Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Russell King | 8626 | 62.03% | 76 | 60.80% |
Andrew Lunn | 3557 | 25.58% | 10 | 8.00% |
Marek Behún | 497 | 3.57% | 10 | 8.00% |
Jon Nettleton | 377 | 2.71% | 1 | 0.80% |
Chris Healy | 271 | 1.95% | 3 | 2.40% |
Pali Rohár | 240 | 1.73% | 2 | 1.60% |
Robert Hancock | 134 | 0.96% | 2 | 1.60% |
Beniamin Sandu | 48 | 0.35% | 1 | 0.80% |
Antoine Tenart | 48 | 0.35% | 1 | 0.80% |
Ivan Bornyakov | 42 | 0.30% | 2 | 1.60% |
Daniel Golle | 17 | 0.12% | 2 | 1.60% |
Gustavo A. R. Silva | 12 | 0.09% | 1 | 0.80% |
Josua Mayer | 10 | 0.07% | 1 | 0.80% |
Ansuel Smith | 7 | 0.05% | 1 | 0.80% |
Michael Walle | 4 | 0.03% | 1 | 0.80% |
Matthew Hagan | 4 | 0.03% | 1 | 0.80% |
Baruch Siach | 2 | 0.01% | 1 | 0.80% |
Uwe Kleine-König | 2 | 0.01% | 1 | 0.80% |
Yue haibing | 2 | 0.01% | 1 | 0.80% |
Ruslan Babayev | 1 | 0.01% | 1 | 0.80% |
Jianglei Nie | 1 | 0.01% | 1 | 0.80% |
Colin Ian King | 1 | 0.01% | 1 | 0.80% |
Krzysztof Kozlowski | 1 | 0.01% | 1 | 0.80% |
Sean Anderson | 1 | 0.01% | 1 | 0.80% |
Wenpeng Liang | 1 | 0.01% | 1 | 0.80% |
Florian Fainelli | 1 | 0.01% | 1 | 0.80% |
Total | 13907 | 125 |
// SPDX-License-Identifier: GPL-2.0 #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/hwmon.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/jiffies.h> #include <linux/mdio/mdio-i2c.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/phy.h> #include <linux/platform_device.h> #include <linux/rtnetlink.h> #include <linux/slab.h> #include <linux/workqueue.h> #include "sfp.h" #include "swphy.h" enum { GPIO_MODDEF0, GPIO_LOS, GPIO_TX_FAULT, GPIO_TX_DISABLE, GPIO_RS0, GPIO_RS1, GPIO_MAX, SFP_F_PRESENT = BIT(GPIO_MODDEF0), SFP_F_LOS = BIT(GPIO_LOS), SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT), SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE), SFP_F_RS0 = BIT(GPIO_RS0), SFP_F_RS1 = BIT(GPIO_RS1), SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, SFP_E_INSERT = 0, SFP_E_REMOVE, SFP_E_DEV_ATTACH, SFP_E_DEV_DETACH, SFP_E_DEV_DOWN, SFP_E_DEV_UP, SFP_E_TX_FAULT, SFP_E_TX_CLEAR, SFP_E_LOS_HIGH, SFP_E_LOS_LOW, SFP_E_TIMEOUT, SFP_MOD_EMPTY = 0, SFP_MOD_ERROR, SFP_MOD_PROBE, SFP_MOD_WAITDEV, SFP_MOD_HPOWER, SFP_MOD_WAITPWR, SFP_MOD_PRESENT, SFP_DEV_DETACHED = 0, SFP_DEV_DOWN, SFP_DEV_UP, SFP_S_DOWN = 0, SFP_S_FAIL, SFP_S_WAIT, SFP_S_INIT, SFP_S_INIT_PHY, SFP_S_INIT_TX_FAULT, SFP_S_WAIT_LOS, SFP_S_LINK_UP, SFP_S_TX_FAULT, SFP_S_REINIT, SFP_S_TX_DISABLE, }; static const char * const mod_state_strings[] = { [SFP_MOD_EMPTY] = "empty", [SFP_MOD_ERROR] = "error", [SFP_MOD_PROBE] = "probe", [SFP_MOD_WAITDEV] = "waitdev", [SFP_MOD_HPOWER] = "hpower", [SFP_MOD_WAITPWR] = "waitpwr", [SFP_MOD_PRESENT] = "present", }; static const char *mod_state_to_str(unsigned short mod_state) { if (mod_state >= ARRAY_SIZE(mod_state_strings)) return "Unknown module state"; return mod_state_strings[mod_state]; } static const char * const dev_state_strings[] = { [SFP_DEV_DETACHED] = "detached", [SFP_DEV_DOWN] = "down", [SFP_DEV_UP] = "up", }; static const char *dev_state_to_str(unsigned short dev_state) { if (dev_state >= ARRAY_SIZE(dev_state_strings)) return "Unknown device state"; return dev_state_strings[dev_state]; } static const char * const event_strings[] = { [SFP_E_INSERT] = "insert", [SFP_E_REMOVE] = "remove", [SFP_E_DEV_ATTACH] = "dev_attach", [SFP_E_DEV_DETACH] = "dev_detach", [SFP_E_DEV_DOWN] = "dev_down", [SFP_E_DEV_UP] = "dev_up", [SFP_E_TX_FAULT] = "tx_fault", [SFP_E_TX_CLEAR] = "tx_clear", [SFP_E_LOS_HIGH] = "los_high", [SFP_E_LOS_LOW] = "los_low", [SFP_E_TIMEOUT] = "timeout", }; static const char *event_to_str(unsigned short event) { if (event >= ARRAY_SIZE(event_strings)) return "Unknown event"; return event_strings[event]; } static const char * const sm_state_strings[] = { [SFP_S_DOWN] = "down", [SFP_S_FAIL] = "fail", [SFP_S_WAIT] = "wait", [SFP_S_INIT] = "init", [SFP_S_INIT_PHY] = "init_phy", [SFP_S_INIT_TX_FAULT] = "init_tx_fault", [SFP_S_WAIT_LOS] = "wait_los", [SFP_S_LINK_UP] = "link_up", [SFP_S_TX_FAULT] = "tx_fault", [SFP_S_REINIT] = "reinit", [SFP_S_TX_DISABLE] = "tx_disable", }; static const char *sm_state_to_str(unsigned short sm_state) { if (sm_state >= ARRAY_SIZE(sm_state_strings)) return "Unknown state"; return sm_state_strings[sm_state]; } static const char *gpio_names[] = { "mod-def0", "los", "tx-fault", "tx-disable", "rate-select0", "rate-select1", }; static const enum gpiod_flags gpio_flags[] = { GPIOD_IN, GPIOD_IN, GPIOD_IN, GPIOD_ASIS, GPIOD_ASIS, GPIOD_ASIS, }; /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a * non-cooled module to initialise its laser safety circuitry. We wait * an initial T_WAIT period before we check the tx fault to give any PHY * on board (for a copper SFP) time to initialise. */ #define T_WAIT msecs_to_jiffies(50) #define T_START_UP msecs_to_jiffies(300) #define T_START_UP_BAD_GPON msecs_to_jiffies(60000) /* t_reset is the time required to assert the TX_DISABLE signal to reset * an indicated TX_FAULT. */ #define T_RESET_US 10 #define T_FAULT_RECOVER msecs_to_jiffies(1000) /* N_FAULT_INIT is the number of recovery attempts at module initialisation * time. If the TX_FAULT signal is not deasserted after this number of * attempts at clearing it, we decide that the module is faulty. * N_FAULT is the same but after the module has initialised. */ #define N_FAULT_INIT 5 #define N_FAULT 5 /* T_PHY_RETRY is the time interval between attempts to probe the PHY. * R_PHY_RETRY is the number of attempts. */ #define T_PHY_RETRY msecs_to_jiffies(50) #define R_PHY_RETRY 25 /* SFP module presence detection is poor: the three MOD DEF signals are * the same length on the PCB, which means it's possible for MOD DEF 0 to * connect before the I2C bus on MOD DEF 1/2. * * The SFF-8472 specifies t_serial ("Time from power on until module is * ready for data transmission over the two wire serial bus.") as 300ms. */ #define T_SERIAL msecs_to_jiffies(300) #define T_HPOWER_LEVEL msecs_to_jiffies(300) #define T_PROBE_RETRY_INIT msecs_to_jiffies(100) #define R_PROBE_RETRY_INIT 10 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000) #define R_PROBE_RETRY_SLOW 12 /* SFP modules appear to always have their PHY configured for bus address * 0x56 (which with mdio-i2c, translates to a PHY address of 22). * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface * via address 0x51 (mdio-i2c will use RollBall protocol on this address). */ #define SFP_PHY_ADDR 22 #define SFP_PHY_ADDR_ROLLBALL 17 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM * at a time. Some SFP modules and also some Linux I2C drivers do not like * reads longer than 16 bytes. */ #define SFP_EEPROM_BLOCK_SIZE 16 struct sff_data { unsigned int gpios; bool (*module_supported)(const struct sfp_eeprom_id *id); }; struct sfp { struct device *dev; struct i2c_adapter *i2c; struct mii_bus *i2c_mii; struct sfp_bus *sfp_bus; enum mdio_i2c_proto mdio_protocol; struct phy_device *mod_phy; const struct sff_data *type; size_t i2c_block_size; u32 max_power_mW; unsigned int (*get_state)(struct sfp *); void (*set_state)(struct sfp *, unsigned int); int (*read)(struct sfp *, bool, u8, void *, size_t); int (*write)(struct sfp *, bool, u8, void *, size_t); struct gpio_desc *gpio[GPIO_MAX]; int gpio_irq[GPIO_MAX]; bool need_poll; /* Access rules: * state_hw_drive: st_mutex held * state_hw_mask: st_mutex held * state_soft_mask: st_mutex held * state: st_mutex held unless reading input bits */ struct mutex st_mutex; /* Protects state */ unsigned int state_hw_drive; unsigned int state_hw_mask; unsigned int state_soft_mask; unsigned int state_ignore_mask; unsigned int state; struct delayed_work poll; struct delayed_work timeout; struct mutex sm_mutex; /* Protects state machine */ unsigned char sm_mod_state; unsigned char sm_mod_tries_init; unsigned char sm_mod_tries; unsigned char sm_dev_state; unsigned short sm_state; unsigned char sm_fault_retries; unsigned char sm_phy_retries; struct sfp_eeprom_id id; unsigned int module_power_mW; unsigned int module_t_start_up; unsigned int module_t_wait; unsigned int phy_t_retry; unsigned int rate_kbd; unsigned int rs_threshold_kbd; unsigned int rs_state_mask; bool have_a2; const struct sfp_quirk *quirk; #if IS_ENABLED(CONFIG_HWMON) struct sfp_diag diag; struct delayed_work hwmon_probe; unsigned int hwmon_tries; struct device *hwmon_dev; char *hwmon_name; #endif #if IS_ENABLED(CONFIG_DEBUG_FS) struct dentry *debugfs_dir; #endif }; static bool sff_module_supported(const struct sfp_eeprom_id *id) { return id->base.phys_id == SFF8024_ID_SFF_8472 && id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP; } static const struct sff_data sff_data = { .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE, .module_supported = sff_module_supported, }; static bool sfp_module_supported(const struct sfp_eeprom_id *id) { if (id->base.phys_id == SFF8024_ID_SFP && id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP) return true; /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored * phys id SFF instead of SFP. Therefore mark this module explicitly * as supported based on vendor name and pn match. */ if (id->base.phys_id == SFF8024_ID_SFF_8472 && id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP && !memcmp(id->base.vendor_name, "UBNT ", 16) && !