Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dan Murphy | 1689 | 36.66% | 8 | 14.29% |
Thomas Haemmerle | 563 | 12.22% | 1 | 1.79% |
Sascha Hauer | 550 | 11.94% | 1 | 1.79% |
Grygorii Strashko | 275 | 5.97% | 5 | 8.93% |
Alexander Stein | 236 | 5.12% | 3 | 5.36% |
Trent Piepho | 231 | 5.01% | 6 | 10.71% |
Rasmus Villemoes | 214 | 4.65% | 1 | 1.79% |
Lukasz Majewski | 163 | 3.54% | 2 | 3.57% |
Ioana Ciornei | 104 | 2.26% | 2 | 3.57% |
Maxim Uvarov | 98 | 2.13% | 4 | 7.14% |
Mugunthan V N | 78 | 1.69% | 1 | 1.79% |
Tan, Tee Min | 71 | 1.54% | 2 | 3.57% |
Russell King | 50 | 1.09% | 1 | 1.79% |
Wadim Egorov | 47 | 1.02% | 1 | 1.79% |
Stefan Hauser | 45 | 0.98% | 1 | 1.79% |
Vitaly Gaiduk | 44 | 0.96% | 1 | 1.79% |
Lay, Kuan Loon | 37 | 0.80% | 1 | 1.79% |
Murali Karicheri | 34 | 0.74% | 2 | 3.57% |
Michael Grzeschik | 28 | 0.61% | 1 | 1.79% |
Heiner Kallweit | 18 | 0.39% | 2 | 3.57% |
Harini Katakam | 8 | 0.17% | 1 | 1.79% |
Andrew Lunn | 7 | 0.15% | 3 | 5.36% |
Michael Sit Wei Hong | 7 | 0.15% | 1 | 1.79% |
Nikita Shubin | 5 | 0.11% | 1 | 1.79% |
Jakub Kiciński | 2 | 0.04% | 1 | 1.79% |
Praneeth Bajjuri | 1 | 0.02% | 1 | 1.79% |
David S. Miller | 1 | 0.02% | 1 | 1.79% |
Francesco Dolcini | 1 | 0.02% | 1 | 1.79% |
Total | 4607 | 56 |
// SPDX-License-Identifier: GPL-2.0 /* Driver for the Texas Instruments DP83867 PHY * * Copyright (C) 2015 Texas Instruments Inc. */ #include <linux/ethtool.h> #include <linux/kernel.h> #include <linux/mii.h> #include <linux/module.h> #include <linux/of.h> #include <linux/phy.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/bitfield.h> #include <linux/nvmem-consumer.h> #include <dt-bindings/net/ti-dp83867.h> #define DP83867_PHY_ID 0x2000a231 #define DP83867_DEVADDR 0x1f #define MII_DP83867_PHYCTRL 0x10 #define MII_DP83867_PHYSTS 0x11 #define MII_DP83867_MICR 0x12 #define MII_DP83867_ISR 0x13 #define DP83867_CFG2 0x14 #define DP83867_LEDCR1 0x18 #define DP83867_LEDCR2 0x19 #define DP83867_CFG3 0x1e #define DP83867_CTRL 0x1f /* Extended Registers */ #define DP83867_FLD_THR_CFG 0x002e #define DP83867_CFG4 0x0031 #define DP83867_CFG4_SGMII_ANEG_MASK (BIT(5) | BIT(6)) #define DP83867_CFG4_SGMII_ANEG_TIMER_11MS (3 << 5) #define DP83867_CFG4_SGMII_ANEG_TIMER_800US (2 << 5) #define DP83867_CFG4_SGMII_ANEG_TIMER_2US (1 << 5) #define DP83867_CFG4_SGMII_ANEG_TIMER_16MS (0 << 5) #define DP83867_RGMIICTL 0x0032 #define DP83867_STRAP_STS1 0x006E #define DP83867_STRAP_STS2 0x006f #define DP83867_RGMIIDCTL 0x0086 #define DP83867_DSP_FFE_CFG 0x012c #define DP83867_RXFCFG 0x0134 #define DP83867_RXFPMD1 0x0136 #define DP83867_RXFPMD2 0x0137 #define DP83867_RXFPMD3 0x0138 #define DP83867_RXFSOP1 0x0139 #define DP83867_RXFSOP2 0x013A #define DP83867_RXFSOP3 0x013B #define DP83867_IO_MUX_CFG 0x0170 #define DP83867_SGMIICTL 0x00D3 #define DP83867_10M_SGMII_CFG 0x016F #define DP83867_10M_SGMII_RATE_ADAPT_MASK BIT(7) #define DP83867_SW_RESET BIT(15) #define DP83867_SW_RESTART BIT(14) /* MICR Interrupt bits */ #define MII_DP83867_MICR_AN_ERR_INT_EN BIT(15) #define MII_DP83867_MICR_SPEED_CHNG_INT_EN BIT(14) #define MII_DP83867_MICR_DUP_MODE_CHNG_INT_EN BIT(13) #define MII_DP83867_MICR_PAGE_RXD_INT_EN BIT(12) #define MII_DP83867_MICR_AUTONEG_COMP_INT_EN BIT(11) #define MII_DP83867_MICR_LINK_STS_CHNG_INT_EN BIT(10) #define MII_DP83867_MICR_FALSE_CARRIER_INT_EN BIT(8) #define MII_DP83867_MICR_SLEEP_MODE_CHNG_INT_EN BIT(4) #define MII_DP83867_MICR_WOL_INT_EN BIT(3) #define MII_DP83867_MICR_XGMII_ERR_INT_EN BIT(2) #define MII_DP83867_MICR_POL_CHNG_INT_EN BIT(1) #define MII_DP83867_MICR_JABBER_INT_EN BIT(0) /* RGMIICTL bits */ #define DP83867_RGMII_TX_CLK_DELAY_EN BIT(1) #define DP83867_RGMII_RX_CLK_DELAY_EN BIT(0) /* SGMIICTL bits */ #define DP83867_SGMII_TYPE BIT(14) /* RXFCFG bits*/ #define DP83867_WOL_MAGIC_EN BIT(0) #define DP83867_WOL_BCAST_EN BIT(2) #define DP83867_WOL_UCAST_EN BIT(4) #define DP83867_WOL_SEC_EN BIT(5) #define DP83867_WOL_ENH_MAC BIT(7) /* STRAP_STS1 bits */ #define DP83867_STRAP_STS1_RESERVED BIT(11) /* STRAP_STS2 bits */ #define DP83867_STRAP_STS2_CLK_SKEW_TX_MASK GENMASK(6, 4) #define DP83867_STRAP_STS2_CLK_SKEW_TX_SHIFT 4 #define DP83867_STRAP_STS2_CLK_SKEW_RX_MASK GENMASK(2, 0) #define