Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hayes Wang | 45913 | 94.99% | 233 | 67.93% |
Doug Anderson | 605 | 1.25% | 14 | 4.08% |
Mario Limonciello | 471 | 0.97% | 3 | 0.87% |
Björn Mork | 310 | 0.64% | 1 | 0.29% |
Kai-Heng Feng | 129 | 0.27% | 5 | 1.46% |
David Ober | 111 | 0.23% | 1 | 0.29% |
Andrew Lunn | 81 | 0.17% | 1 | 0.29% |
Prashant Malani | 70 | 0.14% | 5 | 1.46% |
Takashi Iwai | 57 | 0.12% | 2 | 0.58% |
Jarod Wilson | 56 | 0.12% | 2 | 0.58% |
Linus Torvalds (pre-git) | 40 | 0.08% | 5 | 1.46% |
Florian Fainelli | 33 | 0.07% | 2 | 0.58% |
Philippe Reynes | 28 | 0.06% | 1 | 0.29% |
Thierry Reding | 25 | 0.05% | 2 | 0.58% |
Jason A. Donenfeld | 21 | 0.04% | 1 | 0.29% |
Eric Dumazet | 21 | 0.04% | 3 | 0.87% |
David S. Miller | 21 | 0.04% | 2 | 0.58% |
Sven van Ashbrook | 21 | 0.04% | 1 | 0.29% |
Sebastian Andrzej Siewior | 20 | 0.04% | 1 | 0.29% |
David Brownell | 17 | 0.04% | 3 | 0.87% |
Heiner Kallweit | 15 | 0.03% | 2 | 0.58% |
You-Sheng Yang | 15 | 0.03% | 1 | 0.29% |
Emil Renner Berthing | 14 | 0.03% | 1 | 0.29% |
David Chen | 13 | 0.03% | 2 | 0.58% |
Jakub Kiciński | 13 | 0.03% | 6 | 1.75% |
Guenter Roeck | 13 | 0.03% | 1 | 0.29% |
Oliver Neukum | 12 | 0.02% | 1 | 0.29% |
Jean-Francois Le Fillatre | 12 | 0.02% | 1 | 0.29% |
Greg Kroah-Hartman | 12 | 0.02% | 1 | 0.29% |
Yufeng Mo | 10 | 0.02% | 1 | 0.29% |
Antonio Napolitano | 10 | 0.02% | 1 | 0.29% |
Hao Chen | 10 | 0.02% | 1 | 0.29% |
René Rebe | 10 | 0.02% | 1 | 0.29% |
Grant Grundler | 10 | 0.02% | 2 | 0.58% |
Crag.Wang | 8 | 0.02% | 1 | 0.29% |
Kelly Kane | 8 | 0.02% | 1 | 0.29% |
Milan Broz | 8 | 0.02% | 1 | 0.29% |
André Apitzsch | 7 | 0.01% | 1 | 0.29% |
Gustavo A. R. Silva | 6 | 0.01% | 2 | 0.58% |
Andre Przywara | 5 | 0.01% | 1 | 0.29% |
Leon Schuermann | 5 | 0.01% | 1 | 0.29% |
Marc Payne | 5 | 0.01% | 1 | 0.29% |
Ran Wang | 5 | 0.01% | 1 | 0.29% |
Linus Torvalds | 5 | 0.01% | 1 | 0.29% |
Christian Hesse | 5 | 0.01% | 1 | 0.29% |
Kazutoshi Noguchi | 5 | 0.01% | 1 | 0.29% |
Zheng Liu | 5 | 0.01% | 1 | 0.29% |
Vasily Titskiy | 4 | 0.01% | 1 | 0.29% |
Kevin Lo | 4 | 0.01% | 1 | 0.29% |
Michael S. Tsirkin | 4 | 0.01% | 1 | 0.29% |
Mark Lord | 3 | 0.01% | 1 | 0.29% |
Benoit Taine | 3 | 0.01% | 1 | 0.29% |
Wilfried Klaebe | 3 | 0.01% | 1 | 0.29% |
Wolfram Sang | 3 | 0.01% | 1 | 0.29% |
Lee Jones | 3 | 0.01% | 2 | 0.58% |
Thomas Gleixner | 2 | 0.00% | 1 | 0.29% |
Jiri Pirko | 2 | 0.00% | 1 | 0.29% |
Aaron Ma | 2 | 0.00% | 1 | 0.29% |
Zheng Yongjun | 1 | 0.00% | 1 | 0.29% |
Arnd Bergmann | 1 | 0.00% | 1 | 0.29% |
Julia Lawall | 1 | 0.00% | 1 | 0.29% |
Tom Herbert | 1 | 0.00% | 1 | 0.29% |
Sachin Kamat | 1 | 0.00% | 1 | 0.29% |
zhong jiang | 1 | 0.00% | 1 | 0.29% |
Arvind Yadav | 1 | 0.00% | 1 | 0.29% |
Total | 48336 | 343 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014 Realtek Semiconductor Corp. All rights reserved. */ #include <linux/signal.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/mii.h> #include <linux/ethtool.h> #include <linux/phy.h> #include <linux/usb.h> #include <linux/crc32.h> #include <linux/if_vlan.h> #include <linux/uaccess.h> #include <linux/list.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <net/ip6_checksum.h> #include <uapi/linux/mdio.h> #include <linux/mdio.h> #include <linux/usb/cdc.h> #include <linux/suspend.h> #include <linux/atomic.h> #include <linux/acpi.h> #include <linux/firmware.h> #include <crypto/hash.h> #include <linux/usb/r8152.h> #include <net/gso.h> /* Information for net-next */ #define NETNEXT_VERSION "12" /* Information for net */ #define NET_VERSION "13" #define DRIVER_VERSION "v1." NETNEXT_VERSION "." NET_VERSION #define DRIVER_AUTHOR "Realtek linux nic maintainers <nic_swsd@realtek.com>" #define DRIVER_DESC "Realtek RTL8152/RTL8153 Based USB Ethernet Adapters" #define MODULENAME "r8152" #define R8152_PHY_ID 32 #define PLA_IDR 0xc000 #define PLA_RCR 0xc010 #define PLA_RCR1 0xc012 #define PLA_RMS 0xc016 #define PLA_RXFIFO_CTRL0 0xc0a0 #define PLA_RXFIFO_FULL 0xc0a2 #define PLA_RXFIFO_CTRL1 0xc0a4 #define PLA_RX_FIFO_FULL 0xc0a6 #define PLA_RXFIFO_CTRL2 0xc0a8 #define PLA_RX_FIFO_EMPTY 0xc0aa #define PLA_DMY_REG0 0xc0b0 #define PLA_FMC 0xc0b4 #define PLA_CFG_WOL 0xc0b6 #define PLA_TEREDO_CFG 0xc0bc #define PLA_TEREDO_WAKE_BASE 0xc0c4 #define PLA_MAR 0xcd00 #define PLA_BACKUP 0xd000 #define PLA_BDC_CR 0xd1a0 #define PLA_TEREDO_TIMER 0xd2cc #define PLA_REALWOW_TIMER 0xd2e8 #define PLA_UPHY_TIMER 0xd388 #define PLA_SUSPEND_FLAG 0xd38a #define PLA_INDICATE_FALG 0xd38c #define PLA_MACDBG_PRE 0xd38c /* RTL_VER_04 only */ #define PLA_MACDBG_POST 0xd38e /* RTL_VER_04 only */ #define PLA_EXTRA_STATUS 0xd398 #define PLA_GPHY_CTRL 0xd3ae #define PLA_POL_GPIO_CTRL 0xdc6a #define PLA_EFUSE_DATA 0xdd00 #define PLA_EFUSE_CMD 0xdd02 #define PLA_LEDSEL 0xdd90 #define PLA_LED_FEATURE 0xdd92 #define PLA_PHYAR 0xde00 #define PLA_BOOT_CTRL 0xe004 #define PLA_LWAKE_CTRL_REG 0xe007 #define PLA_GPHY_INTR_IMR 0xe022 #define PLA_EEE_CR 0xe040 #define PLA_EEE_TXTWSYS 0xe04c #define PLA_EEE_TXTWSYS_2P5G 0xe058 #define PLA_EEEP_CR 0xe080 #define PLA_MAC_PWR_CTRL 0xe0c0 #define PLA_MAC_PWR_CTRL2 0xe0ca #define PLA_MAC_PWR_CTRL3 0xe0cc #define PLA_MAC_PWR_CTRL4 0xe0ce #define PLA_WDT6_CTRL 0xe428 #define PLA_TCR0 0xe610 #define PLA_TCR1 0xe612 #define PLA_MTPS 0xe615 #define PLA_TXFIFO_CTRL 0xe618 #define PLA_TXFIFO_FULL 0xe61a #define PLA_RSTTALLY 0xe800 #define PLA_CR 0xe813 #define PLA_CRWECR 0xe81c #define PLA_CONFIG12 0xe81e /* CONFIG1, CONFIG2 */ #define PLA_CONFIG34 0xe820 /* CONFIG3, CONFIG4 */ #define PLA_CONFIG5 0xe822 #define PLA_PHY_PWR 0xe84c #define PLA_OOB_CTRL 0xe84f #define PLA_CPCR 0xe854 #define PLA_MISC_0 0xe858 #define PLA_MISC_1 0xe85a #define PLA_OCP_GPHY_BASE 0xe86c #define PLA_TALLYCNT 0xe890 #define PLA_SFF_STS_7 0xe8de #define PLA_PHYSTATUS 0xe908 #define PLA_CONFIG6 0xe90a /* CONFIG6 */ #define PLA_USB_CFG 0xe952 #define PLA_BP_BA 0xfc26 #define PLA_BP_0 0xfc28 #define PLA_BP_1 0xfc2a #define PLA_BP_2 0xfc2c #define PLA_BP_3 0xfc2e #define PLA_BP_4 0xfc30 #define PLA_BP_5 0xfc32 #define PLA_BP_6 0xfc34 #define PLA_BP_7 0xfc36 #define PLA_BP_EN 0xfc38 #define USB_USB2PHY 0xb41e #define USB_SSPHYLINK1 0xb426 #define USB_SSPHYLINK2 0xb428 #define USB_L1_CTRL 0xb45e #define USB_U2P3_CTRL 0xb460 #define USB_CSR_DUMMY1 0xb464 #define USB_CSR_DUMMY2 0xb466 #define USB_DEV_STAT 0xb808 #define USB_CONNECT_TIMER 0xcbf8 #define USB_MSC_TIMER 0xcbfc #define USB_BURST_SIZE 0xcfc0 #define USB_FW_FIX_EN0 0xcfca #define USB_FW_FIX_EN1 0xcfcc #define USB_LPM_CONFIG 0xcfd8 #define USB_ECM_OPTION 0xcfee #define USB_CSTMR 0xcfef /* RTL8153A */ #define USB_MISC_2 0xcfff #define USB_ECM_OP 0xd26b #define USB_GPHY_CTRL 0xd284 #define USB_SPEED_OPTION 0xd32a #define USB_FW_CTRL 0xd334 /* RTL8153B */ #define USB_FC_TIMER 0xd340 #define USB_USB_CTRL 0xd406 #define USB_PHY_CTRL 0xd408 #define USB_TX_AGG 0xd40a #define USB_RX_BUF_TH 0xd40c #define USB_USB_TIMER 0xd428 #define USB_RX_EARLY_TIMEOUT 0xd42c #define USB_RX_EARLY_SIZE 0xd42e #define USB_PM_CTRL_STATUS 0xd432 /* RTL8153A */ #define USB_RX_EXTRA_AGGR_TMR 0xd432 /* RTL8153B */ #define USB_TX_DMA 0xd434 #define USB_UPT_RXDMA_OWN 0xd437 #define USB_UPHY3_MDCMDIO 0xd480 #define USB_TOLERANCE 0xd490 #define USB_LPM_CTRL 0xd41a #define USB_BMU_RESET 0xd4b0 #define USB_BMU_CONFIG 0xd4b4 #define USB_U1U2_TIMER 0xd4da #define USB_FW_TASK 0xd4e8 /* RTL8153B */ #define USB_RX_AGGR_NUM 0xd4ee #define USB_UPS_CTRL 0xd800 #define USB_POWER_CUT 0xd80a #define USB_MISC_0 0xd81a #define USB_MISC_1 0xd81f #define USB_AFE_CTRL2 0xd824 #define USB_UPHY_XTAL 0xd826 #define USB_UPS_CFG 0xd842 #define USB_UPS_FLAGS 0xd848 #define USB_WDT1_CTRL 0xe404 #define USB_WDT11_CTRL 0xe43c #define USB_BP_BA PLA_BP_BA #define USB_BP_0 PLA_BP_0 #define USB_BP_1 PLA_BP_1 #define USB_BP_2 PLA_BP_2 #define USB_BP_3 PLA_BP_3 #define USB_BP_4 PLA_BP_4 #define USB_BP_5 PLA_BP_5 #define USB_BP_6 PLA_BP_6 #define USB_BP_7 PLA_BP_7 #define USB_BP_EN PLA_BP_EN /* RTL8153A */ #define USB_BP_8 0xfc38 /* RTL8153B */ #define USB_BP_9 0xfc3a #define USB_BP_10 0xfc3c #define USB_BP_11 0xfc3e #define USB_BP_12 0xfc40 #define USB_BP_13 0xfc42 #define USB_BP_14 0xfc44 #define USB_BP_15 0xfc46 #define USB_BP2_EN 0xfc48 /* OCP Registers */ #define OCP_ALDPS_CONFIG 0x2010 #define OCP_EEE_CONFIG1 0x2080 #define OCP_EEE_CONFIG2 0x2092 #define OCP_EEE_CONFIG3 0x2094 #define OCP_BASE_MII 0xa400 #define OCP_EEE_AR 0xa41a #define OCP_EEE_DATA 0xa41c #define OCP_PHY_STATUS 0xa420 #define OCP_INTR_EN 0xa424 #define OCP_NCTL_CFG 0xa42c #define OCP_POWER_CFG 0xa430 #define OCP_EEE_CFG 0xa432 #define OCP_SRAM_ADDR 0xa436 #define OCP_SRAM_DATA 0xa438 #define OCP_DOWN_SPEED 0xa442 #define OCP_EEE_ABLE 0xa5c4 #define OCP_EEE_ADV 0xa5d0 #define OCP_EEE_LPABLE 0xa5d2 #define OCP_10GBT_CTRL 0xa5d4 #define OCP_10GBT_STAT 0xa5d6 #define OCP_EEE_ADV2 0xa6d4 #define OCP_PHY_STATE 0xa708 /* nway state for 8153 */ #define OCP_PHY_PATCH_STAT 0xb800 #define OCP_PHY_PATCH_CMD 0xb820 #define OCP_PHY_LOCK 0xb82e #define OCP_ADC_IOFFSET 0xbcfc #define OCP_ADC_CFG 0xbc06 #define OCP_SYSCLK_CFG 0xc416 /* SRAM Register */ #define SRAM_GREEN_CFG 0x8011 #define SRAM_LPF_CFG 0x8012 #define SRAM_GPHY_FW_VER 0x801e #define SRAM_10M_AMP1 0x8080 #define SRAM_10M_AMP2 0x8082 #define SRAM_IMPEDANCE 0x8084 #define SRAM_PHY_LOCK 0xb82e /* PLA_RCR */ #define RCR_AAP 0x00000001 #define RCR_APM 0x00000002 #define RCR_AM 0x00000004 #define RCR_AB 0x00000008 #define RCR_ACPT_ALL (RCR_AAP | RCR_APM | RCR_AM | RCR_AB) #define SLOT_EN BIT(11) /* PLA_RCR1 */ #define OUTER_VLAN BIT(7) #define INNER_VLAN BIT(6) /* PLA_RXFIFO_CTRL0 */ #define RXFIFO_THR1_NORMAL 0x00080002 #define RXFIFO_THR1_OOB 0x01800003 /* PLA_RXFIFO_FULL */ #define RXFIFO_FULL_MASK 0xfff /* PLA_RXFIFO_CTRL1 */ #define RXFIFO_THR2_FULL 0x00000060 #define RXFIFO_THR2_HIGH 0x00000038 #define RXFIFO_THR2_OOB 0x0000004a #define RXFIFO_THR2_NORMAL 0x00a0 /* PLA_RXFIFO_CTRL2 */ #define RXFIFO_THR3_FULL 0x00000078 #define RXFIFO_THR3_HIGH 0x00000048 #define RXFIFO_THR3_OOB 0x0000005a #define RXFIFO_THR3_NORMAL 0x0110 /* PLA_TXFIFO_CTRL */ #define TXFIFO_THR_NORMAL 0x00400008 #define TXFIFO_THR_NORMAL2 0x01000008 /* PLA_DMY_REG0 */ #define ECM_ALDPS 0x0002 /* PLA_FMC */ #define FMC_FCR_MCU_EN 0x0001 /* PLA_EEEP_CR */ #define EEEP_CR_EEEP_TX 0x0002 /* PLA_WDT6_CTRL */ #define WDT6_SET_MODE 0x0010 /* PLA_TCR0 */ #define TCR0_TX_EMPTY 0x0800 #define TCR0_AUTO_FIFO 0x0080 /* PLA_TCR1 */ #define VERSION_MASK 0x7cf0 #define IFG_MASK (BIT(3) | BIT(9) | BIT(8)) #define IFG_144NS BIT(9) #define IFG_96NS (BIT(9) | BIT(8)) /* PLA_MTPS */ #define MTPS_JUMBO (12 * 1024 / 64) #define MTPS_DEFAULT (6 * 1024 / 64) /* PLA_RSTTALLY */ #define TALLY_RESET 0x0001 /* PLA_CR */ #define CR_RST 0x10 #define CR_RE 0x08 #define CR_TE 0x04 /* PLA_CRWECR */ #define CRWECR_NORAML 0x00 #define CRWECR_CONFIG 0xc0 /* PLA_OOB_CTRL */ #define NOW_IS_OOB 0x80 #define TXFIFO_EMPTY 0x20 #define RXFIFO_EMPTY 0x10 #define LINK_LIST_READY 0x02 #define DIS_MCU_CLROOB 0x01 #define FIFO_EMPTY (TXFIFO_EMPTY | RXFIFO_EMPTY) /* PLA_MISC_1 */ #define RXDY_GATED_EN 0x0008 /* PLA_SFF_STS_7 */ #define RE_INIT_LL 0x8000 #define MCU_BORW_EN 0x4000 /* PLA_CPCR */ #define FLOW_CTRL_EN BIT(0) #define CPCR_RX_VLAN 0x0040 /* PLA_CFG_WOL */ #define MAGIC_EN 0x0001 /* PLA_TEREDO_CFG */ #define TEREDO_SEL 0x8000 #define TEREDO_WAKE_MASK 0x7f00 #define TEREDO_RS_EVENT_MASK 0x00fe #define OOB_TEREDO_EN 0x0001 /* PLA_BDC_CR */ #define ALDPS_PROXY_MODE 0x0001 /* PLA_EFUSE_CMD */ #define EFUSE_READ_CMD BIT(15) #define EFUSE_DATA_BIT16 BIT(7) /* PLA_CONFIG34 */ #define LINK_ON_WAKE_EN 0x0010 #define LINK_OFF_WAKE_EN 0x0008 /* PLA_CONFIG6 */ #define LANWAKE_CLR_EN BIT(0) /* PLA_USB_CFG */ #define EN_XG_LIP BIT(1) #define EN_G_LIP BIT(2) /* PLA_CONFIG5 */ #define BWF_EN 0x0040 #define MWF_EN 0x0020 #define UWF_EN 0x0010 #define LAN_WAKE_EN 0x0002 /* PLA_LED_FEATURE */ #define LED_MODE_MASK 0x0700 /* PLA_PHY_PWR */ #define TX_10M_IDLE_EN 0x0080 #define PFM_PWM_SWITCH 0x0040 #define TEST_IO_OFF BIT(4) /* PLA_MAC_PWR_CTRL */ #define D3_CLK_GATED_EN 0x00004000 #define MCU_CLK_RATIO 0x07010f07 #define MCU_CLK_RATIO_MASK 0x0f0f0f0f #define ALDPS_SPDWN_RATIO 0x0f87 /* PLA_MAC_PWR_CTRL2 */ #define EEE_SPDWN_RATIO 0x8007 #define MAC_CLK_SPDWN_EN BIT(15) #define EEE_SPDWN_RATIO_MASK 0xff /* PLA_MAC_PWR_CTRL3 */ #define PLA_MCU_SPDWN_EN BIT(14) #define PKT_AVAIL_SPDWN_EN 0x0100 #define SUSPEND_SPDWN_EN 0x0004 #define U1U2_SPDWN_EN 0x0002 #define L1_SPDWN_EN 0x0001 /* PLA_MAC_PWR_CTRL4 */ #define PWRSAVE_SPDWN_EN 0x1000 #define RXDV_SPDWN_EN 0x0800 #define TX10MIDLE_EN 0x0100 #define IDLE_SPDWN_EN BIT(6) #define TP100_SPDWN_EN 0x0020 #define TP500_SPDWN_EN 0x0010 #define TP1000_SPDWN_EN 0x0008 #define EEE_SPDWN_EN 0x0001 /* PLA_GPHY_INTR_IMR */ #define GPHY_STS_MSK 0x0001 #define SPEED_DOWN_MSK 0x0002 #define SPDWN_RXDV_MSK 0x0004 #define SPDWN_LINKCHG_MSK 0x0008 /* PLA_PHYAR */ #define PHYAR_FLAG 0x80000000 /* PLA_EEE_CR */ #define EEE_RX_EN 0x0001 #define EEE_TX_EN 0x0002 /* PLA_BOOT_CTRL */ #define AUTOLOAD_DONE 0x0002 /* PLA_LWAKE_CTRL_REG */ #define LANWAKE_PIN BIT(7) /* PLA_SUSPEND_FLAG */ #define LINK_CHG_EVENT BIT(0) /* PLA_INDICATE_FALG */ #define UPCOMING_RUNTIME_D3 BIT(0) /* PLA_MACDBG_PRE and PLA_MACDBG_POST */ #define DEBUG_OE BIT(0) #define DEBUG_LTSSM 0x0082 /* PLA_EXTRA_STATUS */ #define CUR_LINK_OK BIT(15) #define U3P3_CHECK_EN BIT(7) /* RTL_VER_05 only */ #define LINK_CHANGE_FLAG BIT(8) #define POLL_LINK_CHG BIT(0) /* PLA_GPHY_CTRL */ #define GPHY_FLASH BIT(1) /* PLA_POL_GPIO_CTRL */ #define DACK_DET_EN BIT(15) #define POL_GPHY_PATCH BIT(4) /* USB_USB2PHY */ #define USB2PHY_SUSPEND 0x0001 #define USB2PHY_L1 0x0002 /* USB_SSPHYLINK1 */ #define DELAY_PHY_PWR_CHG BIT(1) /* USB_SSPHYLINK2 */ #define pwd_dn_scale_mask 0x3ffe #define pwd_dn_scale(x) ((x) << 1) /* USB_CSR_DUMMY1 */ #define DYNAMIC_BURST 0x0001 /* USB_CSR_DUMMY2 */ #define EP4_FULL_FC 0x0001 /* USB_DEV_STAT */ #define STAT_SPEED_MASK 0x0006 #define STAT_SPEED_HIGH 0x0000 #define STAT_SPEED_FULL 0x0002 /* USB_FW_FIX_EN0 */ #define FW_FIX_SUSPEND BIT(14) /* USB_FW_FIX_EN1 */ #define FW_IP_RESET_EN BIT(9) /* USB_LPM_CONFIG */ #define LPM_U1U2_EN BIT(0) /* USB_TX_AGG */ #define TX_AGG_MAX_THRESHOLD 0x03 /* USB_RX_BUF_TH */ #define RX_THR_SUPPER 0x0c350180 #define RX_THR_HIGH 0x7a120180 #define RX_THR_SLOW 0xffff0180 #define RX_THR_B 0x00010001 /* USB_TX_DMA */ #define TEST_MODE_DISABLE 0x00000001 #define TX_SIZE_ADJUST1 0x00000100 /* USB_BMU_RESET */ #define BMU_RESET_EP_IN 0x01 #define BMU_RESET_EP_OUT 0x02 /* USB_BMU_CONFIG */ #define ACT_ODMA BIT(1) /* USB_UPT_RXDMA_OWN */ #define OWN_UPDATE BIT(0) #define OWN_CLEAR BIT(1) /* USB_FW_TASK */ #define FC_PATCH_TASK BIT(1) /* USB_RX_AGGR_NUM */ #define RX_AGGR_NUM_MASK 0x1ff /* USB_UPS_CTRL */ #define POWER_CUT 0x0100 /* USB_PM_CTRL_STATUS */ #define RESUME_INDICATE 0x0001 /* USB_ECM_OPTION */ #define BYPASS_MAC_RESET BIT(5) /* USB_CSTMR */ #define FORCE_SUPER BIT(0) /* USB_MISC_2 */ #define UPS_FORCE_PWR_DOWN BIT(0) /* USB_ECM_OP */ #define EN_ALL_SPEED BIT(0) /* USB_GPHY_CTRL */ #define GPHY_PATCH_DONE BIT(2) #define BYPASS_FLASH BIT(5) #define BACKUP_RESTRORE BIT(6) /* USB_SPEED_OPTION */ #define RG_PWRDN_EN BIT(8) #define ALL_SPEED_OFF BIT(9) /* USB_FW_CTRL */ #define FLOW_CTRL_PATCH_OPT BIT(1) #define AUTO_SPEEDUP BIT(3) #define FLOW_CTRL_PATCH_2 BIT(8) /* USB_FC_TIMER */ #define CTRL_TIMER_EN BIT(15) /* USB_USB_CTRL */ #define CDC_ECM_EN BIT(3) #define RX_AGG_DISABLE 0x0010 #define RX_ZERO_EN 0x0080 /* USB_U2P3_CTRL */ #define U2P3_ENABLE 0x0001 #define RX_DETECT8 BIT(3) /* USB_POWER_CUT */ #define PWR_EN 0x0001 #define PHASE2_EN 0x0008 #define UPS_EN BIT(4) #define USP_PREWAKE BIT(5) /* USB_MISC_0 */ #define PCUT_STATUS 0x0001 /* USB_RX_EARLY_TIMEOUT */ #define COALESCE_SUPER 85000U #define COALESCE_HIGH 250000U #define COALESCE_SLOW 524280U /* USB_WDT1_CTRL */ #define WTD1_EN BIT(0) /* USB_WDT11_CTRL */ #define TIMER11_EN 0x0001 /* USB_LPM_CTRL */ /* bit 4 ~ 5: fifo empty boundary */ #define FIFO_EMPTY_1FB 0x30 /* 0x1fb * 64 = 32448 bytes */ /* bit 2 ~ 3: LMP timer */ #define LPM_TIMER_MASK 0x0c #define LPM_TIMER_500MS 0x04 /* 500 ms */ #define LPM_TIMER_500US 0x0c /* 500 us */ #define ROK_EXIT_LPM 0x02 /* USB_AFE_CTRL2 */ #define SEN_VAL_MASK 0xf800 #define SEN_VAL_NORMAL 0xa000 #define SEL_RXIDLE 0x0100 /* USB_UPHY_XTAL */ #define OOBS_POLLING BIT(8) /* USB_UPS_CFG */ #define SAW_CNT_1MS_MASK 0x0fff #define MID_REVERSE BIT(5) /* RTL8156A */ /* USB_UPS_FLAGS */ #define UPS_FLAGS_R_TUNE BIT(0) #define UPS_FLAGS_EN_10M_CKDIV BIT(1) #define UPS_FLAGS_250M_CKDIV BIT(2) #define UPS_FLAGS_EN_ALDPS BIT(3) #define UPS_FLAGS_CTAP_SHORT_DIS BIT(4) #define UPS_FLAGS_SPEED_MASK (0xf << 16) #define ups_flags_speed(x) ((x) << 16) #define UPS_FLAGS_EN_EEE BIT(20) #define UPS_FLAGS_EN_500M_EEE BIT(21) #define UPS_FLAGS_EN_EEE_CKDIV BIT(22) #define UPS_FLAGS_EEE_PLLOFF_100 BIT(23) #define UPS_FLAGS_EEE_PLLOFF_GIGA BIT(24) #define UPS_FLAGS_EEE_CMOD_LV_EN BIT(25) #define UPS_FLAGS_EN_GREEN BIT(26) #define UPS_FLAGS_EN_FLOW_CTR BIT(27) enum spd_duplex { NWAY_10M_HALF, NWAY_10M_FULL, NWAY_100M_HALF, NWAY_100M_FULL, NWAY_1000M_FULL, FORCE_10M_HALF, FORCE_10M_FULL, FORCE_100M_HALF, FORCE_100M_FULL, FORCE_1000M_FULL, NWAY_2500M_FULL, }; /* OCP_ALDPS_CONFIG */ #define ENPWRSAVE 0x8000 #define ENPDNPS 0x0200 #define LINKENA 0x0100 #define DIS_SDSAVE 0x0010 /* OCP_PHY_STATUS */ #define PHY_STAT_MASK 0x0007 #define PHY_STAT_EXT_INIT 2 #define PHY_STAT_LAN_ON 3 #define PHY_STAT_PWRDN 5 /* OCP_INTR_EN */ #define INTR_SPEED_FORCE BIT(3) /* OCP_NCTL_CFG */ #define PGA_RETURN_EN BIT(1) /* OCP_POWER_CFG */ #define EEE_CLKDIV_EN 0x8000 #define EN_ALDPS 0x0004 #define EN_10M_PLLOFF 0x0001 /* OCP_EEE_CONFIG1 */ #define RG_TXLPI_MSK_HFDUP 0x8000 #define RG_MATCLR_EN 0x4000 #define EEE_10_CAP 0x2000 #define EEE_NWAY_EN 0x1000 #define TX_QUIET_EN 0x0200 #define RX_QUIET_EN 0x0100 #define sd_rise_time_mask 0x0070 #define sd_rise_time(x) (min(x, 7) << 4) /* bit 4 ~ 6 */ #define RG_RXLPI_MSK_HFDUP 0x0008 #define SDFALLTIME 0x0007 /* bit 0 ~ 2 */ /* OCP_EEE_CONFIG2 */ #define RG_LPIHYS_NUM 0x7000 /* bit 12 ~ 15 */ #define RG_DACQUIET_EN 0x0400 #define RG_LDVQUIET_EN 0x0200 #define RG_CKRSEL 0x0020 #define RG_EEEPRG_EN 0x0010 /* OCP_EEE_CONFIG3 */ #define fast_snr_mask 0xff80 #define fast_snr(x) (min(x, 0x1ff) << 7) /* bit 7 ~ 15 */ #define RG_LFS_SEL 0x0060 /* bit 6 ~ 5 */ #define MSK_PH 0x0006 /* bit 0 ~ 3 */ /* OCP_EEE_AR */ /* bit[15:14] function */ #define FUN_ADDR 0x0000 #define FUN_DATA 0x4000 /* bit[4:0] device addr */ /* OCP_EEE_CFG */ #define CTAP_SHORT_EN 0x0040 #define EEE10_EN 0x0010 /* OCP_DOWN_SPEED */ #define EN_EEE_CMODE BIT(14) #define EN_EEE_1000 BIT(13) #define EN_EEE_100 BIT(12) #define EN_10M_CLKDIV BIT(11) #define EN_10M_BGOFF 0x0080 /* OCP_10GBT_CTRL */ #define RTL_ADV2_5G_F_R BIT(5) /* Advertise 2.5GBASE-T fast-retrain */ /* OCP_PHY_STATE */ #define TXDIS_STATE 0x01 #define ABD_STATE 0x02 /* OCP_PHY_PATCH_STAT */ #define PATCH_READY BIT(6) /* OCP_PHY_PATCH_CMD */ #define PATCH_REQUEST BIT(4) /* OCP_PHY_LOCK */ #define PATCH_LOCK BIT(0) /* OCP_ADC_CFG */ #define CKADSEL_L 0x0100 #define ADC_EN 0x0080 #define EN_EMI_L 0x0040 /* OCP_SYSCLK_CFG */ #define sysclk_div_expo(x) (min(x, 5) << 8) #define clk_div_expo(x) (min(x, 5) << 4) /* SRAM_GREEN_CFG */ #define GREEN_ETH_EN BIT(15) #define R_TUNE_EN BIT(11) /* SRAM_LPF_CFG */ #define LPF_AUTO_TUNE 0x8000 /* SRAM_10M_AMP1 */ #define GDAC_IB_UPALL 0x0008 /* SRAM_10M_AMP2 */ #define AMP_DN 0x0200 /* SRAM_IMPEDANCE */ #define RX_DRIVING_MASK 0x6000 /* SRAM_PHY_LOCK */ #define PHY_PATCH_LOCK 0x0001 /* MAC PASSTHRU */ #define AD_MASK 0xfee0 #define BND_MASK 0x0004 #define BD_MASK 0x0001 #define EFUSE 0xcfdb #define PASS_THRU_MASK 0x1 #define BP4_SUPER_ONLY 0x1578 /* RTL_VER_04 only */ enum rtl_register_content { _2500bps = BIT(10), _1250bps = BIT(9), _500bps = BIT(8), _tx_flow = BIT(6), _rx_flow = BIT(5), _1000bps = 0x10, _100bps = 0x08, _10bps = 0x04, LINK_STATUS = 0x02, FULL_DUP = 0x01, }; #define is_speed_2500(_speed) (((_speed) & (_2500bps | LINK_STATUS)) == (_2500bps | LINK_STATUS)) #define is_flow_control(_speed) (((_speed) & (_tx_flow | _rx_flow)) == (_tx_flow | _rx_flow)) #define RTL8152_MAX_TX 4 #define RTL8152_MAX_RX 10 #define INTBUFSIZE 2 #define TX_ALIGN 4 #define RX_ALIGN 8 #define RTL8152_RX_MAX_PENDING 4096 #define RTL8152_RXFG_HEADSZ 256 #define INTR_LINK 0x0004 #define RTL8152_RMS (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN) #define RTL8153_RMS RTL8153_MAX_PACKET #define RTL8152_TX_TIMEOUT (5 * HZ) #define mtu_to_size(m) ((m) + VLAN_ETH_HLEN + ETH_FCS_LEN) #define size_to_mtu(s) ((s) - VLAN_ETH_HLEN - ETH_FCS_LEN) #define rx_reserved_size(x) (mtu_to_size(x) + sizeof(struct rx_desc) + RX_ALIGN) /* rtl8152 flags */ enum rtl8152_flags { RTL8152_INACCESSIBLE = 0, RTL8152_SET_RX_MODE, WORK_ENABLE, RTL8152_LINK_CHG, SELECTIVE_SUSPEND, PHY_RESET, SCHEDULE_TASKLET, GREEN_ETHERNET, RX_EPROTO, IN_PRE_RESET, PROBED_WITH_NO_ERRORS, PROBE_SHOULD_RETRY, }; #define DEVICE_ID_LENOVO_USB_C_TRAVEL_HUB 0x721e #define DEVICE_ID_THINKPAD_ONELINK_PLUS_DOCK 0x3054 #define DEVICE_ID_THINKPAD_THUNDERBOLT3_DOCK_GEN2 0x3082 #define DEVICE_ID_THINKPAD_USB_C_DONGLE 0x720c #define DEVICE_ID_THINKPAD_USB_C_DOCK_GEN2 0xa387 #define DEVICE_ID_THINKPAD_USB_C_DOCK_GEN3 0x3062 struct tally_counter { __le64 tx_packets; __le64 rx_packets; __le64 tx_errors; __le32 rx_errors; __le16 rx_missed; __le16 align_errors; __le32 tx_one_collision; __le32 tx_multi_collision; __le64 rx_unicast; __le64 rx_broadcast; __le32 rx_multicast; __le16 tx_aborted; __le16 tx_underrun; }; struct rx_desc { __le32 opts1; #define RX_LEN_MASK 0x7fff __le32 opts2; #define RD_UDP_CS BIT(23) #define RD_TCP_CS BIT(22) #define RD_IPV6_CS BIT(20) #define RD_IPV4_CS BIT(19) __le32 opts3; #define IPF BIT(23) /* IP checksum fail */ #define UDPF BIT(22) /* UDP checksum fail */ #define TCPF BIT(21) /* TCP checksum fail */ #define RX_VLAN_TAG BIT(16) __le32 opts4; __le32 opts5; __le32 opts6; }; struct tx_desc { __le32 opts1; #define TX_FS BIT(31) /* First segment of a packet */ #define TX_LS BIT(30) /* Final segment of a packet */ #define GTSENDV4 BIT(28) #define GTSENDV6 BIT(27) #define GTTCPHO_SHIFT 18 #define GTTCPHO_MAX 0x7fU #define TX_LEN_MAX 0x3ffffU __le32 opts2; #define UDP_CS BIT(31) /* Calculate UDP/IP checksum */ #define TCP_CS BIT(30) /* Calculate TCP/IP checksum */ #define IPV4_CS BIT(29) /* Calculate IPv4 checksum */ #define IPV6_CS BIT(28) /* Calculate IPv6 checksum */ #define MSS_SHIFT 17 #define MSS_MAX 0x7ffU #define TCPHO_SHIFT 17 #define TCPHO_MAX 0x7ffU #define TX_VLAN_TAG BIT(16) }; struct r8152; struct rx_agg { struct list_head list, info_list; struct urb *urb; struct r8152 *context; struct page *page; void *buffer; }; struct tx_agg { struct list_head list; struct urb *urb; struct r8152 *context; void *buffer; void *head; u32 skb_num; u32 skb_len; }; struct r8152 { unsigned long flags; struct usb_device *udev; struct napi_struct napi; struct usb_interface *intf; struct net_device *netdev; struct urb *intr_urb; struct tx_agg tx_info[RTL8152_MAX_TX]; struct list_head rx_info, rx_used; struct list_head rx_done, tx_free; struct sk_buff_head tx_queue, rx_queue; spinlock_t rx_lock, tx_lock; struct delayed_work schedule, hw_phy_work; struct mii_if_info mii; struct mutex control; /* use for hw setting */ #ifdef CONFIG_PM_SLEEP struct notifier_block pm_notifier; #endif struct tasklet_struct tx_tl; struct rtl_ops { void (*init)(struct r8152 *tp); int (*enable)(struct r8152 *tp); void (*disable)(struct r8152 *tp); void (*up)(struct r8152 *tp); void (*down)(struct r8152 *tp); void (*unload)(struct r8152 *tp); int (*eee_get)(struct r8152 *tp, struct ethtool_keee *eee); int (*eee_set)(struct r8152 *tp, struct ethtool_keee *eee); bool (*in_nway)(struct r8152 *tp); void (*hw_phy_cfg)(struct r8152 *tp); void (*autosuspend_en)(struct r8152 *tp, bool enable); void (*change_mtu)(struct r8152 *tp); } rtl_ops; struct ups_info { u32 r_tune:1; u32 _10m_ckdiv:1; u32 _250m_ckdiv:1; u32 aldps:1; u32 lite_mode:2; u32 speed_duplex:4; u32 eee:1; u32 eee_lite:1; u32 eee_ckdiv:1; u32 eee_plloff_100:1; u32 eee_plloff_giga:1; u32 eee_cmod_lv:1; u32 green:1; u32 flow_control:1; u32 ctap_short_off:1; } ups_info; #define RTL_VER_SIZE 32 struct rtl_fw { const char *fw_name; const struct firmware *fw; char version[RTL_VER_SIZE]; int (*pre_fw)(struct r8152 *tp); int (*post_fw)(struct r8152 *tp); bool retry; } rtl_fw; atomic_t rx_count; bool eee_en; int intr_interval; u32 saved_wolopts; u32 msg_enable; u32 tx_qlen; u32 coalesce; u32 advertising; u32 rx_buf_sz; u32 rx_copybreak; u32 rx_pending; u32 fc_pause_on, fc_pause_off; unsigned int pipe_in, pipe_out, pipe_intr, pipe_ctrl_in, pipe_ctrl_out; u32 support_2500full:1; u32 lenovo_macpassthru:1; u32 dell_tb_rx_agg_bug:1; u16 ocp_base; u16 speed; u16 eee_adv; u8 *intr_buff; u8 version; u8 duplex; u8 autoneg; unsigned int reg_access_reset_count; }; /** * struct fw_block - block type and total length * @type: type