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16)) return true; return false; } static const struct sff_data sfp_data = { .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1, .module_supported = sfp_module_supported, }; static const struct of_device_id sfp_of_match[] = { { .compatible = "sff,sff", .data = &sff_data, }, { .compatible = "sff,sfp", .data = &sfp_data, }, { }, }; MODULE_DEVICE_TABLE(of, sfp_of_match); static void sfp_fixup_long_startup(struct sfp *sfp) { sfp->module_t_start_up = T_START_UP_BAD_GPON; } static void sfp_fixup_ignore_los(struct sfp *sfp) { /* This forces LOS to zero, so we ignore transitions */ sfp->state_ignore_mask |= SFP_F_LOS; /* Make sure that LOS options are clear */ sfp->id.ext.options &= ~cpu_to_be16(SFP_OPTIONS_LOS_INVERTED | SFP_OPTIONS_LOS_NORMAL); } static void sfp_fixup_ignore_tx_fault(struct sfp *sfp) { sfp->state_ignore_mask |= SFP_F_TX_FAULT; } static void sfp_fixup_nokia(struct sfp *sfp) { sfp_fixup_long_startup(sfp); sfp_fixup_ignore_los(sfp); } // For 10GBASE-T short-reach modules static void sfp_fixup_10gbaset_30m(struct sfp *sfp) { sfp->id.base.connector = SFF8024_CONNECTOR_RJ45; sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR; } static void sfp_fixup_rollball(struct sfp *sfp) { sfp->mdio_protocol = MDIO_I2C_ROLLBALL; /* RollBall modules may disallow access to PHY registers for up to 25 * seconds, and the reads return 0xffff before that. Increase the time * between PHY probe retries from 50ms to 1s so that we will wait for * the PHY for a sufficient amount of time. */ sfp->phy_t_retry = msecs_to_jiffies(1000); } static void sfp_fixup_fs_2_5gt(struct sfp *sfp) { sfp_fixup_rollball(sfp); /* The RollBall fixup is not enough for FS modules, the PHY chip inside * them does not return 0xffff for PHY ID registers in all MMDs for the * while initializing. They need a 4 second wait before accessing PHY. */ sfp->module_t_wait = msecs_to_jiffies(4000); } static void sfp_fixup_fs_10gt(struct sfp *sfp) { sfp_fixup_10gbaset_30m(sfp); sfp_fixup_fs_2_5gt(sfp); } static void sfp_fixup_halny_gsfp(struct sfp *sfp) { /* Ignore the TX_FAULT and LOS signals on this module. * these are possibly used for other purposes on this * module, e.g. a serial port. */ sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS); } static void sfp_fixup_rollball_cc(struct sfp *sfp) { sfp_fixup_rollball(sfp); /* Some RollBall SFPs may have wrong (zero) extended compliance code * burned in EEPROM. For PHY probing we need the correct one. */ sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI; } static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id, unsigned long *modes, unsigned long *interfaces) { linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes); __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); } static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id, unsigned long *modes, unsigned long *interfaces) { linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes); } static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id, unsigned long *modes, unsigned long *interfaces) { /* Copper 2.5G SFP */ linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes); __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces); sfp_quirk_disable_autoneg(id, modes, interfaces); } static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id, unsigned long *modes, unsigned long *interfaces) { /* Ubiquiti U-Fiber Instant module claims that support all transceiver * types including 10G Ethernet which is not truth. So clear all claimed * modes and set only one mode which module supports: 1000baseX_Full. */ linkmode_zero(modes); linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes); } #define SFP_QUIRK(_v, _p, _m, _f) \ { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, } #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL) #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f) static const struct sfp_quirk sfp_quirks[] = { // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly // report 2500MBd NRZ in their EEPROM SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex), // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd // NRZ in their EEPROM SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex, sfp_fixup_nokia), // Fiberstore SFP-10G-T doesn't identify as copper, uses the Rollball // protocol to talk to the PHY and needs 4 sec wait before probing the // PHY. SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt), // Fiberstore SFP-2.5G-T uses Rollball protocol to talk to the PHY and // needs 4 sec wait before probing the PHY. SFP_QUIRK_F("FS", "SFP-2.5G-T", sfp_fixup_fs_2_5gt), // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd // NRZ in their EEPROM SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex, sfp_fixup_ignore_tx_fault), SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp), // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports // 2600MBd in their EERPOM SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex), // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in // their EEPROM SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex, sfp_fixup_ignore_tx_fault), // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report // 2500MBd NRZ in their EEPROM SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex), SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant), // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the // Rollball protocol to talk to the PHY. SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt), SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt), // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault), SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc), SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g), SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc), SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc), SFP_QUIRK_F("Turris", "RTSFP-2.5G", sfp_fixup_rollball), SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball), SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball), }; static size_t sfp_strlen(const char *str, size_t maxlen) { size_t size, i; /* Trailing characters should be filled with space chars, but * some manufacturers can't read SFF-8472 and use NUL. */ for (i = 0, size = 0; i < maxlen; i++) if (str[i] != ' ' && str[i] != '\0') size = i + 1; return size; } static bool sfp_match(const char *qs, const char *str, size_t len) { if (!qs) return true; if (strlen(qs) != len) return false; return !strncmp(qs, str, len); } static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id) { const struct sfp_quirk *q; unsigned int i; size_t vs, ps; vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name)); ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn)); for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++) if (sfp_match(q->vendor, id->base.vendor_name, vs) && sfp_match(q->part, id->base.vendor_pn, ps)) return q; return NULL; } static unsigned long poll_jiffies; static unsigned int sfp_gpio_get_state(struct sfp *sfp) { unsigned int i, state, v; for (i = state = 0; i < GPIO_MAX; i++) { if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) continue; v = gpiod_get_value_cansleep(sfp->gpio[i]); if (v) state |= BIT(i); } return state; } static unsigned int sff_gpio_get_state(struct sfp *sfp) { return sfp_gpio_get_state(sfp) | SFP_F_PRESENT; } static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state) { unsigned int drive; if (state & SFP_F_PRESENT) /* If the module is present, drive the requested signals */ drive = sfp->state_hw_drive; else /* Otherwise, let them float to the pull-ups */ drive = 0; if (sfp->gpio[GPIO_TX_DISABLE]) { if (drive & SFP_F_TX_DISABLE) gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE], state & SFP_F_TX_DISABLE); else gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]); } if (sfp->gpio[GPIO_RS0]) { if (drive & SFP_F_RS0) gpiod_direction_output(sfp->gpio[GPIO_RS0], state & SFP_F_RS0); else gpiod_direction_input(sfp->gpio[GPIO_RS0]); } if (sfp->gpio[GPIO_RS1]) { if (drive & SFP_F_RS1) gpiod_direction_output(sfp->gpio[GPIO_RS1], state & SFP_F_RS1); else gpiod_direction_input(sfp->gpio[GPIO_RS1]); } } static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, size_t len) { struct i2c_msg msgs[2]; u8 bus_addr = a2 ? 0x51 : 0x50; size_t block_size = sfp->i2c_block_size; size_t this_len; int ret; msgs[0].addr = bus_addr; msgs[0].flags = 0; msgs[0].len = 1; msgs[0].buf = &dev_addr; msgs[1].addr = bus_addr; msgs[1].flags = I2C_M_RD; msgs[1].len = len; msgs[1].buf = buf; while (len) { this_len = len; if (this_len > block_size) this_len = block_size; msgs[1].len = this_len; ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); if (ret < 0) return ret; if (ret != ARRAY_SIZE(msgs)) break; msgs[1].buf += this_len; dev_addr += this_len; len -= this_len; } return msgs[1].buf - (u8 *)buf; } static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf, size_t len) { struct i2c_msg msgs[1]; u8 bus_addr = a2 ? 