Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ansuel Smith | 2016 | 81.29% | 12 | 35.29% |
Luo Jie | 268 | 10.81% | 10 | 29.41% |
Matus Ujhelyi | 86 | 3.47% | 1 | 2.94% |
Robert Marko | 71 | 2.86% | 2 | 5.88% |
Michael Walle | 14 | 0.56% | 2 | 5.88% |
Mugunthan V N | 12 | 0.48% | 1 | 2.94% |
Ioana Ciornei | 5 | 0.20% | 1 | 2.94% |
Oleksij Rempel | 4 | 0.16% | 1 | 2.94% |
Zhao Qiang | 1 | 0.04% | 1 | 2.94% |
Johan Hovold | 1 | 0.04% | 1 | 2.94% |
Andrew Lunn | 1 | 0.04% | 1 | 2.94% |
David Bauer | 1 | 0.04% | 1 | 2.94% |
Total | 2480 | 34 |
// SPDX-License-Identifier: GPL-2.0+ #include <linux/phy.h> #include <linux/module.h> #include "qcom.h" /* ADC threshold */ #define QCA808X_PHY_DEBUG_ADC_THRESHOLD 0x2c80 #define QCA808X_ADC_THRESHOLD_MASK GENMASK(7, 0) #define QCA808X_ADC_THRESHOLD_80MV 0 #define QCA808X_ADC_THRESHOLD_100MV 0xf0 #define QCA808X_ADC_THRESHOLD_200MV 0x0f #define QCA808X_ADC_THRESHOLD_300MV 0xff /* CLD control */ #define QCA808X_PHY_MMD3_ADDR_CLD_CTRL7 0x8007 #define QCA808X_8023AZ_AFE_CTRL_MASK GENMASK(8, 4) #define QCA808X_8023AZ_AFE_EN 0x90 /* AZ control */ #define QCA808X_PHY_MMD3_AZ_TRAINING_CTRL 0x8008 #define QCA808X_MMD3_AZ_TRAINING_VAL 0x1c32 #define QCA808X_PHY_MMD1_MSE_THRESHOLD_20DB 0x8014 #define QCA808X_MSE_THRESHOLD_20DB_VALUE 0x529 #define QCA808X_PHY_MMD1_MSE_THRESHOLD_17DB 0x800E #define QCA808X_MSE_THRESHOLD_17DB_VALUE 0x341 #define QCA808X_PHY_MMD1_MSE_THRESHOLD_27DB 0x801E #define QCA808X_MSE_THRESHOLD_27DB_VALUE 0x419 #define QCA808X_PHY_MMD1_MSE_THRESHOLD_28DB 0x8020 #define QCA808X_MSE_THRESHOLD_28DB_VALUE 0x341 #define QCA808X_PHY_MMD7_TOP_OPTION1 0x901c #define QCA808X_TOP_OPTION1_DATA 0x0 #define QCA808X_PHY_MMD3_DEBUG_1 0xa100 #define QCA808X_MMD3_DEBUG_1_VALUE 0x9203 #define QCA808X_PHY_MMD3_DEBUG_2 0xa101 #define QCA808X_MMD3_DEBUG_2_VALUE 0x48ad #define QCA808X_PHY_MMD3_DEBUG_3 0xa103 #define QCA808X_MMD3_DEBUG_3_VALUE 0x1698 #define QCA808X_PHY_MMD3_DEBUG_4 0xa105 #define QCA808X_MMD3_DEBUG_4_VALUE 0x8001 #define QCA808X_PHY_MMD3_DEBUG_5 0xa106 #define QCA808X_MMD3_DEBUG_5_VALUE 0x1111 #define QCA808X_PHY_MMD3_DEBUG_6 0xa011 #define QCA808X_MMD3_DEBUG_6_VALUE 0x5f85 /* master/slave seed config */ #define QCA808X_PHY_DEBUG_LOCAL_SEED 9 #define QCA808X_MASTER_SLAVE_SEED_ENABLE BIT(1) #define QCA808X_MASTER_SLAVE_SEED_CFG GENMASK(12, 2) #define QCA808X_MASTER_SLAVE_SEED_RANGE 0x32 /* Hibernation yields lower power consumpiton in contrast with normal operation mode. * when the copper cable is unplugged, the PHY enters into hibernation mode in about 10s. */ #define QCA808X_DBG_AN_TEST 0xb #define QCA808X_HIBERNATION_EN BIT(15) #define QCA808X_MMD7_LED2_CTRL 0x8074 #define QCA808X_MMD7_LED2_FORCE_CTRL 0x8075 #define QCA808X_MMD7_LED1_CTRL 0x8076 #define QCA808X_MMD7_LED1_FORCE_CTRL 0x8077 #define QCA808X_MMD7_LED0_CTRL 0x8078 #define QCA808X_MMD7_LED_CTRL(x) (0x8078 - ((x) * 2)) #define QCA808X_MMD7_LED0_FORCE_CTRL 0x8079 #define QCA808X_MMD7_LED_FORCE_CTRL(x) (0x8079 - ((x) * 2)) #define QCA808X_MMD7_LED_POLARITY_CTRL 0x901a /* QSDK sets by default 0x46 to this reg that sets BIT 6 for * LED to active high. It's not clear what BIT 3 and BIT 4 does. */ #define QCA808X_LED_ACTIVE_HIGH BIT(6) /* QCA808X 1G chip type */ #define QCA808X_PHY_MMD7_CHIP_TYPE 0x901d #define QCA808X_PHY_CHIP_TYPE_1G BIT(0) #define QCA8081_PHY_SERDES_MMD1_FIFO_CTRL 0x9072 #define QCA8081_PHY_FIFO_RSTN BIT(11) #define QCA8081_PHY_ID 0x004dd101 MODULE_DESCRIPTION("Qualcomm Atheros QCA808X PHY driver"); MODULE_AUTHOR("Matus Ujhelyi"); MODULE_LICENSE("GPL"); struct qca808x_priv { int led_polarity_mode; }; static int qca808x_phy_fast_retrain_config(struct phy_device *phydev) { int ret; /* Enable fast retrain */ ret = genphy_c45_fast_retrain(phydev, true); if (ret) return ret; phy_write_mmd(phydev, MDIO_MMD_AN, QCA808X_PHY_MMD7_TOP_OPTION1, QCA808X_TOP_OPTION1_DATA); phy_write_mmd(phydev, MDIO_MMD_PMAPMD, QCA808X_PHY_MMD1_MSE_THRESHOLD_20DB, QCA808X_MSE_THRESHOLD_20DB_VALUE); phy_write_mmd(phydev, MDIO_MMD_PMAPMD, QCA808X_PHY_MMD1_MSE_THRESHOLD_17DB, QCA808X_MSE_THRESHOLD_17DB_VALUE); phy_write_mmd(phydev, MDIO_MMD_PMAPMD, QCA808X_PHY_MMD1_MSE_THRESHOLD_27DB, QCA808X_MSE_THRESHOLD_27DB_VALUE); phy_write_mmd(phydev, MDIO_MMD_PMAPMD, QCA808X_PHY_MMD1_MSE_THRESHOLD_28DB, QCA808X_MSE_THRESHOLD_28DB_VALUE); phy_write_mmd(phydev, MDIO_MMD_PCS, QCA808X_PHY_MMD3_DEBUG_1, QCA808X_MMD3_DEBUG_1_VALUE); phy_write_mmd(phydev, MDIO_MMD_PCS, QCA808X_PHY_MMD3_DEBUG_4, QCA808X_MMD3_DEBUG_4_VALUE); phy_write_mmd(phydev, MDIO_MMD_PCS, QCA808X_PHY_MMD3_DEBUG_5, QCA808X_MMD3_DEBUG_5_VALUE); phy_write_mmd(phydev, MDIO_MMD_PCS, QCA808X_PHY_MMD3_DEBUG_3, QCA808X_MMD3_DEBUG_3_VALUE); phy_write_mmd(phydev, MDIO_MMD_PCS, QCA808X_PHY_MMD3_DEBUG_6, QCA808X_MMD3_DEBUG_6_VALUE); phy_write_mmd(phydev, MDIO_MMD_PCS, QCA808X_PHY_MMD3_DEBUG_2, QCA808X_MMD3_DEBUG_2_VALUE); return 0; } static int qca808x_phy_ms_seed_enable(struct phy_device *phydev, bool enable) { u16 seed_value; if (!enable) return at803x_debug_reg_mask(phydev, QCA808X_PHY_DEBUG_LOCAL_SEED, QCA808X_MASTER_SLAVE_SEED_ENABLE, 0); seed_value = get_random_u32_below(QCA808X_MASTER_SLAVE_SEED_RANGE); return at803x_debug_reg_mask(phydev, QCA808X_PHY_DEBUG_LOCAL_SEED, QCA808X_MASTER_SLAVE_SEED_CFG | QCA808X_MASTER_SLAVE_SEED_ENABLE, FIELD_PREP(QCA808X_MASTER_SLAVE_SEED_CFG, seed_value) | QCA808X_MASTER_SLAVE_SEED_ENABLE); } static bool qca808x_is_prefer_master(struct phy_device *phydev) { return (phydev->master_slave_get == MASTER_SLAVE_CFG_MASTER_FORCE) || (phydev->master_slave_get == MASTER_SLAVE_CFG_MASTER_PREFERRED); } static bool qca808x_has_fast_retrain_or_slave_seed(struct phy_device *phydev) { return linkmode_test_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, phydev->supported); } static bool qca808x_is_1g_only(struct phy_device *phydev) { int ret; ret = phy_read_mmd(phydev, MDIO_MMD_AN, QCA808X_PHY_MMD7_CHIP_TYPE); if (ret < 0) return true; return !!