DP83867_STRAP_STS2_CLK_SKEW_RX_SHIFT 0 #define DP83867_STRAP_STS2_CLK_SKEW_NONE BIT(2) #define DP83867_STRAP_STS2_STRAP_FLD BIT(10) /* PHY CTRL bits */ #define DP83867_PHYCR_TX_FIFO_DEPTH_SHIFT 14 #define DP83867_PHYCR_RX_FIFO_DEPTH_SHIFT 12 #define DP83867_PHYCR_FIFO_DEPTH_MAX 0x03 #define DP83867_PHYCR_TX_FIFO_DEPTH_MASK GENMASK(15, 14) #define DP83867_PHYCR_RX_FIFO_DEPTH_MASK GENMASK(13, 12) #define DP83867_PHYCR_RESERVED_MASK BIT(11) #define DP83867_PHYCR_FORCE_LINK_GOOD BIT(10) /* RGMIIDCTL bits */ #define DP83867_RGMII_TX_CLK_DELAY_MAX 0xf #define DP83867_RGMII_TX_CLK_DELAY_SHIFT 4 #define DP83867_RGMII_TX_CLK_DELAY_INV (DP83867_RGMII_TX_CLK_DELAY_MAX + 1) #define DP83867_RGMII_RX_CLK_DELAY_MAX 0xf #define DP83867_RGMII_RX_CLK_DELAY_SHIFT 0 #define DP83867_RGMII_RX_CLK_DELAY_INV (DP83867_RGMII_RX_CLK_DELAY_MAX + 1) /* IO_MUX_CFG bits */ #define DP83867_IO_MUX_CFG_IO_IMPEDANCE_MASK 0x1f #define DP83867_IO_MUX_CFG_IO_IMPEDANCE_MAX 0x0 #define DP83867_IO_MUX_CFG_IO_IMPEDANCE_MIN 0x1f #define DP83867_IO_MUX_CFG_CLK_O_DISABLE BIT(6) #define DP83867_IO_MUX_CFG_CLK_O_SEL_MASK (0x1f << 8) #define DP83867_IO_MUX_CFG_CLK_O_SEL_SHIFT 8 /* PHY STS bits */ #define DP83867_PHYSTS_1000 BIT(15) #define DP83867_PHYSTS_100 BIT(14) #define DP83867_PHYSTS_DUPLEX BIT(13) #define DP83867_PHYSTS_LINK BIT(10) /* CFG2 bits */ #define DP83867_DOWNSHIFT_EN (BIT(8) | BIT(9)) #define DP83867_DOWNSHIFT_ATTEMPT_MASK (BIT(10) | BIT(11)) #define DP83867_DOWNSHIFT_1_COUNT_VAL 0 #define DP83867_DOWNSHIFT_2_COUNT_VAL 1 #define DP83867_DOWNSHIFT_4_COUNT_VAL 2 #define DP83867_DOWNSHIFT_8_COUNT_VAL 3 #define DP83867_DOWNSHIFT_1_COUNT 1 #define DP83867_DOWNSHIFT_2_COUNT 2 #define DP83867_DOWNSHIFT_4_COUNT 4 #define DP83867_DOWNSHIFT_8_COUNT 8 #define DP83867_SGMII_AUTONEG_EN BIT(7) /* CFG3 bits */ #define DP83867_CFG3_INT_OE BIT(7) #define DP83867_CFG3_ROBUST_AUTO_MDIX BIT(9) /* CFG4 bits */ #define DP83867_CFG4_PORT_MIRROR_EN BIT(0) /* FLD_THR_CFG */ #define DP83867_FLD_THR_CFG_ENERGY_LOST_THR_MASK 0x7 #define DP83867_LED_COUNT 4 /* LED_DRV bits */ #define DP83867_LED_DRV_EN(x) BIT((x) * 4) #define DP83867_LED_DRV_VAL(x) BIT((x) * 4 + 1) #define DP83867_LED_POLARITY(x) BIT((x) * 4 + 2) #define DP83867_LED_FN(idx, val) (((val) & 0xf) << ((idx) * 4)) #define DP83867_LED_FN_MASK(idx) (0xf << ((idx) * 4)) #define DP83867_LED_FN_RX_ERR 0xe /* Receive Error */ #define DP83867_LED_FN_RX_TX_ERR 0xd /* Receive Error or Transmit Error */ #define DP83867_LED_FN_LINK_RX_TX 0xb /* Link established, blink for rx or tx activity */ #define DP83867_LED_FN_FULL_DUPLEX 0xa /* Full duplex */ #define DP83867_LED_FN_LINK_100_1000_BT 0x9 /* 100/1000BT link established */ #define DP83867_LED_FN_LINK_10_100_BT 0x8 /* 10/100BT link established */ #define DP83867_LED_FN_LINK_10_BT 0x7 /* 10BT link established */ #define DP83867_LED_FN_LINK_100_BTX 0x6 /* 100 BTX link established */ #define DP83867_LED_FN_LINK_1000_BT 0x5 /* 1000 BT link established */ #define DP83867_LED_FN_COLLISION 0x4 /* Collision detected */ #define DP83867_LED_FN_RX 0x3 /* Receive activity */ #define DP83867_LED_FN_TX 0x2 /* Transmit activity */ #define DP83867_LED_FN_RX_TX 0x1 /* Receive or Transmit activity */ #define DP83867_LED_FN_LINK 0x0 /* Link established */ enum { DP83867_PORT_MIRROING_KEEP, DP83867_PORT_MIRROING_EN, DP83867_PORT_MIRROING_DIS, }; struct dp83867_private { u32 rx_id_delay; u32 tx_id_delay; u32 tx_fifo_depth; u32 rx_fifo_depth; int io_impedance; int port_mirroring; bool rxctrl_strap_quirk; bool set_clk_output; u32 clk_output_sel; bool sgmii_ref_clk_en; }; static int dp83867_ack_interrupt(struct phy_device *phydev) { int err = phy_read(phydev, MII_DP83867_ISR); if (err < 0) return err; return 0; } static int dp83867_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) { struct net_device *ndev = phydev->attached_dev; u16 val_rxcfg, val_micr; const u8 *mac; val_rxcfg = phy_read_mmd(phydev, DP83867_DEVADDR, DP83867_RXFCFG); val_micr = phy_read(phydev, MII_DP83867_MICR); if (wol->wolopts & (WAKE_MAGIC | WAKE_MAGICSECURE | WAKE_UCAST | WAKE_BCAST)) { val_rxcfg |= DP83867_WOL_ENH_MAC; val_micr |= MII_DP83867_MICR_WOL_INT_EN; if (wol->wolopts & WAKE_MAGIC) { mac = (const u8 *)ndev->dev_addr; if (!is_valid_ether_addr(mac)) return -EINVAL; phy_write_mmd(phydev, DP83867_DEVADDR, DP83867_RXFPMD1, (mac[1] << 8 | mac[0])); phy_write_mmd(phydev, DP83867_DEVADDR, DP83867_RXFPMD2, (mac[3] << 8 | mac[2])); phy_write_mmd(phydev, DP83867_DEVADDR, DP83867_RXFPMD3, (mac[5] << 8 | mac[4])); val_rxcfg |= DP83867_WOL_MAGIC_EN; } else { val_rxcfg &= ~DP83867_WOL_MAGIC_EN; } if (wol->wolopts & WAKE_MAGICSECURE) { phy_write_mmd(phydev, DP83867_DEVADDR, DP83867_RXFSOP1, (wol->sopass[1] << 8) | wol->sopass[0]); phy_write_mmd(phydev, DP83867_DEVADDR, DP83867_RXFSOP2, (wol->sopass[3] << 8) | wol->sopass[2]); phy_write_mmd(phydev, DP83867_DEVADDR, DP83867_RXFSOP3, (wol->sopass[5] << 8) | wol->sopass[4]); val_rxcfg |= DP83867_WOL_SEC_EN; } else { val_rxcfg &= ~DP83867_WOL_SEC_EN; } if (wol->wolopts & WAKE_UCAST) val_rxcfg |= DP83867_WOL_UCAST_EN; else val_rxcfg &= ~DP83867_WOL_UCAST_EN; if (wol->wolopts & WAKE_BCAST) val_rxcfg |= DP83867_WOL_BCAST_EN; else val_rxcfg &= ~DP83867_WOL_BCAST_EN; } else { val_rxcfg &= ~DP83867_WOL_ENH_MAC; val_micr &= ~MII_DP83867_MICR_WOL_INT_EN; } phy_write_mmd(phydev, DP83867_DEVADDR, DP83867_RXFCFG, val_rxcfg); phy_write(phydev, MII_DP83867_MICR, val_micr); return 0; } static void dp83867_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol) { u16 value, sopass_val; wol->supported = (WAKE_UCAST | WAKE_BCAST | WAKE_MAGIC | WAKE_MAGICSECURE); wol->wolopts = 0; value = phy_read_mmd(phydev, DP83867_DEVADDR, DP83867_RXFCFG); if (value & DP83867_WOL_UCAST_EN) wol->wolopts |= WAKE_UCAST; if (value & DP83867_WOL_BCAST_EN) wol->wolopts |= WAKE_BCAST; if (value & DP83867_WOL_MAGIC_EN) wol->wolopts |= WAKE_MAGIC; if (value & DP83867_WOL_SEC_EN) { sopass_val = phy_read_mmd(phydev, DP83867_DEVADDR, DP83867_RXFSOP1); wol->sopass[0] = (sopass_val & 0xff); wol->sopass[1] = (sopass_val >> 8); sopass_val = phy_read_mmd(phydev, DP83867_DEVADDR, DP83867_RXFSOP2); wol->sopass[2] = (sopass_val & 0xff); wol->sopass[3] = (sopass_val >> 8); sopass_val = phy_read_mmd(phydev, DP83867_DEVADDR, DP83867_RXFSOP3); wol->sopass[4] = (sopass_val & 0xff); wol->sopass[5] = (sopass_val >> 8); wol->wolopts |= WAKE_MAGICSECURE; } if (!(value & DP83867_WOL_ENH_MAC)) wol->wolopts = 0; } static int dp83867_config_intr(struct phy_device *phydev) { int micr_status, err; if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { err = dp83867_ack_interrupt(phydev); if (err) return err; micr_status = phy_read(phydev, MII_DP83867_MICR); if (micr_status < 0) return micr_status; micr_status |= (MII_DP83867_MICR_AN_ERR_INT_EN | MII_DP83867_MICR_SPEED_CHNG_INT_EN | MII_DP83867_MICR_AUTONEG_COMP_INT_EN | MII_DP83867_MICR_LINK_STS_CHNG_INT_EN | MII_DP83867_MICR_DUP_MODE_CHNG_INT_EN | MII_DP83867_MICR_SLEEP_MODE_CHNG_INT_EN); err = phy_write(phydev, MII_DP83867_MICR, micr_status); } else { micr_status = 0x0; err = phy_write(phydev, MII_DP83867_MICR, micr_status); if (err) return err; err = dp83867_ack_interrupt(phydev); } return err; } static irqreturn_t dp83867_handle_interrupt(struct phy_device *phydev) { int irq_status, irq_enabled; irq_status = phy_read(phydev, MII_DP83867_ISR); if (irq_status < 0) { phy_error(phydev); return IRQ_NONE; } irq_enabled = phy_read(phydev, MII_DP83867_MICR); if (irq_enabled < 0) { phy_error(phydev); return IRQ_NONE; } if (!(irq_status & irq_enabled)) return IRQ_NONE; phy_trigger_machine(phydev); return IRQ_HANDLED; } static int dp83867_read_status(struct phy_device *phydev) { int status = phy_read(phydev, MII_DP83867_PHYSTS); int ret; ret = genphy_read_status(phydev); if (ret) return ret; if (status < 0) return status; if (status & DP83867_PHYSTS_DUPLEX) phydev->duplex = DUPLEX_FULL; else phydev->duplex = DUPLEX_HALF; if (status & DP83867_PHYSTS_1000) phydev->speed = SPEED_1000; else if (status & DP83867_PHYSTS_100) phydev->speed = SPEED_100; else phydev->speed = SPEED_10; return 0; } static int dp83867_get_downshift(struct phy_device *phydev, u8 *data) { int val, cnt, enable, count; val = phy_read(phydev, DP83867_CFG2); if (val < 0) return val; enable = FIELD_GET(DP83867_DOWNSHIFT_EN, val); cnt = FIELD_GET(DP83867_DOWNSHIFT_ATTEMPT_MASK, val); switch (cnt) { case DP83867_DOWNSHIFT_1_COUNT_VAL: count = DP83867_DOWNSHIFT_1_COUNT; break; case DP83867_DOWNSHIFT_2_COUNT_VAL: count = DP83867_DOWNSHIFT_2_COUNT; break; case DP83867_DOWNSHIFT_4_COUNT_VAL: count = DP83867_DOWNSHIFT_4_COUNT; break; case DP83867_DOWNSHIFT_8_COUNT_VAL: count = DP83867_DOWNSHIFT_8_COUNT; break; default: return -EINVAL; } *data = enable ? count : DOWNSHIFT_DEV_DISABLE; return 0; } static int dp83867_set_downshift(struct phy_device *phydev, u8 cnt) { int val, count; if (cnt > DP83867_DOWNSHIFT_8_COUNT) return -E2BIG; if (!cnt) return phy_clear_bits(phydev, DP83867_CFG2, DP83867_DOWNSHIFT_EN); switch (cnt) { case DP83867_DOWNSHIFT_1_COUNT: count = DP83867_DOWNSHIFT_1_COUNT_VAL; break; case DP83867_DOWNSHIFT_2_COUNT: count = DP83867_DOWNSHIFT_2_COUNT_VAL; break; case DP83867_DOWNSHIFT_4_COUNT: count = DP83867_DOWNSHIFT_4_COUNT_VAL; break; case DP83867_DOWNSHIFT_8_COUNT: count = DP83867_DOWNSHIFT_8_COUNT_VAL; break; default: phydev_err(phydev, "Downshift count must be 1, 2, 4 or 8\n"); return -EINVAL; } val = DP83867_DOWNSHIFT_EN; val |= FIELD_PREP(DP83867_DOWNSHIFT_ATTEMPT_MASK, count); return phy_modify(phydev, DP83867_CFG2, DP83867_DOWNSHIFT_EN | DP83867_DOWNSHIFT_ATTEMPT_MASK, val); } static int dp83867_get_tunable(struct phy_device *phydev, struct ethtool_tunable *tuna, void *data) { switch (tuna->id) { case ETHTOOL_PHY_DOWNSHIFT: return dp83867_get_downshift(phydev, data); default: return -EOPNOTSUPP; } } static int dp83867_set_tunable(struct phy_device *phydev, struct ethtool_tunable *tuna, const void *data) { switch (tuna->id) { case ETHTOOL_PHY_DOWNSHIFT: return dp83867_set_downshift(phydev, *(const u8 *)data); default: return -EOPNOTSUPP; } } static int dp83867_config_port_mirroring(struct phy_device *phydev) { struct dp83867_private *dp83867 = phydev->priv; if (dp83867->port_mirroring == DP83867_PORT_MIRROING_EN) phy_set_bits_mmd(phydev, DP83867_DEVADDR, DP83867_CFG4, DP83867_CFG4_PORT_MIRROR_EN); else phy_clear_bits_mmd(phydev, DP83867_DEVADDR, DP83867_CFG4, DP83867_CFG4_PORT_MIRROR_EN); return 0; } static int dp83867_verify_rgmii_cfg(struct phy_device *phydev) { struct dp83867_private *dp83867 = phydev->priv; /* Existing behavior was to use default pin strapping delay in rgmii * mode, but rgmii should have meant no delay. Warn existing users. */ if (phydev->interface == PHY_INTERFACE_MODE_RGMII) { const u16 val = phy_read_mmd(phydev, DP83867_DEVADDR, DP83867_STRAP_STS2); const u16 txskew = (val & DP83867_STRAP_STS2_CLK_SKEW_TX_MASK) >> DP83867_STRAP_STS2_CLK_SKEW_TX_SHIFT; const u16 rxskew = (val & DP83867_STRAP_STS2_CLK_SKEW_RX_MASK) >> DP83867_STRAP_STS2_CLK_SKEW_RX_SHIFT; if (txskew != DP83867_STRAP_STS2_CLK_SKEW_NONE || rxskew != DP83867_STRAP_STS2_CLK_SKEW_NONE) phydev_warn(phydev, "PHY has delays via pin strapping, but phy-mode = 'rgmii'\n" "Should be 'rgmii-id' to use internal delays txskew:%x rxskew:%x\n", txskew, rxskew); } /* RX delay *must* be specified if internal delay of RX is used. */ if ((phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) && dp83867->rx_id_delay == DP83867_RGMII_RX_CLK_DELAY_INV) { phydev_err(phydev, "ti,rx-internal-delay must be specified\n"); return -EINVAL; } /* TX delay *must* be specified if internal delay of TX is used. */ if ((phydev->interface == PHY_INTERFACE_MODE_RGMII_ID || phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) && dp83867->tx_id_delay == DP83867_RGMII_TX_CLK_DELAY_INV) { phydev_err(phydev, "ti,tx-internal-delay must be specified\n"); return -EINVAL; } return 0; } #if IS_ENABLED(CONFIG_OF_MDIO) static int dp83867_of_init_io_impedance(struct phy_device *phydev) { struct dp83867_private *dp83867 = phydev->priv; struct device *dev = &phydev->mdio.dev; struct device_node *of_node = dev->of_node; struct nvmem_cell *cell; u8 *buf, val; int ret; cell = of_nvmem_cell_get(of_node, "io_impedance_ctrl"); if (IS_ERR(cell)) { ret = PTR_ERR(cell); if (ret != -ENOENT && ret != -EOPNOTSUPP) return phydev_err_probe(phydev, ret, "failed to get nvmem cell io_impedance_ctrl\n"); /* If no nvmem cell, check for the boolean properties. */ if (of_property_read_bool(of_node, "ti,max-output-impedance")) dp83867->io_impedance = DP83867_IO_MUX_CFG_IO_IMPEDANCE_MAX; else if (of_property_read_bool(of_node, "ti,min-output-impedance")) dp83867->io_impedance = DP83867_IO_MUX_CFG_IO_IMPEDANCE_MIN; else dp83867->io_impedance = -1; /* leave at default */ return 0; } buf = nvmem_cell_read(cell, NULL); nvmem_cell_put(cell); if (IS_ERR(buf)) return PTR_ERR(buf); val = *buf; kfree(buf); if ((val & DP83867_IO_MUX_CFG_IO_IMPEDANCE_MASK) != val) { phydev_err(phydev, "nvmem cell 'io_impedance_ctrl' contents out of range\n"); return -ERANGE; } dp83867->io_impedance = val; return 0; } static int dp83867_of_init(struct phy_device *phydev) { struct dp83867_private *dp83867 = phydev->priv; struct device *dev = &phydev->mdio.dev; struct device_node *of_node = dev->of_node; int ret; if (!of_node) return -ENODEV; /* Optional configuration */ ret = of_property_read_u32(of_node, "ti,clk-output-sel", &dp83867->clk_output_sel); /* If not set, keep default */ if (!ret) { dp83867->set_clk_output = true; /* Valid values are 0 to DP83867_CLK_O_SEL_REF_CLK or * DP83867_CLK_O_SEL_OFF. */ if (dp83867->clk_output_sel > DP83867_CLK_O_SEL_REF_CLK && dp83867->clk_output_sel != DP83867_CLK_O_SEL_OFF) { phydev_err(phydev, "ti,clk-output-sel value %u out of range\n", dp83867->clk_output_sel); return -EINVAL; } } ret = dp83867_of_init_io_impedance(phydev); if (ret) return ret; dp83867->rxctrl_strap_quirk = of_property_read_bool(of_node, "ti,dp83867-rxctrl-strap-quirk"); dp83867->sgmii_ref_clk_en = of_property_read_bool(of_node, "ti,sgmii-ref-clock-output-enable"); dp83867->rx_id_delay = DP83867_RGMII_RX_CLK_DELAY_INV; ret = of_property_read_u32(of_node, "ti,rx-internal-delay", &dp83867->rx_id_delay); if (!ret && dp83867->rx_id_delay > DP83867_RGMII_RX_CLK_DELAY_MAX) { phydev_err(phydev, "ti,rx-internal-delay value of %u out of range\n", dp83867->rx_id_delay); return -EINVAL; } dp83867->tx_id_delay = DP83867_RGMII_TX_CLK_DELAY_INV; ret = of_property_read_u32(of_node, "ti,tx-internal-delay", &dp83867->tx_id_delay); if (!ret && dp83867->tx_id_delay > DP83867_RGMII_TX_CLK_DELAY_MAX) { phydev_err(phydev, "ti,tx-internal-delay value of %u out of range\n", dp83867->tx_id_delay); return -EINVAL; } if (of_property_read_bool(of_node, "enet-phy-lane-swap")) dp83867->port_mirroring = DP83867_PORT_MIRROING_EN; if (of_property_read_bool(of_node, "enet-phy-lane-no-swap")) dp83867->port_mirroring = DP83867_PORT_MIRROING_DIS; ret = of_property_read_u32(of_node, "ti,fifo-depth", &dp83867->tx_fifo_depth); if (ret) { ret = of_property_read_u32(of_node, "tx-fifo-depth", &dp83867->tx_fifo_depth); if (ret) dp83867->tx_fifo_depth = DP83867_PHYCR_FIFO_DEPTH_4_B_NIB; } if (dp83867->tx_fifo_depth > DP83867_PHYCR_FIFO_DEPTH_MAX) { phydev_err(phydev, "tx-fifo-depth value %u out of range\n", dp83867->tx_fifo_depth); return -EINVAL; } ret = of_property_read_u32(of_node, "rx-fifo-depth", &dp83867->rx_fifo_depth); if (ret) dp83867->rx_fifo_depth = DP83867_PHYCR_FIFO_DEPTH_4_B_NIB; if (dp83867->rx_fifo_depth > DP83867_PHYCR_FIFO_DEPTH_MAX) { phydev_err(phydev, "rx-fifo-depth value %u out of range\n", dp83867->rx_fifo_depth); return -EINVAL; } return 0; } #else static int dp83867_of_init(struct phy_device *phydev) { struct dp83867_private *dp83867 = phydev->priv; u16 delay; /* For non-OF device, the RX and TX ID values are either strapped * or take from default value. So, we init RX & TX ID values here * so that the RGMIIDCTL is configured correctly later in * dp83867_config_init(); */ delay = phy_read_mmd(phydev, DP83867_DEVADDR, DP83867_RGMIIDCTL); dp83867->rx_id_delay = delay & DP83867_RGMII_RX_CLK_DELAY_MAX; dp83867->tx_id_delay = (delay >> DP83867_RGMII_TX_CLK_DELAY_SHIFT) & DP83867_RGMII_TX_CLK_DELAY_MAX; /* Per datasheet, IO impedance is default to 50-ohm, so we set the * same here or else the default '0' means highest IO impedance * which is wrong. */ dp83867->io_impedance = DP83867_IO_MUX_CFG_IO_IMPEDANCE_MIN / 2; /* For non-OF device, the RX and TX FIFO depths are taken from * default value. So, we init RX & TX FIFO depths here * so that it is configured correctly later in dp83867_config_init(); */ dp83867->tx_fifo_depth = DP83867_PHYCR_FIFO_DEPTH_4_B_NIB; dp83867->rx_fifo_depth = DP83867_PHYCR_FIFO_DEPTH_4_B_NIB; return 0; } #endif /* CONFIG_OF_MDIO */ static int dp83867_suspend(struct phy_device *phydev) { /* Disable PHY Interrupts */ if (phy_interrupt_is_valid(phydev)) { phydev->interrupts = PHY_INTERRUPT_DISABLED; dp83867_config_intr(phydev); } return genphy_suspend(phydev); } static int dp83867_resume(struct phy_device *phydev) { /* Enable PHY Interrupts */ if (phy_interrupt_is_valid(phydev)) { phydev->interrupts = PHY_INTERRUPT_ENABLED; dp83867_config_intr(phydev); } genphy_resume(phydev); return 0; } static int dp83867_probe(struct phy_device *phydev) { struct dp83867_private *dp83867; dp83867 = devm_kzalloc(&phydev->mdio.dev, sizeof(*dp83867), GFP_KERNEL); if (!dp83867) return -ENOMEM; phydev->priv = dp83867; return dp83867_of_init(phydev); } static int dp83867_config_init(struct phy_device *phydev) { struct dp83867_private *dp83867 = phydev->priv; int ret, val, bs; u16 delay; /* Force speed optimization for the PHY even if it strapped */ ret = phy_modify(phydev, DP83867_CFG2, DP83867_DOWNSHIFT_EN, DP83867_DOWNSHIFT_EN); if (ret) return ret; ret = dp83867_verify_rgmii_cfg(phydev); if (ret) return ret; /* RX_DV/RX_CTRL strapped in mode 1 or mode 2 workaround */ if (dp83867->rxctrl_strap_quirk) phy_clear_bits_mmd(phydev, DP83867_DEVADDR, DP83867_CFG4, BIT(7)); bs = phy_read_mmd(phydev, DP83867_DEVADDR, DP83867_STRAP_STS2); if (bs & DP83867_STRAP_STS2_STRAP_FLD) { /* When using strap to enable FLD, the ENERGY_LOST_FLD_THR will * be set to 0x2. This may causes the PHY link to be unstable - * the default value 0x1 need to be restored. */ ret = phy_modify_mmd(phydev, DP83867_DEVADDR, DP83867_FLD_THR_CFG, DP83867_FLD_THR_CFG_ENERGY_LOST_THR_MASK, 0x1); if (ret) return ret; } if (phy_interface_is_rgmii(phydev) || phydev->interface == PHY_INTERFACE_MODE_SGMII) { val = phy_read(phydev, MII_DP83867_PHYCTRL); if (val < 0) return val; val &= ~DP83867_PHYCR_TX_FIFO_DEPTH_MASK; val |= (dp83867->tx_fifo_depth << DP83867_PHYCR_TX_FIFO_DEPTH_SHIFT); if (phydev->interface == PHY_INTERFACE_MODE_SGMII) { val &= ~DP83867_PHYCR_RX_FIFO_DEPTH_MASK; val |= (dp83867->rx_fifo_depth << DP83867_PHYCR_RX_FIFO_DEPTH_SHIFT); } ret = phy_write(phydev, MII_DP83867_PHYCTRL, val); if (ret) return ret; } if (phy_interface_is_rgmii(phydev)) { val = phy_read(phydev, MII_DP83867_PHYCTRL); if (val < 0) return val; /* The code below checks if "port mirroring" N/A MODE4 has been * enabled during power on bootstrap. * * Such N/A mode enabled by mistake can put PHY IC in some * internal testing mode and disable RGMII transmission. * * In this particular case one needs to check STRAP_STS1 * register's bit 11 (marked as RESERVED). */ bs = phy_read_mmd(phydev, DP83867_DEVADDR, DP83867_STRAP_STS1); if (bs & DP83867_STRAP_STS1_RESERVED) val &= ~DP83867_PHYCR_RESERVED_MASK; ret = phy_write(phydev, MII_DP83867_PHYCTRL, val); if (ret) return ret; /* If rgmii mode with no internal delay is selected, we do NOT use * aligned mode as one might expect. Instead we use the PHY's default * based on pin strapping. And the "mode 0" default is to *use* * internal delay with a value of 7 (2.00 ns). * * Set up RGMII delays */ val = phy_read_mmd(phydev, DP83867_DEVADDR, DP83867_RGMIICTL); val &= ~(DP83867_RGMII_TX_CLK_DELAY_EN | DP83867_RGMII_RX_CLK_DELAY_EN); if (phydev->interface == PHY_INTERFACE_MODE_RGMII_ID) val |= (DP83867_RGMII_TX_CLK_DELAY_EN | DP83867_RGMII_RX_CLK_DELAY_EN); if (phydev->interface == PHY_INTERFACE_MODE_RGMII_TXID) val |= DP83867_RGMII_TX_CLK_DELAY_EN; if (phydev->interface == PHY_INTERFACE_MODE_RGMII_RXID) val |= DP83867_RGMII_RX_CLK_DELAY_EN; phy_write_mmd(phydev, DP83867_DEVADDR, DP83867_RGMIICTL, val); delay = 0; if (dp83867->rx_id_delay != DP83867_RGMII_RX_CLK_DELAY_INV) delay |= dp83867->rx_id_delay; if (dp83867->tx_id_delay != DP83867_RGMII_TX_CLK_DELAY_INV) delay |= dp83867->tx_id_delay << DP83867_RGMII_TX_CLK_DELAY_SHIFT; phy_write_mmd(phydev, DP83867_DEVADDR, DP83867_RGMIIDCTL, delay); } /* If specified, set io impedance */ if (dp83867->io_impedance >= 0) phy_modify_mmd(phydev, DP83867_DEVADDR, DP83867_IO_MUX_CFG, DP83867_IO_MUX_CFG_IO_IMPEDANCE_MASK, dp83867->io_impedance); if (phydev->interface == PHY_INTERFACE_MODE_SGMII) { /* For support SPEED_10 in SGMII mode * DP83867_10M_SGMII_RATE_ADAPT bit * has to be cleared by software. That * does