0x51 : 0x50; int ret; msgs[0].addr = bus_addr; msgs[0].flags = 0; msgs[0].len = 1 + len; msgs[0].buf = kmalloc(1 + len, GFP_KERNEL); if (!msgs[0].buf) return -ENOMEM; msgs[0].buf[0] = dev_addr; memcpy(&msgs[0].buf[1], buf, len); ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs)); kfree(msgs[0].buf); if (ret < 0) return ret; return ret == ARRAY_SIZE(msgs) ? len : 0; } static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c) { if (!i2c_check_functionality(i2c, I2C_FUNC_I2C)) return -EINVAL; sfp->i2c = i2c; sfp->read = sfp_i2c_read; sfp->write = sfp_i2c_write; return 0; } static int sfp_i2c_mdiobus_create(struct sfp *sfp) { struct mii_bus *i2c_mii; int ret; i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol); if (IS_ERR(i2c_mii)) return PTR_ERR(i2c_mii); i2c_mii->name = "SFP I2C Bus"; i2c_mii->phy_mask = ~0; ret = mdiobus_register(i2c_mii); if (ret < 0) { mdiobus_free(i2c_mii); return ret; } sfp->i2c_mii = i2c_mii; return 0; } static void sfp_i2c_mdiobus_destroy(struct sfp *sfp) { mdiobus_unregister(sfp->i2c_mii); sfp->i2c_mii = NULL; } /* Interface */ static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) { return sfp->read(sfp, a2, addr, buf, len); } static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len) { return sfp->write(sfp, a2, addr, buf, len); } static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val) { int ret; u8 old, v; ret = sfp_read(sfp, a2, addr, &old, sizeof(old)); if (ret != sizeof(old)) return ret; v = (old & ~mask) | (val & mask); if (v == old) return sizeof(v); return sfp_write(sfp, a2, addr, &v, sizeof(v)); } static unsigned int sfp_soft_get_state(struct sfp *sfp) { unsigned int state = 0; u8 status; int ret; ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status)); if (ret == sizeof(status)) { if (status & SFP_STATUS_RX_LOS) state |= SFP_F_LOS; if (status & SFP_STATUS_TX_FAULT) state |= SFP_F_TX_FAULT; } else { dev_err_ratelimited(sfp->dev, "failed to read SFP soft status: %pe\n", ERR_PTR(ret)); /* Preserve the current state */ state = sfp->state; } return state & sfp->state_soft_mask; } static void sfp_soft_set_state(struct sfp *sfp, unsigned int state, unsigned int soft) { u8 mask = 0; u8 val = 0; if (soft & SFP_F_TX_DISABLE) mask |= SFP_STATUS_TX_DISABLE_FORCE; if (state & SFP_F_TX_DISABLE) val |= SFP_STATUS_TX_DISABLE_FORCE; if (soft & SFP_F_RS0) mask |= SFP_STATUS_RS0_SELECT; if (state & SFP_F_RS0) val |= SFP_STATUS_RS0_SELECT; if (mask) sfp_modify_u8(sfp, true, SFP_STATUS, mask, val); val = mask = 0; if (soft & SFP_F_RS1) mask |= SFP_EXT_STATUS_RS1_SELECT; if (state & SFP_F_RS1) val |= SFP_EXT_STATUS_RS1_SELECT; if (mask) sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val); } static void sfp_soft_start_poll(struct sfp *sfp) { const struct sfp_eeprom_id *id = &sfp->id; unsigned int mask = 0; if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE) mask |= SFP_F_TX_DISABLE; if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT) mask |= SFP_F_TX_FAULT; if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS) mask |= SFP_F_LOS; if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT) mask |= sfp->rs_state_mask; mutex_lock(&sfp->st_mutex); // Poll the soft state for hardware pins we want to ignore sfp->state_soft_mask = ~sfp->state_hw_mask & ~sfp->state_ignore_mask & mask; if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) && !sfp->need_poll) mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); mutex_unlock(&sfp->st_mutex); } static void sfp_soft_stop_poll(struct sfp *sfp) { mutex_lock(&sfp->st_mutex); sfp->state_soft_mask = 0; mutex_unlock(&sfp->st_mutex); } /* sfp_get_state() - must be called with st_mutex held, or in the * initialisation path. */ static unsigned int sfp_get_state(struct sfp *sfp) { unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT); unsigned int state; state = sfp->get_state(sfp) & sfp->state_hw_mask; if (state & SFP_F_PRESENT && soft) state |= sfp_soft_get_state(sfp); return state; } /* sfp_set_state() - must be called with st_mutex held, or in the * initialisation path. */ static void sfp_set_state(struct sfp *sfp, unsigned int state) { unsigned int soft; sfp->set_state(sfp, state); soft = sfp->state_soft_mask & SFP_F_OUTPUTS; if (state & SFP_F_PRESENT && soft) sfp_soft_set_state(sfp, state, soft); } static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set) { mutex_lock(&sfp->st_mutex); sfp->state = (sfp->state & ~mask) | set; sfp_set_state(sfp, sfp->state); mutex_unlock(&sfp->st_mutex); } static unsigned int sfp_check(void *buf, size_t len) { u8 *p, check; for (p = buf, check = 0; len; p++, len--) check += *p; return check; } /* hwmon */ #if IS_ENABLED(CONFIG_HWMON) static umode_t sfp_hwmon_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { const struct sfp *sfp = data; switch (type) { case hwmon_temp: switch (attr) { case hwmon_temp_min_alarm: case hwmon_temp_max_alarm: case hwmon_temp_lcrit_alarm: case hwmon_temp_crit_alarm: case hwmon_temp_min: case hwmon_temp_max: case hwmon_temp_lcrit: case hwmon_temp_crit: if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) return 0; fallthrough; case hwmon_temp_input: case hwmon_temp_label: return 0444; default: return 0; } case hwmon_in: switch (attr) { case hwmon_in_min_alarm: case hwmon_in_max_alarm: case hwmon_in_lcrit_alarm: case hwmon_in_crit_alarm: case hwmon_in_min: case hwmon_in_max: case hwmon_in_lcrit: case hwmon_in_crit: if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) return 0; fallthrough; case hwmon_in_input: case hwmon_in_label: return 0444; default: return 0; } case hwmon_curr: switch (attr) { case hwmon_curr_min_alarm: case hwmon_curr_max_alarm: case hwmon_curr_lcrit_alarm: case hwmon_curr_crit_alarm: case hwmon_curr_min: case hwmon_curr_max: case hwmon_curr_lcrit: case hwmon_curr_crit: if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) return 0; fallthrough; case hwmon_curr_input: case hwmon_curr_label: return 0444; default: return 0; } case hwmon_power: /* External calibration of receive power requires * floating point arithmetic. Doing that in the kernel * is not easy, so just skip it. If the module does * not require external calibration, we can however * show receiver power, since FP is then not needed. */ if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL && channel == 1) return 0; switch (attr) { case hwmon_power_min_alarm: case hwmon_power_max_alarm: case hwmon_power_lcrit_alarm: case hwmon_power_crit_alarm: case hwmon_power_min: case hwmon_power_max: case hwmon_power_lcrit: case hwmon_power_crit: if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN)) return 0; fallthrough; case hwmon_power_input: case hwmon_power_label: return 0444; default: return 0; } default: return 0; } } static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value) { __be16 val; int err; err = sfp_read(sfp, true, reg, &val, sizeof(val)); if (err < 0) return err; *value = be16_to_cpu(val); return 0; } static void sfp_hwmon_to_rx_power(long *value) { *value = DIV_ROUND_CLOSEST(*value, 10); } static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset, long *value) { if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL) *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset; } static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value) { sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope), be16_to_cpu(sfp->diag.cal_t_offset), value); if (*value >= 0x8000) *value -= 0x10000; *value = DIV_ROUND_CLOSEST(*value * 1000, 256); } static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value) { sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope), be16_to_cpu(sfp->diag.cal_v_offset), value); *value = DIV_ROUND_CLOSEST(*value, 10); } static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value) { sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope), be16_to_cpu(sfp->diag.cal_txi_offset), value); *value = DIV_ROUND_CLOSEST(*value, 500); } static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value) { sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope), be16_to_cpu(sfp->diag.cal_txpwr_offset), value); *value = DIV_ROUND_CLOSEST(*value, 10); } static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value) { int err; err = sfp_hwmon_read_sensor(sfp, reg, value); if (err < 0) return err; sfp_hwmon_calibrate_temp(sfp, value); return 0; } static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value) { int err; err = sfp_hwmon_read_sensor(sfp, reg, value); if (err < 0) return err; sfp_hwmon_calibrate_vcc(sfp, value); return 0; } static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value) { int err; err = sfp_hwmon_read_sensor(sfp, reg, value); if (err < 0) return err; sfp_hwmon_calibrate_bias(sfp, value); return 0; } static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value) { int err; err = sfp_hwmon_read_sensor(sfp, reg, value); if (err < 0) return err; sfp_hwmon_calibrate_tx_power(sfp, value); return 0; } static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value) { int err; err = sfp_hwmon_read_sensor(sfp, reg, value); if (err < 0) return err; sfp_hwmon_to_rx_power(value); return 0; } static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value) { u8 status; int err; switch (attr) { case hwmon_temp_input: return sfp_hwmon_read_temp(sfp, SFP_TEMP, value); case hwmon_temp_lcrit: *value = be16_to_cpu(sfp->diag.temp_low_alarm); sfp_hwmon_calibrate_temp(sfp, value); return 0; case hwmon_temp_min: *value = be16_to_cpu(sfp->diag.temp_low_warn); sfp_hwmon_calibrate_temp(sfp, value); return 0; case hwmon_temp_max: *value = be16_to_cpu(sfp->diag.temp_high_warn); sfp_hwmon_calibrate_temp(sfp, value); return 0; case hwmon_temp_crit: *value = be16_to_cpu(sfp->diag.temp_high_alarm); sfp_hwmon_calibrate_temp(sfp, value); return 0; case hwmon_temp_lcrit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_TEMP_LOW); return 0; case hwmon_temp_min_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_TEMP_LOW); return 0; case hwmon_temp_max_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_TEMP_HIGH); return 0; case hwmon_temp_crit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_TEMP_HIGH); return 0; default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value) { u8 status; int err; switch (attr) { case hwmon_in_input: return sfp_hwmon_read_vcc(sfp, SFP_VCC, value); case hwmon_in_lcrit: *value = be16_to_cpu(sfp->diag.volt_low_alarm); sfp_hwmon_calibrate_vcc(sfp, value); return 0; case hwmon_in_min: *value = be16_to_cpu(sfp->diag.volt_low_warn); sfp_hwmon_calibrate_vcc(sfp, value); return 0; case hwmon_in_max: *value = be16_to_cpu(sfp->diag.volt_high_warn); sfp_hwmon_calibrate_vcc(sfp, value); return 0; case hwmon_in_crit: *value = be16_to_cpu(sfp->diag.volt_high_alarm); sfp_hwmon_calibrate_vcc(sfp, value); return 0; case hwmon_in_lcrit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_VCC_LOW); return 0; case hwmon_in_min_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_VCC_LOW); return 0; case hwmon_in_max_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_VCC_HIGH); return 0; case hwmon_in_crit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_VCC_HIGH); return 0; default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value) { u8 status; int err; switch (attr) { case hwmon_curr_input: return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value); case hwmon_curr_lcrit: *value = be16_to_cpu(sfp->diag.bias_low_alarm); sfp_hwmon_calibrate_bias(sfp, value); return 0; case hwmon_curr_min: *value = be16_to_cpu(sfp->diag.bias_low_warn); sfp_hwmon_calibrate_bias(sfp, value); return 0; case hwmon_curr_max: *value = be16_to_cpu(sfp->diag.bias_high_warn); sfp_hwmon_calibrate_bias(sfp, value); return 0; case hwmon_curr_crit: *value = be16_to_cpu(sfp->diag.bias_high_alarm); sfp_hwmon_calibrate_bias(sfp, value); return 0; case hwmon_curr_lcrit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_TX_BIAS_LOW); return 0; case hwmon_curr_min_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_TX_BIAS_LOW); return 0; case hwmon_curr_max_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_TX_BIAS_HIGH); return 0; case hwmon_curr_crit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH); return 0; default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value) { u8 status; int err; switch (attr) { case hwmon_power_input: return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value); case hwmon_power_lcrit: *value = be16_to_cpu(sfp->diag.txpwr_low_alarm); sfp_hwmon_calibrate_tx_power(sfp, value); return 0; case hwmon_power_min: *value = be16_to_cpu(sfp->diag.txpwr_low_warn); sfp_hwmon_calibrate_tx_power(sfp, value); return 0; case hwmon_power_max: *value = be16_to_cpu(sfp->diag.txpwr_high_warn); sfp_hwmon_calibrate_tx_power(sfp, value); return 0; case hwmon_power_crit: *value = be16_to_cpu(sfp->diag.txpwr_high_alarm); sfp_hwmon_calibrate_tx_power(sfp, value); return 0; case hwmon_power_lcrit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_TXPWR_LOW); return 0; case hwmon_power_min_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_TXPWR_LOW); return 0; case hwmon_power_max_alarm: err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN0_TXPWR_HIGH); return 0; case hwmon_power_crit_alarm: err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM0_TXPWR_HIGH); return 0; default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value) { u8 status; int err; switch (attr) { case hwmon_power_input: return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value); case hwmon_power_lcrit: *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm); sfp_hwmon_to_rx_power(value); return 0; case hwmon_power_min: *value = be16_to_cpu(sfp->diag.rxpwr_low_warn); sfp_hwmon_to_rx_power(value); return 0; case hwmon_power_max: *value = be16_to_cpu(sfp->diag.rxpwr_high_warn); sfp_hwmon_to_rx_power(value); return 0; case hwmon_power_crit: *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm); sfp_hwmon_to_rx_power(value); return 0; case hwmon_power_lcrit_alarm: err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM1_RXPWR_LOW); return 0; case hwmon_power_min_alarm: err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN1_RXPWR_LOW); return 0; case hwmon_power_max_alarm: err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_WARN1_RXPWR_HIGH); return 0; case hwmon_power_crit_alarm: err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status)); if (err < 0) return err; *value = !!(status & SFP_ALARM1_RXPWR_HIGH); return 0; default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *value) { struct sfp *sfp = dev_get_drvdata(dev); switch (type) { case hwmon_temp: return sfp_hwmon_temp(sfp, attr, value); case hwmon_in: return sfp_hwmon_vcc(sfp, attr, value); case hwmon_curr: return sfp_hwmon_bias(sfp, attr, value); case hwmon_power: switch (channel) { case 0: return sfp_hwmon_tx_power(sfp, attr, value); case 1: return sfp_hwmon_rx_power(sfp, attr, value); default: return -EOPNOTSUPP; } default: return -EOPNOTSUPP; } } static const char *const sfp_hwmon_power_labels[] = { "TX_power", "RX_power", }; static int sfp_hwmon_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { switch (type) { case hwmon_curr: switch (attr) { case hwmon_curr_label: *str = "bias"; return 0; default: return -EOPNOTSUPP; } break; case hwmon_temp: switch (attr) { case hwmon_temp_label: *str = "temperature"; return 0; default: return -EOPNOTSUPP; } break; case hwmon_in: switch (attr) { case hwmon_in_label: *str = "VCC"; return 0; default: return -EOPNOTSUPP; } break; case hwmon_power: switch (attr) { case hwmon_power_label: *str = sfp_hwmon_power_labels[channel]; return 0; default: return -EOPNOTSUPP; } break; default: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static const struct hwmon_ops sfp_hwmon_ops = { .is_visible = sfp_hwmon_is_visible, .read = sfp_hwmon_read, .read_string = sfp_hwmon_read_string, }; static const struct hwmon_channel_info * const sfp_hwmon_info[] = { HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ), HWMON_CHANNEL_INFO(in, HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN | HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM | HWMON_I_CRIT | HWMON_I_LCRIT | HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM | HWMON_I_LABEL), HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_MIN | HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM | HWMON_T_CRIT | HWMON_T_LCRIT | HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM | HWMON_T_LABEL), HWMON_CHANNEL_INFO(curr, HWMON_C_INPUT | HWMON_C_MAX | HWMON_C_MIN | HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM | HWMON_C_CRIT | HWMON_C_LCRIT | HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM | HWMON_C_LABEL), HWMON_CHANNEL_INFO(power, /* Transmit power */ HWMON_P_INPUT | HWMON_P_MAX | HWMON_P_MIN | HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | HWMON_P_CRIT | HWMON_P_LCRIT | HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | HWMON_P_LABEL, /* Receive power */ HWMON_P_INPUT | HWMON_P_MAX | HWMON_P_MIN | HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM | HWMON_P_CRIT | HWMON_P_LCRIT | HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM | HWMON_P_LABEL), NULL, }; static const struct hwmon_chip_info sfp_hwmon_chip_info = { .ops = &sfp_hwmon_ops, .info = sfp_hwmon_info, }; static void sfp_hwmon_probe(struct work_struct *work) { struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work); int err; /* hwmon interface needs to access 16bit registers in atomic way to * guarantee coherency of the diagnostic monitoring data. If it is not * possible to guarantee coherency because EEPROM is broken in such way * that does not support atomic 16bit read operation then we have to * skip registration of hwmon device. */ if (sfp->i2c_block_size < 2) { dev_info(sfp->dev, "skipping hwmon device registration due to broken EEPROM\n"); dev_info(sfp->dev, "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n"); return; } err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag)); if (err < 0) { if (sfp->hwmon_tries--) { mod_delayed_work(system_wq, &sfp->hwmon_probe, T_PROBE_RETRY_SLOW); } else { dev_warn(sfp->dev, "hwmon probe failed: %pe\n", ERR_PTR(err)); } return; } sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev)); if (IS_ERR(sfp->hwmon_name)) { dev_err(sfp->dev, "out of memory for hwmon name\n"); return; } sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev, sfp->hwmon_name, sfp, &sfp_hwmon_chip_info, NULL); if (IS_ERR(sfp->hwmon_dev)) dev_err(sfp->dev, "failed to register hwmon device: %ld\n", PTR_ERR(sfp->hwmon_dev)); } static int sfp_hwmon_insert(struct sfp *sfp) { if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) { mod_delayed_work(system_wq, &sfp->hwmon_probe, 