(QCA808X_PHY_CHIP_TYPE_1G & ret); } static void qca808x_fill_possible_interfaces(struct phy_device *phydev) { unsigned long *possible = phydev->possible_interfaces; __set_bit(PHY_INTERFACE_MODE_SGMII, possible); if (!qca808x_is_1g_only(phydev)) __set_bit(PHY_INTERFACE_MODE_2500BASEX, possible); } static int qca808x_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct qca808x_priv *priv; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; /* Init LED polarity mode to -1 */ priv->led_polarity_mode = -1; phydev->priv = priv; return 0; } static int qca808x_config_init(struct phy_device *phydev) { struct qca808x_priv *priv = phydev->priv; int ret; /* Default to LED Active High if active-low not in DT */ if (priv->led_polarity_mode == -1) { ret = phy_set_bits_mmd(phydev, MDIO_MMD_AN, QCA808X_MMD7_LED_POLARITY_CTRL, QCA808X_LED_ACTIVE_HIGH); if (ret) return ret; } /* Active adc&vga on 802.3az for the link 1000M and 100M */ ret = phy_modify_mmd(phydev, MDIO_MMD_PCS, QCA808X_PHY_MMD3_ADDR_CLD_CTRL7, QCA808X_8023AZ_AFE_CTRL_MASK, QCA808X_8023AZ_AFE_EN); if (ret) return ret; /* Adjust the threshold on 802.3az for the link 1000M */ ret = phy_write_mmd(phydev, MDIO_MMD_PCS, QCA808X_PHY_MMD3_AZ_TRAINING_CTRL, QCA808X_MMD3_AZ_TRAINING_VAL); if (ret) return ret; if (qca808x_has_fast_retrain_or_slave_seed(phydev)) { /* Config the fast retrain for the link 2500M */ ret = qca808x_phy_fast_retrain_config(phydev); if (ret) return ret; ret = genphy_read_master_slave(phydev); if (ret < 0) return ret; if (!qca808x_is_prefer_master(phydev)) { /* Enable seed and configure lower ramdom seed to make phy * linked as slave mode. */ ret = qca808x_phy_ms_seed_enable(phydev, true); if (ret) return ret; } } qca808x_fill_possible_interfaces(phydev); /* Configure adc threshold as 100mv for the link 10M */ return at803x_debug_reg_mask(phydev, QCA808X_PHY_DEBUG_ADC_THRESHOLD, QCA808X_ADC_THRESHOLD_MASK, QCA808X_ADC_THRESHOLD_100MV); } static int qca808x_read_status(struct phy_device *phydev) { struct at803x_ss_mask ss_mask = { 0 }; int ret; ret = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_10GBT_STAT); if (ret < 0) return ret; linkmode_mod_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, phydev->lp_advertising, ret & MDIO_AN_10GBT_STAT_LP2_5G); ret = genphy_read_status(phydev); if (ret) return ret; /* qca8081 takes the different bits for speed value from at803x */ ss_mask.speed_mask = QCA808X_SS_SPEED_MASK; ss_mask.speed_shift = __bf_shf(QCA808X_SS_SPEED_MASK); ret = at803x_read_specific_status(phydev, ss_mask); if (ret < 0) return ret; if (phydev->link) { if (phydev->speed == SPEED_2500) phydev->interface = PHY_INTERFACE_MODE_2500BASEX; else phydev->interface = PHY_INTERFACE_MODE_SGMII; } else { /* generate seed as a lower random value to make PHY linked as SLAVE easily, * except for master/slave configuration fault detected or the master mode * preferred. * * the reason for not putting this code into the function link_change_notify is * the corner case where the link partner is also the qca8081 PHY and the seed * value is configured as the same value, the link can't be up and no link change * occurs. */ if (qca808x_has_fast_retrain_or_slave_seed(phydev)) { if (phydev->master_slave_state == MASTER_SLAVE_STATE_ERR || qca808x_is_prefer_master(phydev)) { qca808x_phy_ms_seed_enable(phydev, false); } else { qca808x_phy_ms_seed_enable(phydev, true); } } } return 0; } static int qca808x_soft_reset(struct phy_device *phydev) { int ret; ret = genphy_soft_reset(phydev); if (ret < 0) return ret; if (qca808x_has_fast_retrain_or_slave_seed(phydev)) ret = qca808x_phy_ms_seed_enable(phydev, true); return ret; } static int qca808x_cable_test_start(struct phy_device *phydev) { int ret; /* perform CDT with the following configs: * 1. disable hibernation. * 2. force PHY working in MDI mode. * 3. for PHY working in 1000BaseT. * 4. configure the threshold. */ ret = at803x_debug_reg_mask(phydev, QCA808X_DBG_AN_TEST, QCA808X_HIBERNATION_EN, 0); if (ret < 0) return ret; ret = at803x_config_mdix(phydev, ETH_TP_MDI); if (ret < 0) return ret; /* Force 1000base-T needs to configure PMA/PMD and MII_BMCR */ phydev->duplex = DUPLEX_FULL; phydev->speed = SPEED_1000; ret = genphy_c45_pma_setup_forced(phydev); if (ret < 0) return ret; ret = genphy_setup_forced(phydev); if (ret < 0) return ret; /* configure the thresholds for open, short, pair ok test */ phy_write_mmd(phydev, MDIO_MMD_PCS, 0x8074, 0xc040); phy_write_mmd(phydev, MDIO_MMD_PCS, 0x8076, 0xc040); phy_write_mmd(phydev, MDIO_MMD_PCS, 0x8077, 0xa060); phy_write_mmd(phydev, MDIO_MMD_PCS, 0x8078, 0xc050); phy_write_mmd(phydev, MDIO_MMD_PCS, 0x807a, 0xc060); phy_write_mmd(phydev, MDIO_MMD_PCS, 0x807e, 0xb060); return 0; } static int qca808x_get_features(struct phy_device *phydev) { int ret; ret = genphy_c45_pma_read_abilities(phydev); if (ret) return ret; /* The autoneg ability is not existed in bit3 of MMD7.1, * but it is supported by qca808x PHY, so we add it here * manually. */ linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->supported); /* As for the qca8081 1G version chip, the 2500baseT ability is also * existed in the bit0 of MMD1.21, we need to remove it manually if * it is the qca8081 1G chip according to the bit0 of MMD7.0x901d. */ if (qca808x_is_1g_only(phydev)) linkmode_clear_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, phydev->supported); return 0; } static int qca808x_config_aneg(struct phy_device *phydev) { int phy_ctrl = 0; int ret; ret = at803x_prepare_config_aneg(phydev); if (ret) return ret; /* The reg MII_BMCR also needs to be configured for force mode, the * genphy_config_aneg is also needed. */ if (phydev->autoneg == AUTONEG_DISABLE) genphy_c45_pma_setup_forced(phydev); if (linkmode_test_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, phydev->advertising)) phy_ctrl = MDIO_AN_10GBT_CTRL_ADV2_5G; ret = phy_modify_mmd_changed(phydev, MDIO_MMD_AN, MDIO_AN_10GBT_CTRL, MDIO_AN_10GBT_CTRL_ADV2_5G, phy_ctrl); if (ret < 0) return ret; return __genphy_config_aneg(phydev, ret); } static void qca808x_link_change_notify(struct phy_device *phydev) { /* Assert interface sgmii fifo on link down, deassert it on link up, * the interface device address is always phy address added by 1. */ mdiobus_c45_modify_changed(phydev->mdio.bus, phydev->mdio.addr + 1, MDIO_MMD_PMAPMD, QCA8081_PHY_SERDES_MMD1_FIFO_CTRL, QCA8081_PHY_FIFO_RSTN, phydev->link ? QCA8081_PHY_FIFO_RSTN : 0); } static int