of the current block, such as RTL_FW_END, RTL_FW_PLA, * RTL_FW_USB and so on. * @length: total length of the current block. */ struct fw_block { __le32 type; __le32 length; } __packed; /** * struct fw_header - header of the firmware file * @checksum: checksum of sha256 which is calculated from the whole file * except the checksum field of the file. That is, calculate sha256 * from the version field to the end of the file. * @version: version of this firmware. * @blocks: the first firmware block of the file */ struct fw_header { u8 checksum[32]; char version[RTL_VER_SIZE]; struct fw_block blocks[]; } __packed; enum rtl8152_fw_flags { FW_FLAGS_USB = 0, FW_FLAGS_PLA, FW_FLAGS_START, FW_FLAGS_STOP, FW_FLAGS_NC, FW_FLAGS_NC1, FW_FLAGS_NC2, FW_FLAGS_UC2, FW_FLAGS_UC, FW_FLAGS_SPEED_UP, FW_FLAGS_VER, }; enum rtl8152_fw_fixup_cmd { FW_FIXUP_AND = 0, FW_FIXUP_OR, FW_FIXUP_NOT, FW_FIXUP_XOR, }; struct fw_phy_set { __le16 addr; __le16 data; } __packed; struct fw_phy_speed_up { struct fw_block blk_hdr; __le16 fw_offset; __le16 version; __le16 fw_reg; __le16 reserved; char info[]; } __packed; struct fw_phy_ver { struct fw_block blk_hdr; struct fw_phy_set ver; __le32 reserved; } __packed; struct fw_phy_fixup { struct fw_block blk_hdr; struct fw_phy_set setting; __le16 bit_cmd; __le16 reserved; } __packed; struct fw_phy_union { struct fw_block blk_hdr; __le16 fw_offset; __le16 fw_reg; struct fw_phy_set pre_set[2]; struct fw_phy_set bp[8]; struct fw_phy_set bp_en; u8 pre_num; u8 bp_num; char info[]; } __packed; /** * struct fw_mac - a firmware block used by RTL_FW_PLA and RTL_FW_USB. * The layout of the firmware block is: * <struct fw_mac> + <info> + <firmware data>. * @blk_hdr: firmware descriptor (type, length) * @fw_offset: offset of the firmware binary data. The start address of * the data would be the address of struct fw_mac + @fw_offset. * @fw_reg: the register to load the firmware. Depends on chip. * @bp_ba_addr: the register to write break point base address. Depends on * chip. * @bp_ba_value: break point base address. Depends on chip. * @bp_en_addr: the register to write break point enabled mask. Depends * on chip. * @bp_en_value: break point enabled mask. Depends on the firmware. * @bp_start: the start register of break points. Depends on chip. * @bp_num: the break point number which needs to be set for this firmware. * Depends on the firmware. * @bp: break points. Depends on firmware. * @reserved: reserved space (unused) * @fw_ver_reg: the register to store the fw version. * @fw_ver_data: the firmware version of the current type. * @info: additional information for debugging, and is followed by the * binary data of firmware. */ struct fw_mac { struct fw_block blk_hdr; __le16 fw_offset; __le16 fw_reg; __le16 bp_ba_addr; __le16 bp_ba_value; __le16 bp_en_addr; __le16 bp_en_value; __le16 bp_start; __le16 bp_num; __le16 bp[16]; /* any value determined by firmware */ __le32 reserved; __le16 fw_ver_reg; u8 fw_ver_data; char info[]; } __packed; /** * struct fw_phy_patch_key - a firmware block used by RTL_FW_PHY_START. * This is used to set patch key when loading the firmware of PHY. * @blk_hdr: firmware descriptor (type, length) * @key_reg: the register to write the patch key. * @key_data: patch key. * @reserved: reserved space (unused) */ struct fw_phy_patch_key { struct fw_block blk_hdr; __le16 key_reg; __le16 key_data; __le32 reserved; } __packed; /** * struct fw_phy_nc - a firmware block used by RTL_FW_PHY_NC. * The layout of the firmware block is: * <struct fw_phy_nc> + <info> + <firmware data>. * @blk_hdr: firmware descriptor (type, length) * @fw_offset: offset of the firmware binary data. The start address of * the data would be the address of struct fw_phy_nc + @fw_offset. * @fw_reg: the register to load the firmware. Depends on chip. * @ba_reg: the register to write the base address. Depends on chip. * @ba_data: base address. Depends on chip. * @patch_en_addr: the register of enabling patch mode. Depends on chip. * @patch_en_value: patch mode enabled mask. Depends on the firmware. * @mode_reg: the regitster of switching the mode. * @mode_pre: the mode needing to be set before loading the firmware. * @mode_post: the mode to be set when finishing to load the firmware. * @reserved: reserved space (unused) * @bp_start: the start register of break points. Depends on chip. * @bp_num: the break point number which needs to be set for this firmware. * Depends on the firmware. * @bp: break points. Depends on firmware. * @info: additional information for debugging, and is followed by the * binary data of firmware. */ struct fw_phy_nc { struct fw_block blk_hdr; __le16 fw_offset; __le16 fw_reg; __le16 ba_reg; __le16 ba_data; __le16 patch_en_addr; __le16 patch_en_value; __le16 mode_reg; __le16 mode_pre; __le16 mode_post; __le16 reserved; __le16 bp_start; __le16 bp_num; __le16 bp[4]; char info[]; } __packed; enum rtl_fw_type { RTL_FW_END = 0, RTL_FW_PLA, RTL_FW_USB, RTL_FW_PHY_START, RTL_FW_PHY_STOP, RTL_FW_PHY_NC, RTL_FW_PHY_FIXUP, RTL_FW_PHY_UNION_NC, RTL_FW_PHY_UNION_NC1, RTL_FW_PHY_UNION_NC2, RTL_FW_PHY_UNION_UC2, RTL_FW_PHY_UNION_UC, RTL_FW_PHY_UNION_MISC, RTL_FW_PHY_SPEED_UP, RTL_FW_PHY_VER, }; enum rtl_version { RTL_VER_UNKNOWN = 0, RTL_VER_01, RTL_VER_02, RTL_VER_03, RTL_VER_04, RTL_VER_05, RTL_VER_06, RTL_VER_07, RTL_VER_08, RTL_VER_09, RTL_TEST_01, RTL_VER_10, RTL_VER_11, RTL_VER_12, RTL_VER_13, RTL_VER_14, RTL_VER_15, RTL_VER_MAX }; enum tx_csum_stat { TX_CSUM_SUCCESS = 0, TX_CSUM_TSO, TX_CSUM_NONE }; #define RTL_ADVERTISED_10_HALF BIT(0) #define RTL_ADVERTISED_10_FULL BIT(1) #define RTL_ADVERTISED_100_HALF BIT(2) #define RTL_ADVERTISED_100_FULL BIT(3) #define RTL_ADVERTISED_1000_HALF BIT(4) #define RTL_ADVERTISED_1000_FULL BIT(5) #define RTL_ADVERTISED_2500_FULL BIT(6) /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). * The RTL chips use a 64 element hash table based on the Ethernet CRC. */ static const int multicast_filter_limit = 32; static unsigned int agg_buf_sz = 16384; #define RTL_LIMITED_TSO_SIZE (size_to_mtu(agg_buf_sz) - sizeof(struct tx_desc)) /* If register access fails then we block access and issue a reset. If this * happens too many times in a row without a successful access then we stop * trying to reset and just leave access blocked. */ #define REGISTER_ACCESS_MAX_RESETS 3 static void rtl_set_inaccessible(struct r8152 *tp) { set_bit(RTL8152_INACCESSIBLE, &tp->flags); smp_mb__after_atomic(); } static void rtl_set_accessible(struct r8152 *tp) { clear_bit(RTL8152_INACCESSIBLE, &tp->flags); smp_mb__after_atomic(); } static int r8152_control_msg(struct r8152 *tp, unsigned int pipe, __u8 request, __u8 requesttype, __u16 value, __u16 index, void *data, __u16 size, const char *msg_tag) { struct usb_device *udev = tp->udev; int ret; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return -ENODEV; ret = usb_control_msg(udev, pipe, request, requesttype, value, index, data, size, USB_CTRL_GET_TIMEOUT); /* No need to issue a reset to report an error if the USB device got * unplugged; just return immediately. */ if (ret == -ENODEV) return ret; /* If the write was successful then we're done */ if (ret >= 0) { tp->reg_access_reset_count = 0; return ret; } dev_err(&udev->dev, "Failed to %s %d bytes at %#06x/%#06x (%d)\n", msg_tag, size, value, index, ret); /* Block all future register access until we reset. Much of the code * in the driver doesn't check for errors. Notably, many parts of the * driver do a read/modify/write of a register value without * confirming that the read succeeded. Writing back modified garbage * like this can fully wedge the adapter, requiring a power cycle. */ rtl_set_inaccessible(tp); /* If probe hasn't yet finished, then we'll request a retry of the * whole probe routine if we get any control transfer errors. We * never have to clear this bit since we free/reallocate the whole "tp" * structure if we retry probe. */ if (!test_bit(PROBED_WITH_NO_ERRORS, &tp->flags)) { set_bit(PROBE_SHOULD_RETRY, &tp->flags); return ret; } /* Failing to access registers in pre-reset is not surprising since we * wouldn't be resetting if things were behaving normally. The register * access we do in pre-reset isn't truly mandatory--we're just reusing * the disable() function and trying to be nice by powering the * adapter down before resetting it. Thus, if we're in pre-reset, * we'll return right away and not try to queue up yet another reset. * We know the post-reset is already coming. */ if (test_bit(IN_PRE_RESET, &tp->flags)) return ret; if (tp->reg_access_reset_count < REGISTER_ACCESS_MAX_RESETS) { usb_queue_reset_device(tp->intf); tp->reg_access_reset_count++; } else if (tp->reg_access_reset_count == REGISTER_ACCESS_MAX_RESETS) { dev_err(&udev->dev, "Tried to reset %d times; giving up.\n", REGISTER_ACCESS_MAX_RESETS); } return ret; } static int get_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data) { int ret; void *tmp; tmp = kmalloc(size, GFP_KERNEL); if (!tmp) return -ENOMEM; ret = r8152_control_msg(tp, tp->pipe_ctrl_in, RTL8152_REQ_GET_REGS, RTL8152_REQT_READ, value, index, tmp, size, "read"); if (ret < 0) memset(data, 0xff, size); else memcpy(data, tmp, size); kfree(tmp); return ret; } static int set_registers(struct r8152 *tp, u16 value, u16 index, u16 size, void *data) { int ret; void *tmp; tmp = kmemdup(data, size, GFP_KERNEL); if (!tmp) return -ENOMEM; ret = r8152_control_msg(tp, tp->pipe_ctrl_out, RTL8152_REQ_SET_REGS, RTL8152_REQT_WRITE, value, index, tmp, size, "write"); kfree(tmp); return ret; } static void rtl_set_unplug(struct r8152 *tp) { if (tp->udev->state == USB_STATE_NOTATTACHED) rtl_set_inaccessible(tp); } static int generic_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data, u16 type) { u16 limit = 64; int ret = 0; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return -ENODEV; /* both size and indix must be 4 bytes align */ if ((size & 3) || !size || (index & 3) || !data) return -EPERM; if ((u32)index + (u32)size > 0xffff) return -EPERM; while (size) { if (size > limit) { ret = get_registers(tp, index, type, limit, data); if (ret < 0) break; index += limit; data += limit; size -= limit; } else { ret = get_registers(tp, index, type, size, data); if (ret < 0) break; index += size; data += size; size = 0; break; } } if (ret == -ENODEV) rtl_set_unplug(tp); return ret; } static int generic_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data, u16 type) { int ret; u16 byteen_start, byteen_end, byen; u16 limit = 512; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return -ENODEV; /* both size and indix must be 4 bytes align */ if ((size & 3) || !size || (index & 3) || !data) return -EPERM; if ((u32)index + (u32)size > 0xffff) return -EPERM; byteen_start = byteen & BYTE_EN_START_MASK; byteen_end = byteen & BYTE_EN_END_MASK; byen = byteen_start | (byteen_start << 4); /* Split the first DWORD if the byte_en is not 0xff */ if (byen != BYTE_EN_DWORD) { ret = set_registers(tp, index, type | byen, 4, data); if (ret < 0) goto error1; index += 4; data += 4; size -= 4; } if (size) { byen = byteen_end | (byteen_end >> 4); /* Split the last DWORD if the byte_en is not 0xff */ if (byen != BYTE_EN_DWORD) size -= 4; while (size) { if (size > limit) { ret = set_registers(tp, index, type | BYTE_EN_DWORD, limit, data); if (ret < 0) goto error1; index += limit; data += limit; size -= limit; } else { ret = set_registers(tp, index, type | BYTE_EN_DWORD, size, data); if (ret < 0) goto error1; index += size; data += size; size = 0; break; } } /* Set the last DWORD */ if (byen != BYTE_EN_DWORD) ret = set_registers(tp, index, type | byen, 4, data); } error1: if (ret == -ENODEV) rtl_set_unplug(tp); return ret; } static inline int pla_ocp_read(struct r8152 *tp, u16 index, u16 size, void *data) { return generic_ocp_read(tp, index, size, data, MCU_TYPE_PLA); } static inline int pla_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data) { return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_PLA); } static inline int usb_ocp_write(struct r8152 *tp, u16 index, u16 byteen, u16 size, void *data) { return generic_ocp_write(tp, index, byteen, size, data, MCU_TYPE_USB); } static u32 ocp_read_dword(struct r8152 *tp, u16 type, u16 index) { __le32 data; generic_ocp_read(tp, index, sizeof(data), &data, type); return __le32_to_cpu(data); } static void ocp_write_dword(struct r8152 *tp, u16 type, u16 index, u32 data) { __le32 tmp = __cpu_to_le32(data); generic_ocp_write(tp, index, BYTE_EN_DWORD, sizeof(tmp), &tmp, type); } static u16 ocp_read_word(struct r8152 *tp, u16 type, u16 index) { u32 data; __le32 tmp; u16 byen = BYTE_EN_WORD; u8 shift = index & 2; index &= ~3; byen <<= shift; generic_ocp_read(tp, index, sizeof(tmp), &tmp, type | byen); data = __le32_to_cpu(tmp); data >>= (shift * 8); data &= 0xffff; return (u16)data; } static void ocp_write_word(struct r8152 *tp, u16 type, u16 index, u32 data) { u32 mask = 0xffff; __le32 tmp; u16 byen = BYTE_EN_WORD; u8 shift = index & 2; data &= mask; if (index & 2) { byen <<= shift; mask <<= (shift * 8); data <<= (shift * 8); index &= ~3; } tmp = __cpu_to_le32(data); generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type); } static u8 ocp_read_byte(struct r8152 *tp, u16 type, u16 index) { u32 data; __le32 tmp; u8 shift = index & 3; index &= ~3; generic_ocp_read(tp, index, sizeof(tmp), &tmp, type); data = __le32_to_cpu(tmp); data >>= (shift * 8); data &= 0xff; return (u8)data; } static void ocp_write_byte(struct r8152 *tp, u16 type, u16 index, u32 data) { u32 mask = 0xff; __le32 tmp; u16 byen = BYTE_EN_BYTE; u8 shift = index & 3; data &= mask; if (index & 3) { byen <<= shift; mask <<= (shift * 8); data <<= (shift * 8); index &= ~3; } tmp = __cpu_to_le32(data); generic_ocp_write(tp, index, byen, sizeof(tmp), &tmp, type); } static u16 ocp_reg_read(struct r8152 *tp, u16 addr) { u16 ocp_base, ocp_index; ocp_base = addr & 0xf000; if (ocp_base != tp->ocp_base) { ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base); tp->ocp_base = ocp_base; } ocp_index = (addr & 0x0fff) | 0xb000; return ocp_read_word(tp, MCU_TYPE_PLA, ocp_index); } static void ocp_reg_write(struct r8152 *tp, u16 addr, u16 data) { u16 ocp_base, ocp_index; ocp_base = addr & 0xf000; if (ocp_base != tp->ocp_base) { ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, ocp_base); tp->ocp_base = ocp_base; } ocp_index = (addr & 0x0fff) | 0xb000; ocp_write_word(tp, MCU_TYPE_PLA, ocp_index, data); } static inline void r8152_mdio_write(struct r8152 *tp, u32 reg_addr, u32 value) { ocp_reg_write(tp, OCP_BASE_MII + reg_addr * 2, value); } static inline int r8152_mdio_read(struct r8152 *tp, u32 reg_addr) { return ocp_reg_read(tp, OCP_BASE_MII + reg_addr * 2); } static void sram_write(struct r8152 *tp, u16 addr, u16 data) { ocp_reg_write(tp, OCP_SRAM_ADDR, addr); ocp_reg_write(tp, OCP_SRAM_DATA, data); } static u16 sram_read(struct r8152 *tp, u16 addr) { ocp_reg_write(tp, OCP_SRAM_ADDR, addr); return ocp_reg_read(tp, OCP_SRAM_DATA); } static int read_mii_word(struct net_device *netdev, int phy_id, int reg) { struct r8152 *tp = netdev_priv(netdev); int ret; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return -ENODEV; if (phy_id != R8152_PHY_ID) return -EINVAL; ret = r8152_mdio_read(tp, reg); return ret; } static void write_mii_word(struct net_device *netdev, int phy_id, int reg, int val) { struct r8152 *tp = netdev_priv(netdev); if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; if (phy_id != R8152_PHY_ID) return; r8152_mdio_write(tp, reg, val); } static int r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags); static int rtl8152_set_speed(struct r8152 *tp, u8 autoneg, u32 speed, u8 duplex, u32 advertising); static int __rtl8152_set_mac_address(struct net_device *netdev, void *p, bool in_resume) { struct r8152 *tp = netdev_priv(netdev); struct sockaddr *addr = p; int ret = -EADDRNOTAVAIL; if (!is_valid_ether_addr(addr->sa_data)) goto out1; if (!in_resume) { ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out1; } mutex_lock(&tp->control); eth_hw_addr_set(netdev, addr->sa_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG); pla_ocp_write(tp, PLA_IDR, BYTE_EN_SIX_BYTES, 8, addr->sa_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); mutex_unlock(&tp->control); if (!in_resume) usb_autopm_put_interface(tp->intf); out1: return ret; } static int rtl8152_set_mac_address(struct net_device *netdev, void *p) { return __rtl8152_set_mac_address(netdev, p, false); } /* Devices containing proper chips can support a persistent * host system provided MAC address. * Examples of this are Dell TB15 and Dell WD15 docks */ static int vendor_mac_passthru_addr_read(struct r8152 *tp, struct sockaddr *sa) { acpi_status status; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; int ret = -EINVAL; u32 ocp_data; unsigned char buf[6]; char *mac_obj_name; acpi_object_type mac_obj_type; int mac_strlen; if (tp->lenovo_macpassthru) { mac_obj_name = "\\MACA"; mac_obj_type = ACPI_TYPE_STRING; mac_strlen = 0x16; } else { /* test for -AD variant of RTL8153 */ ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0); if ((ocp_data & AD_MASK) == 0x1000) { /* test for MAC address pass-through bit */ ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, EFUSE); if ((ocp_data & PASS_THRU_MASK) != 1) { netif_dbg(tp, probe, tp->netdev, "No efuse for RTL8153-AD MAC pass through\n"); return -ENODEV; } } else { /* test for RTL8153-BND and RTL8153-BD */ ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_1); if ((ocp_data & BND_MASK) == 0 && (ocp_data & BD_MASK) == 0) { netif_dbg(tp, probe, tp->netdev, "Invalid variant for MAC pass through\n"); return -ENODEV; } } mac_obj_name = "\\_SB.AMAC"; mac_obj_type = ACPI_TYPE_BUFFER; mac_strlen = 0x17; } /* returns _AUXMAC_#AABBCCDDEEFF# */ status = acpi_evaluate_object(NULL, mac_obj_name, NULL, &buffer); obj = (union acpi_object *)buffer.pointer; if (!ACPI_SUCCESS(status)) return -ENODEV; if (obj->type != mac_obj_type || obj->string.length != mac_strlen) { netif_warn(tp, probe, tp->netdev, "Invalid buffer for pass-thru MAC addr: (%d, %d)\n", obj->type, obj->string.length); goto amacout; } if (strncmp(obj->string.pointer, "_AUXMAC_#", 9) != 0 || strncmp(obj->string.pointer + 0x15, "#", 1) != 0) { netif_warn(tp, probe, tp->netdev, "Invalid header when reading pass-thru MAC addr\n"); goto amacout; } ret = hex2bin(buf, obj->string.pointer + 9, 6); if (!(ret == 0 && is_valid_ether_addr(buf))) { netif_warn(tp, probe, tp->netdev, "Invalid MAC for pass-thru MAC addr: %d, %pM\n", ret, buf); ret = -EINVAL; goto amacout; } memcpy(sa->sa_data, buf, 6); tp->netdev->addr_assign_type = NET_ADDR_STOLEN; netif_info(tp, probe, tp->netdev, "Using pass-thru MAC addr %pM\n", sa->sa_data); amacout: kfree(obj); return ret; } static int determine_ethernet_addr(struct r8152 *tp, struct sockaddr *sa) { struct net_device *dev = tp->netdev; int ret; sa->sa_family = dev->type; ret = eth_platform_get_mac_address(&tp->udev->dev, sa->sa_data); if (ret < 0) { if (tp->version == RTL_VER_01) { ret = pla_ocp_read(tp, PLA_IDR, 8, sa->sa_data); } else { /* if device doesn't support MAC pass through this will * be expected to be non-zero */ ret = vendor_mac_passthru_addr_read(tp, sa); if (ret < 0) ret = pla_ocp_read(tp, PLA_BACKUP, 8, sa->sa_data); } } if (ret < 0) { netif_err(tp, probe, dev, "Get ether addr fail\n"); } else if (!is_valid_ether_addr(sa->sa_data)) { netif_err(tp, probe, dev, "Invalid ether addr %pM\n", sa->sa_data); eth_hw_addr_random(dev); ether_addr_copy(sa->sa_data, dev->dev_addr); netif_info(tp, probe, dev, "Random ether addr %pM\n", sa->sa_data); return 0; } return ret; } static int set_ethernet_addr(struct r8152 *tp, bool in_resume) { struct net_device *dev = tp->netdev; struct sockaddr sa; int ret; ret = determine_ethernet_addr(tp, &sa); if (ret < 0) return ret; if (tp->version == RTL_VER_01) eth_hw_addr_set(dev, sa.sa_data); else ret = __rtl8152_set_mac_address(dev, &sa, in_resume); return ret; } static void read_bulk_callback(struct urb *urb) { struct net_device *netdev; int status = urb->status; struct rx_agg *agg; struct r8152 *tp; unsigned long flags; agg = urb->context; if (!agg) return; tp = agg->context; if (!tp) return; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; if (!test_bit(WORK_ENABLE, &tp->flags)) return; netdev = tp->netdev; /* When link down, the driver would cancel all bulks. */ /* This avoid the re-submitting bulk */ if (!netif_carrier_ok(netdev)) return; usb_mark_last_busy(tp->udev); switch (status) { case 0: if (urb->actual_length < ETH_ZLEN) break; spin_lock_irqsave(&tp->rx_lock, flags); list_add_tail(&agg->list, &tp->rx_done); spin_unlock_irqrestore(&tp->rx_lock, flags); napi_schedule(&tp->napi); return; case -ESHUTDOWN: rtl_set_unplug(tp); netif_device_detach(tp->netdev); return; case -EPROTO: urb->actual_length = 0; spin_lock_irqsave(&tp->rx_lock, flags); list_add_tail(&agg->list, &tp->rx_done); spin_unlock_irqrestore(&tp->rx_lock, flags); set_bit(RX_EPROTO, &tp->flags); schedule_delayed_work(&tp->schedule, 1); return; case -ENOENT: return; /* the urb is in unlink state */ case -ETIME: if (net_ratelimit()) netdev_warn(netdev, "maybe reset is needed?\n"); break; default: if (net_ratelimit()) netdev_warn(netdev, "Rx status %d\n", status); break; } r8152_submit_rx(tp, agg, GFP_ATOMIC); } static void write_bulk_callback(struct urb *urb) { struct net_device_stats *stats; struct net_device *netdev; struct tx_agg *agg; struct r8152 *tp; unsigned long flags; int status = urb->status; agg = urb->context; if (!agg) return; tp = agg->context; if (!tp) return; netdev = tp->netdev; stats = &netdev->stats; if (status) { if (net_ratelimit()) netdev_warn(netdev, "Tx status %d\n", status); stats->tx_errors += agg->skb_num; } else { stats->tx_packets += agg->skb_num; stats->tx_bytes += agg->skb_len; } spin_lock_irqsave(&tp->tx_lock, flags); list_add_tail(&agg->list, &tp->tx_free); spin_unlock_irqrestore(&tp->tx_lock, flags); usb_autopm_put_interface_async(tp->intf); if (!netif_carrier_ok(netdev)) return; if (!test_bit(WORK_ENABLE, &tp->flags)) return; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; if (!skb_queue_empty(&tp->tx_queue)) tasklet_schedule(&tp->tx_tl); } static void intr_callback(struct urb *urb) { struct r8152 *tp; __le16 *d; int status = urb->status; int res; tp = urb->context; if (!tp) return; if (!test_bit(WORK_ENABLE, &tp->flags)) return; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; switch (status) { case 0: /* success */ break; case -ECONNRESET: /* unlink */ case -ESHUTDOWN: netif_device_detach(tp->netdev); fallthrough; case -ENOENT: case -EPROTO: netif_info(tp, intr, tp->netdev, "Stop submitting intr, status %d\n", status); return; case -EOVERFLOW: if (net_ratelimit()) netif_info(tp, intr, tp->netdev, "intr status -EOVERFLOW\n"); goto resubmit; /* -EPIPE: should clear the halt */ default: netif_info(tp, intr, tp->netdev, "intr status %d\n", status); goto resubmit; } d = urb->transfer_buffer; if (INTR_LINK & __le16_to_cpu(d[0])) { if (!netif_carrier_ok(tp->netdev)) { set_bit(RTL8152_LINK_CHG, &tp->flags); schedule_delayed_work(&tp->schedule, 0); } } else { if (netif_carrier_ok(tp->netdev)) { netif_stop_queue(tp->netdev); set_bit(RTL8152_LINK_CHG, &tp->flags); schedule_delayed_work(&tp->schedule, 0); } } resubmit: res = usb_submit_urb(urb, GFP_ATOMIC); if (res == -ENODEV) { rtl_set_unplug(tp); netif_device_detach(tp->netdev); } else if (res) { netif_err(tp, intr, tp->netdev, "can't resubmit intr, status %d\n", res); } } static inline void *rx_agg_align(void *data) { return (void *)ALIGN((uintptr_t)data, RX_ALIGN); } static inline void *tx_agg_align(void *data) { return (void *)ALIGN((uintptr_t)data, TX_ALIGN); } static void free_rx_agg(struct r8152 *tp, struct rx_agg *agg) { list_del(&agg->info_list); usb_free_urb(agg->urb); put_page(agg->page); kfree(agg); atomic_dec(&tp->rx_count); } static struct rx_agg *alloc_rx_agg(struct r8152 *tp, gfp_t mflags) { struct net_device *netdev = tp->netdev; int node = netdev->dev.parent ? dev_to_node(netdev->dev.parent) : -1; unsigned int order = get_order(tp->rx_buf_sz); struct rx_agg *rx_agg; unsigned long flags; rx_agg = kmalloc_node(sizeof(*rx_agg), mflags, node); if (!rx_agg) return NULL; rx_agg->page = alloc_pages(mflags | __GFP_COMP | __GFP_NOWARN, order); if (!rx_agg->page) goto free_rx; rx_agg->buffer = page_address(rx_agg->page); rx_agg->urb = usb_alloc_urb(0, mflags); if (!rx_agg->urb) goto free_buf; rx_agg->context = tp; INIT_LIST_HEAD(&rx_agg->list); INIT_LIST_HEAD(&rx_agg->info_list); spin_lock_irqsave(&tp->rx_lock, flags); list_add_tail(&rx_agg->info_list, &tp->rx_info); spin_unlock_irqrestore(&tp->rx_lock, flags); atomic_inc(&tp->rx_count); return rx_agg; free_buf: __free_pages(rx_agg->page, order); free_rx: kfree(rx_agg); return NULL; } static void free_all_mem(struct r8152 *tp) { struct rx_agg *agg, *agg_next; unsigned long flags; int i; spin_lock_irqsave(&tp->rx_lock, flags); list_for_each_entry_safe(agg, agg_next, &tp->rx_info, info_list) free_rx_agg(tp, agg); spin_unlock_irqrestore(&tp->rx_lock, flags); WARN_ON(atomic_read(&tp->rx_count)); for (i = 0; i < RTL8152_MAX_TX; i++) { usb_free_urb(tp->tx_info[i].urb); tp->tx_info[i].urb = NULL; kfree(tp->tx_info[i].buffer); tp->tx_info[i].buffer = NULL; tp->tx_info[i].head = NULL; } usb_free_urb(tp->intr_urb); tp->intr_urb = NULL; kfree(tp->intr_buff); tp->intr_buff = NULL; } static int alloc_all_mem(struct r8152 *tp) { struct net_device *netdev = tp->netdev; struct usb_interface *intf = tp->intf; struct usb_host_interface *alt = intf->cur_altsetting; struct usb_host_endpoint *ep_intr = alt->endpoint + 2; int node, i; node = netdev->dev.parent ? dev_to_node(netdev->dev.parent) : -1; spin_lock_init(&tp->rx_lock); spin_lock_init(&tp->tx_lock); INIT_LIST_HEAD(&tp->rx_info); INIT_LIST_HEAD(&tp->tx_free); INIT_LIST_HEAD(&tp->rx_done); skb_queue_head_init(&tp->tx_queue); skb_queue_head_init(&tp->rx_queue); atomic_set(&tp->rx_count, 0); for (i = 0; i < RTL8152_MAX_RX; i++) { if (!alloc_rx_agg(tp, GFP_KERNEL)) goto err1; } for (i = 0; i < RTL8152_MAX_TX; i++) { struct urb *urb; u8 *buf; buf = kmalloc_node(agg_buf_sz, GFP_KERNEL, node); if (!buf) goto err1; if (buf != tx_agg_align(buf)) { kfree(buf); buf = kmalloc_node(agg_buf_sz + TX_ALIGN, GFP_KERNEL, node); if (!buf) goto err1; } urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { kfree(buf); goto err1; } INIT_LIST_HEAD(&tp->tx_info[i].list); tp->tx_info[i].context = tp; tp->tx_info[i].urb = urb; tp->tx_info[i].buffer = buf; tp->tx_info[i].head = tx_agg_align(buf); list_add_tail(&tp->tx_info[i].list, &tp->tx_free); } tp->intr_urb = usb_alloc_urb(0, GFP_KERNEL); if (!tp->intr_urb) goto err1; tp->intr_buff = kmalloc(INTBUFSIZE, GFP_KERNEL); if (!tp->intr_buff) goto err1; tp->intr_interval = (int)ep_intr->desc.bInterval; usb_fill_int_urb(tp->intr_urb, tp->udev, tp->pipe_intr, tp->intr_buff, INTBUFSIZE, intr_callback, tp, tp->intr_interval); return 0; err1: free_all_mem(tp); return -ENOMEM; } static struct tx_agg *r8152_get_tx_agg(struct r8152 *tp) { struct tx_agg *agg = NULL; unsigned long flags; if (list_empty(&tp->tx_free)) return NULL; spin_lock_irqsave(&tp->tx_lock, flags); if (!list_empty(&tp->tx_free)) { struct list_head *cursor; cursor = tp->tx_free.next; list_del_init(cursor); agg = list_entry(cursor, struct tx_agg, list); } spin_unlock_irqrestore(&tp->tx_lock, flags); return agg; } /* r8152_csum_workaround() * The hw limits the value of the transport offset. When the offset is out of * range, calculate the checksum by sw. */ static void r8152_csum_workaround(struct r8152 *tp, struct sk_buff *skb, struct sk_buff_head *list) { if (skb_shinfo(skb)->gso_size) { netdev_features_t features = tp->netdev->features; struct sk_buff *segs, *seg, *next; struct sk_buff_head seg_list; features &= ~(NETIF_F_SG | NETIF_F_IPV6_CSUM | NETIF_F_TSO6); segs = skb_gso_segment(skb, features); if (IS_ERR(segs) || !segs) goto drop; __skb_queue_head_init(&seg_list); skb_list_walk_safe(segs, seg, next) { skb_mark_not_on_list(seg); __skb_queue_tail(&seg_list, seg); } skb_queue_splice(&seg_list, list); dev_kfree_skb(skb); } else if (skb->ip_summed == CHECKSUM_PARTIAL) { if (skb_checksum_help(skb) < 0) goto drop; __skb_queue_head(list, skb); } else { struct net_device_stats *stats; drop: stats = &tp->netdev->stats; stats->tx_dropped++; dev_kfree_skb(skb); } } static inline void rtl_tx_vlan_tag(struct tx_desc *desc, struct sk_buff *skb) { if (skb_vlan_tag_present(skb)) { u32 opts2; opts2 = TX_VLAN_TAG | swab16(skb_vlan_tag_get(skb)); desc->opts2 |= cpu_to_le32(opts2); } } static inline void rtl_rx_vlan_tag(struct rx_desc *desc, struct sk_buff *skb) { u32 opts2 = le32_to_cpu(desc->opts2); if (opts2 & RX_VLAN_TAG) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff)); } static int r8152_tx_csum(struct r8152 *tp, struct tx_desc *desc, struct sk_buff *skb, u32 len) { u32 mss = skb_shinfo(skb)->gso_size; u32 opts1, opts2 = 0; int ret = TX_CSUM_SUCCESS; WARN_ON_ONCE(len > TX_LEN_MAX); opts1 = len | TX_FS | TX_LS; if (mss) { u32 transport_offset = (u32)skb_transport_offset(skb); if (transport_offset > GTTCPHO_MAX) { netif_warn(tp, tx_err, tp->netdev, "Invalid transport offset 0x%x for TSO\n", transport_offset); ret = TX_CSUM_TSO; goto unavailable; } switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): opts1 |= GTSENDV4; break; case htons(ETH_P_IPV6): if (skb_cow_head(skb, 0)) { ret = TX_CSUM_TSO; goto unavailable; } tcp_v6_gso_csum_prep(skb); opts1 |= GTSENDV6; break; default: WARN_ON_ONCE(1); break; } opts1 |= transport_offset << GTTCPHO_SHIFT; opts2 |= min(mss, MSS_MAX) << MSS_SHIFT; } else if (skb->ip_summed == CHECKSUM_PARTIAL) { u32 transport_offset = (u32)skb_transport_offset(skb); u8 ip_protocol; if (transport_offset > TCPHO_MAX) { netif_warn(tp, tx_err, tp->netdev, "Invalid transport offset 0x%x\n", transport_offset); ret = TX_CSUM_NONE; goto unavailable; } switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): opts2 |= IPV4_CS; ip_protocol = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): opts2 |= IPV6_CS; ip_protocol = ipv6_hdr(skb)->nexthdr; break; default: ip_protocol = IPPROTO_RAW; break; } if (ip_protocol == IPPROTO_TCP) opts2 |= TCP_CS; else if (ip_protocol == IPPROTO_UDP) opts2 |= UDP_CS; else WARN_ON_ONCE(1); opts2 |= transport_offset << TCPHO_SHIFT; } desc->opts2 = cpu_to_le32(opts2); desc->opts1 = cpu_to_le32(opts1); unavailable: return ret; } static int r8152_tx_agg_fill(struct r8152 *tp, struct tx_agg *agg) { struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue; int remain, ret; u8 *tx_data; __skb_queue_head_init(&skb_head); spin_lock(&tx_queue->lock); skb_queue_splice_init(tx_queue, &skb_head); spin_unlock(&tx_queue->lock); tx_data = agg->head; agg->skb_num = 0; agg->skb_len = 0; remain = agg_buf_sz; while (remain >= ETH_ZLEN + sizeof(struct tx_desc)) { struct tx_desc *tx_desc; struct sk_buff *skb; unsigned int len; skb = __skb_dequeue(&skb_head); if (!skb) break; len = skb->len + sizeof(*tx_desc); if (len > remain) { __skb_queue_head(&skb_head, skb); break; } tx_data = tx_agg_align(tx_data); tx_desc = (struct tx_desc *)tx_data; if (r8152_tx_csum(tp, tx_desc, skb, skb->len)) { r8152_csum_workaround(tp, skb, &skb_head); continue; } rtl_tx_vlan_tag(tx_desc, skb); tx_data += sizeof(*tx_desc); len = skb->len; if (skb_copy_bits(skb, 0, tx_data, len) < 0) { struct net_device_stats *stats = &tp->netdev->stats; stats->tx_dropped++; dev_kfree_skb_any(skb); tx_data -= sizeof(*tx_desc); continue; } tx_data += len; agg->skb_len += len; agg->skb_num += skb_shinfo(skb)->gso_segs ?: 1; dev_kfree_skb_any(skb); remain = agg_buf_sz - (int)(tx_agg_align(tx_data) - agg->head); if (tp->dell_tb_rx_agg_bug) break; } if (!skb_queue_empty(&skb_head)) { spin_lock(&tx_queue->lock); skb_queue_splice(&skb_head, tx_queue); spin_unlock(&tx_queue->lock); } netif_tx_lock(tp->netdev); if (netif_queue_stopped(tp->netdev) && skb_queue_len(&tp->tx_queue) < tp->tx_qlen) netif_wake_queue(tp->netdev); netif_tx_unlock(tp->netdev); ret = usb_autopm_get_interface_async(tp->intf); if (ret < 0) goto out_tx_fill; usb_fill_bulk_urb(agg->urb, tp->udev, tp->pipe_out, agg->head, (int)(tx_data - (u8 *)agg->head), (usb_complete_t)write_bulk_callback, agg); ret = usb_submit_urb(agg->urb, GFP_ATOMIC); if (ret < 0) usb_autopm_put_interface_async(tp->intf); out_tx_fill: return ret; } static u8 r8152_rx_csum(struct r8152 *tp, struct rx_desc *rx_desc) { u8 checksum = CHECKSUM_NONE; u32 opts2, opts3; if (!(tp->netdev->features & NETIF_F_RXCSUM)) goto return_result; opts2 = le32_to_cpu(rx_desc->opts2); opts3 = le32_to_cpu(rx_desc->opts3); if (opts2 & RD_IPV4_CS) { if (opts3 & IPF) checksum = CHECKSUM_NONE; else if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF)) checksum = CHECKSUM_UNNECESSARY; else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF)) checksum = CHECKSUM_UNNECESSARY; } else if (opts2 & RD_IPV6_CS) { if ((opts2 & RD_UDP_CS) && !(opts3 & UDPF)) checksum = CHECKSUM_UNNECESSARY; else if ((opts2 & RD_TCP_CS) && !(opts3 & TCPF)) checksum = CHECKSUM_UNNECESSARY; } return_result: return checksum; } static inline bool rx_count_exceed(struct r8152 *tp) { return atomic_read(&tp->rx_count) > RTL8152_MAX_RX; } static inline int agg_offset(struct rx_agg *agg, void *addr) { return (int)(addr - agg->buffer); } static struct rx_agg *rtl_get_free_rx(struct r8152 *tp, gfp_t mflags) { struct rx_agg *agg, *agg_next, *agg_free = NULL; unsigned long flags; spin_lock_irqsave(&tp->rx_lock, flags); list_for_each_entry_safe(agg, agg_next, &tp->rx_used, list) { if (page_count(agg->page) == 1) { if (!agg_free) { list_del_init(&agg->list); agg_free = agg; continue; } if (rx_count_exceed(tp)) { list_del_init(&agg->list); free_rx_agg(tp, agg); } break; } } spin_unlock_irqrestore(&tp->rx_lock, flags); if (!agg_free && atomic_read(&tp->rx_count) < tp->rx_pending) agg_free = alloc_rx_agg(tp, mflags); return agg_free; } static int rx_bottom(struct r8152 *tp, int budget) { unsigned long flags; struct list_head *cursor, *next, rx_queue; int ret = 0, work_done = 0; struct napi_struct *napi = &tp->napi; if (!skb_queue_empty(&tp->rx_queue)) { while (work_done < budget) { struct sk_buff *skb = __skb_dequeue(&tp->rx_queue); struct net_device *netdev = tp->netdev; struct net_device_stats *stats = &netdev->stats; unsigned int pkt_len; if (!skb) break; pkt_len = skb->len; napi_gro_receive(napi, skb); work_done++; stats->rx_packets++; stats->rx_bytes += pkt_len; } } if (list_empty(&tp->rx_done) || work_done >= budget) goto out1; clear_bit(RX_EPROTO, &tp->flags); INIT_LIST_HEAD(&rx_queue); spin_lock_irqsave(&tp->rx_lock, flags); list_splice_init(&tp->rx_done, &rx_queue); spin_unlock_irqrestore(&tp->rx_lock, flags); list_for_each_safe(cursor, next, &rx_queue) { struct rx_desc *rx_desc; struct rx_agg *agg, *agg_free; int len_used = 0; struct urb *urb; u8 *rx_data; /* A bulk transfer of USB may contain may packets, so the * total packets may more than the budget. Deal with all * packets in current bulk transfer, and stop to handle the * next bulk transfer until next schedule, if budget is * exhausted. */ if (work_done >= budget) break; list_del_init(cursor); agg = list_entry(cursor, struct rx_agg, list); urb = agg->urb; if (urb->status != 0 || urb->actual_length < ETH_ZLEN) goto submit; agg_free = rtl_get_free_rx(tp, GFP_ATOMIC); rx_desc = agg->buffer; rx_data = agg->buffer; len_used += sizeof(struct rx_desc); while (urb->actual_length > len_used) { struct net_device *netdev = tp->netdev; struct net_device_stats *stats = &netdev->stats; unsigned int pkt_len, rx_frag_head_sz, len; struct sk_buff *skb; bool use_frags; WARN_ON_ONCE(skb_queue_len(&tp->rx_queue) >= 1000); pkt_len = le32_to_cpu(rx_desc->opts1) & RX_LEN_MASK; if (pkt_len < ETH_ZLEN) break; len_used += pkt_len; if (urb->actual_length < len_used) break; pkt_len -= ETH_FCS_LEN; len = pkt_len; rx_data += sizeof(struct rx_desc); if (!agg_free || tp->rx_copybreak > len) use_frags = false; else use_frags = true; if (use_frags) { /* If the budget is exhausted, the packet * would be queued in the driver. That is, * napi_gro_frags() wouldn't be called, so * we couldn't use napi_get_frags(). */ if (work_done >= budget) { rx_frag_head_sz = tp->rx_copybreak; skb = napi_alloc_skb(napi, rx_frag_head_sz); } else { rx_frag_head_sz = 0; skb = napi_get_frags(napi); } } else { rx_frag_head_sz = 0; skb = napi_alloc_skb(napi, len); } if (!skb) { stats->rx_dropped++; goto find_next_rx; } skb->ip_summed = r8152_rx_csum(tp, rx_desc); rtl_rx_vlan_tag(rx_desc, skb); if (use_frags) { if (rx_frag_head_sz) { memcpy(skb->data, rx_data, rx_frag_head_sz); skb_put(skb, rx_frag_head_sz); len -= rx_frag_head_sz; rx_data += rx_frag_head_sz; skb->protocol = eth_type_trans(skb, netdev); } skb_add_rx_frag(skb, 0, agg->page, agg_offset(agg, rx_data), len, SKB_DATA_ALIGN(len)); get_page(agg->page); } else { memcpy(skb->data, rx_data, len); skb_put(skb, len); skb->protocol = eth_type_trans(skb, netdev); } if (work_done < budget) { if (use_frags) napi_gro_frags(napi); else napi_gro_receive(napi, skb); work_done++; stats->rx_packets++; stats->rx_bytes += pkt_len; } else { __skb_queue_tail(&tp->rx_queue, skb); } find_next_rx: rx_data = rx_agg_align(rx_data + len + ETH_FCS_LEN); rx_desc = (struct rx_desc *)rx_data; len_used = agg_offset(agg, rx_data); len_used += sizeof(struct rx_desc); } WARN_ON(!agg_free && page_count(agg->page) > 1); if (agg_free) { spin_lock_irqsave(&tp->rx_lock, flags); if (page_count(agg->page) == 1) { list_add(&agg_free->list, &tp->rx_used); } else { list_add_tail(&agg->list, &tp->rx_used); agg = agg_free; urb = agg->urb; } spin_unlock_irqrestore(&tp->rx_lock, flags); } submit: if (!ret) { ret = r8152_submit_rx(tp, agg, GFP_ATOMIC); } else { urb->actual_length = 0; list_add_tail(&agg->list, next); } } /* Splice the remained list back to rx_done for next schedule */ if (!list_empty(&rx_queue)) { spin_lock_irqsave(&tp->rx_lock, flags); list_splice(&rx_queue, &tp->rx_done); spin_unlock_irqrestore(&tp->rx_lock, flags); } out1: return work_done; } static void tx_bottom(struct r8152 *tp) { int res; do { struct net_device *netdev = tp->netdev; struct tx_agg *agg; if (skb_queue_empty(&tp->tx_queue)) break; agg = r8152_get_tx_agg(tp); if (!agg) break; res = r8152_tx_agg_fill(tp, agg); if (!res) continue; if (res == -ENODEV) { rtl_set_unplug(tp); netif_device_detach(netdev); } else { struct net_device_stats *stats = &netdev->stats; unsigned long flags; netif_warn(tp, tx_err, netdev, "failed tx_urb %d\n", res); stats->tx_dropped += agg->skb_num; spin_lock_irqsave(&tp->tx_lock, flags); list_add_tail(&agg->list, &tp->tx_free); spin_unlock_irqrestore(&tp->tx_lock, flags); } } while (res == 0); } static void bottom_half(struct tasklet_struct *t) { struct r8152 *tp = from_tasklet(tp, t, tx_tl); if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; if (!test_bit(WORK_ENABLE, &tp->flags)) return; /* When link down, the driver would cancel all bulks. */ /* This avoid the re-submitting bulk */ if (!netif_carrier_ok(tp->netdev)) return; clear_bit(SCHEDULE_TASKLET, &tp->flags); tx_bottom(tp); } static int r8152_poll(struct napi_struct *napi, int budget) { struct r8152 *tp = container_of(napi, struct r8152, napi); int work_done; if (!budget) return 0; work_done = rx_bottom(tp, budget); if (work_done < budget) { if (!napi_complete_done(napi, work_done)) goto out; if (!list_empty(&tp->rx_done)) napi_schedule(napi); } out: return work_done; } static int r8152_submit_rx(struct r8152 *tp, struct rx_agg *agg, gfp_t mem_flags) { int ret; /* The rx would be stopped, so skip submitting */ if (test_bit(RTL8152_INACCESSIBLE, &tp->flags) || !test_bit(WORK_ENABLE, &tp->flags) || !netif_carrier_ok(tp->netdev)) return 0; usb_fill_bulk_urb(agg->urb, tp->udev, tp->pipe_in, agg->buffer, tp->rx_buf_sz, (usb_complete_t)read_bulk_callback, agg); ret = usb_submit_urb(agg->urb, mem_flags); if (ret == -ENODEV) { rtl_set_unplug(tp); netif_device_detach(tp->netdev); } else if (ret) { struct urb *urb = agg->urb; unsigned long flags; urb->actual_length = 0; spin_lock_irqsave(&tp->rx_lock, flags); list_add_tail(&agg->list, &tp->rx_done); spin_unlock_irqrestore(&tp->rx_lock, flags); netif_err(tp, rx_err, tp->netdev, "Couldn't submit rx[%p], ret = %d\n", agg, ret); napi_schedule(&tp->napi); } return ret; } static void rtl_drop_queued_tx(struct r8152 *tp) { struct net_device_stats *stats = &tp->netdev->stats; struct sk_buff_head skb_head, *tx_queue = &tp->tx_queue; struct sk_buff *skb; if (skb_queue_empty(tx_queue)) return; __skb_queue_head_init(&skb_head); spin_lock_bh(&tx_queue->lock); skb_queue_splice_init(tx_queue, &skb_head); spin_unlock_bh(&tx_queue->lock); while ((skb = __skb_dequeue(&skb_head))) { dev_kfree_skb(skb); stats->tx_dropped++; } } static void rtl8152_tx_timeout(struct net_device *netdev, unsigned int txqueue) { struct r8152 *tp = netdev_priv(netdev); netif_warn(tp, tx_err, netdev, "Tx timeout\n"); usb_queue_reset_device(tp->intf); } static void rtl8152_set_rx_mode(struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); if (netif_carrier_ok(netdev)) { set_bit(RTL8152_SET_RX_MODE, &tp->flags); schedule_delayed_work(&tp->schedule, 0); } } static void _rtl8152_set_rx_mode(struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); u32 mc_filter[2]; /* Multicast hash filter */ __le32 tmp[2]; u32 ocp_data; netif_stop_queue(netdev); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~RCR_ACPT_ALL; ocp_data |= RCR_AB | RCR_APM; if (netdev->flags & IFF_PROMISC) { /* Unconditionally log net taps. */ netif_notice(tp, link, netdev, "Promiscuous mode enabled\n"); ocp_data |= RCR_AM | RCR_AAP; mc_filter[1] = 0xffffffff; mc_filter[0] = 0xffffffff; } else if ((netdev->flags & IFF_MULTICAST && netdev_mc_count(netdev) > multicast_filter_limit) || (netdev->flags & IFF_ALLMULTI)) { /* Too many to filter perfectly -- accept all multicasts. */ ocp_data |= RCR_AM; mc_filter[1] = 0xffffffff; mc_filter[0] = 0xffffffff; } else { mc_filter[1] = 0; mc_filter[0] = 0; if (netdev->flags & IFF_MULTICAST) { struct netdev_hw_addr *ha; netdev_for_each_mc_addr(ha, netdev) { int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); ocp_data |= RCR_AM; } } } tmp[0] = __cpu_to_le32(swab32(mc_filter[1])); tmp[1] = __cpu_to_le32(swab32(mc_filter[0])); pla_ocp_write(tp, PLA_MAR, BYTE_EN_DWORD, sizeof(tmp), tmp); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); netif_wake_queue(netdev); } static netdev_features_t rtl8152_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { u32 mss = skb_shinfo(skb)->gso_size; int max_offset = mss ? GTTCPHO_MAX : TCPHO_MAX; if ((mss || skb->ip_summed == CHECKSUM_PARTIAL) && skb_transport_offset(skb) > max_offset) features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); else if ((skb->len + sizeof(struct tx_desc)) > agg_buf_sz) features &= ~NETIF_F_GSO_MASK; return features; } static netdev_tx_t rtl8152_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); skb_tx_timestamp(skb); skb_queue_tail(&tp->tx_queue, skb); if (!list_empty(&tp->tx_free)) { if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) { set_bit(SCHEDULE_TASKLET, &tp->flags); schedule_delayed_work(&tp->schedule, 0); } else { usb_mark_last_busy(tp->udev); tasklet_schedule(&tp->tx_tl); } } else if (skb_queue_len(&tp->tx_queue) > tp->tx_qlen) { netif_stop_queue(netdev); } return NETDEV_TX_OK; } static void r8152b_reset_packet_filter(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_FMC); ocp_data &= ~FMC_FCR_MCU_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data); ocp_data |= FMC_FCR_MCU_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_FMC, ocp_data); } static void rtl8152_nic_reset(struct r8152 *tp) { u32 ocp_data; int i; switch (tp->version) { case RTL_TEST_01: case RTL_VER_10: case RTL_VER_11: ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR); ocp_data &= ~CR_TE; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_BMU_RESET); ocp_data &= ~BMU_RESET_EP_IN; ocp_write_word(tp, MCU_TYPE_USB, USB_BMU_RESET, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL); ocp_data |= CDC_ECM_EN; ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR); ocp_data &= ~CR_RE; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_BMU_RESET); ocp_data |= BMU_RESET_EP_IN; ocp_write_word(tp, MCU_TYPE_USB, USB_BMU_RESET, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL); ocp_data &= ~CDC_ECM_EN; ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data); break; default: ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, CR_RST); for (i = 0; i < 1000; i++) { if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) break; if (!(ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR) & CR_RST)) break; usleep_range(100, 400); } break; } } static void set_tx_qlen(struct r8152 *tp) { tp->tx_qlen = agg_buf_sz / (mtu_to_size(tp->netdev->mtu) + sizeof(struct tx_desc)); } static inline u16 rtl8152_get_speed(struct r8152 *tp) { return ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHYSTATUS); } static void rtl_eee_plus_en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR); if (enable) ocp_data |= EEEP_CR_EEEP_TX; else ocp_data &= ~EEEP_CR_EEEP_TX; ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEEP_CR, ocp_data); } static void rtl_set_eee_plus(struct r8152 *tp) { if (rtl8152_get_speed(tp) & _10bps) rtl_eee_plus_en(tp, true); else rtl_eee_plus_en(tp, false); } static void rxdy_gated_en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MISC_1); if (enable) ocp_data |= RXDY_GATED_EN; else ocp_data &= ~RXDY_GATED_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MISC_1, ocp_data); } static int rtl_start_rx(struct r8152 *tp) { struct rx_agg *agg, *agg_next; struct list_head tmp_list; unsigned long flags; int ret = 0, i = 0; INIT_LIST_HEAD(&tmp_list); spin_lock_irqsave(&tp->rx_lock, flags); INIT_LIST_HEAD(&tp->rx_done); INIT_LIST_HEAD(&tp->rx_used); list_splice_init(&tp->rx_info, &tmp_list); spin_unlock_irqrestore(&tp->rx_lock, flags); list_for_each_entry_safe(agg, agg_next, &tmp_list, info_list) { INIT_LIST_HEAD(&agg->list); /* Only RTL8152_MAX_RX rx_agg need to be submitted. */ if (++i > RTL8152_MAX_RX) { spin_lock_irqsave(&tp->rx_lock, flags); list_add_tail(&agg->list, &tp->rx_used); spin_unlock_irqrestore(&tp->rx_lock, flags); } else if (unlikely(ret < 0)) { spin_lock_irqsave(&tp->rx_lock, flags); list_add_tail(&agg->list, &tp->rx_done); spin_unlock_irqrestore(&tp->rx_lock, flags); } else { ret = r8152_submit_rx(tp, agg, GFP_KERNEL); } } spin_lock_irqsave(&tp->rx_lock, flags); WARN_ON(!list_empty(&tp->rx_info)); list_splice(&tmp_list, &tp->rx_info); spin_unlock_irqrestore(&tp->rx_lock, flags); return ret; } static int rtl_stop_rx(struct r8152 *tp) { struct rx_agg *agg, *agg_next; struct list_head tmp_list; unsigned long flags; INIT_LIST_HEAD(&tmp_list); /* The usb_kill_urb() couldn't be used in atomic. * Therefore, move the list of rx_info to a tmp one. * Then, list_for_each_entry_safe could be used without * spin lock. */ spin_lock_irqsave(&tp->rx_lock, flags); list_splice_init(&tp->rx_info, &tmp_list); spin_unlock_irqrestore(&tp->rx_lock, flags); list_for_each_entry_safe(agg, agg_next, &tmp_list, info_list) { /* At least RTL8152_MAX_RX rx_agg have the page_count being * equal to 1, so the other ones could be freed safely. */ if (page_count(agg->page) > 1) free_rx_agg(tp, agg); else usb_kill_urb(agg->urb); } /* Move back the list of temp to the rx_info */ spin_lock_irqsave(&tp->rx_lock, flags); WARN_ON(!list_empty(&tp->rx_info)); list_splice(&tmp_list, &tp->rx_info); spin_unlock_irqrestore(&tp->rx_lock, flags); while (!skb_queue_empty(&tp->rx_queue)) dev_kfree_skb(__skb_dequeue(&tp->rx_queue)); return 0; } static void rtl_set_ifg(struct r8152 *tp, u16 speed) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR1); ocp_data &= ~IFG_MASK; if ((speed & (_10bps | _100bps)) && !