1); sfp->hwmon_tries = R_PROBE_RETRY_SLOW; } return 0; } static void sfp_hwmon_remove(struct sfp *sfp) { cancel_delayed_work_sync(&sfp->hwmon_probe); if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) { hwmon_device_unregister(sfp->hwmon_dev); sfp->hwmon_dev = NULL; kfree(sfp->hwmon_name); } } static int sfp_hwmon_init(struct sfp *sfp) { INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe); return 0; } static void sfp_hwmon_exit(struct sfp *sfp) { cancel_delayed_work_sync(&sfp->hwmon_probe); } #else static int sfp_hwmon_insert(struct sfp *sfp) { return 0; } static void sfp_hwmon_remove(struct sfp *sfp) { } static int sfp_hwmon_init(struct sfp *sfp) { return 0; } static void sfp_hwmon_exit(struct sfp *sfp) { } #endif /* Helpers */ static void sfp_module_tx_disable(struct sfp *sfp) { dev_dbg(sfp->dev, "tx disable %u -> %u\n", sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1); sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE); } static void sfp_module_tx_enable(struct sfp *sfp) { dev_dbg(sfp->dev, "tx disable %u -> %u\n", sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0); sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0); } #if IS_ENABLED(CONFIG_DEBUG_FS) static int sfp_debug_state_show(struct seq_file *s, void *data) { struct sfp *sfp = s->private; seq_printf(s, "Module state: %s\n", mod_state_to_str(sfp->sm_mod_state)); seq_printf(s, "Module probe attempts: %d %d\n", R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init, R_PROBE_RETRY_SLOW - sfp->sm_mod_tries); seq_printf(s, "Device state: %s\n", dev_state_to_str(sfp->sm_dev_state)); seq_printf(s, "Main state: %s\n", sm_state_to_str(sfp->sm_state)); seq_printf(s, "Fault recovery remaining retries: %d\n", sfp->sm_fault_retries); seq_printf(s, "PHY probe remaining retries: %d\n", sfp->sm_phy_retries); seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd); seq_printf(s, "Rate select threshold: %u kBd\n", sfp->rs_threshold_kbd); seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT)); seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS)); seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT)); seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE)); seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0)); seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1)); return 0; } DEFINE_SHOW_ATTRIBUTE(sfp_debug_state); static void sfp_debugfs_init(struct sfp *sfp) { sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL); debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp, &sfp_debug_state_fops); } static void sfp_debugfs_exit(struct sfp *sfp) { debugfs_remove_recursive(sfp->debugfs_dir); } #else static void sfp_debugfs_init(struct sfp *sfp) { } static void sfp_debugfs_exit(struct sfp *sfp) { } #endif static void sfp_module_tx_fault_reset(struct sfp *sfp) { unsigned int state; mutex_lock(&sfp->st_mutex); state = sfp->state; if (!(state & SFP_F_TX_DISABLE)) { sfp_set_state(sfp, state | SFP_F_TX_DISABLE); udelay(T_RESET_US); sfp_set_state(sfp, state); } mutex_unlock(&sfp->st_mutex); } /* SFP state machine */ static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout) { if (timeout) mod_delayed_work(system_power_efficient_wq, &sfp->timeout, timeout); else cancel_delayed_work(&sfp->timeout); } static void sfp_sm_next(struct sfp *sfp, unsigned int state, unsigned int timeout) { sfp->sm_state = state; sfp_sm_set_timer(sfp, timeout); } static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state, unsigned int timeout) { sfp->sm_mod_state = state; sfp_sm_set_timer(sfp, timeout); } static void sfp_sm_phy_detach(struct sfp *sfp) { sfp_remove_phy(sfp->sfp_bus); phy_device_remove(sfp->mod_phy); phy_device_free(sfp->mod_phy); sfp->mod_phy = NULL; } static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45) { struct phy_device *phy; int err; phy = get_phy_device(sfp->i2c_mii, addr, is_c45); if (phy == ERR_PTR(-ENODEV)) return PTR_ERR(phy); if (IS_ERR(phy)) { dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy); return PTR_ERR(phy); } /* Mark this PHY as being on a SFP module */ phy->is_on_sfp_module = true; err = phy_device_register(phy); if (err) { phy_device_free(phy); dev_err(sfp->dev, "phy_device_register failed: %pe\n", ERR_PTR(err)); return err; } err = sfp_add_phy(sfp->sfp_bus, phy); if (err) { phy_device_remove(phy); phy_device_free(phy); dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err)); return err; } sfp->mod_phy = phy; return 0; } static void sfp_sm_link_up(struct sfp *sfp) { sfp_link_up(sfp->sfp_bus); sfp_sm_next(sfp, SFP_S_LINK_UP, 0); } static void sfp_sm_link_down(struct sfp *sfp) { sfp_link_down(sfp->sfp_bus); } static void sfp_sm_link_check_los(struct sfp *sfp) { const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); bool los = false; /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL * are set, we assume that no LOS signal is available. If both are * set, we assume LOS is not implemented (and is meaningless.) */ if (los_options == los_inverted) los = !(sfp->state & SFP_F_LOS); else if (los_options == los_normal) los = !!(sfp->state & SFP_F_LOS); if (los) sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); else sfp_sm_link_up(sfp); } static bool sfp_los_event_active(struct sfp *sfp, unsigned int event) { const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); return (los_options == los_inverted && event == SFP_E_LOS_LOW) || (los_options == los_normal && event == SFP_E_LOS_HIGH); } static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event) { const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED); const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL); __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal); return (los_options == los_inverted && event == SFP_E_LOS_HIGH) || (los_options == los_normal && event == SFP_E_LOS_LOW); } static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn) { if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) { dev_err(sfp->dev, "module persistently indicates fault, disabling\n"); sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0); } else { if (warn) dev_err(sfp->dev, "module transmit fault indicated\n"); sfp_sm_next(sfp, next_state, T_FAULT_RECOVER); } } static int sfp_sm_add_mdio_bus(struct sfp *sfp) { if (sfp->mdio_protocol != MDIO_I2C_NONE) return sfp_i2c_mdiobus_create(sfp); return 0; } /* Probe a SFP for a PHY device if the module supports copper - the PHY * normally sits at I2C bus address 0x56, and may either be a clause 22 * or clause 45 PHY. * * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with * negotiation enabled, but some may be in 1000base-X - which is for the * PHY driver to determine. * * Clause 45 copper SFP+ modules (10G) appear to switch their interface * mode according to the negotiated line speed. */ static int sfp_sm_probe_for_phy(struct sfp *sfp) { int err = 0; switch (sfp->mdio_protocol) { case MDIO_I2C_NONE: break; case MDIO_I2C_MARVELL_C22: err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false); break; case MDIO_I2C_C45: err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true); break; case MDIO_I2C_ROLLBALL: err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true); break; } return err; } static int sfp_module_parse_power(struct sfp *sfp) { u32 power_mW = 1000; bool supports_a2; if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL)) power_mW = 1500; /* Added in Rev 11.9, but there is no compliance code for this */ if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 && sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL)) power_mW = 2000; /* Power level 1 modules (max. 1W) are always supported. */ if (power_mW <= 1000) { sfp->module_power_mW = power_mW; return 0; } supports_a2 = sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE || sfp->id.ext.diagmon & SFP_DIAGMON_DDM; if (power_mW > sfp->max_power_mW) { /* Module power specification exceeds the allowed maximum. */ if (!supports_a2) { /* The module appears not to implement bus address * 0xa2, so assume that the module powers up in the * indicated mode. */ dev_err(sfp->dev, "Host does not support %u.%uW modules\n", power_mW / 1000, (power_mW / 100) % 10); return -EINVAL; } else { dev_warn(sfp->dev, "Host does not support %u.%uW modules, module left in power mode 1\n", power_mW / 1000, (power_mW / 100) % 10); return 0; } } if (!supports_a2) { /* The module power level is below the host maximum and the * module appears not to implement bus address 0xa2, so assume * that the module powers up in the indicated mode. */ return 0; } /* If the module requires a higher power mode, but also requires * an address change sequence, warn the user that the module may * not be functional. */ if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) { dev_warn(sfp->dev, "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n", power_mW / 1000, (power_mW / 100) % 10); return 0; } sfp->module_power_mW = power_mW; return 0; } static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable) { int err; err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS, SFP_EXT_STATUS_PWRLVL_SELECT, enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0); if (err != sizeof(u8)) { dev_err(sfp->dev, "failed to %sable high power: %pe\n", enable ? "en" : "dis", ERR_PTR(err)); return -EAGAIN; } if (enable) dev_info(sfp->dev, "Module switched to %u.