qca808x_led_parse_netdev(struct phy_device *phydev, unsigned long rules, u16 *offload_trigger) { /* Parsing specific to netdev trigger */ if (test_bit(TRIGGER_NETDEV_TX, &rules)) *offload_trigger |= QCA808X_LED_TX_BLINK; if (test_bit(TRIGGER_NETDEV_RX, &rules)) *offload_trigger |= QCA808X_LED_RX_BLINK; if (test_bit(TRIGGER_NETDEV_LINK_10, &rules)) *offload_trigger |= QCA808X_LED_SPEED10_ON; if (test_bit(TRIGGER_NETDEV_LINK_100, &rules)) *offload_trigger |= QCA808X_LED_SPEED100_ON; if (test_bit(TRIGGER_NETDEV_LINK_1000, &rules)) *offload_trigger |= QCA808X_LED_SPEED1000_ON; if (test_bit(TRIGGER_NETDEV_LINK_2500, &rules)) *offload_trigger |= QCA808X_LED_SPEED2500_ON; if (test_bit(TRIGGER_NETDEV_HALF_DUPLEX, &rules)) *offload_trigger |= QCA808X_LED_HALF_DUPLEX_ON; if (test_bit(TRIGGER_NETDEV_FULL_DUPLEX, &rules)) *offload_trigger |= QCA808X_LED_FULL_DUPLEX_ON; if (rules && !*offload_trigger) return -EOPNOTSUPP; /* Enable BLINK_CHECK_BYPASS by default to make the LED * blink even with duplex or speed mode not enabled. */ *offload_trigger |= QCA808X_LED_BLINK_CHECK_BYPASS; return 0; } static int qca808x_led_hw_control_enable(struct phy_device *phydev, u8 index) { u16 reg; if (index > 2) return -EINVAL; reg = QCA808X_MMD7_LED_FORCE_CTRL(index); return qca808x_led_reg_hw_control_enable(phydev, reg); } static int qca808x_led_hw_is_supported(struct phy_device *phydev, u8 index, unsigned long rules) { u16 offload_trigger = 0; if (index > 2) return -EINVAL; return qca808x_led_parse_netdev(phydev, rules, &offload_trigger); } static int qca808x_led_hw_control_set(struct phy_device *phydev, u8 index, unsigned long rules) { u16 reg, offload_trigger = 0; int ret; if (index > 2) return -EINVAL; reg = QCA808X_MMD7_LED_CTRL(index); ret = qca808x_led_parse_netdev(phydev, rules, &offload_trigger); if (ret) return ret; ret = qca808x_led_hw_control_enable(phydev, index); if (ret) return ret; return phy_modify_mmd(phydev, MDIO_MMD_AN, reg, QCA808X_LED_PATTERN_MASK, offload_trigger); } static bool qca808x_led_hw_control_status(struct phy_device *phydev, u8 index) { u16 reg; if (index > 2) return false; reg = QCA808X_MMD7_LED_FORCE_CTRL(index); return qca808x_led_reg_hw_control_status(phydev, reg); } static int qca808x_led_hw_control_get(struct phy_device *phydev, u8 index, unsigned long *rules) { u16 reg; int val; if (index > 2) return -EINVAL; /* Check if we have hw control enabled */ if (qca808x_led_hw_control_status(phydev, index)) return -EINVAL; reg = QCA808X_MMD7_LED_CTRL(index); val = phy_read_mmd(phydev, MDIO_MMD_AN, reg); if (val & QCA808X_LED_TX_BLINK) set_bit(TRIGGER_NETDEV_TX, rules); if (val & QCA808X_LED_RX_BLINK) set_bit(TRIGGER_NETDEV_RX, rules); if (val & QCA808X_LED_SPEED10_ON) set_bit(TRIGGER_NETDEV_LINK_10, rules); if (val & QCA808X_LED_SPEED100_ON) set_bit(TRIGGER_NETDEV_LINK_100, rules); if (val & QCA808X_LED_SPEED1000_ON) set_bit(TRIGGER_NETDEV_LINK_1000, rules); if (val & QCA808X_LED_SPEED2500_ON) set_bit(TRIGGER_NETDEV_LINK_2500, rules); if (val & QCA808X_LED_HALF_DUPLEX_ON) set_bit(TRIGGER_NETDEV_HALF_DUPLEX, rules); if (val & QCA808X_LED_FULL_DUPLEX_ON) set_bit(TRIGGER_NETDEV_FULL_DUPLEX, rules); return 0; } static int qca808x_led_hw_control_reset(struct phy_device *phydev, u8 index) { u16 reg; if (index > 2) return -EINVAL; reg = QCA808X_MMD7_LED_CTRL(index); return phy_clear_bits_mmd(phydev, MDIO_MMD_AN, reg, QCA808X_LED_PATTERN_MASK); } static int qca808x_led_brightness_set(struct phy_device *phydev, u8 index, enum led_brightness value) { u16 reg; int ret; if (index > 2) return -EINVAL; if (!value) { ret = qca808x_led_hw_control_reset(phydev, index); if (ret) return ret; } reg = QCA808X_MMD7_LED_FORCE_CTRL(index); return qca808x_led_reg_brightness_set(phydev, reg, value); } static int qca808x_led_blink_set(struct phy_device *phydev, u8 index, unsigned long *delay_on, unsigned long *delay_off) { u16 reg; if (index > 2) return -EINVAL; reg = QCA808X_MMD7_LED_FORCE_CTRL(index); return qca808x_led_reg_blink_set(phydev, reg, delay_on, delay_off); } static int qca808x_led_polarity_set(struct phy_device *phydev, int index, unsigned long modes) { struct qca808x_priv *priv = phydev->priv; bool active_low = false; u32 mode; for_each_set_bit(mode, &modes, __PHY_LED_MODES_NUM) { switch (mode) { case PHY_LED_ACTIVE_LOW: active_low = true; break; default: return -EINVAL; } } /* PHY polarity is global and can't be set per LED. * To detect this, check if last requested polarity mode * match the new one. */ if (priv->led_polarity_mode >= 0 && priv->led_polarity_mode != active_low) { phydev_err(phydev, "PHY polarity is global. Mismatched polarity on different LED\n"); return -EINVAL; } /* Save the last PHY polarity mode */ priv->led_polarity_mode = active_low; return phy_modify_mmd(phydev, MDIO_MMD_AN, QCA808X_MMD7_LED_POLARITY_CTRL, QCA808X_LED_ACTIVE_HIGH, active_low ? 0 : QCA808X_LED_ACTIVE_HIGH); } static struct phy_driver qca808x_driver[] = { { /* Qualcomm QCA8081 */ PHY_ID_MATCH_EXACT(QCA8081_PHY_ID), .name = "Qualcomm QCA8081", .flags = PHY_POLL_CABLE_TEST, .probe = qca808x_probe, .config_intr = at803x_config_intr, .handle_interrupt = at803x_handle_interrupt, .get_tunable = at803x_get_tunable, .set_tunable = at803x_set_tunable, .set_wol = at803x_set_wol, .get_wol = at803x_get_wol, .get_features = qca808x_get_features, .config_aneg = qca808x_config_aneg, .suspend = genphy_suspend, .resume = genphy_resume, .read_status = qca808x_read_status, .config_init = qca808x_config_init, .soft_reset = qca808x_soft_reset, .cable_test_start = qca808x_cable_test_start, .cable_test_get_status = qca808x_cable_test_get_status, .link_change_notify = qca808x_link_change_notify, .led_brightness_set = qca808x_led_brightness_set, .led_blink_set = qca808x_led_blink_set, .led_hw_is_supported = qca808x_led_hw_is_supported, .led_hw_control_set = qca808x_led_hw_control_set, .led_hw_control_get = qca808x_led_hw_control_get, .led_polarity_set = qca808x_led_polarity_set, }, }; module_phy_driver(qca808x_driver); static struct mdio_device_id __maybe_unused qca808x_tbl[] = { { PHY_ID_MATCH_EXACT(QCA8081_PHY_ID) }, { } }; MODULE_DEVICE_TABLE(mdio, qca808x_tbl);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1