(speed & FULL_DUP)) { ocp_data |= IFG_144NS; ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR1, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4); ocp_data &= ~TX10MIDLE_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4, ocp_data); } else { ocp_data |= IFG_96NS; ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR1, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4); ocp_data |= TX10MIDLE_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4, ocp_data); } } static inline void r8153b_rx_agg_chg_indicate(struct r8152 *tp) { ocp_write_byte(tp, MCU_TYPE_USB, USB_UPT_RXDMA_OWN, OWN_UPDATE | OWN_CLEAR); } static int rtl_enable(struct r8152 *tp) { u32 ocp_data; r8152b_reset_packet_filter(tp); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CR); ocp_data |= CR_RE | CR_TE; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, ocp_data); switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: case RTL_VER_07: break; default: r8153b_rx_agg_chg_indicate(tp); break; } rxdy_gated_en(tp, false); return 0; } static int rtl8152_enable(struct r8152 *tp) { if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return -ENODEV; set_tx_qlen(tp); rtl_set_eee_plus(tp); return rtl_enable(tp); } static void r8153_set_rx_early_timeout(struct r8152 *tp) { u32 ocp_data = tp->coalesce / 8; switch (tp->version) { case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT, ocp_data); break; case RTL_VER_08: case RTL_VER_09: case RTL_VER_14: /* The RTL8153B uses USB_RX_EXTRA_AGGR_TMR for rx timeout * primarily. For USB_RX_EARLY_TIMEOUT, we fix it to 128ns. */ ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT, 128 / 8); ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EXTRA_AGGR_TMR, ocp_data); break; case RTL_VER_10: case RTL_VER_11: case RTL_VER_12: case RTL_VER_13: case RTL_VER_15: ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_TIMEOUT, 640 / 8); ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EXTRA_AGGR_TMR, ocp_data); break; default: break; } } static void r8153_set_rx_early_size(struct r8152 *tp) { u32 ocp_data = tp->rx_buf_sz - rx_reserved_size(tp->netdev->mtu); switch (tp->version) { case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE, ocp_data / 4); break; case RTL_VER_08: case RTL_VER_09: case RTL_VER_14: ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE, ocp_data / 8); break; case RTL_TEST_01: case RTL_VER_10: case RTL_VER_11: case RTL_VER_12: case RTL_VER_13: case RTL_VER_15: ocp_write_word(tp, MCU_TYPE_USB, USB_RX_EARLY_SIZE, ocp_data / 8); break; default: WARN_ON_ONCE(1); break; } } static int rtl8153_enable(struct r8152 *tp) { u32 ocp_data; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return -ENODEV; set_tx_qlen(tp); rtl_set_eee_plus(tp); r8153_set_rx_early_timeout(tp); r8153_set_rx_early_size(tp); rtl_set_ifg(tp, rtl8152_get_speed(tp)); switch (tp->version) { case RTL_VER_09: case RTL_VER_14: ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_TASK); ocp_data &= ~FC_PATCH_TASK; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data); usleep_range(1000, 2000); ocp_data |= FC_PATCH_TASK; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data); break; default: break; } return rtl_enable(tp); } static void rtl_disable(struct r8152 *tp) { u32 ocp_data; int i; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) { rtl_drop_queued_tx(tp); return; } ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~RCR_ACPT_ALL; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); rtl_drop_queued_tx(tp); for (i = 0; i < RTL8152_MAX_TX; i++) usb_kill_urb(tp->tx_info[i].urb); rxdy_gated_en(tp, true); for (i = 0; i < 1000; i++) { if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) break; ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if ((ocp_data & FIFO_EMPTY) == FIFO_EMPTY) break; usleep_range(1000, 2000); } for (i = 0; i < 1000; i++) { if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) break; if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0) & TCR0_TX_EMPTY) break; usleep_range(1000, 2000); } rtl_stop_rx(tp); rtl8152_nic_reset(tp); } static void r8152_power_cut_en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CTRL); if (enable) ocp_data |= POWER_CUT; else ocp_data &= ~POWER_CUT; ocp_write_word(tp, MCU_TYPE_USB, USB_UPS_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS); ocp_data &= ~RESUME_INDICATE; ocp_write_word(tp, MCU_TYPE_USB, USB_PM_CTRL_STATUS, ocp_data); } static void rtl_rx_vlan_en(struct r8152 *tp, bool enable) { u32 ocp_data; switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: case RTL_VER_07: case RTL_VER_08: case RTL_VER_09: case RTL_VER_14: ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CPCR); if (enable) ocp_data |= CPCR_RX_VLAN; else ocp_data &= ~CPCR_RX_VLAN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CPCR, ocp_data); break; case RTL_TEST_01: case RTL_VER_10: case RTL_VER_11: case RTL_VER_12: case RTL_VER_13: case RTL_VER_15: default: ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_RCR1); if (enable) ocp_data |= OUTER_VLAN | INNER_VLAN; else ocp_data &= ~(OUTER_VLAN | INNER_VLAN); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RCR1, ocp_data); break; } } static int rtl8152_set_features(struct net_device *dev, netdev_features_t features) { netdev_features_t changed = features ^ dev->features; struct r8152 *tp = netdev_priv(dev); int ret; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); if (changed & NETIF_F_HW_VLAN_CTAG_RX) { if (features & NETIF_F_HW_VLAN_CTAG_RX) rtl_rx_vlan_en(tp, true); else rtl_rx_vlan_en(tp, false); } mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } #define WAKE_ANY (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_BCAST | WAKE_MCAST) static u32 __rtl_get_wol(struct r8152 *tp) { u32 ocp_data; u32 wolopts = 0; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34); if (ocp_data & LINK_ON_WAKE_EN) wolopts |= WAKE_PHY; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5); if (ocp_data & UWF_EN) wolopts |= WAKE_UCAST; if (ocp_data & BWF_EN) wolopts |= WAKE_BCAST; if (ocp_data & MWF_EN) wolopts |= WAKE_MCAST; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL); if (ocp_data & MAGIC_EN) wolopts |= WAKE_MAGIC; return wolopts; } static void __rtl_set_wol(struct r8152 *tp, u32 wolopts) { u32 ocp_data; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34); ocp_data &= ~LINK_ON_WAKE_EN; if (wolopts & WAKE_PHY) ocp_data |= LINK_ON_WAKE_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5); ocp_data &= ~(UWF_EN | BWF_EN | MWF_EN); if (wolopts & WAKE_UCAST) ocp_data |= UWF_EN; if (wolopts & WAKE_BCAST) ocp_data |= BWF_EN; if (wolopts & WAKE_MCAST) ocp_data |= MWF_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG5, ocp_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL); ocp_data &= ~MAGIC_EN; if (wolopts & WAKE_MAGIC) ocp_data |= MAGIC_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CFG_WOL, ocp_data); if (wolopts & WAKE_ANY) device_set_wakeup_enable(&tp->udev->dev, true); else device_set_wakeup_enable(&tp->udev->dev, false); } static void r8153_mac_clk_speed_down(struct r8152 *tp, bool enable) { u32 ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2); /* MAC clock speed down */ if (enable) ocp_data |= MAC_CLK_SPDWN_EN; else ocp_data &= ~MAC_CLK_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, ocp_data); } static void r8156_mac_clk_spd(struct r8152 *tp, bool enable) { u32 ocp_data; /* MAC clock speed down */ if (enable) { /* aldps_spdwn_ratio, tp10_spdwn_ratio */ ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, 0x0403); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2); ocp_data &= ~EEE_SPDWN_RATIO_MASK; ocp_data |= MAC_CLK_SPDWN_EN | 0x03; /* eee_spdwn_ratio */ ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, ocp_data); } else { ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2); ocp_data &= ~MAC_CLK_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL2, ocp_data); } } static void r8153_u1u2en(struct r8152 *tp, bool enable) { u8 u1u2[8]; if (enable) memset(u1u2, 0xff, sizeof(u1u2)); else memset(u1u2, 0x00, sizeof(u1u2)); usb_ocp_write(tp, USB_TOLERANCE, BYTE_EN_SIX_BYTES, sizeof(u1u2), u1u2); } static void r8153b_u1u2en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_LPM_CONFIG); if (enable) ocp_data |= LPM_U1U2_EN; else ocp_data &= ~LPM_U1U2_EN; ocp_write_word(tp, MCU_TYPE_USB, USB_LPM_CONFIG, ocp_data); } static void r8153_u2p3en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL); if (enable) ocp_data |= U2P3_ENABLE; else ocp_data &= ~U2P3_ENABLE; ocp_write_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL, ocp_data); } static void r8153b_ups_flags(struct r8152 *tp) { u32 ups_flags = 0; if (tp->ups_info.green) ups_flags |= UPS_FLAGS_EN_GREEN; if (tp->ups_info.aldps) ups_flags |= UPS_FLAGS_EN_ALDPS; if (tp->ups_info.eee) ups_flags |= UPS_FLAGS_EN_EEE; if (tp->ups_info.flow_control) ups_flags |= UPS_FLAGS_EN_FLOW_CTR; if (tp->ups_info.eee_ckdiv) ups_flags |= UPS_FLAGS_EN_EEE_CKDIV; if (tp->ups_info.eee_cmod_lv) ups_flags |= UPS_FLAGS_EEE_CMOD_LV_EN; if (tp->ups_info.r_tune) ups_flags |= UPS_FLAGS_R_TUNE; if (tp->ups_info._10m_ckdiv) ups_flags |= UPS_FLAGS_EN_10M_CKDIV; if (tp->ups_info.eee_plloff_100) ups_flags |= UPS_FLAGS_EEE_PLLOFF_100; if (tp->ups_info.eee_plloff_giga) ups_flags |= UPS_FLAGS_EEE_PLLOFF_GIGA; if (tp->ups_info._250m_ckdiv) ups_flags |= UPS_FLAGS_250M_CKDIV; if (tp->ups_info.ctap_short_off) ups_flags |= UPS_FLAGS_CTAP_SHORT_DIS; switch (tp->ups_info.speed_duplex) { case NWAY_10M_HALF: ups_flags |= ups_flags_speed(1); break; case NWAY_10M_FULL: ups_flags |= ups_flags_speed(2); break; case NWAY_100M_HALF: ups_flags |= ups_flags_speed(3); break; case NWAY_100M_FULL: ups_flags |= ups_flags_speed(4); break; case NWAY_1000M_FULL: ups_flags |= ups_flags_speed(5); break; case FORCE_10M_HALF: ups_flags |= ups_flags_speed(6); break; case FORCE_10M_FULL: ups_flags |= ups_flags_speed(7); break; case FORCE_100M_HALF: ups_flags |= ups_flags_speed(8); break; case FORCE_100M_FULL: ups_flags |= ups_flags_speed(9); break; default: break; } ocp_write_dword(tp, MCU_TYPE_USB, USB_UPS_FLAGS, ups_flags); } static void r8156_ups_flags(struct r8152 *tp) { u32 ups_flags = 0; if (tp->ups_info.green) ups_flags |= UPS_FLAGS_EN_GREEN; if (tp->ups_info.aldps) ups_flags |= UPS_FLAGS_EN_ALDPS; if (tp->ups_info.eee) ups_flags |= UPS_FLAGS_EN_EEE; if (tp->ups_info.flow_control) ups_flags |= UPS_FLAGS_EN_FLOW_CTR; if (tp->ups_info.eee_ckdiv) ups_flags |= UPS_FLAGS_EN_EEE_CKDIV; if (tp->ups_info._10m_ckdiv) ups_flags |= UPS_FLAGS_EN_10M_CKDIV; if (tp->ups_info.eee_plloff_100) ups_flags |= UPS_FLAGS_EEE_PLLOFF_100; if (tp->ups_info.eee_plloff_giga) ups_flags |= UPS_FLAGS_EEE_PLLOFF_GIGA; if (tp->ups_info._250m_ckdiv) ups_flags |= UPS_FLAGS_250M_CKDIV; switch (tp->ups_info.speed_duplex) { case FORCE_10M_HALF: ups_flags |= ups_flags_speed(0); break; case FORCE_10M_FULL: ups_flags |= ups_flags_speed(1); break; case FORCE_100M_HALF: ups_flags |= ups_flags_speed(2); break; case FORCE_100M_FULL: ups_flags |= ups_flags_speed(3); break; case NWAY_10M_HALF: ups_flags |= ups_flags_speed(4); break; case NWAY_10M_FULL: ups_flags |= ups_flags_speed(5); break; case NWAY_100M_HALF: ups_flags |= ups_flags_speed(6); break; case NWAY_100M_FULL: ups_flags |= ups_flags_speed(7); break; case NWAY_1000M_FULL: ups_flags |= ups_flags_speed(8); break; case NWAY_2500M_FULL: ups_flags |= ups_flags_speed(9); break; default: break; } switch (tp->ups_info.lite_mode) { case 1: ups_flags |= 0 << 5; break; case 2: ups_flags |= 2 << 5; break; case 0: default: ups_flags |= 1 << 5; break; } ocp_write_dword(tp, MCU_TYPE_USB, USB_UPS_FLAGS, ups_flags); } static void rtl_green_en(struct r8152 *tp, bool enable) { u16 data; data = sram_read(tp, SRAM_GREEN_CFG); if (enable) data |= GREEN_ETH_EN; else data &= ~GREEN_ETH_EN; sram_write(tp, SRAM_GREEN_CFG, data); tp->ups_info.green = enable; } static void r8153b_green_en(struct r8152 *tp, bool enable) { if (enable) { sram_write(tp, 0x8045, 0); /* 10M abiq&ldvbias */ sram_write(tp, 0x804d, 0x1222); /* 100M short abiq&ldvbias */ sram_write(tp, 0x805d, 0x0022); /* 1000M short abiq&ldvbias */ } else { sram_write(tp, 0x8045, 0x2444); /* 10M abiq&ldvbias */ sram_write(tp, 0x804d, 0x2444); /* 100M short abiq&ldvbias */ sram_write(tp, 0x805d, 0x2444); /* 1000M short abiq&ldvbias */ } rtl_green_en(tp, true); } static u16 r8153_phy_status(struct r8152 *tp, u16 desired) { u16 data; int i; for (i = 0; i < 500; i++) { data = ocp_reg_read(tp, OCP_PHY_STATUS); data &= PHY_STAT_MASK; if (desired) { if (data == desired) break; } else if (data == PHY_STAT_LAN_ON || data == PHY_STAT_PWRDN || data == PHY_STAT_EXT_INIT) { break; } msleep(20); if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) break; } return data; } static void r8153b_ups_en(struct r8152 *tp, bool enable) { u32 ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_POWER_CUT); if (enable) { r8153b_ups_flags(tp); ocp_data |= UPS_EN | USP_PREWAKE | PHASE2_EN; ocp_write_byte(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_2); ocp_data |= UPS_FORCE_PWR_DOWN; ocp_write_byte(tp, MCU_TYPE_USB, USB_MISC_2, ocp_data); } else { ocp_data &= ~(UPS_EN | USP_PREWAKE); ocp_write_byte(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_2); ocp_data &= ~UPS_FORCE_PWR_DOWN; ocp_write_byte(tp, MCU_TYPE_USB, USB_MISC_2, ocp_data); if (ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0) & PCUT_STATUS) { int i; for (i = 0; i < 500; i++) { if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) & AUTOLOAD_DONE) break; msleep(20); } tp->rtl_ops.hw_phy_cfg(tp); rtl8152_set_speed(tp, tp->autoneg, tp->speed, tp->duplex, tp->advertising); } } } static void r8153c_ups_en(struct r8152 *tp, bool enable) { u32 ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_POWER_CUT); if (enable) { r8153b_ups_flags(tp); ocp_data |= UPS_EN | USP_PREWAKE | PHASE2_EN; ocp_write_byte(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_2); ocp_data |= UPS_FORCE_PWR_DOWN; ocp_data &= ~BIT(7); ocp_write_byte(tp, MCU_TYPE_USB, USB_MISC_2, ocp_data); } else { ocp_data &= ~(UPS_EN | USP_PREWAKE); ocp_write_byte(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_2); ocp_data &= ~UPS_FORCE_PWR_DOWN; ocp_write_byte(tp, MCU_TYPE_USB, USB_MISC_2, ocp_data); if (ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0) & PCUT_STATUS) { int i; for (i = 0; i < 500; i++) { if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) & AUTOLOAD_DONE) break; msleep(20); } tp->rtl_ops.hw_phy_cfg(tp); rtl8152_set_speed(tp, tp->autoneg, tp->speed, tp->duplex, tp->advertising); } ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34); ocp_data |= BIT(8); ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); } } static void r8156_ups_en(struct r8152 *tp, bool enable) { u32 ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_POWER_CUT); if (enable) { r8156_ups_flags(tp); ocp_data |= UPS_EN | USP_PREWAKE | PHASE2_EN; ocp_write_byte(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_2); ocp_data |= UPS_FORCE_PWR_DOWN; ocp_write_byte(tp, MCU_TYPE_USB, USB_MISC_2, ocp_data); switch (tp->version) { case RTL_VER_13: case RTL_VER_15: ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPHY_XTAL); ocp_data &= ~OOBS_POLLING; ocp_write_byte(tp, MCU_TYPE_USB, USB_UPHY_XTAL, ocp_data); break; default: break; } } else { ocp_data &= ~(UPS_EN | USP_PREWAKE); ocp_write_byte(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_2); ocp_data &= ~UPS_FORCE_PWR_DOWN; ocp_write_byte(tp, MCU_TYPE_USB, USB_MISC_2, ocp_data); if (ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0) & PCUT_STATUS) { tp->rtl_ops.hw_phy_cfg(tp); rtl8152_set_speed(tp, tp->autoneg, tp->speed, tp->duplex, tp->advertising); } } } static void r8153_power_cut_en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_POWER_CUT); if (enable) ocp_data |= PWR_EN | PHASE2_EN; else ocp_data &= ~(PWR_EN | PHASE2_EN); ocp_write_word(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0); ocp_data &= ~PCUT_STATUS; ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data); } static void r8153b_power_cut_en(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_POWER_CUT); if (enable) ocp_data |= PWR_EN | PHASE2_EN; else ocp_data &= ~PWR_EN; ocp_write_word(tp, MCU_TYPE_USB, USB_POWER_CUT, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0); ocp_data &= ~PCUT_STATUS; ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data); } static void r8153_queue_wake(struct r8152 *tp, bool enable) { u32 ocp_data; ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_INDICATE_FALG); if (enable) ocp_data |= UPCOMING_RUNTIME_D3; else ocp_data &= ~UPCOMING_RUNTIME_D3; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_INDICATE_FALG, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_SUSPEND_FLAG); ocp_data &= ~LINK_CHG_EVENT; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_SUSPEND_FLAG, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS); ocp_data &= ~LINK_CHANGE_FLAG; ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, ocp_data); } static bool rtl_can_wakeup(struct r8152 *tp) { struct usb_device *udev = tp->udev; return (udev->actconfig->desc.bmAttributes & USB_CONFIG_ATT_WAKEUP); } static void rtl_runtime_suspend_enable(struct r8152 *tp, bool enable) { if (enable) { u32 ocp_data; __rtl_set_wol(tp, WAKE_ANY); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34); ocp_data |= LINK_OFF_WAKE_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); } else { u32 ocp_data; __rtl_set_wol(tp, tp->saved_wolopts); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34); ocp_data &= ~LINK_OFF_WAKE_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); } } static void rtl8153_runtime_enable(struct r8152 *tp, bool enable) { if (enable) { r8153_u1u2en(tp, false); r8153_u2p3en(tp, false); rtl_runtime_suspend_enable(tp, true); } else { rtl_runtime_suspend_enable(tp, false); switch (tp->version) { case RTL_VER_03: case RTL_VER_04: break; case RTL_VER_05: case RTL_VER_06: default: r8153_u2p3en(tp, true); break; } r8153_u1u2en(tp, true); } } static void rtl8153b_runtime_enable(struct r8152 *tp, bool enable) { if (enable) { r8153_queue_wake(tp, true); r8153b_u1u2en(tp, false); r8153_u2p3en(tp, false); rtl_runtime_suspend_enable(tp, true); r8153b_ups_en(tp, true); } else { r8153b_ups_en(tp, false); r8153_queue_wake(tp, false); rtl_runtime_suspend_enable(tp, false); if (tp->udev->speed >= USB_SPEED_SUPER) r8153b_u1u2en(tp, true); } } static void rtl8153c_runtime_enable(struct r8152 *tp, bool enable) { if (enable) { r8153_queue_wake(tp, true); r8153b_u1u2en(tp, false); r8153_u2p3en(tp, false); rtl_runtime_suspend_enable(tp, true); r8153c_ups_en(tp, true); } else { r8153c_ups_en(tp, false); r8153_queue_wake(tp, false); rtl_runtime_suspend_enable(tp, false); r8153b_u1u2en(tp, true); } } static void rtl8156_runtime_enable(struct r8152 *tp, bool enable) { if (enable) { r8153_queue_wake(tp, true); r8153b_u1u2en(tp, false); r8153_u2p3en(tp, false); rtl_runtime_suspend_enable(tp, true); } else { r8153_queue_wake(tp, false); rtl_runtime_suspend_enable(tp, false); r8153_u2p3en(tp, true); if (tp->udev->speed >= USB_SPEED_SUPER) r8153b_u1u2en(tp, true); } } static void r8153_teredo_off(struct r8152 *tp) { u32 ocp_data; switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: case RTL_VER_07: ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG); ocp_data &= ~(TEREDO_SEL | TEREDO_RS_EVENT_MASK | OOB_TEREDO_EN); ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data); break; case RTL_VER_08: case RTL_VER_09: case RTL_TEST_01: case RTL_VER_10: case RTL_VER_11: case RTL_VER_12: case RTL_VER_13: case RTL_VER_14: case RTL_VER_15: default: /* The bit 0 ~ 7 are relative with teredo settings. They are * W1C (write 1 to clear), so set all 1 to disable it. */ ocp_write_byte(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, 0xff); break; } ocp_write_word(tp, MCU_TYPE_PLA, PLA_WDT6_CTRL, WDT6_SET_MODE); ocp_write_word(tp, MCU_TYPE_PLA, PLA_REALWOW_TIMER, 0); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TEREDO_TIMER, 0); } static void rtl_reset_bmu(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_BMU_RESET); ocp_data &= ~(BMU_RESET_EP_IN | BMU_RESET_EP_OUT); ocp_write_byte(tp, MCU_TYPE_USB, USB_BMU_RESET, ocp_data); ocp_data |= BMU_RESET_EP_IN | BMU_RESET_EP_OUT; ocp_write_byte(tp, MCU_TYPE_USB, USB_BMU_RESET, ocp_data); } /* Clear the bp to stop the firmware before loading a new one */ static void rtl_clear_bp(struct r8152 *tp, u16 type) { u16 bp[16] = {0}; u16 bp_num; switch (tp->version) { case RTL_VER_08: case RTL_VER_09: case RTL_VER_10: case RTL_VER_11: case RTL_VER_12: case RTL_VER_13: case RTL_VER_15: if (type == MCU_TYPE_USB) { ocp_write_word(tp, MCU_TYPE_USB, USB_BP2_EN, 0); bp_num = 16; break; } fallthrough; case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: ocp_write_byte(tp, type, PLA_BP_EN, 0); fallthrough; case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: bp_num = 8; break; case RTL_VER_14: default: ocp_write_word(tp, type, USB_BP2_EN, 0); bp_num = 16; break; } generic_ocp_write(tp, PLA_BP_0, BYTE_EN_DWORD, bp_num << 1, bp, type); /* wait 3 ms to make sure the firmware is stopped */ usleep_range(3000, 6000); ocp_write_word(tp, type, PLA_BP_BA, 0); } static inline void rtl_reset_ocp_base(struct r8152 *tp) { tp->ocp_base = -1; } static int rtl_phy_patch_request(struct r8152 *tp, bool request, bool wait) { u16 data, check; int i; data = ocp_reg_read(tp, OCP_PHY_PATCH_CMD); if (request) { data |= PATCH_REQUEST; check = 0; } else { data &= ~PATCH_REQUEST; check = PATCH_READY; } ocp_reg_write(tp, OCP_PHY_PATCH_CMD, data); for (i = 0; wait && i < 5000; i++) { u32 ocp_data; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return -ENODEV; usleep_range(1000, 2000); ocp_data = ocp_reg_read(tp, OCP_PHY_PATCH_STAT); if ((ocp_data & PATCH_READY) ^ check) break; } if (request && wait && !(ocp_reg_read(tp, OCP_PHY_PATCH_STAT) & PATCH_READY)) { dev_err(&tp->intf->dev, "PHY patch request fail\n"); rtl_phy_patch_request(tp, false, false); return -ETIME; } else { return 0; } } static void rtl_patch_key_set(struct r8152 *tp, u16 key_addr, u16 patch_key) { if (patch_key && key_addr) { sram_write(tp, key_addr, patch_key); sram_write(tp, SRAM_PHY_LOCK, PHY_PATCH_LOCK); } else if (key_addr) { u16 data; sram_write(tp, 0x0000, 0x0000); data = ocp_reg_read(tp, OCP_PHY_LOCK); data &= ~PATCH_LOCK; ocp_reg_write(tp, OCP_PHY_LOCK, data); sram_write(tp, key_addr, 0x0000); } else { WARN_ON_ONCE(1); } } static int rtl_pre_ram_code(struct r8152 *tp, u16 key_addr, u16 patch_key, bool wait) { if (rtl_phy_patch_request(tp, true, wait)) return -ETIME; rtl_patch_key_set(tp, key_addr, patch_key); return 0; } static int rtl_post_ram_code(struct r8152 *tp, u16 key_addr, bool wait) { rtl_patch_key_set(tp, key_addr, 0); rtl_phy_patch_request(tp, false, wait); return 0; } static bool rtl8152_is_fw_phy_speed_up_ok(struct r8152 *tp, struct fw_phy_speed_up *phy) { u16 fw_offset; u32 length; bool rc = false; switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: case RTL_VER_07: case RTL_VER_08: case RTL_VER_09: case RTL_VER_10: case RTL_VER_11: case RTL_VER_12: case RTL_VER_14: goto out; case RTL_VER_13: case RTL_VER_15: default: break; } fw_offset = __le16_to_cpu(phy->fw_offset); length = __le32_to_cpu(phy->blk_hdr.length); if (fw_offset < sizeof(*phy) || length <= fw_offset) { dev_err(&tp->intf->dev, "invalid fw_offset\n"); goto out; } length -= fw_offset; if (length & 3) { dev_err(&tp->intf->dev, "invalid block length\n"); goto out; } if (__le16_to_cpu(phy->fw_reg) != 0x9A00) { dev_err(&tp->intf->dev, "invalid register to load firmware\n"); goto out; } rc = true; out: return rc; } static bool rtl8152_is_fw_phy_ver_ok(struct r8152 *tp, struct fw_phy_ver *ver) { bool rc = false; switch (tp->version) { case RTL_VER_10: case RTL_VER_11: case RTL_VER_12: case RTL_VER_13: case RTL_VER_15: break; default: goto out; } if (__le32_to_cpu(ver->blk_hdr.length) != sizeof(*ver)) { dev_err(&tp->intf->dev, "invalid block length\n"); goto out; } if (__le16_to_cpu(ver->ver.addr) != SRAM_GPHY_FW_VER) { dev_err(&tp->intf->dev, "invalid phy ver addr\n"); goto out; } rc = true; out: return rc; } static bool rtl8152_is_fw_phy_fixup_ok(struct r8152 *tp, struct fw_phy_fixup *fix) { bool rc = false; switch (tp->version) { case RTL_VER_10: case RTL_VER_11: case RTL_VER_12: case RTL_VER_13: case RTL_VER_15: break; default: goto out; } if (__le32_to_cpu(fix->blk_hdr.length) != sizeof(*fix)) { dev_err(&tp->intf->dev, "invalid block length\n"); goto out; } if (__le16_to_cpu(fix->setting.addr) != OCP_PHY_PATCH_CMD || __le16_to_cpu(fix->setting.data) != BIT(7)) { dev_err(&tp->intf->dev, "invalid phy fixup\n"); goto out; } rc = true; out: return rc; } static bool rtl8152_is_fw_phy_union_ok(struct r8152 *tp, struct fw_phy_union *phy) { u16 fw_offset; u32 length; bool rc = false; switch (tp->version) { case RTL_VER_10: case RTL_VER_11: case RTL_VER_12: case RTL_VER_13: case RTL_VER_15: break; default: goto out; } fw_offset = __le16_to_cpu(phy->fw_offset); length = __le32_to_cpu(phy->blk_hdr.length); if (fw_offset < sizeof(*phy) || length <= fw_offset) { dev_err(&tp->intf->dev, "invalid fw_offset\n"); goto out; } length -= fw_offset; if (length & 1) { dev_err(&tp->intf->dev, "invalid block length\n"); goto out; } if (phy->pre_num > 2) { dev_err(&tp->intf->dev, "invalid pre_num %d\n", phy->pre_num); goto out; } if (phy->bp_num > 8) { dev_err(&tp->intf->dev, "invalid bp_num %d\n", phy->bp_num); goto out; } rc = true; out: return rc; } static bool rtl8152_is_fw_phy_nc_ok(struct r8152 *tp, struct fw_phy_nc *phy) { u32 length; u16 fw_offset, fw_reg, ba_reg, patch_en_addr, mode_reg, bp_start; bool rc = false; switch (tp->version) { case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: fw_reg = 0xa014; ba_reg = 0xa012; patch_en_addr = 0xa01a; mode_reg = 0xb820; bp_start = 0xa000; break; default: goto out; } fw_offset = __le16_to_cpu(phy->fw_offset); if (fw_offset < sizeof(*phy)) { dev_err(&tp->intf->dev, "fw_offset too small\n"); goto out; } length = __le32_to_cpu(phy->blk_hdr.length); if (length < fw_offset) { dev_err(&tp->intf->dev, "invalid fw_offset\n"); goto out; } length -= __le16_to_cpu(phy->fw_offset); if (!length || (length & 1)) { dev_err(&tp->intf->dev, "invalid block length\n"); goto out; } if (__le16_to_cpu(phy->fw_reg) != fw_reg) { dev_err(&tp->intf->dev, "invalid register to load firmware\n"); goto out; } if (__le16_to_cpu(phy->ba_reg) != ba_reg) { dev_err(&tp->intf->dev, "invalid base address register\n"); goto out; } if (__le16_to_cpu(phy->patch_en_addr) != patch_en_addr) { dev_err(&tp->intf->dev, "invalid patch mode enabled register\n"); goto out; } if (__le16_to_cpu(phy->mode_reg) != mode_reg) { dev_err(&tp->intf->dev, "invalid register to switch the mode\n"); goto out; } if (__le16_to_cpu(phy->bp_start) != bp_start) { dev_err(&tp->intf->dev, "invalid start register of break point\n"); goto out; } if (__le16_to_cpu(phy->bp_num) > 4) { dev_err(&tp->intf->dev, "invalid break point number\n"); goto out; } rc = true; out: return rc; } static bool rtl8152_is_fw_mac_ok(struct r8152 *tp, struct fw_mac *mac) { u16 fw_reg, bp_ba_addr, bp_en_addr, bp_start, fw_offset; bool rc = false; u32 length, type; int i, max_bp; type = __le32_to_cpu(mac->blk_hdr.type); if (type == RTL_FW_PLA) { switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: fw_reg = 0xf800; bp_ba_addr = PLA_BP_BA; bp_en_addr = 0; bp_start = PLA_BP_0; max_bp = 8; break; case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: case RTL_VER_08: case RTL_VER_09: case RTL_VER_11: case RTL_VER_12: case RTL_VER_13: case RTL_VER_15: fw_reg = 0xf800; bp_ba_addr = PLA_BP_BA; bp_en_addr = PLA_BP_EN; bp_start = PLA_BP_0; max_bp = 8; break; case RTL_VER_14: fw_reg = 0xf800; bp_ba_addr = PLA_BP_BA; bp_en_addr = USB_BP2_EN; bp_start = PLA_BP_0; max_bp = 16; break; default: goto out; } } else if (type == RTL_FW_USB) { switch (tp->version) { case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: fw_reg = 0xf800; bp_ba_addr = USB_BP_BA; bp_en_addr = USB_BP_EN; bp_start = USB_BP_0; max_bp = 8; break; case RTL_VER_08: case RTL_VER_09: case RTL_VER_11: case RTL_VER_12: case RTL_VER_13: case RTL_VER_14: case RTL_VER_15: fw_reg = 0xe600; bp_ba_addr = USB_BP_BA; bp_en_addr = USB_BP2_EN; bp_start = USB_BP_0; max_bp = 16; break; case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: default: goto out; } } else { goto out; } fw_offset = __le16_to_cpu(mac->fw_offset); if (fw_offset < sizeof(*mac)) { dev_err(&tp->intf->dev, "fw_offset too small\n"); goto out; } length = __le32_to_cpu(mac->blk_hdr.length); if (length < fw_offset) { dev_err(&tp->intf->dev, "invalid fw_offset\n"); goto out; } length -= fw_offset; if (length < 4 || (length & 3)) { dev_err(&tp->intf->dev, "invalid block length\n"); goto out; } if (__le16_to_cpu(mac->fw_reg) != fw_reg) { dev_err(&tp->intf->dev, "invalid register to load firmware\n"); goto out; } if (__le16_to_cpu(mac->bp_ba_addr) != bp_ba_addr) { dev_err(&tp->intf->dev, "invalid base address register\n"); goto out; } if (__le16_to_cpu(mac->bp_en_addr) != bp_en_addr) { dev_err(&tp->intf->dev, "invalid enabled mask register\n"); goto out; } if (__le16_to_cpu(mac->bp_start) != bp_start) { dev_err(&tp->intf->dev, "invalid start register of break point\n"); goto out; } if (__le16_to_cpu(mac->bp_num) > max_bp) { dev_err(&tp->intf->dev, "invalid break point number\n"); goto out; } for (i = __le16_to_cpu(mac->bp_num); i < max_bp; i++) { if (mac->bp[i]) { dev_err(&tp->intf->dev, "unused bp%u is not zero\n", i); goto out; } } rc = true; out: return rc; } /* Verify the checksum for the firmware file. It is calculated from the version * field to the end of the file. Compare the result with the checksum field to * make sure the file is correct. */ static long rtl8152_fw_verify_checksum(struct r8152 *tp, struct fw_header *fw_hdr, size_t size) { unsigned char checksum[sizeof(fw_hdr->checksum)]; struct crypto_shash *alg; struct shash_desc *sdesc; size_t len; long rc; alg = crypto_alloc_shash("sha256", 0, 0); if (IS_ERR(alg)) { rc = PTR_ERR(alg); goto out; } if (crypto_shash_digestsize(alg) != sizeof(fw_hdr->checksum)) { rc = -EFAULT; dev_err(&tp->intf->dev, "digestsize incorrect (%u)\n", crypto_shash_digestsize(alg)); goto free_shash; } len = sizeof(*sdesc) + crypto_shash_descsize(alg); sdesc = kmalloc(len, GFP_KERNEL); if (!sdesc) { rc = -ENOMEM; goto free_shash; } sdesc->tfm = alg; len = size - sizeof(fw_hdr->checksum); rc = crypto_shash_digest(sdesc, fw_hdr->version, len, checksum); kfree(sdesc); if (rc) goto free_shash; if (memcmp(fw_hdr->checksum, checksum, sizeof(fw_hdr->checksum))) { dev_err(&tp->intf->dev, "checksum fail\n"); rc = -EFAULT; } free_shash: crypto_free_shash(alg); out: return rc; } static long rtl8152_check_firmware(struct r8152 *tp, struct rtl_fw *rtl_fw) { const struct firmware *fw = rtl_fw->fw; struct fw_header *fw_hdr = (struct fw_header *)fw->data; unsigned long fw_flags = 0; long ret = -EFAULT; int i; if (fw->size < sizeof(*fw_hdr)) { dev_err(&tp->intf->dev, "file too small\n"); goto fail; } ret = rtl8152_fw_verify_checksum(tp, fw_hdr, fw->size); if (ret) goto fail; ret = -EFAULT; for (i = sizeof(*fw_hdr); i < fw->size;) { struct fw_block *block = (struct fw_block *)&fw->data[i]; u32 type; if ((i + sizeof(*block)) > fw->size) goto fail; type = __le32_to_cpu(block->type); switch (type) { case RTL_FW_END: if (__le32_to_cpu(block->length) != sizeof(*block)) goto fail; goto fw_end; case RTL_FW_PLA: if (test_bit(FW_FLAGS_PLA, &fw_flags)) { dev_err(&tp->intf->dev, "multiple PLA firmware encountered"); goto fail; } if (!rtl8152_is_fw_mac_ok(tp, (struct fw_mac *)block)) { dev_err(&tp->intf->dev, "check PLA firmware failed\n"); goto fail; } __set_bit(FW_FLAGS_PLA, &fw_flags); break; case RTL_FW_USB: if (test_bit(FW_FLAGS_USB, &fw_flags)) { dev_err(&tp->intf->dev, "multiple USB firmware encountered"); goto fail; } if (!rtl8152_is_fw_mac_ok(tp, (struct fw_mac *)block)) { dev_err(&tp->intf->dev, "check USB firmware failed\n"); goto fail; } __set_bit(FW_FLAGS_USB, &fw_flags); break; case RTL_FW_PHY_START: if (test_bit(FW_FLAGS_START, &fw_flags) || test_bit(FW_FLAGS_NC, &fw_flags) || test_bit(FW_FLAGS_NC1, &fw_flags) || test_bit(FW_FLAGS_NC2, &fw_flags) || test_bit(FW_FLAGS_UC2, &fw_flags) || test_bit(FW_FLAGS_UC, &fw_flags) || test_bit(FW_FLAGS_STOP, &fw_flags)) { dev_err(&tp->intf->dev, "check PHY_START fail\n"); goto fail; } if (__le32_to_cpu(block->length) != sizeof(struct fw_phy_patch_key)) { dev_err(&tp->intf->dev, "Invalid length for PHY_START\n"); goto fail; } __set_bit(FW_FLAGS_START, &fw_flags); break; case RTL_FW_PHY_STOP: if (test_bit(FW_FLAGS_STOP, &fw_flags) || !test_bit(FW_FLAGS_START, &fw_flags)) { dev_err(&tp->intf->dev, "Check PHY_STOP fail\n"); goto fail; } if (__le32_to_cpu(block->length) != sizeof(*block)) { dev_err(&tp->intf->dev, "Invalid length for PHY_STOP\n"); goto fail; } __set_bit(FW_FLAGS_STOP, &fw_flags); break; case RTL_FW_PHY_NC: if (!test_bit(FW_FLAGS_START, &fw_flags) || test_bit(FW_FLAGS_STOP, &fw_flags)) { dev_err(&tp->intf->dev, "check PHY_NC fail\n"); goto fail; } if (test_bit(FW_FLAGS_NC, &fw_flags)) { dev_err(&tp->intf->dev, "multiple PHY NC encountered\n"); goto fail; } if (!rtl8152_is_fw_phy_nc_ok(tp, (struct fw_phy_nc *)block)) { dev_err(&tp->intf->dev, "check PHY NC firmware failed\n"); goto fail; } __set_bit(FW_FLAGS_NC, &fw_flags); break; case RTL_FW_PHY_UNION_NC: if (!test_bit(FW_FLAGS_START, &fw_flags) || test_bit(FW_FLAGS_NC1, &fw_flags) || test_bit(FW_FLAGS_NC2, &fw_flags) || test_bit(FW_FLAGS_UC2, &fw_flags) || test_bit(FW_FLAGS_UC, &fw_flags) || test_bit(FW_FLAGS_STOP, &fw_flags)) { dev_err(&tp->intf->dev, "PHY_UNION_NC out of order\n"); goto fail; } if (test_bit(FW_FLAGS_NC, &fw_flags)) { dev_err(&tp->intf->dev, "multiple PHY_UNION_NC encountered\n"); goto fail; } if (!rtl8152_is_fw_phy_union_ok(tp, (struct fw_phy_union *)block)) { dev_err(&tp->intf->dev, "check PHY_UNION_NC failed\n"); goto fail; } __set_bit(FW_FLAGS_NC, &fw_flags); break; case RTL_FW_PHY_UNION_NC1: if (!test_bit(FW_FLAGS_START, &fw_flags) || test_bit(FW_FLAGS_NC2, &fw_flags) || test_bit(FW_FLAGS_UC2, &fw_flags) || test_bit(FW_FLAGS_UC, &fw_flags) || test_bit(FW_FLAGS_STOP, &fw_flags)) { dev_err(&tp->intf->dev, "PHY_UNION_NC1 out of order\n"); goto fail; } if (test_bit(FW_FLAGS_NC1, &fw_flags)) { dev_err(&tp->intf->dev, "multiple PHY NC1 encountered\n"); goto fail; } if (!rtl8152_is_fw_phy_union_ok(tp, (struct fw_phy_union *)block)) { dev_err(&tp->intf->dev, "check PHY_UNION_NC1 failed\n"); goto fail; } __set_bit(FW_FLAGS_NC1, &fw_flags); break; case RTL_FW_PHY_UNION_NC2: if (!test_bit(FW_FLAGS_START, &fw_flags) || test_bit(FW_FLAGS_UC2, &fw_flags) || test_bit(FW_FLAGS_UC, &fw_flags) || test_bit(FW_FLAGS_STOP, &fw_flags)) { dev_err(&tp->intf->dev, "PHY_UNION_NC2 out of order\n"); goto fail; } if (test_bit(FW_FLAGS_NC2, &fw_flags)) { dev_err(&tp->intf->dev, "multiple PHY NC2 encountered\n"); goto fail; } if (!rtl8152_is_fw_phy_union_ok(tp, (struct fw_phy_union *)block)) { dev_err(&tp->intf->dev, "check PHY_UNION_NC2 failed\n"); goto fail; } __set_bit(FW_FLAGS_NC2, &fw_flags); break; case RTL_FW_PHY_UNION_UC2: if (!test_bit(FW_FLAGS_START, &fw_flags) || test_bit(FW_FLAGS_UC, &fw_flags) || test_bit(FW_FLAGS_STOP, &fw_flags)) { dev_err(&tp->intf->dev, "PHY_UNION_UC2 out of order\n"); goto fail; } if (test_bit(FW_FLAGS_UC2, &fw_flags)) { dev_err(&tp->intf->dev, "multiple PHY UC2 encountered\n"); goto fail; } if (!rtl8152_is_fw_phy_union_ok(tp, (struct fw_phy_union *)block)) { dev_err(&tp->intf->dev, "check PHY_UNION_UC2 failed\n"); goto fail; } __set_bit(FW_FLAGS_UC2, &fw_flags); break; case RTL_FW_PHY_UNION_UC: if (!test_bit(FW_FLAGS_START, &fw_flags) || test_bit(FW_FLAGS_STOP, &fw_flags)) { dev_err(&tp->intf->dev, "PHY_UNION_UC out of order\n"); goto fail; } if (test_bit(FW_FLAGS_UC, &fw_flags)) { dev_err(&tp->intf->dev, "multiple PHY UC encountered\n"); goto fail; } if (!rtl8152_is_fw_phy_union_ok(tp, (struct fw_phy_union *)block)) { dev_err(&tp->intf->dev, "check PHY_UNION_UC failed\n"); goto fail; } __set_bit(FW_FLAGS_UC, &fw_flags); break; case RTL_FW_PHY_UNION_MISC: if (!rtl8152_is_fw_phy_union_ok(tp, (struct fw_phy_union *)block)) { dev_err(&tp->intf->dev, "check RTL_FW_PHY_UNION_MISC failed\n"); goto fail; } break; case RTL_FW_PHY_FIXUP: if (!rtl8152_is_fw_phy_fixup_ok(tp, (struct fw_phy_fixup *)block)) { dev_err(&tp->intf->dev, "check PHY fixup failed\n"); goto fail; } break; case RTL_FW_PHY_SPEED_UP: if (test_bit(FW_FLAGS_SPEED_UP, &fw_flags)) { dev_err(&tp->intf->dev, "multiple PHY firmware encountered"); goto fail; } if (!rtl8152_is_fw_phy_speed_up_ok(tp, (struct fw_phy_speed_up *)block)) { dev_err(&tp->intf->dev, "check PHY speed up failed\n"); goto fail; } __set_bit(FW_FLAGS_SPEED_UP, &fw_flags); break; case RTL_FW_PHY_VER: if (test_bit(FW_FLAGS_START, &fw_flags) || test_bit(FW_FLAGS_NC, &fw_flags) || test_bit(FW_FLAGS_NC1, &fw_flags) || test_bit(FW_FLAGS_NC2, &fw_flags) || test_bit(FW_FLAGS_UC2, &fw_flags) || test_bit(FW_FLAGS_UC, &fw_flags) || test_bit(FW_FLAGS_STOP, &fw_flags)) { dev_err(&tp->intf->dev, "Invalid order to set PHY version\n"); goto fail; } if (test_bit(FW_FLAGS_VER, &fw_flags)) { dev_err(&tp->intf->dev, "multiple PHY version encountered"); goto fail; } if (!rtl8152_is_fw_phy_ver_ok(tp, (struct fw_phy_ver *)block)) { dev_err(&tp->intf->dev, "check PHY version failed\n"); goto fail; } __set_bit(FW_FLAGS_VER, &fw_flags); break; default: dev_warn(&tp->intf->dev, "Unknown type %u is found\n", type); break; } /* next block */ i += ALIGN(__le32_to_cpu(block->length), 8); } fw_end: if (test_bit(FW_FLAGS_START, &fw_flags) && !test_bit(FW_FLAGS_STOP, &fw_flags)) { dev_err(&tp->intf->dev, "without PHY_STOP\n"); goto fail; } return 0; fail: return ret; } static void rtl_ram_code_speed_up(struct r8152 *tp, struct fw_phy_speed_up *phy, bool wait) { u32 len; u8 *data; rtl_reset_ocp_base(tp); if (sram_read(tp, SRAM_GPHY_FW_VER) >= __le16_to_cpu(phy->version)) { dev_dbg(&tp->intf->dev, "PHY firmware has been the newest\n"); return; } len = __le32_to_cpu(phy->blk_hdr.length); len -= __le16_to_cpu(phy->fw_offset); data = (u8 *)phy + __le16_to_cpu(phy->fw_offset); if (rtl_phy_patch_request(tp, true, wait)) return; while (len) { u32 ocp_data, size; int i; if (len < 2048) size = len; else size = 2048; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_GPHY_CTRL); ocp_data |= GPHY_PATCH_DONE | BACKUP_RESTRORE; ocp_write_word(tp, MCU_TYPE_USB, USB_GPHY_CTRL, ocp_data); generic_ocp_write(tp, __le16_to_cpu(phy->fw_reg), 0xff, size, data, MCU_TYPE_USB); data += size; len -= size; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_POL_GPIO_CTRL); ocp_data |= POL_GPHY_PATCH; ocp_write_word(tp, MCU_TYPE_PLA, PLA_POL_GPIO_CTRL, ocp_data); for (i = 0; i < 1000; i++) { if (!(ocp_read_word(tp, MCU_TYPE_PLA, PLA_POL_GPIO_CTRL) & POL_GPHY_PATCH)) break; } if (i == 1000) { dev_err(&tp->intf->dev, "ram code speedup mode timeout\n"); break; } } rtl_reset_ocp_base(tp); rtl_phy_patch_request(tp, false, wait); if (sram_read(tp, SRAM_GPHY_FW_VER) == __le16_to_cpu(phy->version)) dev_dbg(&tp->intf->dev, "successfully applied %s\n", phy->info); else dev_err(&tp->intf->dev, "ram code speedup mode fail\n"); } static int rtl8152_fw_phy_ver(struct r8152 *tp, struct fw_phy_ver *phy_ver) { u16 ver_addr, ver; ver_addr = __le16_to_cpu(phy_ver->ver.addr); ver = __le16_to_cpu(phy_ver->ver.data); rtl_reset_ocp_base(tp); if (sram_read(tp, ver_addr) >= ver) { dev_dbg(&tp->intf->dev, "PHY firmware has been the newest\n"); return 0; } sram_write(tp, ver_addr, ver); dev_dbg(&tp->intf->dev, "PHY firmware version %x\n", ver); return ver; } static void rtl8152_fw_phy_fixup(struct r8152 *tp, struct fw_phy_fixup *fix) { u16 addr, data; rtl_reset_ocp_base(tp); addr = __le16_to_cpu(fix->setting.addr); data = ocp_reg_read(tp, addr); switch (__le16_to_cpu(fix->bit_cmd)) { case FW_FIXUP_AND: data &= __le16_to_cpu(fix->setting.data); break; case FW_FIXUP_OR: data |= __le16_to_cpu(fix->setting.data); break; case FW_FIXUP_NOT: data &= ~__le16_to_cpu(fix->setting.data); break; case FW_FIXUP_XOR: data ^= __le16_to_cpu(fix->setting.data); break; default: return; } ocp_reg_write(tp, addr, data); dev_dbg(&tp->intf->dev, "applied ocp %x %x\n", addr, data); } static void rtl8152_fw_phy_union_apply(struct r8152 *tp, struct fw_phy_union *phy) { __le16 *data; u32 length; int i, num; rtl_reset_ocp_base(tp); num = phy->pre_num; for (i = 0; i < num; i++) sram_write(tp, __le16_to_cpu(phy->pre_set[i].addr), __le16_to_cpu(phy->pre_set[i].data)); length = __le32_to_cpu(phy->blk_hdr.length); length -= __le16_to_cpu(phy->fw_offset); num = length / 2; data = (__le16 *)((u8 *)phy + __le16_to_cpu(phy->fw_offset)); ocp_reg_write(tp, OCP_SRAM_ADDR, __le16_to_cpu(phy->fw_reg)); for (i = 0; i < num; i++) ocp_reg_write(tp, OCP_SRAM_DATA, __le16_to_cpu(data[i])); num = phy->bp_num; for (i = 0; i < num; i++) sram_write(tp, __le16_to_cpu(phy->bp[i].addr), __le16_to_cpu(phy->bp[i].data)); if (phy->bp_num && phy->bp_en.addr) sram_write(tp, __le16_to_cpu(phy->bp_en.addr), __le16_to_cpu(phy->bp_en.data)); dev_dbg(&tp->intf->dev, "successfully applied %s\n", phy->info); } static void rtl8152_fw_phy_nc_apply(struct r8152 *tp, struct fw_phy_nc *phy) { u16 mode_reg, bp_index; u32 length, i, num; __le16 *data; rtl_reset_ocp_base(tp); mode_reg = __le16_to_cpu(phy->mode_reg); sram_write(tp, mode_reg, __le16_to_cpu(phy->mode_pre)); sram_write(tp, __le16_to_cpu(phy->ba_reg), __le16_to_cpu(phy->ba_data)); length = __le32_to_cpu(phy->blk_hdr.length); length -= __le16_to_cpu(phy->fw_offset); num = length / 2; data = (__le16 *)((u8 *)phy + __le16_to_cpu(phy->fw_offset)); ocp_reg_write(tp, OCP_SRAM_ADDR, __le16_to_cpu(phy->fw_reg)); for (i = 0; i < num; i++) ocp_reg_write(tp, OCP_SRAM_DATA, __le16_to_cpu(data[i])); sram_write(tp, __le16_to_cpu(phy->patch_en_addr), __le16_to_cpu(phy->patch_en_value)); bp_index = __le16_to_cpu(phy->bp_start); num = __le16_to_cpu(phy->bp_num); for (i = 0; i < num; i++) { sram_write(tp, bp_index, __le16_to_cpu(phy->bp[i])); bp_index += 2; } sram_write(tp, mode_reg, __le16_to_cpu(phy->mode_post)); dev_dbg(&tp->intf->dev, "successfully applied %s\n", phy->info); } static void rtl8152_fw_mac_apply(struct r8152 *tp, struct fw_mac *mac) { u16 bp_en_addr, type, fw_ver_reg; u32 length; u8 *data; switch (__le32_to_cpu(mac->blk_hdr.type)) { case RTL_FW_PLA: type = MCU_TYPE_PLA; break; case RTL_FW_USB: type = MCU_TYPE_USB; break; default: return; } fw_ver_reg = __le16_to_cpu(mac->fw_ver_reg); if (fw_ver_reg && ocp_read_byte(tp, MCU_TYPE_USB, fw_ver_reg) >= mac->fw_ver_data) { dev_dbg(&tp->intf->dev, "%s firmware has been the newest\n", type ? "PLA" : "USB"); return; } rtl_clear_bp(tp, type); /* Enable backup/restore of MACDBG. This is required after clearing PLA * break points and before applying the PLA firmware. */ if (tp->version == RTL_VER_04 && type == MCU_TYPE_PLA && !(ocp_read_word(tp, MCU_TYPE_PLA, PLA_MACDBG_POST) & DEBUG_OE)) { ocp_write_word(tp, MCU_TYPE_PLA, PLA_MACDBG_PRE, DEBUG_LTSSM); ocp_write_word(tp, MCU_TYPE_PLA, PLA_MACDBG_POST, DEBUG_LTSSM); } length = __le32_to_cpu(mac->blk_hdr.length); length -= __le16_to_cpu(mac->fw_offset); data = (u8 *)mac; data += __le16_to_cpu(mac->fw_offset); if (generic_ocp_write(tp, __le16_to_cpu(mac->fw_reg), 0xff, length, data, type) < 0) { dev_err(&tp->intf->dev, "Write %s fw fail\n", type ? "PLA" : "USB"); return; } ocp_write_word(tp, type, __le16_to_cpu(mac->bp_ba_addr), __le16_to_cpu(mac->bp_ba_value)); if (generic_ocp_write(tp, __le16_to_cpu(mac->bp_start), BYTE_EN_DWORD, ALIGN(__le16_to_cpu(mac->bp_num) << 1, 4), mac->bp, type) < 0) { dev_err(&tp->intf->dev, "Write %s bp fail\n", type ? "PLA" : "USB"); return; } bp_en_addr = __le16_to_cpu(mac->bp_en_addr); if (bp_en_addr) ocp_write_word(tp, type, bp_en_addr, __le16_to_cpu(mac->bp_en_value)); if (fw_ver_reg) ocp_write_byte(tp, MCU_TYPE_USB, fw_ver_reg, mac->fw_ver_data); dev_dbg(&tp->intf->dev, "successfully applied %s\n", mac->info); } static void rtl8152_apply_firmware(struct r8152 *tp, bool power_cut) { struct rtl_fw *rtl_fw = &tp->rtl_fw; const struct firmware *fw; struct fw_header *fw_hdr; struct fw_phy_patch_key *key; u16 key_addr = 0; int i, patch_phy = 1; if (IS_ERR_OR_NULL(rtl_fw->fw)) return; fw = rtl_fw->fw; fw_hdr = (struct fw_header *)fw->data; if (rtl_fw->pre_fw) rtl_fw->pre_fw(tp); for (i = offsetof(struct fw_header, blocks); i < fw->size;) { struct fw_block *block = (struct fw_block *)&fw->data[i]; switch (__le32_to_cpu(block->type)) { case RTL_FW_END: goto post_fw; case RTL_FW_PLA: case RTL_FW_USB: rtl8152_fw_mac_apply(tp, (struct fw_mac *)block); break; case RTL_FW_PHY_START: if (!patch_phy) break; key = (struct fw_phy_patch_key *)block; key_addr = __le16_to_cpu(key->key_reg); rtl_pre_ram_code(tp, key_addr, __le16_to_cpu(key->key_data), !power_cut); break; case RTL_FW_PHY_STOP: if (!patch_phy) break; WARN_ON(!key_addr); rtl_post_ram_code(tp, key_addr, !power_cut); break; case RTL_FW_PHY_NC: rtl8152_fw_phy_nc_apply(tp, (struct fw_phy_nc *)block); break; case RTL_FW_PHY_VER: patch_phy = rtl8152_fw_phy_ver(tp, (struct fw_phy_ver *)block); break; case RTL_FW_PHY_UNION_NC: case RTL_FW_PHY_UNION_NC1: case RTL_FW_PHY_UNION_NC2: case RTL_FW_PHY_UNION_UC2: case RTL_FW_PHY_UNION_UC: case RTL_FW_PHY_UNION_MISC: if (patch_phy) rtl8152_fw_phy_union_apply(tp, (struct fw_phy_union *)block); break; case RTL_FW_PHY_FIXUP: if (patch_phy) rtl8152_fw_phy_fixup(tp, (struct fw_phy_fixup *)block); break; case RTL_FW_PHY_SPEED_UP: rtl_ram_code_speed_up(tp, (struct fw_phy_speed_up *)block, !power_cut); break; default: break; } i += ALIGN(__le32_to_cpu(block->length), 8); } post_fw: if (rtl_fw->post_fw) rtl_fw->post_fw(tp); rtl_reset_ocp_base(tp); strscpy(rtl_fw->version, fw_hdr->version, RTL_VER_SIZE); dev_dbg(&tp->intf->dev, "load %s successfully\n", rtl_fw->version); } static void rtl8152_release_firmware(struct r8152 *tp) { struct rtl_fw *rtl_fw = &tp->rtl_fw; if (!IS_ERR_OR_NULL(rtl_fw->fw)) { release_firmware(rtl_fw->fw); rtl_fw->fw = NULL; } } static int rtl8152_request_firmware(struct r8152 *tp) { struct rtl_fw *rtl_fw = &tp->rtl_fw; long rc; if (rtl_fw->fw || !rtl_fw->fw_name) { dev_info(&tp->intf->dev, "skip request firmware\n"); rc = 0; goto result; } rc = request_firmware(&rtl_fw->fw, rtl_fw->fw_name, &tp->intf->dev); if (rc < 0) goto result; rc = rtl8152_check_firmware(tp, rtl_fw); if (rc < 0) release_firmware(rtl_fw->fw); result: if (rc) { rtl_fw->fw = ERR_PTR(rc); dev_warn(&tp->intf->dev, "unable to load firmware patch %s (%ld)\n", rtl_fw->fw_name, rc); } return rc; } static void r8152_aldps_en(struct r8152 *tp, bool enable) { if (enable) { ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPWRSAVE | ENPDNPS | LINKENA | DIS_SDSAVE); } else { ocp_reg_write(tp, OCP_ALDPS_CONFIG, ENPDNPS | LINKENA | DIS_SDSAVE); msleep(20); } } static inline void r8152_mmd_indirect(struct r8152 *tp, u16 dev, u16 reg) { ocp_reg_write(tp, OCP_EEE_AR, FUN_ADDR | dev); ocp_reg_write(tp, OCP_EEE_DATA, reg); ocp_reg_write(tp, OCP_EEE_AR, FUN_DATA | dev); } static u16 r8152_mmd_read(struct r8152 *tp, u16 dev, u16 reg) { u16 data; r8152_mmd_indirect(tp, dev, reg); data = ocp_reg_read(tp, OCP_EEE_DATA); ocp_reg_write(tp, OCP_EEE_AR, 0x0000); return data; } static void r8152_mmd_write(struct r8152 *tp, u16 dev, u16 reg, u16 data) { r8152_mmd_indirect(tp, dev, reg); ocp_reg_write(tp, OCP_EEE_DATA, data); ocp_reg_write(tp, OCP_EEE_AR, 0x0000); } static void r8152_eee_en(struct r8152 *tp, bool enable) { u16 config1, config2, config3; u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR); config1 = ocp_reg_read(tp, OCP_EEE_CONFIG1) & ~sd_rise_time_mask; config2 = ocp_reg_read(tp, OCP_EEE_CONFIG2); config3 = ocp_reg_read(tp, OCP_EEE_CONFIG3) & ~fast_snr_mask; if (enable) { ocp_data |= EEE_RX_EN | EEE_TX_EN; config1 |= EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN | RX_QUIET_EN; config1 |= sd_rise_time(1); config2 |= RG_DACQUIET_EN | RG_LDVQUIET_EN; config3 |= fast_snr(42); } else { ocp_data &= ~(EEE_RX_EN | EEE_TX_EN); config1 &= ~(EEE_10_CAP | EEE_NWAY_EN | TX_QUIET_EN | RX_QUIET_EN); config1 |= sd_rise_time(7); config2 &= ~(RG_DACQUIET_EN | RG_LDVQUIET_EN); config3 |= fast_snr(511); } ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data); ocp_reg_write(tp, OCP_EEE_CONFIG1, config1); ocp_reg_write(tp, OCP_EEE_CONFIG2, config2); ocp_reg_write(tp, OCP_EEE_CONFIG3, config3); } static void r8153_eee_en(struct r8152 *tp, bool enable) { u32 ocp_data; u16 config; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EEE_CR); config = ocp_reg_read(tp, OCP_EEE_CFG); if (enable) { ocp_data |= EEE_RX_EN | EEE_TX_EN; config |= EEE10_EN; } else { ocp_data &= ~(EEE_RX_EN | EEE_TX_EN); config &= ~EEE10_EN; } ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_CR, ocp_data); ocp_reg_write(tp, OCP_EEE_CFG, config); tp->ups_info.eee = enable; } static void r8156_eee_en(struct r8152 *tp, bool enable) { u16 config; r8153_eee_en(tp, enable); config = ocp_reg_read(tp, OCP_EEE_ADV2); if (enable) config |= MDIO_EEE_2_5GT; else config &= ~MDIO_EEE_2_5GT; ocp_reg_write(tp, OCP_EEE_ADV2, config); } static void rtl_eee_enable(struct r8152 *tp, bool enable) { switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: if (enable) { r8152_eee_en(tp, true); r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, tp->eee_adv); } else { r8152_eee_en(tp, false); r8152_mmd_write(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 0); } break; case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: case RTL_VER_08: case RTL_VER_09: case RTL_VER_14: if (enable) { r8153_eee_en(tp, true); ocp_reg_write(tp, OCP_EEE_ADV, tp->eee_adv); } else { r8153_eee_en(tp, false); ocp_reg_write(tp, OCP_EEE_ADV, 0); } break; case RTL_VER_10: case RTL_VER_11: case RTL_VER_12: case RTL_VER_13: case RTL_VER_15: if (enable) { r8156_eee_en(tp, true); ocp_reg_write(tp, OCP_EEE_ADV, tp->eee_adv); } else { r8156_eee_en(tp, false); ocp_reg_write(tp, OCP_EEE_ADV, 0); } break; default: break; } } static void r8152b_enable_fc(struct r8152 *tp) { u16 anar; anar = r8152_mdio_read(tp, MII_ADVERTISE); anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; r8152_mdio_write(tp, MII_ADVERTISE, anar); tp->ups_info.flow_control = true; } static void rtl8152_disable(struct r8152 *tp) { r8152_aldps_en(tp, false); rtl_disable(tp); r8152_aldps_en(tp, true); } static void r8152b_hw_phy_cfg(struct r8152 *tp) { rtl8152_apply_firmware(tp, false); rtl_eee_enable(tp, tp->eee_en); r8152_aldps_en(tp, true); r8152b_enable_fc(tp); set_bit(PHY_RESET, &tp->flags); } static void wait_oob_link_list_ready(struct r8152 *tp) { u32 ocp_data; int i; for (i = 0; i < 1000; i++) { if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) break; ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if (ocp_data & LINK_LIST_READY) break; usleep_range(1000, 2000); } } static void r8156b_wait_loading_flash(struct r8152 *tp) { if ((ocp_read_word(tp, MCU_TYPE_PLA, PLA_GPHY_CTRL) & GPHY_FLASH) && !