%uW power level\n", sfp->module_power_mW / 1000, (sfp->module_power_mW / 100) % 10); return 0; } static void sfp_module_parse_rate_select(struct sfp *sfp) { u8 rate_id; sfp->rs_threshold_kbd = 0; sfp->rs_state_mask = 0; if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT))) /* No support for RateSelect */ return; /* Default to INF-8074 RateSelect operation. The signalling threshold * rate is not well specified, so always select "Full Bandwidth", but * SFF-8079 reveals that it is understood that RS0 will be low for * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between. * This method exists prior to SFF-8472. */ sfp->rs_state_mask = SFP_F_RS0; sfp->rs_threshold_kbd = 1594; /* Parse the rate identifier, which is complicated due to history: * SFF-8472 rev 9.5 marks this field as reserved. * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472 * compliance is not required. * SFF-8472 rev 10.2 defines this field using values 0..4 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079 * and even values. */ rate_id = sfp->id.base.rate_id; if (rate_id == 0) /* Unspecified */ return; /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0, * and allocated value 3 to SFF-8431 independent tx/rx rate select. * Convert this to a SFF-8472 rev 11.0 rate identifier. */ if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 && sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 && rate_id == 3) rate_id = SFF_RID_8431; if (rate_id & SFF_RID_8079) { /* SFF-8079 RateSelect / Application Select in conjunction with * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield * with only bit 0 used, which takes precedence over SFF-8472. */ if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) { /* SFF-8079 Part 1 - rate selection between Fibre * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0 * is high for 2125, so we have to subtract 1 to * include it. */ sfp->rs_threshold_kbd = 2125 - 1; sfp->rs_state_mask = SFP_F_RS0; } return; } /* SFF-8472 rev 9.5 does not define the rate identifier */ if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5) return; /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id. */ switch (rate_id) { case SFF_RID_8431_RX_ONLY: sfp->rs_threshold_kbd = 4250; sfp->rs_state_mask = SFP_F_RS0; break; case SFF_RID_8431_TX_ONLY: sfp->rs_threshold_kbd = 4250; sfp->rs_state_mask = SFP_F_RS1; break; case SFF_RID_8431: sfp->rs_threshold_kbd = 4250; sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; break; case SFF_RID_10G8G: sfp->rs_threshold_kbd = 9000; sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1; break; } } /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do * not support multibyte reads from the EEPROM. Each multi-byte read * operation returns just one byte of EEPROM followed by zeros. There is * no way to identify which modules are using Realtek RTL8672 and RTL9601C * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor * name and vendor id into EEPROM, so there is even no way to detect if * module is V-SOL V2801F. Therefore check for those zeros in the read * data and then based on check switch to reading EEPROM to one byte * at a time. */ static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len) { size_t i, block_size = sfp->i2c_block_size; /* Already using byte IO */ if (block_size == 1) return false; for (i = 1; i < len; i += block_size) { if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i))) return false; } return true; } static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id) { u8 check; int err; if (id->base.phys_id != SFF8024_ID_SFF_8472 || id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP || id->base.connector != SFF8024_CONNECTOR_LC) { dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n"); id->base.phys_id = SFF8024_ID_SFF_8472; id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP; id->base.connector = SFF8024_CONNECTOR_LC; err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3); if (err != 3) { dev_err(sfp->dev, "Failed to rewrite module EEPROM: %pe\n", ERR_PTR(err)); return err; } /* Cotsworks modules have been found to require a delay between write operations. */ mdelay(50); /* Update base structure checksum */ check = sfp_check(&id->base, sizeof(id->base) - 1); err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1); if (err != 1) { dev_err(sfp->dev, "Failed to update base structure checksum in fiber module EEPROM: %pe\n", ERR_PTR(err)); return err; } } return 0; } static int sfp_module_parse_sff8472(struct sfp *sfp) { /* If the module requires address swap mode, warn about it */ if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) dev_warn(sfp->dev, "module address swap to access page 0xA2 is not supported.\n"); else sfp->have_a2 = true; return 0; } static int sfp_sm_mod_probe(struct sfp *sfp, bool report) { /* SFP module inserted - read I2C data */ struct sfp_eeprom_id id; bool cotsworks_sfbg; unsigned int mask; bool cotsworks; u8 check; int ret; sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); if (ret < 0) { if (report) dev_err(sfp->dev, "failed to read EEPROM: %pe\n", ERR_PTR(ret)); return -EAGAIN; } if (ret != sizeof(id.base)) { dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); return -EAGAIN; } /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from * address 0x51 is just one byte at a time. Also SFF-8472 requires * that EEPROM supports atomic 16bit read operation for diagnostic * fields, so do not switch to one byte reading at a time unless it * is really required and we have no other option. */ if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) { dev_info(sfp->dev, "Detected broken RTL8672/RTL9601C emulated EEPROM\n"); dev_info(sfp->dev, "Switching to reading EEPROM to one byte at a time\n"); sfp->i2c_block_size = 1; ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base)); if (ret < 0) { if (report) dev_err(sfp->dev, "failed to read EEPROM: %pe\n", ERR_PTR(ret)); return -EAGAIN; } if (ret != sizeof(id.base)) { dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); return -EAGAIN; } } /* Cotsworks do not seem to update the checksums when they * do the final programming with the final module part number, * serial number and date code. */ cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16); cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4); /* Cotsworks SFF module EEPROM do not always have valid phys_id, * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if * Cotsworks PN matches and bytes are not correct. */ if (cotsworks && cotsworks_sfbg) { ret = sfp_cotsworks_fixup_check(sfp, &id); if (ret < 0) return ret; } /* Validate the checksum over the base structure */ check = sfp_check(&id.base, sizeof(id.base) - 1); if (check != id.base.cc_base) { if (cotsworks) { dev_warn(sfp->dev, "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n", check, id.base.cc_base); } else { dev_err(sfp->dev, "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n", check, id.base.cc_base); print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 16, 1, &id, sizeof(id), true); return -EINVAL; } } ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext)); if (ret < 0) { if (report) dev_err(sfp->dev, "failed to read EEPROM: %pe\n", ERR_PTR(ret)); return -EAGAIN; } if (ret != sizeof(id.ext)) { dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret)); return -EAGAIN; } check = sfp_check(&id.ext, sizeof(id.ext) - 1); if (check != id.ext.cc_ext) { if (cotsworks) { dev_warn(sfp->dev, "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n", check, id.ext.cc_ext); } else { dev_err(sfp->dev, "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n", check, id.ext.cc_ext); print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET, 16, 1, &id, sizeof(id), true); memset(&id.ext, 0, sizeof(id.ext)); } } sfp->id = id; dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n", (int)sizeof(id.base.vendor_name), id.base.vendor_name, (int)sizeof(id.base.vendor_pn), id.base.vendor_pn, (int)sizeof(id.base.vendor_rev), id.base.vendor_rev, (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn, (int)sizeof(id.ext.datecode), id.ext.datecode); /* Check whether we support this module */ if (!sfp->type->module_supported(&id)) { dev_err(sfp->dev, "module is not supported - phys id 0x%02x 0x%02x\n", sfp->id.base.phys_id, sfp->id.base.phys_ext_id); return -EINVAL; } if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) { ret = sfp_module_parse_sff8472(sfp); if (ret < 0) return ret; } /* Parse the module power requirement */ ret = sfp_module_parse_power(sfp); if (ret < 0) return ret; sfp_module_parse_rate_select(sfp); mask = SFP_F_PRESENT; if (sfp->gpio[GPIO_TX_DISABLE]) mask |= SFP_F_TX_DISABLE; if (sfp->gpio[GPIO_TX_FAULT]) mask |= SFP_F_TX_FAULT; if (sfp->gpio[GPIO_LOS]) mask |= SFP_F_LOS; if (sfp->gpio[GPIO_RS0]) mask |= SFP_F_RS0; if (sfp->gpio[GPIO_RS1]) mask |= SFP_F_RS1; sfp->module_t_start_up = T_START_UP; sfp->module_t_wait = T_WAIT; sfp->phy_t_retry = T_PHY_RETRY; sfp->state_ignore_mask = 0; if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI || sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR || sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T || sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T) sfp->mdio_protocol = MDIO_I2C_C45; else if (sfp->id.base.e1000_base_t) sfp->mdio_protocol = MDIO_I2C_MARVELL_C22; else sfp->mdio_protocol = MDIO_I2C_NONE; sfp->quirk = sfp_lookup_quirk(&id); mutex_lock(&sfp->st_mutex); /* Initialise state bits to use from hardware */ sfp->state_hw_mask = mask; /* We want to drive the rate select pins that the module is using */ sfp->state_hw_drive |= sfp->rs_state_mask; if (sfp->quirk && sfp->quirk->fixup) sfp->quirk->fixup(sfp); sfp->state_hw_mask &= ~sfp->state_ignore_mask; mutex_unlock(&sfp->st_mutex); return 0; } static void sfp_sm_mod_remove(struct sfp *sfp) { if (sfp->sm_mod_state > SFP_MOD_WAITDEV) sfp_module_remove(sfp->sfp_bus); sfp_hwmon_remove(sfp); memset(&sfp->id, 0, sizeof(sfp->id)); sfp->module_power_mW = 0; sfp->state_hw_drive = SFP_F_TX_DISABLE; sfp->have_a2 = false; dev_info(sfp->dev, "module removed\n"); } /* This state machine tracks the upstream's state */ static void sfp_sm_device(struct sfp *sfp, unsigned int event) { switch (sfp->sm_dev_state) { default: if (event == SFP_E_DEV_ATTACH) sfp->sm_dev_state = SFP_DEV_DOWN; break; case SFP_DEV_DOWN: if (event == SFP_E_DEV_DETACH) sfp->sm_dev_state = SFP_DEV_DETACHED; else if (event == SFP_E_DEV_UP) sfp->sm_dev_state = SFP_DEV_UP; break; case SFP_DEV_UP: if (event == SFP_E_DEV_DETACH) sfp->sm_dev_state = SFP_DEV_DETACHED; else if (event == SFP_E_DEV_DOWN) sfp->sm_dev_state = SFP_DEV_DOWN; break; } } /* This state machine tracks the insert/remove state of the module, probes * the on-board EEPROM, and sets up the power level. */ static void sfp_sm_module(struct sfp *sfp, unsigned int event) { int err; /* Handle remove event globally, it resets this state machine */ if (event == SFP_E_REMOVE) { sfp_sm_mod_remove(sfp); sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0); return; } /* Handle device detach globally */ if (sfp->sm_dev_state < SFP_DEV_DOWN && sfp->sm_mod_state > SFP_MOD_WAITDEV) { if (sfp->module_power_mW > 1000 && sfp->sm_mod_state > SFP_MOD_HPOWER) sfp_sm_mod_hpower(sfp, false); sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); return; } switch (sfp->sm_mod_state) { default: if (event == SFP_E_INSERT) { sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL); sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT; sfp->sm_mod_tries = R_PROBE_RETRY_SLOW; } break; case SFP_MOD_PROBE: /* Wait for T_PROBE_INIT to time out */ if (event != SFP_E_TIMEOUT) break; err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1); if (err == -EAGAIN) { if (sfp->sm_mod_tries_init && --sfp->sm_mod_tries_init) { sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); break; } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) { if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1) dev_warn(sfp->dev, "please wait, module slow to respond\n"); sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW); break; } } if (err < 0) { sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); break; } /* Force a poll to re-read the hardware signal state after * sfp_sm_mod_probe() changed state_hw_mask. */ mod_delayed_work(system_wq, &sfp->poll, 1); err = sfp_hwmon_insert(sfp); if (err) dev_warn(sfp->dev, "hwmon probe failed: %pe\n", ERR_PTR(err)); sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0); fallthrough; case SFP_MOD_WAITDEV: /* Ensure that the device is attached before proceeding */ if (sfp->sm_dev_state < SFP_DEV_DOWN) break; /* Report the module insertion to the upstream device */ err = sfp_module_insert(sfp->sfp_bus, &sfp->id, sfp->quirk); if (err < 0) { sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); break; } /* If this is a power level 1 module, we are done */ if (sfp->module_power_mW <= 1000) goto insert; sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0); fallthrough; case SFP_MOD_HPOWER: /* Enable high power mode */ err = sfp_sm_mod_hpower(sfp, true); if (err < 0) { if (err != -EAGAIN) { sfp_module_remove(sfp->sfp_bus); sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0); } else { sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT); } break; } sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL); break; case SFP_MOD_WAITPWR: /* Wait for T_HPOWER_LEVEL to time out */ if (event != SFP_E_TIMEOUT) break; insert: sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0); break; case SFP_MOD_PRESENT: case SFP_MOD_ERROR: break; } } static void sfp_sm_main(struct sfp *sfp, unsigned int event) { unsigned long timeout; int ret; /* Some events are global */ if (sfp->sm_state != SFP_S_DOWN && (sfp->sm_mod_state != SFP_MOD_PRESENT || sfp->sm_dev_state != SFP_DEV_UP)) { if (sfp->sm_state == SFP_S_LINK_UP && sfp->sm_dev_state == SFP_DEV_UP) sfp_sm_link_down(sfp); if (sfp->sm_state > SFP_S_INIT) sfp_module_stop(sfp->sfp_bus); if (sfp->mod_phy) sfp_sm_phy_detach(sfp); if (sfp->i2c_mii) sfp_i2c_mdiobus_destroy(sfp); sfp_module_tx_disable(sfp); sfp_soft_stop_poll(sfp); sfp_sm_next(sfp, SFP_S_DOWN, 0); return; } /* The main state machine */ switch (sfp->sm_state) { case SFP_S_DOWN: if (sfp->sm_mod_state != SFP_MOD_PRESENT || sfp->sm_dev_state != SFP_DEV_UP) break; /* Only use the soft state bits if we have access to the A2h * memory, which implies that we have some level of SFF-8472 * compliance. */ if (sfp->have_a2) sfp_soft_start_poll(sfp); sfp_module_tx_enable(sfp); /* Initialise the fault clearance retries */ sfp->sm_fault_retries = N_FAULT_INIT; /* We need to check the TX_FAULT state, which is not defined * while TX_DISABLE is asserted. The earliest we want to do * anything (such as probe for a PHY) is 50ms (or more on * specific modules). */ sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait); break; case SFP_S_WAIT: if (event != SFP_E_TIMEOUT) break; if (sfp->state & SFP_F_TX_FAULT) { /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431) * from the TX_DISABLE deassertion for the module to * initialise, which is indicated by TX_FAULT * deasserting. */ timeout = sfp->module_t_start_up; if (timeout > sfp->module_t_wait) timeout -= sfp->module_t_wait; else timeout = 1; sfp_sm_next(sfp, SFP_S_INIT, timeout); } else { /* TX_FAULT is not asserted, assume the module has * finished initialising. */ goto init_done; } break; case SFP_S_INIT: if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { /* TX_FAULT is still asserted after t_init * or t_start_up, so assume there is a fault. */ sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT, sfp->sm_fault_retries == N_FAULT_INIT); } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { init_done: /* Create mdiobus and start trying for PHY */ ret = sfp_sm_add_mdio_bus(sfp); if (ret < 0) { sfp_sm_next(sfp, SFP_S_FAIL, 0); break; } sfp->sm_phy_retries = R_PHY_RETRY; goto phy_probe; } break; case SFP_S_INIT_PHY: if (event != SFP_E_TIMEOUT) break; phy_probe: /* TX_FAULT deasserted or we timed out with TX_FAULT * clear. Probe for the PHY and check the LOS state. */ ret = sfp_sm_probe_for_phy(sfp); if (ret == -ENODEV) { if (--sfp->sm_phy_retries) { sfp_sm_next(sfp, SFP_S_INIT_PHY, sfp->phy_t_retry); dev_dbg(sfp->dev, "no PHY detected, %u tries left\n", sfp->sm_phy_retries); break; } else { dev_info(sfp->dev, "no PHY detected\n"); } } else if (ret) { sfp_sm_next(sfp, SFP_S_FAIL, 0); break; } if (sfp_module_start(sfp->sfp_bus)) { sfp_sm_next(sfp, SFP_S_FAIL, 0); break; } sfp_sm_link_check_los(sfp); /* Reset the fault retry count */ sfp->sm_fault_retries = N_FAULT; break; case SFP_S_INIT_TX_FAULT: if (event == SFP_E_TIMEOUT) { sfp_module_tx_fault_reset(sfp); sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up); } break; case SFP_S_WAIT_LOS: if (event == SFP_E_TX_FAULT) sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); else if (sfp_los_event_inactive(sfp, event)) sfp_sm_link_up(sfp); break; case SFP_S_LINK_UP: if (event == SFP_E_TX_FAULT) { sfp_sm_link_down(sfp); sfp_sm_fault(sfp, SFP_S_TX_FAULT, true); } else if (sfp_los_event_active(sfp, event)) { sfp_sm_link_down(sfp); sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0); } break; case SFP_S_TX_FAULT: if (event == SFP_E_TIMEOUT) { sfp_module_tx_fault_reset(sfp); sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up); } break; case SFP_S_REINIT: if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) { sfp_sm_fault(sfp, SFP_S_TX_FAULT, false); } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) { dev_info(sfp->dev, "module transmit fault recovered\n"); sfp_sm_link_check_los(sfp); } break; case SFP_S_TX_DISABLE: break; } } static void __sfp_sm_event(struct sfp *sfp, unsigned int event) { dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n", mod_state_to_str(sfp->sm_mod_state), dev_state_to_str(sfp->sm_dev_state), sm_state_to_str(sfp->sm_state), event_to_str(event)); sfp_sm_device(sfp, event); sfp_sm_module(sfp, event); sfp_sm_main(sfp, event); dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n", mod_state_to_str(sfp->sm_mod_state), dev_state_to_str(sfp->sm_dev_state), sm_state_to_str(sfp->sm_state)); } static void sfp_sm_event(struct sfp *sfp, unsigned int event) { mutex_lock(&sfp->sm_mutex); __sfp_sm_event(sfp, event); mutex_unlock(&sfp->sm_mutex); } static void sfp_attach(struct sfp *sfp) { sfp_sm_event(sfp, SFP_E_DEV_ATTACH); } static void sfp_detach(struct sfp *sfp) { sfp_sm_event(sfp, SFP_E_DEV_DETACH); } static void sfp_start(struct sfp *sfp) { sfp_sm_event(sfp, SFP_E_DEV_UP); } static void sfp_stop(struct sfp *sfp) { sfp_sm_event(sfp, SFP_E_DEV_DOWN); } static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd) { unsigned int set; sfp->rate_kbd = rate_kbd; if (rate_kbd > sfp->rs_threshold_kbd) set = sfp->rs_state_mask; else set = 0; sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set); } static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo) { /* locking... and check module is present */ if (sfp->id.ext.sff8472_compliance && !