not affect SPEED_100 and * SPEED_1000. */ ret = phy_modify_mmd(phydev, DP83867_DEVADDR, DP83867_10M_SGMII_CFG, DP83867_10M_SGMII_RATE_ADAPT_MASK, 0); if (ret) return ret; /* After reset SGMII Autoneg timer is set to 2us (bits 6 and 5 * are 01). That is not enough to finalize autoneg on some * devices. Increase this timer duration to maximum 16ms. */ ret = phy_modify_mmd(phydev, DP83867_DEVADDR, DP83867_CFG4, DP83867_CFG4_SGMII_ANEG_MASK, DP83867_CFG4_SGMII_ANEG_TIMER_16MS); if (ret) return ret; val = phy_read_mmd(phydev, DP83867_DEVADDR, DP83867_SGMIICTL); /* SGMII type is set to 4-wire mode by default. * If we place appropriate property in dts (see above) * switch on 6-wire mode. */ if (dp83867->sgmii_ref_clk_en) val |= DP83867_SGMII_TYPE; else val &= ~DP83867_SGMII_TYPE; phy_write_mmd(phydev, DP83867_DEVADDR, DP83867_SGMIICTL, val); /* This is a SW workaround for link instability if RX_CTRL is * not strapped to mode 3 or 4 in HW. This is required for SGMII * in addition to clearing bit 7, handled above. */ if (dp83867->rxctrl_strap_quirk) phy_set_bits_mmd(phydev, DP83867_DEVADDR, DP83867_CFG4, BIT(8)); } val = phy_read(phydev, DP83867_CFG3); /* Enable Interrupt output INT_OE in CFG3 register */ if (phy_interrupt_is_valid(phydev)) val |= DP83867_CFG3_INT_OE; val |= DP83867_CFG3_ROBUST_AUTO_MDIX; phy_write(phydev, DP83867_CFG3, val); if (dp83867->port_mirroring != DP83867_PORT_MIRROING_KEEP) dp83867_config_port_mirroring(phydev); /* Clock output selection if muxing property is set */ if (dp83867->set_clk_output) { u16 mask = DP83867_IO_MUX_CFG_CLK_O_DISABLE; if (dp83867->clk_output_sel == DP83867_CLK_O_SEL_OFF) { val = DP83867_IO_MUX_CFG_CLK_O_DISABLE; } else { mask |= DP83867_IO_MUX_CFG_CLK_O_SEL_MASK; val = dp83867->clk_output_sel << DP83867_IO_MUX_CFG_CLK_O_SEL_SHIFT; } phy_modify_mmd(phydev, DP83867_DEVADDR, DP83867_IO_MUX_CFG, mask, val); } return 0; } static int dp83867_phy_reset(struct phy_device *phydev) { int err; err = phy_write(phydev, DP83867_CTRL, DP83867_SW_RESET); if (err < 0) return err; usleep_range(10, 20); err = phy_modify(phydev, MII_DP83867_PHYCTRL, DP83867_PHYCR_FORCE_LINK_GOOD, 0); if (err < 0) return err; /* Configure the DSP Feedforward Equalizer Configuration register to * improve short cable (< 1 meter) performance. This will not affect * long cable performance. */ err = phy_write_mmd(phydev, DP83867_DEVADDR, DP83867_DSP_FFE_CFG, 0x0e81); if (err < 0) return err; err = phy_write(phydev, DP83867_CTRL, DP83867_SW_RESTART); if (err < 0) return err; usleep_range(10, 20); return 0; } static void dp83867_link_change_notify(struct phy_device *phydev) { /* There is a limitation in DP83867 PHY device where SGMII AN is * only triggered once after the device is booted up. Even after the * PHY TPI is down and up again, SGMII AN is not triggered and * hence no new in-band message from PHY to MAC side SGMII. * This could cause an issue during power up, when PHY is up prior * to MAC. At this condition, once MAC side SGMII is up, MAC side * SGMII wouldn`t receive new in-band message from TI PHY with * correct link status, speed and duplex info. * Thus, implemented a SW solution here to retrigger SGMII Auto-Neg * whenever there is a link change. */ if (phydev->interface == PHY_INTERFACE_MODE_SGMII) { int val = 0; val = phy_clear_bits(phydev, DP83867_CFG2, DP83867_SGMII_AUTONEG_EN); if (val < 0) return; phy_set_bits(phydev, DP83867_CFG2, DP83867_SGMII_AUTONEG_EN); } } static int dp83867_loopback(struct phy_device *phydev, bool enable) { return phy_modify(phydev, MII_BMCR, BMCR_LOOPBACK, enable ? BMCR_LOOPBACK : 0); } static int dp83867_led_brightness_set(struct phy_device *phydev, u8 index, enum led_brightness brightness) { u32 val; if (index >= DP83867_LED_COUNT) return -EINVAL; /* DRV_EN==1: output is DRV_VAL */ val = DP83867_LED_DRV_EN(index); if (brightness) val |= DP83867_LED_DRV_VAL(index); return phy_modify(phydev, DP83867_LEDCR2, DP83867_LED_DRV_VAL(index) | DP83867_LED_DRV_EN(index), val); } static int dp83867_led_mode(u8 index, unsigned long rules) { if (index >= DP83867_LED_COUNT) return -EINVAL; switch (rules) { case BIT(TRIGGER_NETDEV_LINK): return DP83867_LED_FN_LINK; case BIT(TRIGGER_NETDEV_LINK_10): return