx_kill_vid, .ndo_fdb_add = macvlan_fdb_add, .ndo_fdb_del = macvlan_fdb_del, .ndo_fdb_dump = ndo_dflt_fdb_dump, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = macvlan_dev_poll_controller, .ndo_netpoll_setup = macvlan_dev_netpoll_setup, .ndo_netpoll_cleanup = macvlan_dev_netpoll_cleanup, #endif .ndo_get_iflink = macvlan_dev_get_iflink, .ndo_features_check = passthru_features_check, .ndo_hwtstamp_get = macvlan_hwtstamp_get, .ndo_hwtstamp_set = macvlan_hwtstamp_set, }; static void macvlan_dev_free(struct net_device *dev) { struct macvlan_dev *vlan = netdev_priv(dev); /* Get rid of the macvlan's reference to lowerdev */ netdev_put(vlan->lowerdev, &vlan->dev_tracker); } void macvlan_common_setup(struct net_device *dev) { ether_setup(dev); /* ether_setup() has set dev->min_mtu to ETH_MIN_MTU. */ dev->max_mtu = ETH_MAX_MTU; dev->priv_flags &= ~IFF_TX_SKB_SHARING; netif_keep_dst(dev); dev->priv_flags |= IFF_UNICAST_FLT | IFF_CHANGE_PROTO_DOWN; dev->netdev_ops = &macvlan_netdev_ops; dev->needs_free_netdev = true; dev->priv_destructor = macvlan_dev_free; dev->header_ops = &macvlan_hard_header_ops; dev->ethtool_ops = &macvlan_ethtool_ops; } EXPORT_SYMBOL_GPL(macvlan_common_setup); static void macvlan_setup(struct net_device *dev) { macvlan_common_setup(dev); dev->priv_flags |= IFF_NO_QUEUE; } static int macvlan_port_create(struct net_device *dev) { struct macvlan_port *port; unsigned int i; int err; if (dev->type != ARPHRD_ETHER || dev->flags & IFF_LOOPBACK) return -EINVAL; if (netdev_is_rx_handler_busy(dev)) return -EBUSY; port = kzalloc(sizeof(*port), GFP_KERNEL); if (port == NULL) return -ENOMEM; port->dev = dev; ether_addr_copy(port->perm_addr, dev->dev_addr); INIT_LIST_HEAD(&port->vlans); for (i = 0; i < MACVLAN_HASH_SIZE; i++) INIT_HLIST_HEAD(&port->vlan_hash[i]); for (i = 0; i < MACVLAN_HASH_SIZE; i++) INIT_HLIST_HEAD(&port->vlan_source_hash[i]); port->bc_queue_len_used = 0; port->bc_cutoff = 1; skb_queue_head_init(&port->bc_queue); INIT_WORK(&port->bc_work, macvlan_process_broadcast); err = netdev_rx_handler_register(dev, macvlan_handle_frame, port); if (err) kfree(port); else dev->priv_flags |= IFF_MACVLAN_PORT; return err; } static void macvlan_port_destroy(struct net_device *dev) { struct macvlan_port *port = macvlan_port_get_rtnl(dev); struct sk_buff *skb; dev->priv_flags &= ~IFF_MACVLAN_PORT; netdev_rx_handler_unregister(dev); /* After this point, no packet can schedule bc_work anymore, * but we need to cancel it and purge left skbs if any. */ cancel_work_sync(&port->bc_work); while ((skb = __skb_dequeue(&port->bc_queue))) { const struct macvlan_dev *src = MACVLAN_SKB_CB(skb)->src; if (src) dev_put(src->dev); kfree_skb(skb); } /* If the lower device address has been changed by passthru * macvlan, put it back. */ if (macvlan_passthru(port) && !ether_addr_equal(port->dev->dev_addr, port->perm_addr)) { struct sockaddr sa; sa.sa_family = port->dev->type; memcpy(&sa.sa_data, port->perm_addr, port->dev->addr_len); dev_set_mac_address(port->dev, &sa, NULL); } kfree(port); } static int macvlan_validate(struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct nlattr *nla, *head; int rem, len; if (tb[IFLA_ADDRESS]) { if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) return -EINVAL; if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) return -EADDRNOTAVAIL; } if (!data) return 0; if (data[IFLA_MACVLAN_FLAGS] && nla_get_u16(data[IFLA_MACVLAN_FLAGS]) & ~(MACVLAN_FLAG_NOPROMISC | MACVLAN_FLAG_NODST)) return -EINVAL; if (data[IFLA_MACVLAN_MODE]) { switch (nla_get_u32(data[IFLA_MACVLAN_MODE])) { case MACVLAN_MODE_PRIVATE: case MACVLAN_MODE_VEPA: case MACVLAN_MODE_BRIDGE: case MACVLAN_MODE_PASSTHRU: case MACVLAN_MODE_SOURCE: break; default: return -EINVAL; } } if (data[IFLA_MACVLAN_MACADDR_MODE]) { switch (nla_get_u32(data[IFLA_MACVLAN_MACADDR_MODE])) { case MACVLAN_MACADDR_ADD: case MACVLAN_MACADDR_DEL: case MACVLAN_MACADDR_FLUSH: case MACVLAN_MACADDR_SET: break; default: return -EINVAL; } } if (data[IFLA_MACVLAN_MACADDR]) { if (nla_len(data[IFLA_MACVLAN_MACADDR]) != ETH_ALEN) return -EINVAL; if (!is_valid_ether_addr(nla_data(data[IFLA_MACVLAN_MACADDR]))) return -EADDRNOTAVAIL; } if (data[IFLA_MACVLAN_MACADDR_DATA]) { head = nla_data(data[IFLA_MACVLAN_MACADDR_DATA]); len = nla_len(data[IFLA_MACVLAN_MACADDR_DATA]); nla_for_each_attr(nla, head, len, rem) { if (nla_type(nla) != IFLA_MACVLAN_MACADDR || nla_len(nla) != ETH_ALEN) return -EINVAL; if (!is_valid_ether_addr(nla_data(nla))) return -EADDRNOTAVAIL; } } if (data[IFLA_MACVLAN_MACADDR_COUNT]) return -EINVAL; return 0; } /* * reconfigure list of remote source mac address * (only for macvlan devices in source mode) * Note regarding alignment: all netlink data is aligned to 4 Byte, which * suffices for both ether_addr_copy and ether_addr_equal_64bits usage. */ static int macvlan_changelink_sources(struct macvlan_dev *vlan, u32 mode, struct nlattr *data[]) { char *addr = NULL; int ret, rem, len; struct nlattr *nla, *head; struct macvlan_source_entry *entry; if (data[IFLA_MACVLAN_MACADDR]) addr = nla_data(data[IFLA_MACVLAN_MACADDR]); if (mode == MACVLAN_MACADDR_ADD) { if (!addr) return -EINVAL; return macvlan_hash_add_source(vlan, addr); } else if (mode == MACVLAN_MACADDR_DEL) { if (!addr) return -EINVAL; entry = macvlan_hash_lookup_source(vlan, addr); if (entry) { macvlan_hash_del_source(entry); vlan->macaddr_count--; } } else if (mode == MACVLAN_MACADDR_FLUSH) { macvlan_flush_sources(vlan->port, vlan); } else if (mode == MACVLAN_MACADDR_SET) { macvlan_flush_sources(vlan->port, vlan); if (addr) { ret = macvlan_hash_add_source(vlan, addr); if (ret) return ret; } if (!data[IFLA_MACVLAN_MACADDR_DATA]) return 0; head = nla_data(data[IFLA_MACVLAN_MACADDR_DATA]); len = nla_len(data[IFLA_MACVLAN_MACADDR_DATA]); nla_for_each_attr(nla, head, len, rem) { addr = nla_data(nla); ret = macvlan_hash_add_source(vlan, addr); if (ret) return ret; } } else { return -EINVAL; } return 0; } int macvlan_common_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct macvlan_dev *vlan = netdev_priv(dev); struct macvlan_port *port; struct net_device *lowerdev; int err; int macmode; bool create = false; if (!tb[IFLA_LINK]) return -EINVAL; lowerdev = __dev_get_by_index(src_net, nla_get_u32(tb[IFLA_LINK])); if (lowerdev == NULL) return -ENODEV; /* When creating macvlans or macvtaps on top of other macvlans - use * the real device as the lowerdev. */ if (netif_is_macvlan(lowerdev)) lowerdev = macvlan_dev_real_dev(lowerdev); if (!tb[IFLA_MTU]) dev->mtu = lowerdev->mtu; else if (dev->mtu > lowerdev->mtu) return -EINVAL; /* MTU range: 68 - lowerdev->max_mtu */ dev->min_mtu = ETH_MIN_MTU; dev->max_mtu = lowerdev->max_mtu; if (!tb[IFLA_ADDRESS]) eth_hw_addr_random(dev); if (!netif_is_macvlan_port(lowerdev)) { err = macvlan_port_create(lowerdev); if (err < 0) return err; create = true; } port = macvlan_port_get_rtnl(lowerdev); /* Only 1 