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) { modinfo->type = ETH_MODULE_SFF_8472; modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN; } else { modinfo->type = ETH_MODULE_SFF_8079; modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN; } return 0; } static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee, u8 *data) { unsigned int first, last, len; int ret; if (!(sfp->state & SFP_F_PRESENT)) return -ENODEV; if (ee->len == 0) return -EINVAL; first = ee->offset; last = ee->offset + ee->len; if (first < ETH_MODULE_SFF_8079_LEN) { len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN); len -= first; ret = sfp_read(sfp, false, first, data, len); if (ret < 0) return ret; first += len; data += len; } if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) { len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN); len -= first; first -= ETH_MODULE_SFF_8079_LEN; ret = sfp_read(sfp, true, first, data, len); if (ret < 0) return ret; } return 0; } static int sfp_module_eeprom_by_page(struct sfp *sfp, const struct ethtool_module_eeprom *page, struct netlink_ext_ack *extack) { if (!(sfp->state & SFP_F_PRESENT)) return -ENODEV; if (page->bank) { NL_SET_ERR_MSG(extack, "Banks not supported"); return -EOPNOTSUPP; } if (page->page) { NL_SET_ERR_MSG(extack, "Only page 0 supported"); return -EOPNOTSUPP; } if (page->i2c_address != 0x50 && page->i2c_address != 0x51) { NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported"); return -EOPNOTSUPP; } return sfp_read(sfp, page->i2c_address == 0x51, page->offset, page->data, page->length); }; static const struct sfp_socket_ops sfp_module_ops = { .attach = sfp_attach, .detach = sfp_detach, .start = sfp_start, .stop = sfp_stop, .set_signal_rate = sfp_set_signal_rate, .module_info = sfp_module_info, .module_eeprom = sfp_module_eeprom, .module_eeprom_by_page = sfp_module_eeprom_by_page, }; static void sfp_timeout(struct work_struct *work) { struct sfp *sfp = container_of(work, struct sfp, timeout.work); rtnl_lock(); sfp_sm_event(sfp, SFP_E_TIMEOUT); rtnl_unlock(); } static void sfp_check_state(struct sfp *sfp) { unsigned int state, i, changed; rtnl_lock(); mutex_lock(&sfp->st_mutex); state = sfp_get_state(sfp); changed = state ^ sfp->state; changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT; for (i = 0; i < GPIO_MAX; i++) if (changed & BIT(i)) dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i], !!(sfp->state & BIT(i)), !!(state & BIT(i))); state |= sfp->state & SFP_F_OUTPUTS; sfp->state = state; mutex_unlock(&sfp->st_mutex); mutex_lock(&sfp->sm_mutex); if (changed & SFP_F_PRESENT) __sfp_sm_event(sfp, state & SFP_F_PRESENT ? SFP_E_INSERT : SFP_E_REMOVE); if (changed & SFP_F_TX_FAULT) __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ? SFP_E_TX_FAULT : SFP_E_TX_CLEAR); if (changed & SFP_F_LOS) __sfp_sm_event(sfp, state & SFP_F_LOS ? SFP_E_LOS_HIGH : SFP_E_LOS_LOW); mutex_unlock(&sfp->sm_mutex); rtnl_unlock(); } static irqreturn_t sfp_irq(int irq, void *data) { struct sfp *sfp = data; sfp_check_state(sfp); return IRQ_HANDLED; } static void sfp_poll(struct work_struct *work) { struct sfp *sfp = container_of(work, struct sfp, poll.work); sfp_check_state(sfp); // st_mutex doesn't need to be held here for state_soft_mask, // it's unimportant if we race while reading this. if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) || sfp->need_poll) mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); } static struct sfp *sfp_alloc(struct device *dev) { struct sfp *sfp; sfp = kzalloc(sizeof(*sfp), GFP_KERNEL); if (!sfp) return ERR_PTR(-ENOMEM); sfp->dev = dev; sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE; mutex_init(&sfp->sm_mutex); mutex_init(&sfp->st_mutex); INIT_DELAYED_WORK(&sfp->poll, sfp_poll); INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout); sfp_hwmon_init(sfp); return sfp; } static void sfp_cleanup(void *data) { struct sfp *sfp = data; sfp_hwmon_exit(sfp); cancel_delayed_work_sync(&sfp->poll); cancel_delayed_work_sync(&sfp->timeout); if (sfp->i2c_mii) { mdiobus_unregister(sfp->i2c_mii); mdiobus_free(sfp->i2c_mii); } if (sfp->i2c) i2c_put_adapter(sfp->i2c); kfree(sfp); } static int sfp_i2c_get(struct sfp *sfp) { struct fwnode_handle *h; struct i2c_adapter *i2c; int err; h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0); if (IS_ERR(h)) { dev_err(sfp->dev, "missing 'i2c-bus' property\n"); return -ENODEV; } i2c = i2c_get_adapter_by_fwnode(h); if (!i2c) { err = -EPROBE_DEFER; goto put; } err = sfp_i2c_configure(sfp, i2c); if (err) i2c_put_adapter(i2c); put: fwnode_handle_put(h); return err; } static int sfp_probe(struct platform_device *pdev) { const struct sff_data *sff; char *sfp_irq_name; struct sfp *sfp; int err, i; sfp = sfp_alloc(&pdev->dev); if (IS_ERR(sfp)) return PTR_ERR(sfp); platform_set_drvdata(pdev, sfp); err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp); if (err < 0) return err; sff = device_get_match_data(sfp->dev); if (!sff) sff = &sfp_data; sfp->type = sff; err = sfp_i2c_get(sfp); if (err) return err; for (i = 0; i < GPIO_MAX; i++) if (sff->gpios & BIT(i)) { sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev, gpio_names[i], gpio_flags[i]); if (IS_ERR(sfp->gpio[i])) return PTR_ERR(sfp->gpio[i]); } sfp->state_hw_mask = SFP_F_PRESENT; sfp->state_hw_drive = SFP_F_TX_DISABLE; sfp->get_state = sfp_gpio_get_state; sfp->set_state = sfp_gpio_set_state; /* Modules that have no detect signal are always present */ if (!(sfp->gpio[GPIO_MODDEF0])) sfp->get_state = sff_gpio_get_state; device_property_read_u32(&pdev->dev, "maximum-power-milliwatt", &sfp->max_power_mW); if (sfp->max_power_mW < 1000) { if (sfp->max_power_mW) dev_warn(sfp->dev, "Firmware bug: host maximum power should be at least 1W\n"); sfp->max_power_mW = 1000; } dev_info(sfp->dev, "Host maximum power %u.%uW\n", sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10); /* Get the initial state, and always signal TX disable, * since the network interface will not be up. */ sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE; if (sfp->gpio[GPIO_RS0] && gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0])) sfp->state |= SFP_F_RS0; sfp_set_state(sfp, sfp->state); sfp_module_tx_disable(sfp); if (sfp->state & SFP_F_PRESENT) { rtnl_lock(); sfp_sm_event(sfp, SFP_E_INSERT); rtnl_unlock(); } for (i = 0; i < GPIO_MAX; i++) { if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i]) continue; sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]); if (sfp->gpio_irq[i] < 0) { sfp->gpio_irq[i] = 0; sfp->need_poll = true; continue; } sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL, "%s-%s", dev_name(sfp->dev), gpio_names[i]); if (!sfp_irq_name) return -ENOMEM; err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i], NULL, sfp_irq, IRQF_ONESHOT | IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, sfp_irq_name, sfp); if (err) { sfp->gpio_irq[i] = 0; sfp->need_poll = true; } } if (sfp->need_poll) mod_delayed_work(system_wq, &sfp->poll, poll_jiffies); /* We could have an issue in cases no Tx disable pin is available or * wired as modules using a laser as their light source will continue to * be active when the fiber is removed. This could be a safety issue and * we should at least warn the user about that. */ if (!sfp->gpio[GPIO_TX_DISABLE]) dev_warn(sfp->dev, "No tx_disable pin: SFP modules will always be emitting.\n"); sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops); if (!sfp->sfp_bus) return -ENOMEM; sfp_debugfs_init(sfp); return 0; } static void sfp_remove(struct platform_device *pdev) { struct sfp *sfp = platform_get_drvdata(pdev); sfp_debugfs_exit(sfp); sfp_unregister_socket(sfp->sfp_bus); rtnl_lock(); sfp_sm_event(sfp, SFP_E_REMOVE); rtnl_unlock(); } static void sfp_shutdown(struct platform_device *pdev) { struct sfp *sfp = platform_get_drvdata(pdev); int i; for (i = 0; i < GPIO_MAX; i++) { if (!sfp->gpio_irq[i]) continue; devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp); } cancel_delayed_work_sync(&sfp->poll); cancel_delayed_work_sync(&sfp->timeout); } static struct platform_driver sfp_driver = { .probe = sfp_probe, .remove_new = sfp_remove, .shutdown = sfp_shutdown, .driver = { .name = "sfp", .of_match_table = sfp_of_match, }, }; static int sfp_init(void) { poll_jiffies = msecs_to_jiffies(100); return platform_driver_register(&sfp_driver); } module_init(sfp_init); static void sfp_exit(void) { platform_driver_unregister(&sfp_driver); } module_exit(sfp_exit); MODULE_ALIAS("platform:sfp"); MODULE_AUTHOR("Russell King"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("SFP cage support");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1