DP83867_LED_FN_LINK_10_BT; case BIT(TRIGGER_NETDEV_LINK_100): return DP83867_LED_FN_LINK_100_BTX; case BIT(TRIGGER_NETDEV_FULL_DUPLEX): return DP83867_LED_FN_FULL_DUPLEX; case BIT(TRIGGER_NETDEV_TX): return DP83867_LED_FN_TX; case BIT(TRIGGER_NETDEV_RX): return DP83867_LED_FN_RX; case BIT(TRIGGER_NETDEV_LINK_1000): return DP83867_LED_FN_LINK_1000_BT; case BIT(TRIGGER_NETDEV_TX) | BIT(TRIGGER_NETDEV_RX): return DP83867_LED_FN_RX_TX; case BIT(TRIGGER_NETDEV_LINK_100) | BIT(TRIGGER_NETDEV_LINK_1000): return DP83867_LED_FN_LINK_100_1000_BT; case BIT(TRIGGER_NETDEV_LINK_10) | BIT(TRIGGER_NETDEV_LINK_100): return DP83867_LED_FN_LINK_10_100_BT; case BIT(TRIGGER_NETDEV_LINK) | BIT(TRIGGER_NETDEV_TX) | BIT(TRIGGER_NETDEV_RX): return DP83867_LED_FN_LINK_RX_TX; default: return -EOPNOTSUPP; } } static int dp83867_led_hw_is_supported(struct phy_device *phydev, u8 index, unsigned long rules) { int ret; ret = dp83867_led_mode(index, rules); if (ret < 0) return ret; return 0; } static int dp83867_led_hw_control_set(struct phy_device *phydev, u8 index, unsigned long rules) { int mode, ret; mode = dp83867_led_mode(index, rules); if (mode < 0) return mode; ret = phy_modify(phydev, DP83867_LEDCR1, DP83867_LED_FN_MASK(index), DP83867_LED_FN(index, mode)); if (ret) return ret; return phy_modify(phydev, DP83867_LEDCR2, DP83867_LED_DRV_EN(index), 0); } static int dp83867_led_hw_control_get(struct phy_device *phydev, u8 index, unsigned long *rules) { int val; val = phy_read(phydev, DP83867_LEDCR1); if (val < 0) return val; val &= DP83867_LED_FN_MASK(index); val >>= index * 4; switch (val) { case DP83867_LED_FN_LINK: *rules = BIT(TRIGGER_NETDEV_LINK); break; case DP83867_LED_FN_LINK_10_BT: *rules = BIT(TRIGGER_NETDEV_LINK_10); break; case DP83867_LED_FN_LINK_100_BTX: *rules = BIT(TRIGGER_NETDEV_LINK_100); break; case DP83867_LED_FN_FULL_DUPLEX: *rules = BIT(TRIGGER_NETDEV_FULL_DUPLEX); break; case DP83867_LED_FN_TX: *rules = BIT(TRIGGER_NETDEV_TX); break; case DP83867_LED_FN_RX: *rules = BIT(TRIGGER_NETDEV_RX); break; case DP83867_LED_FN_LINK_1000_BT: *rules = BIT(TRIGGER_NETDEV_LINK_1000); break; case DP83867_LED_FN_RX_TX: *rules = BIT(TRIGGER_NETDEV_TX) | BIT(TRIGGER_NETDEV_RX); break; case DP83867_LED_FN_LINK_100_1000_BT: *rules = BIT(TRIGGER_NETDEV_LINK_100) | BIT(TRIGGER_NETDEV_LINK_1000); break; case DP83867_LED_FN_LINK_10_100_BT: *rules = BIT(TRIGGER_NETDEV_LINK_10) | BIT(TRIGGER_NETDEV_LINK_100); break; case DP83867_LED_FN_LINK_RX_TX: *rules = BIT(TRIGGER_NETDEV_LINK) | BIT(TRIGGER_NETDEV_TX) | BIT(TRIGGER_NETDEV_RX); break; default: *rules = 0; break; } return 0; } static int dp83867_led_polarity_set(struct phy_device *phydev, int index, unsigned long modes) { /* Default active high */ u16 polarity = DP83867_LED_POLARITY(index); u32 mode; for_each_set_bit(mode, &modes, __PHY_LED_MODES_NUM) { switch (mode) { case PHY_LED_ACTIVE_LOW: polarity = 0; break; default: return -EINVAL; } } return phy_modify(phydev, DP83867_LEDCR2, DP83867_LED_POLARITY(index), polarity); } static struct phy_driver dp83867_driver[] = { { .phy_id = DP83867_PHY_ID, .phy_id_mask = 0xfffffff0, .name = "TI DP83867", /* PHY_GBIT_FEATURES */ .probe = dp83867_probe, .config_init = dp83867_config_init, .soft_reset = dp83867_phy_reset, .read_status = dp83867_read_status, .get_tunable = dp83867_get_tunable, .set_tunable = dp83867_set_tunable, .get_wol = dp83867_get_wol, .set_wol = dp83867_set_wol, /* IRQ related */ .config_intr = dp83867_config_intr, .handle_interrupt = dp83867_handle_interrupt, .suspend = dp83867_suspend, .resume = dp83867_resume, .link_change_notify = dp83867_link_change_notify, .set_loopback = dp83867_loopback, .led_brightness_set = dp83867_led_brightness_set, .led_hw_is_supported = dp83867_led_hw_is_supported, .led_hw_control_set = dp83867_led_hw_control_set, .led_hw_control_get = dp83867_led_hw_control_get, .led_polarity_set = dp83867_led_polarity_set, }, }; module_phy_driver(dp83867_driver); static struct mdio_device_id __maybe_unused dp83867_tbl[] = { { DP83867_PHY_ID, 0xfffffff0 }, { } }; MODULE_DEVICE_TABLE(mdio, dp83867_tbl); MODULE_DESCRIPTION("Texas Instruments DP83867 PHY driver"); MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1