macvlan device can be created in passthru mode */ if (macvlan_passthru(port)) { /* The macvlan port must be not created this time, * still goto destroy_macvlan_port for readability. */ err = -EINVAL; goto destroy_macvlan_port; } vlan->lowerdev = lowerdev; vlan->dev = dev; vlan->port = port; vlan->set_features = MACVLAN_FEATURES; vlan->mode = MACVLAN_MODE_VEPA; if (data && data[IFLA_MACVLAN_MODE]) vlan->mode = nla_get_u32(data[IFLA_MACVLAN_MODE]); if (data && data[IFLA_MACVLAN_FLAGS]) vlan->flags = nla_get_u16(data[IFLA_MACVLAN_FLAGS]); if (vlan->mode == MACVLAN_MODE_PASSTHRU) { if (port->count) { err = -EINVAL; goto destroy_macvlan_port; } macvlan_set_passthru(port); eth_hw_addr_inherit(dev, lowerdev); } if (data && data[IFLA_MACVLAN_MACADDR_MODE]) { if (vlan->mode != MACVLAN_MODE_SOURCE) { err = -EINVAL; goto destroy_macvlan_port; } macmode = nla_get_u32(data[IFLA_MACVLAN_MACADDR_MODE]); err = macvlan_changelink_sources(vlan, macmode, data); if (err) goto destroy_macvlan_port; } vlan->bc_queue_len_req = MACVLAN_DEFAULT_BC_QUEUE_LEN; if (data && data[IFLA_MACVLAN_BC_QUEUE_LEN]) vlan->bc_queue_len_req = nla_get_u32(data[IFLA_MACVLAN_BC_QUEUE_LEN]); if (data && data[IFLA_MACVLAN_BC_CUTOFF]) update_port_bc_cutoff( vlan, nla_get_s32(data[IFLA_MACVLAN_BC_CUTOFF])); err = register_netdevice(dev); if (err < 0) goto destroy_macvlan_port; dev->priv_flags |= IFF_MACVLAN; err = netdev_upper_dev_link(lowerdev, dev, extack); if (err) goto unregister_netdev; list_add_tail_rcu(&vlan->list, &port->vlans); update_port_bc_queue_len(vlan->port); netif_stacked_transfer_operstate(lowerdev, dev); linkwatch_fire_event(dev); return 0; unregister_netdev: /* macvlan_uninit would free the macvlan port */ unregister_netdevice(dev); return err; destroy_macvlan_port: /* the macvlan port may be freed by macvlan_uninit when fail to register. * so we destroy the macvlan port only when it's valid. */ if (create && macvlan_port_get_rtnl(lowerdev)) { macvlan_flush_sources(port, vlan); macvlan_port_destroy(port->dev); } return err; } EXPORT_SYMBOL_GPL(macvlan_common_newlink); static int macvlan_newlink(struct net *src_net, struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { return macvlan_common_newlink(src_net, dev, tb, data, extack); } void macvlan_dellink(struct net_device *dev, struct list_head *head) { struct macvlan_dev *vlan = netdev_priv(dev); if (vlan->mode == MACVLAN_MODE_SOURCE) macvlan_flush_sources(vlan->port, vlan); list_del_rcu(&vlan->list); update_port_bc_queue_len(vlan->port); unregister_netdevice_queue(dev, head); netdev_upper_dev_unlink(vlan->lowerdev, dev); } EXPORT_SYMBOL_GPL(macvlan_dellink); static int macvlan_changelink(struct net_device *dev, struct nlattr *tb[], struct nlattr *data[], struct netlink_ext_ack *extack) { struct macvlan_dev *vlan = netdev_priv(dev); enum macvlan_mode mode; bool set_mode = false; enum macvlan_macaddr_mode macmode; int ret; /* Validate mode, but don't set yet: setting flags may fail. */ if (data && data[IFLA_MACVLAN_MODE]) { set_mode = true; mode = nla_get_u32(data[IFLA_MACVLAN_MODE]); /* Passthrough mode can't be set or cleared dynamically */ if ((mode == MACVLAN_MODE_PASSTHRU) != (vlan->mode == MACVLAN_MODE_PASSTHRU)) return -EINVAL; if (vlan->mode == MACVLAN_MODE_SOURCE && vlan->mode != mode) macvlan_flush_sources(vlan->port, vlan); } if (data && data[IFLA_MACVLAN_FLAGS]) { __u16 flags = nla_get_u16(data[IFLA_MACVLAN_FLAGS]); bool promisc = (flags ^ vlan->flags) & MACVLAN_FLAG_NOPROMISC; if (macvlan_passthru(vlan->port) && promisc) { int err; if (flags & MACVLAN_FLAG_NOPROMISC) err = dev_set_promiscuity(vlan->lowerdev, -1); else err = dev_set_promiscuity(vlan->lowerdev, 1); if (err < 0) return err; } vlan->flags = flags; } if (data && data[IFLA_MACVLAN_BC_QUEUE_LEN]) { vlan->bc_queue_len_req = nla_get_u32(data[IFLA_MACVLAN_BC_QUEUE_LEN]); update_port_bc_queue_len(vlan->port); } if (data && data[IFLA_MACVLAN_BC_CUTOFF]) update_port_bc_cutoff( vlan, nla_get_s32(data[IFLA_MACVLAN_BC_CUTOFF])); if (set_mode) vlan->mode = mode; if (data && data[IFLA_MACVLAN_MACADDR_MODE]) { if (vlan->mode != MACVLAN_MODE_SOURCE) return -EINVAL; macmode = nla_get_u32(data[IFLA_MACVLAN_MACADDR_MODE]); ret = macvlan_changelink_sources(vlan, macmode, data); if (ret) return ret; } return 0; } static size_t macvlan_get_size_mac(const struct macvlan_dev *vlan) { if (vlan->macaddr_count == 0) return 0; return nla_total_size(0) /* IFLA_MACVLAN_MACADDR_DATA */ + vlan->macaddr_count * nla_total_size(sizeof(u8) * ETH_ALEN); } static size_t macvlan_get_size(const struct net_device *dev) { struct macvlan_dev *vlan = netdev_priv(dev); return (0 + nla_total_size(4) /* IFLA_MACVLAN_MODE */ + nla_total_size(2) /* IFLA_MACVLAN_FLAGS */ + nla_total_size(4) /* IFLA_MACVLAN_MACADDR_COUNT */ + macvlan_get_size_mac(vlan) /* IFLA_MACVLAN_MACADDR */ + nla_total_size(4) /* IFLA_MACVLAN_BC_QUEUE_LEN */ + nla_total_size(4) /* IFLA_MACVLAN_BC_QUEUE_LEN_USED */ ); } static int macvlan_fill_info_macaddr(struct sk_buff *skb, const struct macvlan_dev *vlan, const int i) { struct hlist_head *h = &vlan->port->vlan_source_hash[i]; struct macvlan_source_entry *entry; hlist_for_each_entry_rcu(entry, h, hlist, lockdep_rtnl_is_held()) { if (entry->vlan != vlan) continue; if (nla_put(skb, IFLA_MACVLAN_MACADDR, ETH_ALEN, entry->addr)) return 1; } return 0; } static int macvlan_fill_info(struct sk_buff *skb, const struct net_device *dev) { struct macvlan_dev *vlan = netdev_priv(dev); struct macvlan_port *port = vlan->port; int i; struct nlattr *nest; if (nla_put_u32(skb, IFLA_MACVLAN_MODE, vlan->mode)) goto nla_put_failure; if (nla_put_u16(skb, IFLA_MACVLAN_FLAGS, vlan->flags)) goto nla_put_failure; if (nla_put_u32(skb, IFLA_MACVLAN_MACADDR_COUNT, vlan->macaddr_count)) goto nla_put_failure; if (vlan->macaddr_count > 0) { nest = nla_nest_start_noflag(skb, IFLA_MACVLAN_MACADDR_DATA); if (nest == NULL) goto nla_put_failure; for (i = 0; i < MACVLAN_HASH_SIZE; i++) { if (macvlan_fill_info_macaddr(skb, vlan, i)) goto nla_put_failure; } nla_nest_end(skb, nest); } if (nla_put_u32(skb, IFLA_MACVLAN_BC_QUEUE_LEN, vlan->bc_queue_len_req)) goto nla_put_failure; if (nla_put_u32(skb, IFLA_MACVLAN_BC_QUEUE_LEN_USED, port->bc_queue_len_used)) goto nla_put_failure; if (port->bc_cutoff != 1 && nla_put_s32(skb, IFLA_MACVLAN_BC_CUTOFF, port->bc_cutoff)) goto nla_put_failure; return 0; nla_put_failure: return -EMSGSIZE; } static const struct nla_policy macvlan_policy[IFLA_MACVLAN_MAX + 1] = { [IFLA_MACVLAN_MODE] = { .type = NLA_U32 }, [IFLA_MACVLAN_FLAGS] = { .type = NLA_U16 }, [IFLA_MACVLAN_MACADDR_MODE] = { .type = NLA_U32 }, [IFLA_MACVLAN_MACADDR] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN }, [IFLA_MACVLAN_MACADDR_DATA] = { .type = NLA_NESTED }, [IFLA_MACVLAN_MACADDR_COUNT] = { .type = NLA_U32 }, [IFLA_MACVLAN_BC_QUEUE_LEN] = { .type = NLA_U32 }, [IFLA_MACVLAN_BC_QUEUE_LEN_USED] = { .type = NLA_REJECT }, [IFLA_MACVLAN_BC_CUTOFF] = { .type = NLA_S32 }, }; int macvlan_link_register(struct rtnl_link_ops *ops) { /* common fields */ ops->validate = macvlan_validate; ops->maxtype = IFLA_MACVLAN_MAX; ops->policy = macvlan_policy; ops->changelink = macvlan_changelink; ops->get_size = macvlan_get_size; ops->fill_info = macvlan_fill_info; return rtnl_link_register(ops); }; EXPORT_SYMBOL_GPL(macvlan_link_register); static struct net *macvlan_get_link_net(const struct net_device *dev) { return dev_net(macvlan_dev_real_dev(dev)); } static struct rtnl_link_ops macvlan_link_ops = { .kind = "macvlan", .setup = macvlan_setup, .newlink = macvlan_newlink, .dellink = macvlan_dellink, .get_link_net = macvlan_get_link_net, .priv_size = sizeof(struct macvlan_dev), }; static void update_port_bc_queue_len(struct macvlan_port *port) { u32 max_bc_queue_len_req = 0; struct macvlan_dev *vlan; list_for_each_entry(vlan, &port->vlans, list) { if (vlan->bc_queue_len_req > max_bc_queue_len_req) max_bc_queue_len_req = vlan->bc_queue_len_req; } port->bc_queue_len_used = max_bc_queue_len_req; } static int macvlan_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct macvlan_dev *vlan, *next; struct macvlan_port *port; LIST_HEAD(list_kill); if (!netif_is_macvlan_port(dev)) return NOTIFY_DONE; port = macvlan_port_get_rtnl(dev); switch (event) { case NETDEV_UP: case NETDEV_DOWN: case NETDEV_CHANGE: list_for_each_entry(vlan, &port->vlans, list) netif_stacked_transfer_operstate(vlan->lowerdev, vlan->dev); break; case NETDEV_FEAT_CHANGE: list_for_each_entry(vlan, &port->vlans, list) { netif_inherit_tso_max(vlan->dev, dev); netdev_update_features(vlan->dev); } break; case NETDEV_CHANGEMTU: list_for_each_entry(vlan, &port->vlans, list) { if (vlan->dev->mtu <= dev->mtu) continue; dev_set_mtu(vlan->dev, dev->mtu); } break; case NETDEV_CHANGEADDR: if (!macvlan_passthru(port)) return NOTIFY_DONE; vlan = list_first_entry_or_null(&port->vlans, struct macvlan_dev, list); if (vlan && macvlan_sync_address(vlan->dev, dev->dev_addr)) return NOTIFY_BAD; break; case NETDEV_UNREGISTER: /* twiddle thumbs on netns device moves */ if (dev->reg_state != NETREG_UNREGISTERING) break; list_for_each_entry_safe(vlan, next, &port->vlans, list) vlan->dev->rtnl_link_ops->dellink(vlan->dev, &list_kill); unregister_netdevice_many(&list_kill); break; case NETDEV_PRE_TYPE_CHANGE: /* Forbid underlying device to change its type. */ return NOTIFY_BAD; case NETDEV_NOTIFY_PEERS: case NETDEV_BONDING_FAILOVER: case NETDEV_RESEND_IGMP: /* Propagate to all vlans */ list_for_each_entry(vlan, &port->vlans, list) call_netdevice_notifiers(event, vlan->dev); } return NOTIFY_DONE; } static struct notifier_block macvlan_notifier_block __read_mostly = { .notifier_call = macvlan_device_event, }; static int __init macvlan_init_module(void) { int err; register_netdevice_notifier(&macvlan_notifier_block); err = macvlan_link_register(&macvlan_link_ops); if (err < 0) goto err1; return 0; err1: unregister_netdevice_notifier(&macvlan_notifier_block); return err; } static void __exit macvlan_cleanup_module(void) { rtnl_link_unregister(&macvlan_link_ops); unregister_netdevice_notifier(&macvlan_notifier_block); } module_init(macvlan_init_module); module_exit(macvlan_cleanup_module); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>"); MODULE_DESCRIPTION("Driver for MAC address based VLANs"); MODULE_ALIAS_RTNL_LINK("macvlan");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1