(ocp_read_word(tp, MCU_TYPE_USB, USB_GPHY_CTRL) & BYPASS_FLASH)) { int i; for (i = 0; i < 100; i++) { if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) break; if (ocp_read_word(tp, MCU_TYPE_USB, USB_GPHY_CTRL) & GPHY_PATCH_DONE) break; usleep_range(1000, 2000); } } } static void r8152b_exit_oob(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~RCR_ACPT_ALL; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); rxdy_gated_en(tp, true); r8153_teredo_off(tp); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CR, 0x00); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data &= ~MCU_BORW_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); wait_oob_link_list_ready(tp); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= RE_INIT_LL; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); wait_oob_link_list_ready(tp); rtl8152_nic_reset(tp); /* rx share fifo credit full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL); if (tp->udev->speed == USB_SPEED_FULL || tp->udev->speed == USB_SPEED_LOW) { /* rx share fifo credit near full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_FULL); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_FULL); } else { /* rx share fifo credit near full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_HIGH); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_HIGH); } /* TX share fifo free credit full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL2); ocp_write_byte(tp, MCU_TYPE_USB, USB_TX_AGG, TX_AGG_MAX_THRESHOLD); ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, RX_THR_HIGH); ocp_write_dword(tp, MCU_TYPE_USB, USB_TX_DMA, TEST_MODE_DISABLE | TX_SIZE_ADJUST1); rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0); ocp_data |= TCR0_AUTO_FIFO; ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data); } static void r8152b_enter_oob(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_OOB); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_OOB); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_OOB); rtl_disable(tp); wait_oob_link_list_ready(tp); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= RE_INIT_LL; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); wait_oob_link_list_ready(tp); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, RTL8152_RMS); rtl_rx_vlan_en(tp, true); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BDC_CR); ocp_data |= ALDPS_PROXY_MODE; ocp_write_word(tp, MCU_TYPE_PLA, PLA_BDC_CR, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); rxdy_gated_en(tp, false); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data |= RCR_APM | RCR_AM | RCR_AB; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); } static int r8153_pre_firmware_1(struct r8152 *tp) { int i; /* Wait till the WTD timer is ready. It would take at most 104 ms. */ for (i = 0; i < 104; i++) { u32 ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_WDT1_CTRL); if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return -ENODEV; if (!(ocp_data & WTD1_EN)) break; usleep_range(1000, 2000); } return 0; } static int r8153_post_firmware_1(struct r8152 *tp) { /* set USB_BP_4 to support USB_SPEED_SUPER only */ if (ocp_read_byte(tp, MCU_TYPE_USB, USB_CSTMR) & FORCE_SUPER) ocp_write_word(tp, MCU_TYPE_USB, USB_BP_4, BP4_SUPER_ONLY); /* reset UPHY timer to 36 ms */ ocp_write_word(tp, MCU_TYPE_PLA, PLA_UPHY_TIMER, 36000 / 16); return 0; } static int r8153_pre_firmware_2(struct r8152 *tp) { u32 ocp_data; r8153_pre_firmware_1(tp); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0); ocp_data &= ~FW_FIX_SUSPEND; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0, ocp_data); return 0; } static int r8153_post_firmware_2(struct r8152 *tp) { u32 ocp_data; /* enable bp0 if support USB_SPEED_SUPER only */ if (ocp_read_byte(tp, MCU_TYPE_USB, USB_CSTMR) & FORCE_SUPER) { ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BP_EN); ocp_data |= BIT(0); ocp_write_word(tp, MCU_TYPE_PLA, PLA_BP_EN, ocp_data); } /* reset UPHY timer to 36 ms */ ocp_write_word(tp, MCU_TYPE_PLA, PLA_UPHY_TIMER, 36000 / 16); /* enable U3P3 check, set the counter to 4 */ ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, U3P3_CHECK_EN | 4); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0); ocp_data |= FW_FIX_SUSPEND; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN0, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY); ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND; ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data); return 0; } static int r8153_post_firmware_3(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY); ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND; ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1); ocp_data |= FW_IP_RESET_EN; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1, ocp_data); return 0; } static int r8153b_pre_firmware_1(struct r8152 *tp) { /* enable fc timer and set timer to 1 second. */ ocp_write_word(tp, MCU_TYPE_USB, USB_FC_TIMER, CTRL_TIMER_EN | (1000 / 8)); return 0; } static int r8153b_post_firmware_1(struct r8152 *tp) { u32 ocp_data; /* enable bp0 for RTL8153-BND */ ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_1); if (ocp_data & BND_MASK) { ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BP_EN); ocp_data |= BIT(0); ocp_write_word(tp, MCU_TYPE_PLA, PLA_BP_EN, ocp_data); } ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_CTRL); ocp_data |= FLOW_CTRL_PATCH_OPT; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_TASK); ocp_data |= FC_PATCH_TASK; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1); ocp_data |= FW_IP_RESET_EN; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1, ocp_data); return 0; } static int r8153c_post_firmware_1(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_CTRL); ocp_data |= FLOW_CTRL_PATCH_2; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_TASK); ocp_data |= FC_PATCH_TASK; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data); return 0; } static int r8156a_post_firmware_1(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1); ocp_data |= FW_IP_RESET_EN; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_FIX_EN1, ocp_data); /* Modify U3PHY parameter for compatibility issue */ ocp_write_dword(tp, MCU_TYPE_USB, USB_UPHY3_MDCMDIO, 0x4026840e); ocp_write_dword(tp, MCU_TYPE_USB, USB_UPHY3_MDCMDIO, 0x4001acc9); return 0; } static void r8153_aldps_en(struct r8152 *tp, bool enable) { u16 data; data = ocp_reg_read(tp, OCP_POWER_CFG); if (enable) { data |= EN_ALDPS; ocp_reg_write(tp, OCP_POWER_CFG, data); } else { int i; data &= ~EN_ALDPS; ocp_reg_write(tp, OCP_POWER_CFG, data); for (i = 0; i < 20; i++) { if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; usleep_range(1000, 2000); if (ocp_read_word(tp, MCU_TYPE_PLA, 0xe000) & 0x0100) break; } } tp->ups_info.aldps = enable; } static void r8153_hw_phy_cfg(struct r8152 *tp) { u32 ocp_data; u16 data; /* disable ALDPS before updating the PHY parameters */ r8153_aldps_en(tp, false); /* disable EEE before updating the PHY parameters */ rtl_eee_enable(tp, false); rtl8152_apply_firmware(tp, false); if (tp->version == RTL_VER_03) { data = ocp_reg_read(tp, OCP_EEE_CFG); data &= ~CTAP_SHORT_EN; ocp_reg_write(tp, OCP_EEE_CFG, data); } data = ocp_reg_read(tp, OCP_POWER_CFG); data |= EEE_CLKDIV_EN; ocp_reg_write(tp, OCP_POWER_CFG, data); data = ocp_reg_read(tp, OCP_DOWN_SPEED); data |= EN_10M_BGOFF; ocp_reg_write(tp, OCP_DOWN_SPEED, data); data = ocp_reg_read(tp, OCP_POWER_CFG); data |= EN_10M_PLLOFF; ocp_reg_write(tp, OCP_POWER_CFG, data); sram_write(tp, SRAM_IMPEDANCE, 0x0b13); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR); ocp_data |= PFM_PWM_SWITCH; ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data); /* Enable LPF corner auto tune */ sram_write(tp, SRAM_LPF_CFG, 0xf70f); /* Adjust 10M Amplitude */ sram_write(tp, SRAM_10M_AMP1, 0x00af); sram_write(tp, SRAM_10M_AMP2, 0x0208); if (tp->eee_en) rtl_eee_enable(tp, true); r8153_aldps_en(tp, true); r8152b_enable_fc(tp); switch (tp->version) { case RTL_VER_03: case RTL_VER_04: break; case RTL_VER_05: case RTL_VER_06: default: r8153_u2p3en(tp, true); break; } set_bit(PHY_RESET, &tp->flags); } static u32 r8152_efuse_read(struct r8152 *tp, u8 addr) { u32 ocp_data; ocp_write_word(tp, MCU_TYPE_PLA, PLA_EFUSE_CMD, EFUSE_READ_CMD | addr); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EFUSE_CMD); ocp_data = (ocp_data & EFUSE_DATA_BIT16) << 9; /* data of bit16 */ ocp_data |= ocp_read_word(tp, MCU_TYPE_PLA, PLA_EFUSE_DATA); return ocp_data; } static void r8153b_hw_phy_cfg(struct r8152 *tp) { u32 ocp_data; u16 data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0); if (ocp_data & PCUT_STATUS) { ocp_data &= ~PCUT_STATUS; ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data); } /* disable ALDPS before updating the PHY parameters */ r8153_aldps_en(tp, false); /* disable EEE before updating the PHY parameters */ rtl_eee_enable(tp, false); /* U1/U2/L1 idle timer. 500 us */ ocp_write_word(tp, MCU_TYPE_USB, USB_U1U2_TIMER, 500); data = r8153_phy_status(tp, 0); switch (data) { case PHY_STAT_PWRDN: case PHY_STAT_EXT_INIT: rtl8152_apply_firmware(tp, true); data = r8152_mdio_read(tp, MII_BMCR); data &= ~BMCR_PDOWN; r8152_mdio_write(tp, MII_BMCR, data); break; case PHY_STAT_LAN_ON: default: rtl8152_apply_firmware(tp, false); break; } r8153b_green_en(tp, test_bit(GREEN_ETHERNET, &tp->flags)); data = sram_read(tp, SRAM_GREEN_CFG); data |= R_TUNE_EN; sram_write(tp, SRAM_GREEN_CFG, data); data = ocp_reg_read(tp, OCP_NCTL_CFG); data |= PGA_RETURN_EN; ocp_reg_write(tp, OCP_NCTL_CFG, data); /* ADC Bias Calibration: * read efuse offset 0x7d to get a 17-bit data. Remove the dummy/fake * bit (bit3) to rebuild the real 16-bit data. Write the data to the * ADC ioffset. */ ocp_data = r8152_efuse_read(tp, 0x7d); data = (u16)(((ocp_data & 0x1fff0) >> 1) | (ocp_data & 0x7)); if (data != 0xffff) ocp_reg_write(tp, OCP_ADC_IOFFSET, data); /* ups mode tx-link-pulse timing adjustment: * rg_saw_cnt = OCP reg 0xC426 Bit[13:0] * swr_cnt_1ms_ini = 16000000 / rg_saw_cnt */ ocp_data = ocp_reg_read(tp, 0xc426); ocp_data &= 0x3fff; if (ocp_data) { u32 swr_cnt_1ms_ini; swr_cnt_1ms_ini = (16000000 / ocp_data) & SAW_CNT_1MS_MASK; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CFG); ocp_data = (ocp_data & ~SAW_CNT_1MS_MASK) | swr_cnt_1ms_ini; ocp_write_word(tp, MCU_TYPE_USB, USB_UPS_CFG, ocp_data); } ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR); ocp_data |= PFM_PWM_SWITCH; ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data); /* Advnace EEE */ if (!rtl_phy_patch_request(tp, true, true)) { data = ocp_reg_read(tp, OCP_POWER_CFG); data |= EEE_CLKDIV_EN; ocp_reg_write(tp, OCP_POWER_CFG, data); tp->ups_info.eee_ckdiv = true; data = ocp_reg_read(tp, OCP_DOWN_SPEED); data |= EN_EEE_CMODE | EN_EEE_1000 | EN_10M_CLKDIV; ocp_reg_write(tp, OCP_DOWN_SPEED, data); tp->ups_info.eee_cmod_lv = true; tp->ups_info._10m_ckdiv = true; tp->ups_info.eee_plloff_giga = true; ocp_reg_write(tp, OCP_SYSCLK_CFG, 0); ocp_reg_write(tp, OCP_SYSCLK_CFG, clk_div_expo(5)); tp->ups_info._250m_ckdiv = true; rtl_phy_patch_request(tp, false, true); } if (tp->eee_en) rtl_eee_enable(tp, true); r8153_aldps_en(tp, true); r8152b_enable_fc(tp); set_bit(PHY_RESET, &tp->flags); } static void r8153c_hw_phy_cfg(struct r8152 *tp) { r8153b_hw_phy_cfg(tp); tp->ups_info.r_tune = true; } static void rtl8153_change_mtu(struct r8152 *tp) { ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, mtu_to_size(tp->netdev->mtu)); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_MTPS, MTPS_JUMBO); } static void r8153_first_init(struct r8152 *tp) { u32 ocp_data; rxdy_gated_en(tp, true); r8153_teredo_off(tp); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~RCR_ACPT_ALL; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); rtl8152_nic_reset(tp); rtl_reset_bmu(tp); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data &= ~MCU_BORW_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); wait_oob_link_list_ready(tp); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= RE_INIT_LL; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); wait_oob_link_list_ready(tp); rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX); rtl8153_change_mtu(tp); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TCR0); ocp_data |= TCR0_AUTO_FIFO; ocp_write_word(tp, MCU_TYPE_PLA, PLA_TCR0, ocp_data); rtl8152_nic_reset(tp); /* rx share fifo credit full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_NORMAL); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_NORMAL); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_NORMAL); /* TX share fifo free credit full threshold */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, TXFIFO_THR_NORMAL2); } static void r8153_enter_oob(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); /* RX FIFO settings for OOB */ ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, RXFIFO_THR1_OOB); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_OOB); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_OOB); rtl_disable(tp); rtl_reset_bmu(tp); wait_oob_link_list_ready(tp); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= RE_INIT_LL; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); wait_oob_link_list_ready(tp); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, 1522); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_MTPS, MTPS_DEFAULT); switch (tp->version) { case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG); ocp_data &= ~TEREDO_WAKE_MASK; ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_CFG, ocp_data); break; case RTL_VER_08: case RTL_VER_09: case RTL_VER_14: /* Clear teredo wake event. bit[15:8] is the teredo wakeup * type. Set it to zero. bits[7:0] are the W1C bits about * the events. Set them to all 1 to clear them. */ ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_WAKE_BASE, 0x00ff); break; default: break; } rtl_rx_vlan_en(tp, true); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_BDC_CR); ocp_data |= ALDPS_PROXY_MODE; ocp_write_word(tp, MCU_TYPE_PLA, PLA_BDC_CR, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data |= NOW_IS_OOB | DIS_MCU_CLROOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= MCU_BORW_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); rxdy_gated_en(tp, false); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data |= RCR_APM | RCR_AM | RCR_AB; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); } static void rtl8153_disable(struct r8152 *tp) { r8153_aldps_en(tp, false); rtl_disable(tp); rtl_reset_bmu(tp); r8153_aldps_en(tp, true); } static u32 fc_pause_on_auto(struct r8152 *tp) { return (ALIGN(mtu_to_size(tp->netdev->mtu), 1024) + 6 * 1024); } static u32 fc_pause_off_auto(struct r8152 *tp) { return (ALIGN(mtu_to_size(tp->netdev->mtu), 1024) + 14 * 1024); } static void r8156_fc_parameter(struct r8152 *tp) { u32 pause_on = tp->fc_pause_on ? tp->fc_pause_on : fc_pause_on_auto(tp); u32 pause_off = tp->fc_pause_off ? tp->fc_pause_off : fc_pause_off_auto(tp); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RX_FIFO_FULL, pause_on / 16); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RX_FIFO_EMPTY, pause_off / 16); } static int rtl8156_enable(struct r8152 *tp) { u32 ocp_data; u16 speed; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return -ENODEV; r8156_fc_parameter(tp); set_tx_qlen(tp); rtl_set_eee_plus(tp); r8153_set_rx_early_timeout(tp); r8153_set_rx_early_size(tp); speed = rtl8152_get_speed(tp); rtl_set_ifg(tp, speed); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4); if (speed & _2500bps) ocp_data &= ~IDLE_SPDWN_EN; else ocp_data |= IDLE_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4, ocp_data); if (speed & _1000bps) ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_TXTWSYS, 0x11); else if (speed & _500bps) ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_TXTWSYS, 0x3d); if (tp->udev->speed == USB_SPEED_HIGH) { /* USB 0xb45e[3:0] l1_nyet_hird */ ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_L1_CTRL); ocp_data &= ~0xf; if (is_flow_control(speed)) ocp_data |= 0xf; else ocp_data |= 0x1; ocp_write_word(tp, MCU_TYPE_USB, USB_L1_CTRL, ocp_data); } ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_TASK); ocp_data &= ~FC_PATCH_TASK; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data); usleep_range(1000, 2000); ocp_data |= FC_PATCH_TASK; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data); return rtl_enable(tp); } static void rtl8156_disable(struct r8152 *tp) { ocp_write_word(tp, MCU_TYPE_PLA, PLA_RX_FIFO_FULL, 0); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RX_FIFO_EMPTY, 0); rtl8153_disable(tp); } static int rtl8156b_enable(struct r8152 *tp) { u32 ocp_data; u16 speed; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return -ENODEV; set_tx_qlen(tp); rtl_set_eee_plus(tp); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_RX_AGGR_NUM); ocp_data &= ~RX_AGGR_NUM_MASK; ocp_write_word(tp, MCU_TYPE_USB, USB_RX_AGGR_NUM, ocp_data); r8153_set_rx_early_timeout(tp); r8153_set_rx_early_size(tp); speed = rtl8152_get_speed(tp); rtl_set_ifg(tp, speed); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4); if (speed & _2500bps) ocp_data &= ~IDLE_SPDWN_EN; else ocp_data |= IDLE_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4, ocp_data); if (tp->udev->speed == USB_SPEED_HIGH) { ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_L1_CTRL); ocp_data &= ~0xf; if (is_flow_control(speed)) ocp_data |= 0xf; else ocp_data |= 0x1; ocp_write_word(tp, MCU_TYPE_USB, USB_L1_CTRL, ocp_data); } ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_TASK); ocp_data &= ~FC_PATCH_TASK; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data); usleep_range(1000, 2000); ocp_data |= FC_PATCH_TASK; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data); return rtl_enable(tp); } static int rtl8152_set_speed(struct r8152 *tp, u8 autoneg, u32 speed, u8 duplex, u32 advertising) { u16 bmcr; int ret = 0; if (autoneg == AUTONEG_DISABLE) { if (duplex != DUPLEX_HALF && duplex != DUPLEX_FULL) return -EINVAL; switch (speed) { case SPEED_10: bmcr = BMCR_SPEED10; if (duplex == DUPLEX_FULL) { bmcr |= BMCR_FULLDPLX; tp->ups_info.speed_duplex = FORCE_10M_FULL; } else { tp->ups_info.speed_duplex = FORCE_10M_HALF; } break; case SPEED_100: bmcr = BMCR_SPEED100; if (duplex == DUPLEX_FULL) { bmcr |= BMCR_FULLDPLX; tp->ups_info.speed_duplex = FORCE_100M_FULL; } else { tp->ups_info.speed_duplex = FORCE_100M_HALF; } break; case SPEED_1000: if (tp->mii.supports_gmii) { bmcr = BMCR_SPEED1000 | BMCR_FULLDPLX; tp->ups_info.speed_duplex = NWAY_1000M_FULL; break; } fallthrough; default: ret = -EINVAL; goto out; } if (duplex == DUPLEX_FULL) tp->mii.full_duplex = 1; else tp->mii.full_duplex = 0; tp->mii.force_media = 1; } else { u16 orig, new1; u32 support; support = RTL_ADVERTISED_10_HALF | RTL_ADVERTISED_10_FULL | RTL_ADVERTISED_100_HALF | RTL_ADVERTISED_100_FULL; if (tp->mii.supports_gmii) { support |= RTL_ADVERTISED_1000_FULL; if (tp->support_2500full) support |= RTL_ADVERTISED_2500_FULL; } if (!(advertising & support)) return -EINVAL; orig = r8152_mdio_read(tp, MII_ADVERTISE); new1 = orig & ~(ADVERTISE_10HALF | ADVERTISE_10FULL | ADVERTISE_100HALF | ADVERTISE_100FULL); if (advertising & RTL_ADVERTISED_10_HALF) { new1 |= ADVERTISE_10HALF; tp->ups_info.speed_duplex = NWAY_10M_HALF; } if (advertising & RTL_ADVERTISED_10_FULL) { new1 |= ADVERTISE_10FULL; tp->ups_info.speed_duplex = NWAY_10M_FULL; } if (advertising & RTL_ADVERTISED_100_HALF) { new1 |= ADVERTISE_100HALF; tp->ups_info.speed_duplex = NWAY_100M_HALF; } if (advertising & RTL_ADVERTISED_100_FULL) { new1 |= ADVERTISE_100FULL; tp->ups_info.speed_duplex = NWAY_100M_FULL; } if (orig != new1) { r8152_mdio_write(tp, MII_ADVERTISE, new1); tp->mii.advertising = new1; } if (tp->mii.supports_gmii) { orig = r8152_mdio_read(tp, MII_CTRL1000); new1 = orig & ~(ADVERTISE_1000FULL | ADVERTISE_1000HALF); if (advertising & RTL_ADVERTISED_1000_FULL) { new1 |= ADVERTISE_1000FULL; tp->ups_info.speed_duplex = NWAY_1000M_FULL; } if (orig != new1) r8152_mdio_write(tp, MII_CTRL1000, new1); } if (tp->support_2500full) { orig = ocp_reg_read(tp, OCP_10GBT_CTRL); new1 = orig & ~MDIO_AN_10GBT_CTRL_ADV2_5G; if (advertising & RTL_ADVERTISED_2500_FULL) { new1 |= MDIO_AN_10GBT_CTRL_ADV2_5G; tp->ups_info.speed_duplex = NWAY_2500M_FULL; } if (orig != new1) ocp_reg_write(tp, OCP_10GBT_CTRL, new1); } bmcr = BMCR_ANENABLE | BMCR_ANRESTART; tp->mii.force_media = 0; } if (test_and_clear_bit(PHY_RESET, &tp->flags)) bmcr |= BMCR_RESET; r8152_mdio_write(tp, MII_BMCR, bmcr); if (bmcr & BMCR_RESET) { int i; for (i = 0; i < 50; i++) { msleep(20); if ((r8152_mdio_read(tp, MII_BMCR) & BMCR_RESET) == 0) break; } } out: return ret; } static void rtl8152_up(struct r8152 *tp) { if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; r8152_aldps_en(tp, false); r8152b_exit_oob(tp); r8152_aldps_en(tp, true); } static void rtl8152_down(struct r8152 *tp) { if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) { rtl_drop_queued_tx(tp); return; } r8152_power_cut_en(tp, false); r8152_aldps_en(tp, false); r8152b_enter_oob(tp); r8152_aldps_en(tp, true); } static void rtl8153_up(struct r8152 *tp) { u32 ocp_data; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; r8153_u1u2en(tp, false); r8153_u2p3en(tp, false); r8153_aldps_en(tp, false); r8153_first_init(tp); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6); ocp_data |= LANWAKE_CLR_EN; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_LWAKE_CTRL_REG); ocp_data &= ~LANWAKE_PIN; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_LWAKE_CTRL_REG, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_SSPHYLINK1); ocp_data &= ~DELAY_PHY_PWR_CHG; ocp_write_word(tp, MCU_TYPE_USB, USB_SSPHYLINK1, ocp_data); r8153_aldps_en(tp, true); switch (tp->version) { case RTL_VER_03: case RTL_VER_04: break; case RTL_VER_05: case RTL_VER_06: default: r8153_u2p3en(tp, true); break; } r8153_u1u2en(tp, true); } static void rtl8153_down(struct r8152 *tp) { u32 ocp_data; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) { rtl_drop_queued_tx(tp); return; } ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6); ocp_data &= ~LANWAKE_CLR_EN; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6, ocp_data); r8153_u1u2en(tp, false); r8153_u2p3en(tp, false); r8153_power_cut_en(tp, false); r8153_aldps_en(tp, false); r8153_enter_oob(tp); r8153_aldps_en(tp, true); } static void rtl8153b_up(struct r8152 *tp) { u32 ocp_data; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; r8153b_u1u2en(tp, false); r8153_u2p3en(tp, false); r8153_aldps_en(tp, false); r8153_first_init(tp); ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, RX_THR_B); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3); ocp_data &= ~PLA_MCU_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, ocp_data); r8153_aldps_en(tp, true); if (tp->udev->speed >= USB_SPEED_SUPER) r8153b_u1u2en(tp, true); } static void rtl8153b_down(struct r8152 *tp) { u32 ocp_data; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) { rtl_drop_queued_tx(tp); return; } ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3); ocp_data |= PLA_MCU_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, ocp_data); r8153b_u1u2en(tp, false); r8153_u2p3en(tp, false); r8153b_power_cut_en(tp, false); r8153_aldps_en(tp, false); r8153_enter_oob(tp); r8153_aldps_en(tp, true); } static void rtl8153c_change_mtu(struct r8152 *tp) { ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, mtu_to_size(tp->netdev->mtu)); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_MTPS, 10 * 1024 / 64); ocp_write_word(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, 512 / 64); /* Adjust the tx fifo free credit full threshold, otherwise * the fifo would be too small to send a jumbo frame packet. */ if (tp->netdev->mtu < 8000) ocp_write_word(tp, MCU_TYPE_PLA, PLA_TXFIFO_FULL, 2048 / 8); else ocp_write_word(tp, MCU_TYPE_PLA, PLA_TXFIFO_FULL, 900 / 8); } static void rtl8153c_up(struct r8152 *tp) { u32 ocp_data; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; r8153b_u1u2en(tp, false); r8153_u2p3en(tp, false); r8153_aldps_en(tp, false); rxdy_gated_en(tp, true); r8153_teredo_off(tp); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~RCR_ACPT_ALL; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); rtl8152_nic_reset(tp); rtl_reset_bmu(tp); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data &= ~MCU_BORW_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); wait_oob_link_list_ready(tp); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= RE_INIT_LL; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); wait_oob_link_list_ready(tp); rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX); rtl8153c_change_mtu(tp); rtl8152_nic_reset(tp); /* rx share fifo credit full threshold */ ocp_write_byte(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL0, 0x02); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_RXFIFO_FULL, 0x08); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL1, RXFIFO_THR2_NORMAL); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_CTRL2, RXFIFO_THR3_NORMAL); ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, RX_THR_B); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG34); ocp_data |= BIT(8); ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG34, ocp_data); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_NORAML); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3); ocp_data &= ~PLA_MCU_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, ocp_data); r8153_aldps_en(tp, true); r8153b_u1u2en(tp, true); } static void rtl8156_change_mtu(struct r8152 *tp) { u32 rx_max_size = mtu_to_size(tp->netdev->mtu); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, rx_max_size); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_MTPS, MTPS_JUMBO); r8156_fc_parameter(tp); /* TX share fifo free credit full threshold */ ocp_write_word(tp, MCU_TYPE_PLA, PLA_TXFIFO_CTRL, 512 / 64); ocp_write_word(tp, MCU_TYPE_PLA, PLA_TXFIFO_FULL, ALIGN(rx_max_size + sizeof(struct tx_desc), 1024) / 16); } static void rtl8156_up(struct r8152 *tp) { u32 ocp_data; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; r8153b_u1u2en(tp, false); r8153_u2p3en(tp, false); r8153_aldps_en(tp, false); rxdy_gated_en(tp, true); r8153_teredo_off(tp); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~RCR_ACPT_ALL; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); rtl8152_nic_reset(tp); rtl_reset_bmu(tp); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data &= ~MCU_BORW_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); rtl_rx_vlan_en(tp, tp->netdev->features & NETIF_F_HW_VLAN_CTAG_RX); rtl8156_change_mtu(tp); switch (tp->version) { case RTL_TEST_01: case RTL_VER_10: case RTL_VER_11: ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_BMU_CONFIG); ocp_data |= ACT_ODMA; ocp_write_word(tp, MCU_TYPE_USB, USB_BMU_CONFIG, ocp_data); break; default: break; } /* share FIFO settings */ ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_FULL); ocp_data &= ~RXFIFO_FULL_MASK; ocp_data |= 0x08; ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_FULL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3); ocp_data &= ~PLA_MCU_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_SPEED_OPTION); ocp_data &= ~(RG_PWRDN_EN | ALL_SPEED_OFF); ocp_write_word(tp, MCU_TYPE_USB, USB_SPEED_OPTION, ocp_data); ocp_write_dword(tp, MCU_TYPE_USB, USB_RX_BUF_TH, 0x00600400); if (tp->saved_wolopts != __rtl_get_wol(tp)) { netif_warn(tp, ifup, tp->netdev, "wol setting is changed\n"); __rtl_set_wol(tp, tp->saved_wolopts); } r8153_aldps_en(tp, true); r8153_u2p3en(tp, true); if (tp->udev->speed >= USB_SPEED_SUPER) r8153b_u1u2en(tp, true); } static void rtl8156_down(struct r8152 *tp) { u32 ocp_data; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) { rtl_drop_queued_tx(tp); return; } ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3); ocp_data |= PLA_MCU_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, ocp_data); r8153b_u1u2en(tp, false); r8153_u2p3en(tp, false); r8153b_power_cut_en(tp, false); r8153_aldps_en(tp, false); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data &= ~NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); /* RX FIFO settings for OOB */ ocp_write_word(tp, MCU_TYPE_PLA, PLA_RXFIFO_FULL, 64 / 16); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RX_FIFO_FULL, 1024 / 16); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RX_FIFO_EMPTY, 4096 / 16); rtl_disable(tp); rtl_reset_bmu(tp); ocp_write_word(tp, MCU_TYPE_PLA, PLA_RMS, 1522); ocp_write_byte(tp, MCU_TYPE_PLA, PLA_MTPS, MTPS_DEFAULT); /* Clear teredo wake event. bit[15:8] is the teredo wakeup * type. Set it to zero. bits[7:0] are the W1C bits about * the events. Set them to all 1 to clear them. */ ocp_write_word(tp, MCU_TYPE_PLA, PLA_TEREDO_WAKE_BASE, 0x00ff); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); ocp_data |= NOW_IS_OOB; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7); ocp_data |= MCU_BORW_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_SFF_STS_7, ocp_data); rtl_rx_vlan_en(tp, true); rxdy_gated_en(tp, false); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data |= RCR_APM | RCR_AM | RCR_AB; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); r8153_aldps_en(tp, true); } static bool rtl8152_in_nway(struct r8152 *tp) { u16 nway_state; ocp_write_word(tp, MCU_TYPE_PLA, PLA_OCP_GPHY_BASE, 0x2000); tp->ocp_base = 0x2000; ocp_write_byte(tp, MCU_TYPE_PLA, 0xb014, 0x4c); /* phy state */ nway_state = ocp_read_word(tp, MCU_TYPE_PLA, 0xb01a); /* bit 15: TXDIS_STATE, bit 14: ABD_STATE */ if (nway_state & 0xc000) return false; else return true; } static bool rtl8153_in_nway(struct r8152 *tp) { u16 phy_state = ocp_reg_read(tp, OCP_PHY_STATE) & 0xff; if (phy_state == TXDIS_STATE || phy_state == ABD_STATE) return false; else return true; } static void r8156_mdio_force_mode(struct r8152 *tp) { u16 data; /* Select force mode through 0xa5b4 bit 15 * 0: MDIO force mode * 1: MMD force mode */ data = ocp_reg_read(tp, 0xa5b4); if (data & BIT(15)) { data &= ~BIT(15); ocp_reg_write(tp, 0xa5b4, data); } } static void set_carrier(struct r8152 *tp) { struct net_device *netdev = tp->netdev; struct napi_struct *napi = &tp->napi; u16 speed; speed = rtl8152_get_speed(tp); if (speed & LINK_STATUS) { if (!netif_carrier_ok(netdev)) { tp->rtl_ops.enable(tp); netif_stop_queue(netdev); napi_disable(napi); netif_carrier_on(netdev); rtl_start_rx(tp); clear_bit(RTL8152_SET_RX_MODE, &tp->flags); _rtl8152_set_rx_mode(netdev); napi_enable(napi); netif_wake_queue(netdev); netif_info(tp, link, netdev, "carrier on\n"); } else if (netif_queue_stopped(netdev) && skb_queue_len(&tp->tx_queue) < tp->tx_qlen) { netif_wake_queue(netdev); } } else { if (netif_carrier_ok(netdev)) { netif_carrier_off(netdev); tasklet_disable(&tp->tx_tl); napi_disable(napi); tp->rtl_ops.disable(tp); napi_enable(napi); tasklet_enable(&tp->tx_tl); netif_info(tp, link, netdev, "carrier off\n"); } } } static void rtl_work_func_t(struct work_struct *work) { struct r8152 *tp = container_of(work, struct r8152, schedule.work); /* If the device is unplugged or !netif_running(), the workqueue * doesn't need to wake the device, and could return directly. */ if (test_bit(RTL8152_INACCESSIBLE, &tp->flags) || !netif_running(tp->netdev)) return; if (usb_autopm_get_interface(tp->intf) < 0) return; if (!test_bit(WORK_ENABLE, &tp->flags)) goto out1; if (!mutex_trylock(&tp->control)) { schedule_delayed_work(&tp->schedule, 0); goto out1; } if (test_and_clear_bit(RTL8152_LINK_CHG, &tp->flags)) set_carrier(tp); if (test_and_clear_bit(RTL8152_SET_RX_MODE, &tp->flags)) _rtl8152_set_rx_mode(tp->netdev); /* don't schedule tasket before linking */ if (test_and_clear_bit(SCHEDULE_TASKLET, &tp->flags) && netif_carrier_ok(tp->netdev)) tasklet_schedule(&tp->tx_tl); if (test_and_clear_bit(RX_EPROTO, &tp->flags) && !list_empty(&tp->rx_done)) napi_schedule(&tp->napi); mutex_unlock(&tp->control); out1: usb_autopm_put_interface(tp->intf); } static void rtl_hw_phy_work_func_t(struct work_struct *work) { struct r8152 *tp = container_of(work, struct r8152, hw_phy_work.work); if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; if (usb_autopm_get_interface(tp->intf) < 0) return; mutex_lock(&tp->control); if (rtl8152_request_firmware(tp) == -ENODEV && tp->rtl_fw.retry) { tp->rtl_fw.retry = false; tp->rtl_fw.fw = NULL; /* Delay execution in case request_firmware() is not ready yet. */ queue_delayed_work(system_long_wq, &tp->hw_phy_work, HZ * 10); goto ignore_once; } tp->rtl_ops.hw_phy_cfg(tp); rtl8152_set_speed(tp, tp->autoneg, tp->speed, tp->duplex, tp->advertising); ignore_once: mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); } #ifdef CONFIG_PM_SLEEP static int rtl_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct r8152 *tp = container_of(nb, struct r8152, pm_notifier); switch (action) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: usb_autopm_get_interface(tp->intf); break; case PM_POST_HIBERNATION: case PM_POST_SUSPEND: usb_autopm_put_interface(tp->intf); break; case PM_POST_RESTORE: case PM_RESTORE_PREPARE: default: break; } return NOTIFY_DONE; } #endif static int rtl8152_open(struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); int res = 0; if (work_busy(&tp->hw_phy_work.work) & WORK_BUSY_PENDING) { cancel_delayed_work_sync(&tp->hw_phy_work); rtl_hw_phy_work_func_t(&tp->hw_phy_work.work); } res = alloc_all_mem(tp); if (res) goto out; res = usb_autopm_get_interface(tp->intf); if (res < 0) goto out_free; mutex_lock(&tp->control); tp->rtl_ops.up(tp); netif_carrier_off(netdev); netif_start_queue(netdev); set_bit(WORK_ENABLE, &tp->flags); res = usb_submit_urb(tp->intr_urb, GFP_KERNEL); if (res) { if (res == -ENODEV) netif_device_detach(tp->netdev); netif_warn(tp, ifup, netdev, "intr_urb submit failed: %d\n", res); goto out_unlock; } napi_enable(&tp->napi); tasklet_enable(&tp->tx_tl); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); #ifdef CONFIG_PM_SLEEP tp->pm_notifier.notifier_call = rtl_notifier; register_pm_notifier(&tp->pm_notifier); #endif return 0; out_unlock: mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out_free: free_all_mem(tp); out: return res; } static int rtl8152_close(struct net_device *netdev) { struct r8152 *tp = netdev_priv(netdev); int res = 0; #ifdef CONFIG_PM_SLEEP unregister_pm_notifier(&tp->pm_notifier); #endif tasklet_disable(&tp->tx_tl); clear_bit(WORK_ENABLE, &tp->flags); usb_kill_urb(tp->intr_urb); cancel_delayed_work_sync(&tp->schedule); napi_disable(&tp->napi); netif_stop_queue(netdev); res = usb_autopm_get_interface(tp->intf); if (res < 0 || test_bit(RTL8152_INACCESSIBLE, &tp->flags)) { rtl_drop_queued_tx(tp); rtl_stop_rx(tp); } else { mutex_lock(&tp->control); tp->rtl_ops.down(tp); mutex_unlock(&tp->control); } if (!res) usb_autopm_put_interface(tp->intf); free_all_mem(tp); return res; } static void rtl_tally_reset(struct r8152 *tp) { u32 ocp_data; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY); ocp_data |= TALLY_RESET; ocp_write_word(tp, MCU_TYPE_PLA, PLA_RSTTALLY, ocp_data); } static void r8152b_init(struct r8152 *tp) { u32 ocp_data; u16 data; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; data = r8152_mdio_read(tp, MII_BMCR); if (data & BMCR_PDOWN) { data &= ~BMCR_PDOWN; r8152_mdio_write(tp, MII_BMCR, data); } r8152_aldps_en(tp, false); if (tp->version == RTL_VER_01) { ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE); ocp_data &= ~LED_MODE_MASK; ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data); } r8152_power_cut_en(tp, false); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR); ocp_data |= TX_10M_IDLE_EN | PFM_PWM_SWITCH; ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data); ocp_data = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL); ocp_data &= ~MCU_CLK_RATIO_MASK; ocp_data |= MCU_CLK_RATIO | D3_CLK_GATED_EN; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL, ocp_data); ocp_data = GPHY_STS_MSK | SPEED_DOWN_MSK | SPDWN_RXDV_MSK | SPDWN_LINKCHG_MSK; ocp_write_word(tp, MCU_TYPE_PLA, PLA_GPHY_INTR_IMR, ocp_data); rtl_tally_reset(tp); /* enable rx aggregation */ ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL); ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN); ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data); } static void r8153_init(struct r8152 *tp) { u32 ocp_data; u16 data; int i; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; r8153_u1u2en(tp, false); for (i = 0; i < 500; i++) { if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) & AUTOLOAD_DONE) break; msleep(20); if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) break; } data = r8153_phy_status(tp, 0); if (tp->version == RTL_VER_03 || tp->version == RTL_VER_04 || tp->version == RTL_VER_05) ocp_reg_write(tp, OCP_ADC_CFG, CKADSEL_L | ADC_EN | EN_EMI_L); data = r8152_mdio_read(tp, MII_BMCR); if (data & BMCR_PDOWN) { data &= ~BMCR_PDOWN; r8152_mdio_write(tp, MII_BMCR, data); } data = r8153_phy_status(tp, PHY_STAT_LAN_ON); r8153_u2p3en(tp, false); if (tp->version == RTL_VER_04) { ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2); ocp_data &= ~pwd_dn_scale_mask; ocp_data |= pwd_dn_scale(96); ocp_write_word(tp, MCU_TYPE_USB, USB_SSPHYLINK2, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_USB2PHY); ocp_data |= USB2PHY_L1 | USB2PHY_SUSPEND; ocp_write_byte(tp, MCU_TYPE_USB, USB_USB2PHY, ocp_data); } else if (tp->version == RTL_VER_05) { ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0); ocp_data &= ~ECM_ALDPS; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_DMY_REG0, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1); if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0) ocp_data &= ~DYNAMIC_BURST; else ocp_data |= DYNAMIC_BURST; ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data); } else if (tp->version == RTL_VER_06) { ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1); if (ocp_read_word(tp, MCU_TYPE_USB, USB_BURST_SIZE) == 0) ocp_data &= ~DYNAMIC_BURST; else ocp_data |= DYNAMIC_BURST; ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY1, ocp_data); r8153_queue_wake(tp, false); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS); if (rtl8152_get_speed(tp) & LINK_STATUS) ocp_data |= CUR_LINK_OK; else ocp_data &= ~CUR_LINK_OK; ocp_data |= POLL_LINK_CHG; ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, ocp_data); } ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2); ocp_data |= EP4_FULL_FC; ocp_write_byte(tp, MCU_TYPE_USB, USB_CSR_DUMMY2, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL); ocp_data &= ~TIMER11_EN; ocp_write_word(tp, MCU_TYPE_USB, USB_WDT11_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE); ocp_data &= ~LED_MODE_MASK; ocp_write_word(tp, MCU_TYPE_PLA, PLA_LED_FEATURE, ocp_data); ocp_data = FIFO_EMPTY_1FB | ROK_EXIT_LPM; if (tp->version == RTL_VER_04 && tp->udev->speed < USB_SPEED_SUPER) ocp_data |= LPM_TIMER_500MS; else ocp_data |= LPM_TIMER_500US; ocp_write_byte(tp, MCU_TYPE_USB, USB_LPM_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2); ocp_data &= ~SEN_VAL_MASK; ocp_data |= SEN_VAL_NORMAL | SEL_RXIDLE; ocp_write_word(tp, MCU_TYPE_USB, USB_AFE_CTRL2, ocp_data); ocp_write_word(tp, MCU_TYPE_USB, USB_CONNECT_TIMER, 0x0001); r8153_power_cut_en(tp, false); rtl_runtime_suspend_enable(tp, false); r8153_mac_clk_speed_down(tp, false); r8153_u1u2en(tp, true); usb_enable_lpm(tp->udev); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6); ocp_data |= LANWAKE_CLR_EN; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CONFIG6, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_LWAKE_CTRL_REG); ocp_data &= ~LANWAKE_PIN; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_LWAKE_CTRL_REG, ocp_data); /* rx aggregation */ ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL); ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN); if (tp->dell_tb_rx_agg_bug) ocp_data |= RX_AGG_DISABLE; ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data); rtl_tally_reset(tp); switch (tp->udev->speed) { case USB_SPEED_SUPER: case USB_SPEED_SUPER_PLUS: tp->coalesce = COALESCE_SUPER; break; case USB_SPEED_HIGH: tp->coalesce = COALESCE_HIGH; break; default: tp->coalesce = COALESCE_SLOW; break; } } static void r8153b_init(struct r8152 *tp) { u32 ocp_data; u16 data; int i; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; r8153b_u1u2en(tp, false); for (i = 0; i < 500; i++) { if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) & AUTOLOAD_DONE) break; msleep(20); if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) break; } data = r8153_phy_status(tp, 0); data = r8152_mdio_read(tp, MII_BMCR); if (data & BMCR_PDOWN) { data &= ~BMCR_PDOWN; r8152_mdio_write(tp, MII_BMCR, data); } data = r8153_phy_status(tp, PHY_STAT_LAN_ON); r8153_u2p3en(tp, false); /* MSC timer = 0xfff * 8ms = 32760 ms */ ocp_write_word(tp, MCU_TYPE_USB, USB_MSC_TIMER, 0x0fff); r8153b_power_cut_en(tp, false); r8153b_ups_en(tp, false); r8153_queue_wake(tp, false); rtl_runtime_suspend_enable(tp, false); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS); if (rtl8152_get_speed(tp) & LINK_STATUS) ocp_data |= CUR_LINK_OK; else ocp_data &= ~CUR_LINK_OK; ocp_data |= POLL_LINK_CHG; ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, ocp_data); if (tp->udev->speed >= USB_SPEED_SUPER) r8153b_u1u2en(tp, true); usb_enable_lpm(tp->udev); /* MAC clock speed down */ r8153_mac_clk_speed_down(tp, true); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3); ocp_data &= ~PLA_MCU_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, ocp_data); if (tp->version == RTL_VER_09) { /* Disable Test IO for 32QFN */ if (ocp_read_byte(tp, MCU_TYPE_PLA, 0xdc00) & BIT(5)) { ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR); ocp_data |= TEST_IO_OFF; ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data); } } set_bit(GREEN_ETHERNET, &tp->flags); /* rx aggregation */ ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL); ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN); ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data); rtl_tally_reset(tp); tp->coalesce = 15000; /* 15 us */ } static void r8153c_init(struct r8152 *tp) { u32 ocp_data; u16 data; int i; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; r8153b_u1u2en(tp, false); /* Disable spi_en */ ocp_write_byte(tp, MCU_TYPE_PLA, PLA_CRWECR, CRWECR_CONFIG); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CONFIG5); ocp_data &= ~BIT(3); ocp_write_word(tp, MCU_TYPE_PLA, PLA_CONFIG5, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, 0xcbf0); ocp_data |= BIT(1); ocp_write_word(tp, MCU_TYPE_USB, 0xcbf0, ocp_data); for (i = 0; i < 500; i++) { if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) & AUTOLOAD_DONE) break; msleep(20); if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; } data = r8153_phy_status(tp, 0); data = r8152_mdio_read(tp, MII_BMCR); if (data & BMCR_PDOWN) { data &= ~BMCR_PDOWN; r8152_mdio_write(tp, MII_BMCR, data); } data = r8153_phy_status(tp, PHY_STAT_LAN_ON); r8153_u2p3en(tp, false); /* MSC timer = 0xfff * 8ms = 32760 ms */ ocp_write_word(tp, MCU_TYPE_USB, USB_MSC_TIMER, 0x0fff); r8153b_power_cut_en(tp, false); r8153c_ups_en(tp, false); r8153_queue_wake(tp, false); rtl_runtime_suspend_enable(tp, false); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS); if (rtl8152_get_speed(tp) & LINK_STATUS) ocp_data |= CUR_LINK_OK; else ocp_data &= ~CUR_LINK_OK; ocp_data |= POLL_LINK_CHG; ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, ocp_data); r8153b_u1u2en(tp, true); usb_enable_lpm(tp->udev); /* MAC clock speed down */ r8153_mac_clk_speed_down(tp, true); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_MISC_2); ocp_data &= ~BIT(7); ocp_write_byte(tp, MCU_TYPE_USB, USB_MISC_2, ocp_data); set_bit(GREEN_ETHERNET, &tp->flags); /* rx aggregation */ ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL); ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN); ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data); rtl_tally_reset(tp); tp->coalesce = 15000; /* 15 us */ } static void r8156_hw_phy_cfg(struct r8152 *tp) { u32 ocp_data; u16 data; ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0); if (ocp_data & PCUT_STATUS) { ocp_data &= ~PCUT_STATUS; ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data); } data = r8153_phy_status(tp, 0); switch (data) { case PHY_STAT_EXT_INIT: rtl8152_apply_firmware(tp, true); data = ocp_reg_read(tp, 0xa468); data &= ~(BIT(3) | BIT(1)); ocp_reg_write(tp, 0xa468, data); break; case PHY_STAT_LAN_ON: case PHY_STAT_PWRDN: default: rtl8152_apply_firmware(tp, false); break; } /* disable ALDPS before updating the PHY parameters */ r8153_aldps_en(tp, false); /* disable EEE before updating the PHY parameters */ rtl_eee_enable(tp, false); data = r8153_phy_status(tp, PHY_STAT_LAN_ON); WARN_ON_ONCE(data != PHY_STAT_LAN_ON); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR); ocp_data |= PFM_PWM_SWITCH; ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data); switch (tp->version) { case RTL_VER_10: data = ocp_reg_read(tp, 0xad40); data &= ~0x3ff; data |= BIT(7) | BIT(2); ocp_reg_write(tp, 0xad40, data); data = ocp_reg_read(tp, 0xad4e); data |= BIT(4); ocp_reg_write(tp, 0xad4e, data); data = ocp_reg_read(tp, 0xad16); data &= ~0x3ff; data |= 0x6; ocp_reg_write(tp, 0xad16, data); data = ocp_reg_read(tp, 0xad32); data &= ~0x3f; data |= 6; ocp_reg_write(tp, 0xad32, data); data = ocp_reg_read(tp, 0xac08); data &= ~(BIT(12) | BIT(8)); ocp_reg_write(tp, 0xac08, data); data = ocp_reg_read(tp, 0xac8a); data |= BIT(12) | BIT(13) | BIT(14); data &= ~BIT(15); ocp_reg_write(tp, 0xac8a, data); data = ocp_reg_read(tp, 0xad18); data |= BIT(10); ocp_reg_write(tp, 0xad18, data); data = ocp_reg_read(tp, 0xad1a); data |= 0x3ff; ocp_reg_write(tp, 0xad1a, data); data = ocp_reg_read(tp, 0xad1c); data |= 0x3ff; ocp_reg_write(tp, 0xad1c, data); data = sram_read(tp, 0x80ea); data &= ~0xff00; data |= 0xc400; sram_write(tp, 0x80ea, data); data = sram_read(tp, 0x80eb); data &= ~0x0700; data |= 0x0300; sram_write(tp, 0x80eb, data); data = sram_read(tp, 0x80f8); data &= ~0xff00; data |= 0x1c00; sram_write(tp, 0x80f8, data); data = sram_read(tp, 0x80f1); data &= ~0xff00; data |= 0x3000; sram_write(tp, 0x80f1, data); data = sram_read(tp, 0x80fe); data &= ~0xff00; data |= 0xa500; sram_write(tp, 0x80fe, data); data = sram_read(tp, 0x8102); data &= ~0xff00; data |= 0x5000; sram_write(tp, 0x8102, data); data = sram_read(tp, 0x8015); data &= ~0xff00; data |= 0x3300; sram_write(tp, 0x8015, data); data = sram_read(tp, 0x8100); data &= ~0xff00; data |= 0x7000; sram_write(tp, 0x8100, data); data = sram_read(tp, 0x8014); data &= ~0xff00; data |= 0xf000; sram_write(tp, 0x8014, data); data = sram_read(tp, 0x8016); data &= ~0xff00; data |= 0x6500; sram_write(tp, 0x8016, data); data = sram_read(tp, 0x80dc); data &= ~0xff00; data |= 0xed00; sram_write(tp, 0x80dc, data); data = sram_read(tp, 0x80df); data |= BIT(8); sram_write(tp, 0x80df, data); data = sram_read(tp, 0x80e1); data &= ~BIT(8); sram_write(tp, 0x80e1, data); data = ocp_reg_read(tp, 0xbf06); data &= ~0x003f; data |= 0x0038; ocp_reg_write(tp, 0xbf06, data); sram_write(tp, 0x819f, 0xddb6); ocp_reg_write(tp, 0xbc34, 0x5555); data = ocp_reg_read(tp, 0xbf0a); data &= ~0x0e00; data |= 0x0a00; ocp_reg_write(tp, 0xbf0a, data); data = ocp_reg_read(tp, 0xbd2c); data &= ~BIT(13); ocp_reg_write(tp, 0xbd2c, data); break; case RTL_VER_11: data = ocp_reg_read(tp, 0xad16); data |= 0x3ff; ocp_reg_write(tp, 0xad16, data); data = ocp_reg_read(tp, 0xad32); data &= ~0x3f; data |= 6; ocp_reg_write(tp, 0xad32, data); data = ocp_reg_read(tp, 0xac08); data &= ~(BIT(12) | BIT(8)); ocp_reg_write(tp, 0xac08, data); data = ocp_reg_read(tp, 0xacc0); data &= ~0x3; data |= BIT(1); ocp_reg_write(tp, 0xacc0, data); data = ocp_reg_read(tp, 0xad40); data &= ~0xe7; data |= BIT(6) | BIT(2); ocp_reg_write(tp, 0xad40, data); data = ocp_reg_read(tp, 0xac14); data &= ~BIT(7); ocp_reg_write(tp, 0xac14, data); data = ocp_reg_read(tp, 0xac80); data &= ~(BIT(8) | BIT(9)); ocp_reg_write(tp, 0xac80, data); data = ocp_reg_read(tp, 0xac5e); data &= ~0x7; data |= BIT(1); ocp_reg_write(tp, 0xac5e, data); ocp_reg_write(tp, 0xad4c, 0x00a8); ocp_reg_write(tp, 0xac5c, 0x01ff); data = ocp_reg_read(tp, 0xac8a); data &= ~0xf0; data |= BIT(4) | BIT(5); ocp_reg_write(tp, 0xac8a, data); ocp_reg_write(tp, 0xb87c, 0x8157); data = ocp_reg_read(tp, 0xb87e); data &= ~0xff00; data |= 0x0500; ocp_reg_write(tp, 0xb87e, data); ocp_reg_write(tp, 0xb87c, 0x8159); data = ocp_reg_read(tp, 0xb87e); data &= ~0xff00; data |= 0x0700; ocp_reg_write(tp, 0xb87e, data); /* AAGC */ ocp_reg_write(tp, 0xb87c, 0x80a2); ocp_reg_write(tp, 0xb87e, 0x0153); ocp_reg_write(tp, 0xb87c, 0x809c); ocp_reg_write(tp, 0xb87e, 0x0153); /* EEE parameter */ ocp_write_word(tp, MCU_TYPE_PLA, PLA_EEE_TXTWSYS_2P5G, 0x0056); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_USB_CFG); ocp_data |= EN_XG_LIP | EN_G_LIP; ocp_write_word(tp, MCU_TYPE_PLA, PLA_USB_CFG, ocp_data); sram_write(tp, 0x8257, 0x020f); /* XG PLL */ sram_write(tp, 0x80ea, 0x7843); /* GIGA Master */ if (rtl_phy_patch_request(tp, true, true)) return; /* Advance EEE */ ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4); ocp_data |= EEE_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4, ocp_data); data = ocp_reg_read(tp, OCP_DOWN_SPEED); data &= ~(EN_EEE_100 | EN_EEE_1000); data |= EN_10M_CLKDIV; ocp_reg_write(tp, OCP_DOWN_SPEED, data); tp->ups_info._10m_ckdiv = true; tp->ups_info.eee_plloff_100 = false; tp->ups_info.eee_plloff_giga = false; data = ocp_reg_read(tp, OCP_POWER_CFG); data &= ~EEE_CLKDIV_EN; ocp_reg_write(tp, OCP_POWER_CFG, data); tp->ups_info.eee_ckdiv = false; ocp_reg_write(tp, OCP_SYSCLK_CFG, 0); ocp_reg_write(tp, OCP_SYSCLK_CFG, sysclk_div_expo(5)); tp->ups_info._250m_ckdiv = false; rtl_phy_patch_request(tp, false, true); /* enable ADC Ibias Cal */ data = ocp_reg_read(tp, 0xd068); data |= BIT(13); ocp_reg_write(tp, 0xd068, data); /* enable Thermal Sensor */ data = sram_read(tp, 0x81a2); data &= ~BIT(8); sram_write(tp, 0x81a2, data); data = ocp_reg_read(tp, 0xb54c); data &= ~0xff00; data |= 0xdb00; ocp_reg_write(tp, 0xb54c, data); /* Nway 2.5G Lite */ data = ocp_reg_read(tp, 0xa454); data &= ~BIT(0); ocp_reg_write(tp, 0xa454, data); /* CS DSP solution */ data = ocp_reg_read(tp, OCP_10GBT_CTRL); data |= RTL_ADV2_5G_F_R; ocp_reg_write(tp, OCP_10GBT_CTRL, data); data = ocp_reg_read(tp, 0xad4e); data &= ~BIT(4); ocp_reg_write(tp, 0xad4e, data); data = ocp_reg_read(tp, 0xa86a); data &= ~BIT(0); ocp_reg_write(tp, 0xa86a, data); /* MDI SWAP */ if ((ocp_read_word(tp, MCU_TYPE_USB, USB_UPS_CFG) & MID_REVERSE) && (ocp_reg_read(tp, 0xd068) & BIT(1))) { u16 swap_a, swap_b; data = ocp_reg_read(tp, 0xd068); data &= ~0x1f; data |= 0x1; /* p0 */ ocp_reg_write(tp, 0xd068, data); swap_a = ocp_reg_read(tp, 0xd06a); data &= ~0x18; data |= 0x18; /* p3 */ ocp_reg_write(tp, 0xd068, data); swap_b = ocp_reg_read(tp, 0xd06a); data &= ~0x18; /* p0 */ ocp_reg_write(tp, 0xd068, data); ocp_reg_write(tp, 0xd06a, (swap_a & ~0x7ff) | (swap_b & 0x7ff)); data |= 0x18; /* p3 */ ocp_reg_write(tp, 0xd068, data); ocp_reg_write(tp, 0xd06a, (swap_b & ~0x7ff) | (swap_a & 0x7ff)); data &= ~0x18; data |= 0x08; /* p1 */ ocp_reg_write(tp, 0xd068, data); swap_a = ocp_reg_read(tp, 0xd06a); data &= ~0x18; data |= 0x10; /* p2 */ ocp_reg_write(tp, 0xd068, data); swap_b = ocp_reg_read(tp, 0xd06a); data &= ~0x18; data |= 0x08; /* p1 */ ocp_reg_write(tp, 0xd068, data); ocp_reg_write(tp, 0xd06a, (swap_a & ~0x7ff) | (swap_b & 0x7ff)); data &= ~0x18; data |= 0x10; /* p2 */ ocp_reg_write(tp, 0xd068, data); ocp_reg_write(tp, 0xd06a, (swap_b & ~0x7ff) | (swap_a & 0x7ff)); swap_a = ocp_reg_read(tp, 0xbd5a); swap_b = ocp_reg_read(tp, 0xbd5c); ocp_reg_write(tp, 0xbd5a, (swap_a & ~0x1f1f) | ((swap_b & 0x1f) << 8) | ((swap_b >> 8) & 0x1f)); ocp_reg_write(tp, 0xbd5c, (swap_b & ~0x1f1f) | ((swap_a & 0x1f) << 8) | ((swap_a >> 8) & 0x1f)); swap_a = ocp_reg_read(tp, 0xbc18); swap_b = ocp_reg_read(tp, 0xbc1a); ocp_reg_write(tp, 0xbc18, (swap_a & ~0x1f1f) | ((swap_b & 0x1f) << 8) | ((swap_b >> 8) & 0x1f)); ocp_reg_write(tp, 0xbc1a, (swap_b & ~0x1f1f) | ((swap_a & 0x1f) << 8) | ((swap_a >> 8) & 0x1f)); } /* Notify the MAC when the speed is changed to force mode. */ data = ocp_reg_read(tp, OCP_INTR_EN); data |= INTR_SPEED_FORCE; ocp_reg_write(tp, OCP_INTR_EN, data); break; default: break; } rtl_green_en(tp, test_bit(GREEN_ETHERNET, &tp->flags)); data = ocp_reg_read(tp, 0xa428); data &= ~BIT(9); ocp_reg_write(tp, 0xa428, data); data = ocp_reg_read(tp, 0xa5ea); data &= ~BIT(0); ocp_reg_write(tp, 0xa5ea, data); tp->ups_info.lite_mode = 0; if (tp->eee_en) rtl_eee_enable(tp, true); r8153_aldps_en(tp, true); r8152b_enable_fc(tp); r8153_u2p3en(tp, true); set_bit(PHY_RESET, &tp->flags); } static void r8156b_hw_phy_cfg(struct r8152 *tp) { u32 ocp_data; u16 data; switch (tp->version) { case RTL_VER_12: ocp_reg_write(tp, 0xbf86, 0x9000); data = ocp_reg_read(tp, 0xc402); data |= BIT(10); ocp_reg_write(tp, 0xc402, data); data &= ~BIT(10); ocp_reg_write(tp, 0xc402, data); ocp_reg_write(tp, 0xbd86, 0x1010); ocp_reg_write(tp, 0xbd88, 0x1010); data = ocp_reg_read(tp, 0xbd4e); data &= ~(BIT(10) | BIT(11)); data |= BIT(11); ocp_reg_write(tp, 0xbd4e, data); data = ocp_reg_read(tp, 0xbf46); data &= ~0xf00; data |= 0x700; ocp_reg_write(tp, 0xbf46, data); break; case RTL_VER_13: case RTL_VER_15: r8156b_wait_loading_flash(tp); break; default: break; } ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_MISC_0); if (ocp_data & PCUT_STATUS) { ocp_data &= ~PCUT_STATUS; ocp_write_word(tp, MCU_TYPE_USB, USB_MISC_0, ocp_data); } data = r8153_phy_status(tp, 0); switch (data) { case PHY_STAT_EXT_INIT: rtl8152_apply_firmware(tp, true); data = ocp_reg_read(tp, 0xa466); data &= ~BIT(0); ocp_reg_write(tp, 0xa466, data); data = ocp_reg_read(tp, 0xa468); data &= ~(BIT(3) | BIT(1)); ocp_reg_write(tp, 0xa468, data); break; case PHY_STAT_LAN_ON: case PHY_STAT_PWRDN: default: rtl8152_apply_firmware(tp, false); break; } data = r8152_mdio_read(tp, MII_BMCR); if (data & BMCR_PDOWN) { data &= ~BMCR_PDOWN; r8152_mdio_write(tp, MII_BMCR, data); } /* disable ALDPS before updating the PHY parameters */ r8153_aldps_en(tp, false); /* disable EEE before updating the PHY parameters */ rtl_eee_enable(tp, false); data = r8153_phy_status(tp, PHY_STAT_LAN_ON); WARN_ON_ONCE(data != PHY_STAT_LAN_ON); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR); ocp_data |= PFM_PWM_SWITCH; ocp_write_word(tp, MCU_TYPE_PLA, PLA_PHY_PWR, ocp_data); switch (tp->version) { case RTL_VER_12: data = ocp_reg_read(tp, 0xbc08); data |= BIT(3) | BIT(2); ocp_reg_write(tp, 0xbc08, data); data = sram_read(tp, 0x8fff); data &= ~0xff00; data |= 0x0400; sram_write(tp, 0x8fff, data); data = ocp_reg_read(tp, 0xacda); data |= 0xff00; ocp_reg_write(tp, 0xacda, data); data = ocp_reg_read(tp, 0xacde); data |= 0xf000; ocp_reg_write(tp, 0xacde, data); ocp_reg_write(tp, 0xac8c, 0x0ffc); ocp_reg_write(tp, 0xac46, 0xb7b4); ocp_reg_write(tp, 0xac50, 0x0fbc); ocp_reg_write(tp, 0xac3c, 0x9240); ocp_reg_write(tp, 0xac4e, 0x0db4); ocp_reg_write(tp, 0xacc6, 0x0707); ocp_reg_write(tp, 0xacc8, 0xa0d3); ocp_reg_write(tp, 0xad08, 0x0007); ocp_reg_write(tp, 0xb87c, 0x8560); ocp_reg_write(tp, 0xb87e, 0x19cc); ocp_reg_write(tp, 0xb87c, 0x8562); ocp_reg_write(tp, 0xb87e, 0x19cc); ocp_reg_write(tp, 0xb87c, 0x8564); ocp_reg_write(tp, 0xb87e, 0x19cc); ocp_reg_write(tp, 0xb87c, 0x8566); ocp_reg_write(tp, 0xb87e, 0x147d); ocp_reg_write(tp, 0xb87c, 0x8568); ocp_reg_write(tp, 0xb87e, 0x147d); ocp_reg_write(tp, 0xb87c, 0x856a); ocp_reg_write(tp, 0xb87e, 0x147d); ocp_reg_write(tp, 0xb87c, 0x8ffe); ocp_reg_write(tp, 0xb87e, 0x0907); ocp_reg_write(tp, 0xb87c, 0x80d6); ocp_reg_write(tp, 0xb87e, 0x2801); ocp_reg_write(tp, 0xb87c, 0x80f2); ocp_reg_write(tp, 0xb87e, 0x2801); ocp_reg_write(tp, 0xb87c, 0x80f4); ocp_reg_write(tp, 0xb87e, 0x6077); ocp_reg_write(tp, 0xb506, 0x01e7); ocp_reg_write(tp, 0xb87c, 0x8013); ocp_reg_write(tp, 0xb87e, 0x0700); ocp_reg_write(tp, 0xb87c, 0x8fb9); ocp_reg_write(tp, 0xb87e, 0x2801); ocp_reg_write(tp, 0xb87c, 0x8fba); ocp_reg_write(tp, 0xb87e, 0x0100); ocp_reg_write(tp, 0xb87c, 0x8fbc); ocp_reg_write(tp, 0xb87e, 0x1900); ocp_reg_write(tp, 0xb87c, 0x8fbe); ocp_reg_write(tp, 0xb87e, 0xe100); ocp_reg_write(tp, 0xb87c, 0x8fc0); ocp_reg_write(tp, 0xb87e, 0x0800); ocp_reg_write(tp, 0xb87c, 0x8fc2); ocp_reg_write(tp, 0xb87e, 0xe500); ocp_reg_write(tp, 0xb87c, 0x8fc4); ocp_reg_write(tp, 0xb87e, 0x0f00); ocp_reg_write(tp, 0xb87c, 0x8fc6); ocp_reg_write(tp, 0xb87e, 0xf100); ocp_reg_write(tp, 0xb87c, 0x8fc8); ocp_reg_write(tp, 0xb87e, 0x0400); ocp_reg_write(tp, 0xb87c, 0x8fca); ocp_reg_write(tp, 0xb87e, 0xf300); ocp_reg_write(tp, 0xb87c, 0x8fcc); ocp_reg_write(tp, 0xb87e, 0xfd00); ocp_reg_write(tp, 0xb87c, 0x8fce); ocp_reg_write(tp, 0xb87e, 0xff00); ocp_reg_write(tp, 0xb87c, 0x8fd0); ocp_reg_write(tp, 0xb87e, 0xfb00); ocp_reg_write(tp, 0xb87c, 0x8fd2); ocp_reg_write(tp, 0xb87e, 0x0100); ocp_reg_write(tp, 0xb87c, 0x8fd4); ocp_reg_write(tp, 0xb87e, 0xf400); ocp_reg_write(tp, 0xb87c, 0x8fd6); ocp_reg_write(tp, 0xb87e, 0xff00); ocp_reg_write(tp, 0xb87c, 0x8fd8); ocp_reg_write(tp, 0xb87e, 0xf600); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_USB_CFG); ocp_data |= EN_XG_LIP | EN_G_LIP; ocp_write_byte(tp, MCU_TYPE_PLA, PLA_USB_CFG, ocp_data); ocp_reg_write(tp, 0xb87c, 0x813d); ocp_reg_write(tp, 0xb87e, 0x390e); ocp_reg_write(tp, 0xb87c, 0x814f); ocp_reg_write(tp, 0xb87e, 0x790e); ocp_reg_write(tp, 0xb87c, 0x80b0); ocp_reg_write(tp, 0xb87e, 0x0f31); data = ocp_reg_read(tp, 0xbf4c); data |= BIT(1); ocp_reg_write(tp, 0xbf4c, data); data = ocp_reg_read(tp, 0xbcca); data |= BIT(9) | BIT(8); ocp_reg_write(tp, 0xbcca, data); ocp_reg_write(tp, 0xb87c, 0x8141); ocp_reg_write(tp, 0xb87e, 0x320e); ocp_reg_write(tp, 0xb87c, 0x8153); ocp_reg_write(tp, 0xb87e, 0x720e); ocp_reg_write(tp, 0xb87c, 0x8529); ocp_reg_write(tp, 0xb87e, 0x050e); data = ocp_reg_read(tp, OCP_EEE_CFG); data &= ~CTAP_SHORT_EN; ocp_reg_write(tp, OCP_EEE_CFG, data); sram_write(tp, 0x816c, 0xc4a0); sram_write(tp, 0x8170, 0xc4a0); sram_write(tp, 0x8174, 0x04a0); sram_write(tp, 0x8178, 0x04a0); sram_write(tp, 0x817c, 0x0719); sram_write(tp, 0x8ff4, 0x0400); sram_write(tp, 0x8ff1, 0x0404); ocp_reg_write(tp, 0xbf4a, 0x001b); ocp_reg_write(tp, 0xb87c, 0x8033); ocp_reg_write(tp, 0xb87e, 0x7c13); ocp_reg_write(tp, 0xb87c, 0x8037); ocp_reg_write(tp, 0xb87e, 0x7c13); ocp_reg_write(tp, 0xb87c, 0x803b); ocp_reg_write(tp, 0xb87e, 0xfc32); ocp_reg_write(tp, 0xb87c, 0x803f); ocp_reg_write(tp, 0xb87e, 0x7c13); ocp_reg_write(tp, 0xb87c, 0x8043); ocp_reg_write(tp, 0xb87e, 0x7c13); ocp_reg_write(tp, 0xb87c, 0x8047); ocp_reg_write(tp, 0xb87e, 0x7c13); ocp_reg_write(tp, 0xb87c, 0x8145); ocp_reg_write(tp, 0xb87e, 0x370e); ocp_reg_write(tp, 0xb87c, 0x8157); ocp_reg_write(tp, 0xb87e, 0x770e); ocp_reg_write(tp, 0xb87c, 0x8169); ocp_reg_write(tp, 0xb87e, 0x0d0a); ocp_reg_write(tp, 0xb87c, 0x817b); ocp_reg_write(tp, 0xb87e, 0x1d0a); data = sram_read(tp, 0x8217); data &= ~0xff00; data |= 0x5000; sram_write(tp, 0x8217, data); data = sram_read(tp, 0x821a); data &= ~0xff00; data |= 0x5000; sram_write(tp, 0x821a, data); sram_write(tp, 0x80da, 0x0403); data = sram_read(tp, 0x80dc); data &= ~0xff00; data |= 0x1000; sram_write(tp, 0x80dc, data); sram_write(tp, 0x80b3, 0x0384); sram_write(tp, 0x80b7, 0x2007); data = sram_read(tp, 0x80ba); data &= ~0xff00; data |= 0x6c00; sram_write(tp, 0x80ba, data); sram_write(tp, 0x80b5, 0xf009); data = sram_read(tp, 0x80bd); data &= ~0xff00; data |= 0x9f00; sram_write(tp, 0x80bd, data); sram_write(tp, 0x80c7, 0xf083); sram_write(tp, 0x80dd, 0x03f0); data = sram_read(tp, 0x80df); data &= ~0xff00; data |= 0x1000; sram_write(tp, 0x80df, data); sram_write(tp, 0x80cb, 0x2007); data = sram_read(tp, 0x80ce); data &= ~0xff00; data |= 0x6c00; sram_write(tp, 0x80ce, data); sram_write(tp, 0x80c9, 0x8009); data = sram_read(tp, 0x80d1); data &= ~0xff00; data |= 0x8000; sram_write(tp, 0x80d1, data); sram_write(tp, 0x80a3, 0x200a); sram_write(tp, 0x80a5, 0xf0ad); sram_write(tp, 0x809f, 0x6073); sram_write(tp, 0x80a1, 0x000b); data = sram_read(tp, 0x80a9); data &= ~0xff00; data |= 0xc000; sram_write(tp, 0x80a9, data); if (rtl_phy_patch_request(tp, true, true)) return; data = ocp_reg_read(tp, 0xb896); data &= ~BIT(0); ocp_reg_write(tp, 0xb896, data); data = ocp_reg_read(tp, 0xb892); data &= ~0xff00; ocp_reg_write(tp, 0xb892, data); ocp_reg_write(tp, 0xb88e, 0xc23e); ocp_reg_write(tp, 0xb890, 0x0000); ocp_reg_write(tp, 0xb88e, 0xc240); ocp_reg_write(tp, 0xb890, 0x0103); ocp_reg_write(tp, 0xb88e, 0xc242); ocp_reg_write(tp, 0xb890, 0x0507); ocp_reg_write(tp, 0xb88e, 0xc244); ocp_reg_write(tp, 0xb890, 0x090b); ocp_reg_write(tp, 0xb88e, 0xc246); ocp_reg_write(tp, 0xb890, 0x0c0e); ocp_reg_write(tp, 0xb88e, 0xc248); ocp_reg_write(tp, 0xb890, 0x1012); ocp_reg_write(tp, 0xb88e, 0xc24a); ocp_reg_write(tp, 0xb890, 0x1416); data = ocp_reg_read(tp, 0xb896); data |= BIT(0); ocp_reg_write(tp, 0xb896, data); rtl_phy_patch_request(tp, false, true); data = ocp_reg_read(tp, 0xa86a); data |= BIT(0); ocp_reg_write(tp, 0xa86a, data); data = ocp_reg_read(tp, 0xa6f0); data |= BIT(0); ocp_reg_write(tp, 0xa6f0, data); ocp_reg_write(tp, 0xbfa0, 0xd70d); ocp_reg_write(tp, 0xbfa2, 0x4100); ocp_reg_write(tp, 0xbfa4, 0xe868); ocp_reg_write(tp, 0xbfa6, 0xdc59); ocp_reg_write(tp, 0xb54c, 0x3c18); data = ocp_reg_read(tp, 0xbfa4); data &= ~BIT(5); ocp_reg_write(tp, 0xbfa4, data); data = sram_read(tp, 0x817d); data |= BIT(12); sram_write(tp, 0x817d, data); break; case RTL_VER_13: /* 2.5G INRX */ data = ocp_reg_read(tp, 0xac46); data &= ~0x00f0; data |= 0x0090; ocp_reg_write(tp, 0xac46, data); data = ocp_reg_read(tp, 0xad30); data &= ~0x0003; data |= 0x0001; ocp_reg_write(tp, 0xad30, data); fallthrough; case RTL_VER_15: /* EEE parameter */ ocp_reg_write(tp, 0xb87c, 0x80f5); ocp_reg_write(tp, 0xb87e, 0x760e); ocp_reg_write(tp, 0xb87c, 0x8107); ocp_reg_write(tp, 0xb87e, 0x360e); ocp_reg_write(tp, 0xb87c, 0x8551); data = ocp_reg_read(tp, 0xb87e); data &= ~0xff00; data |= 0x0800; ocp_reg_write(tp, 0xb87e, data); /* ADC_PGA parameter */ data = ocp_reg_read(tp, 0xbf00); data &= ~0xe000; data |= 0xa000; ocp_reg_write(tp, 0xbf00, data); data = ocp_reg_read(tp, 0xbf46); data &= ~0x0f00; data |= 0x0300; ocp_reg_write(tp, 0xbf46, data); /* Green Table-PGA, 1G full viterbi */ sram_write(tp, 0x8044, 0x2417); sram_write(tp, 0x804a, 0x2417); sram_write(tp, 0x8050, 0x2417); sram_write(tp, 0x8056, 0x2417); sram_write(tp, 0x805c, 0x2417); sram_write(tp, 0x8062, 0x2417); sram_write(tp, 0x8068, 0x2417); sram_write(tp, 0x806e, 0x2417); sram_write(tp, 0x8074, 0x2417); sram_write(tp, 0x807a, 0x2417); /* XG PLL */ data = ocp_reg_read(tp, 0xbf84); data &= ~0xe000; data |= 0xa000; ocp_reg_write(tp, 0xbf84, data); break; default: break; } /* Notify the MAC when the speed is changed to force mode. */ data = ocp_reg_read(tp, OCP_INTR_EN); data |= INTR_SPEED_FORCE; ocp_reg_write(tp, OCP_INTR_EN, data); if (rtl_phy_patch_request(tp, true, true)) return; ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4); ocp_data |= EEE_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL4, ocp_data); data = ocp_reg_read(tp, OCP_DOWN_SPEED); data &= ~(EN_EEE_100 | EN_EEE_1000); data |= EN_10M_CLKDIV; ocp_reg_write(tp, OCP_DOWN_SPEED, data); tp->ups_info._10m_ckdiv = true; tp->ups_info.eee_plloff_100 = false; tp->ups_info.eee_plloff_giga = false; data = ocp_reg_read(tp, OCP_POWER_CFG); data &= ~EEE_CLKDIV_EN; ocp_reg_write(tp, OCP_POWER_CFG, data); tp->ups_info.eee_ckdiv = false; rtl_phy_patch_request(tp, false, true); rtl_green_en(tp, test_bit(GREEN_ETHERNET, &tp->flags)); data = ocp_reg_read(tp, 0xa428); data &= ~BIT(9); ocp_reg_write(tp, 0xa428, data); data = ocp_reg_read(tp, 0xa5ea); data &= ~BIT(0); ocp_reg_write(tp, 0xa5ea, data); tp->ups_info.lite_mode = 0; if (tp->eee_en) rtl_eee_enable(tp, true); r8153_aldps_en(tp, true); r8152b_enable_fc(tp); r8153_u2p3en(tp, true); set_bit(PHY_RESET, &tp->flags); } static void r8156_init(struct r8152 *tp) { u32 ocp_data; u16 data; int i; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_ECM_OP); ocp_data &= ~EN_ALL_SPEED; ocp_write_byte(tp, MCU_TYPE_USB, USB_ECM_OP, ocp_data); ocp_write_word(tp, MCU_TYPE_USB, USB_SPEED_OPTION, 0); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_ECM_OPTION); ocp_data |= BYPASS_MAC_RESET; ocp_write_word(tp, MCU_TYPE_USB, USB_ECM_OPTION, ocp_data); r8153b_u1u2en(tp, false); for (i = 0; i < 500; i++) { if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) & AUTOLOAD_DONE) break; msleep(20); if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; } data = r8153_phy_status(tp, 0); if (data == PHY_STAT_EXT_INIT) { data = ocp_reg_read(tp, 0xa468); data &= ~(BIT(3) | BIT(1)); ocp_reg_write(tp, 0xa468, data); } data = r8152_mdio_read(tp, MII_BMCR); if (data & BMCR_PDOWN) { data &= ~BMCR_PDOWN; r8152_mdio_write(tp, MII_BMCR, data); } data = r8153_phy_status(tp, PHY_STAT_LAN_ON); WARN_ON_ONCE(data != PHY_STAT_LAN_ON); r8153_u2p3en(tp, false); /* MSC timer = 0xfff * 8ms = 32760 ms */ ocp_write_word(tp, MCU_TYPE_USB, USB_MSC_TIMER, 0x0fff); /* U1/U2/L1 idle timer. 500 us */ ocp_write_word(tp, MCU_TYPE_USB, USB_U1U2_TIMER, 500); r8153b_power_cut_en(tp, false); r8156_ups_en(tp, false); r8153_queue_wake(tp, false); rtl_runtime_suspend_enable(tp, false); if (tp->udev->speed >= USB_SPEED_SUPER) r8153b_u1u2en(tp, true); usb_enable_lpm(tp->udev); r8156_mac_clk_spd(tp, true); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3); ocp_data &= ~PLA_MCU_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS); if (rtl8152_get_speed(tp) & LINK_STATUS) ocp_data |= CUR_LINK_OK; else ocp_data &= ~CUR_LINK_OK; ocp_data |= POLL_LINK_CHG; ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, ocp_data); set_bit(GREEN_ETHERNET, &tp->flags); /* rx aggregation */ ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL); ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN); ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data); ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_BMU_CONFIG); ocp_data |= ACT_ODMA; ocp_write_byte(tp, MCU_TYPE_USB, USB_BMU_CONFIG, ocp_data); r8156_mdio_force_mode(tp); rtl_tally_reset(tp); tp->coalesce = 15000; /* 15 us */ } static void r8156b_init(struct r8152 *tp) { u32 ocp_data; u16 data; int i; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; ocp_data = ocp_read_byte(tp, MCU_TYPE_USB, USB_ECM_OP); ocp_data &= ~EN_ALL_SPEED; ocp_write_byte(tp, MCU_TYPE_USB, USB_ECM_OP, ocp_data); ocp_write_word(tp, MCU_TYPE_USB, USB_SPEED_OPTION, 0); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_ECM_OPTION); ocp_data |= BYPASS_MAC_RESET; ocp_write_word(tp, MCU_TYPE_USB, USB_ECM_OPTION, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL); ocp_data |= RX_DETECT8; ocp_write_word(tp, MCU_TYPE_USB, USB_U2P3_CTRL, ocp_data); r8153b_u1u2en(tp, false); switch (tp->version) { case RTL_VER_13: case RTL_VER_15: r8156b_wait_loading_flash(tp); break; default: break; } for (i = 0; i < 500; i++) { if (ocp_read_word(tp, MCU_TYPE_PLA, PLA_BOOT_CTRL) & AUTOLOAD_DONE) break; msleep(20); if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; } data = r8153_phy_status(tp, 0); if (data == PHY_STAT_EXT_INIT) { data = ocp_reg_read(tp, 0xa468); data &= ~(BIT(3) | BIT(1)); ocp_reg_write(tp, 0xa468, data); data = ocp_reg_read(tp, 0xa466); data &= ~BIT(0); ocp_reg_write(tp, 0xa466, data); } data = r8152_mdio_read(tp, MII_BMCR); if (data & BMCR_PDOWN) { data &= ~BMCR_PDOWN; r8152_mdio_write(tp, MII_BMCR, data); } data = r8153_phy_status(tp, PHY_STAT_LAN_ON); r8153_u2p3en(tp, false); /* MSC timer = 0xfff * 8ms = 32760 ms */ ocp_write_word(tp, MCU_TYPE_USB, USB_MSC_TIMER, 0x0fff); /* U1/U2/L1 idle timer. 500 us */ ocp_write_word(tp, MCU_TYPE_USB, USB_U1U2_TIMER, 500); r8153b_power_cut_en(tp, false); r8156_ups_en(tp, false); r8153_queue_wake(tp, false); rtl_runtime_suspend_enable(tp, false); if (tp->udev->speed >= USB_SPEED_SUPER) r8153b_u1u2en(tp, true); usb_enable_lpm(tp->udev); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data &= ~SLOT_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_CPCR); ocp_data |= FLOW_CTRL_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_CPCR, ocp_data); /* enable fc timer and set timer to 600 ms. */ ocp_write_word(tp, MCU_TYPE_USB, USB_FC_TIMER, CTRL_TIMER_EN | (600 / 8)); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_CTRL); if (!(ocp_read_word(tp, MCU_TYPE_PLA, PLA_POL_GPIO_CTRL) & DACK_DET_EN)) ocp_data |= FLOW_CTRL_PATCH_2; ocp_data &= ~AUTO_SPEEDUP; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_CTRL, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_FW_TASK); ocp_data |= FC_PATCH_TASK; ocp_write_word(tp, MCU_TYPE_USB, USB_FW_TASK, ocp_data); r8156_mac_clk_spd(tp, true); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3); ocp_data &= ~PLA_MCU_SPDWN_EN; ocp_write_word(tp, MCU_TYPE_PLA, PLA_MAC_PWR_CTRL3, ocp_data); ocp_data = ocp_read_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS); if (rtl8152_get_speed(tp) & LINK_STATUS) ocp_data |= CUR_LINK_OK; else ocp_data &= ~CUR_LINK_OK; ocp_data |= POLL_LINK_CHG; ocp_write_word(tp, MCU_TYPE_PLA, PLA_EXTRA_STATUS, ocp_data); set_bit(GREEN_ETHERNET, &tp->flags); /* rx aggregation */ ocp_data = ocp_read_word(tp, MCU_TYPE_USB, USB_USB_CTRL); ocp_data &= ~(RX_AGG_DISABLE | RX_ZERO_EN); ocp_write_word(tp, MCU_TYPE_USB, USB_USB_CTRL, ocp_data); r8156_mdio_force_mode(tp); rtl_tally_reset(tp); tp->coalesce = 15000; /* 15 us */ } static bool rtl_check_vendor_ok(struct usb_interface *intf) { struct usb_host_interface *alt = intf->cur_altsetting; struct usb_endpoint_descriptor *in, *out, *intr; if (usb_find_common_endpoints(alt, &in, &out, &intr, NULL) < 0) { dev_err(&intf->dev, "Expected endpoints are not found\n"); return false; } /* Check Rx endpoint address */ if (usb_endpoint_num(in) != 1) { dev_err(&intf->dev, "Invalid Rx endpoint address\n"); return false; } /* Check Tx endpoint address */ if (usb_endpoint_num(out) != 2) { dev_err(&intf->dev, "Invalid Tx endpoint address\n"); return false; } /* Check interrupt endpoint address */ if (usb_endpoint_num(intr) != 3) { dev_err(&intf->dev, "Invalid interrupt endpoint address\n"); return false; } return true; } static int rtl8152_pre_reset(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); struct net_device *netdev; rtnl_lock(); if (!tp || !test_bit(PROBED_WITH_NO_ERRORS, &tp->flags)) return 0; netdev = tp->netdev; if (!netif_running(netdev)) return 0; netif_stop_queue(netdev); tasklet_disable(&tp->tx_tl); clear_bit(WORK_ENABLE, &tp->flags); usb_kill_urb(tp->intr_urb); cancel_delayed_work_sync(&tp->schedule); napi_disable(&tp->napi); if (netif_carrier_ok(netdev)) { mutex_lock(&tp->control); set_bit(IN_PRE_RESET, &tp->flags); tp->rtl_ops.disable(tp); clear_bit(IN_PRE_RESET, &tp->flags); mutex_unlock(&tp->control); } return 0; } static int rtl8152_post_reset(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); struct net_device *netdev; struct sockaddr sa; if (!tp || !test_bit(PROBED_WITH_NO_ERRORS, &tp->flags)) goto exit; rtl_set_accessible(tp); /* reset the MAC address in case of policy change */ if (determine_ethernet_addr(tp, &sa) >= 0) dev_set_mac_address (tp->netdev, &sa, NULL); netdev = tp->netdev; if (!netif_running(netdev)) goto exit; set_bit(WORK_ENABLE, &tp->flags); if (netif_carrier_ok(netdev)) { mutex_lock(&tp->control); tp->rtl_ops.enable(tp); rtl_start_rx(tp); _rtl8152_set_rx_mode(netdev); mutex_unlock(&tp->control); } napi_enable(&tp->napi); tasklet_enable(&tp->tx_tl); netif_wake_queue(netdev); usb_submit_urb(tp->intr_urb, GFP_KERNEL); if (!list_empty(&tp->rx_done)) napi_schedule(&tp->napi); exit: rtnl_unlock(); return 0; } static bool delay_autosuspend(struct r8152 *tp) { bool sw_linking = !!netif_carrier_ok(tp->netdev); bool hw_linking = !!(rtl8152_get_speed(tp) & LINK_STATUS); /* This means a linking change occurs and the driver doesn't detect it, * yet. If the driver has disabled tx/rx and hw is linking on, the * device wouldn't wake up by receiving any packet. */ if (work_busy(&tp->schedule.work) || sw_linking != hw_linking) return true; /* If the linking down is occurred by nway, the device may miss the * linking change event. And it wouldn't wake when linking on. */ if (!sw_linking && tp->rtl_ops.in_nway(tp)) return true; else if (!skb_queue_empty(&tp->tx_queue)) return true; else return false; } static int rtl8152_runtime_resume(struct r8152 *tp) { struct net_device *netdev = tp->netdev; if (netif_running(netdev) && netdev->flags & IFF_UP) { struct napi_struct *napi = &tp->napi; tp->rtl_ops.autosuspend_en(tp, false); napi_disable(napi); set_bit(WORK_ENABLE, &tp->flags); if (netif_carrier_ok(netdev)) { if (rtl8152_get_speed(tp) & LINK_STATUS) { rtl_start_rx(tp); } else { netif_carrier_off(netdev); tp->rtl_ops.disable(tp); netif_info(tp, link, netdev, "linking down\n"); } } napi_enable(napi); clear_bit(SELECTIVE_SUSPEND, &tp->flags); smp_mb__after_atomic(); if (!list_empty(&tp->rx_done)) napi_schedule(&tp->napi); usb_submit_urb(tp->intr_urb, GFP_NOIO); } else { if (netdev->flags & IFF_UP) tp->rtl_ops.autosuspend_en(tp, false); clear_bit(SELECTIVE_SUSPEND, &tp->flags); } return 0; } static int rtl8152_system_resume(struct r8152 *tp) { struct net_device *netdev = tp->netdev; netif_device_attach(netdev); if (netif_running(netdev) && (netdev->flags & IFF_UP)) { tp->rtl_ops.up(tp); netif_carrier_off(netdev); set_bit(WORK_ENABLE, &tp->flags); usb_submit_urb(tp->intr_urb, GFP_NOIO); } /* If the device is RTL8152_INACCESSIBLE here then we should do a * reset. This is important because the usb_lock_device_for_reset() * that happens as a result of usb_queue_reset_device() will silently * fail if the device was suspended or if too much time passed. * * NOTE: The device is locked here so we can directly do the reset. * We don't need usb_lock_device_for_reset() because that's just a * wrapper over device_lock() and device_resume() (which calls us) * does that for us. */ if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) usb_reset_device(tp->udev); return 0; } static int rtl8152_runtime_suspend(struct r8152 *tp) { struct net_device *netdev = tp->netdev; int ret = 0; if (!tp->rtl_ops.autosuspend_en) return -EBUSY; set_bit(SELECTIVE_SUSPEND, &tp->flags); smp_mb__after_atomic(); if (netif_running(netdev) && test_bit(WORK_ENABLE, &tp->flags)) { u32 rcr = 0; if (netif_carrier_ok(netdev)) { u32 ocp_data; rcr = ocp_read_dword(tp, MCU_TYPE_PLA, PLA_RCR); ocp_data = rcr & ~RCR_ACPT_ALL; ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, ocp_data); rxdy_gated_en(tp, true); ocp_data = ocp_read_byte(tp, MCU_TYPE_PLA, PLA_OOB_CTRL); if (!(ocp_data & RXFIFO_EMPTY)) { rxdy_gated_en(tp, false); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr); clear_bit(SELECTIVE_SUSPEND, &tp->flags); smp_mb__after_atomic(); ret = -EBUSY; goto out1; } } clear_bit(WORK_ENABLE, &tp->flags); usb_kill_urb(tp->intr_urb); tp->rtl_ops.autosuspend_en(tp, true); if (netif_carrier_ok(netdev)) { struct napi_struct *napi = &tp->napi; napi_disable(napi); rtl_stop_rx(tp); rxdy_gated_en(tp, false); ocp_write_dword(tp, MCU_TYPE_PLA, PLA_RCR, rcr); napi_enable(napi); } if (delay_autosuspend(tp)) { rtl8152_runtime_resume(tp); ret = -EBUSY; } } out1: return ret; } static int rtl8152_system_suspend(struct r8152 *tp) { struct net_device *netdev = tp->netdev; netif_device_detach(netdev); if (netif_running(netdev) && test_bit(WORK_ENABLE, &tp->flags)) { struct napi_struct *napi = &tp->napi; clear_bit(WORK_ENABLE, &tp->flags); usb_kill_urb(tp->intr_urb); tasklet_disable(&tp->tx_tl); napi_disable(napi); cancel_delayed_work_sync(&tp->schedule); tp->rtl_ops.down(tp); napi_enable(napi); tasklet_enable(&tp->tx_tl); } /* If we're inaccessible here then some of the work that we did to * get the adapter ready for suspend didn't work. Queue up a wakeup * event so we can try again. */ if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) pm_wakeup_event(&tp->udev->dev, 0); return 0; } static int rtl8152_suspend(struct usb_interface *intf, pm_message_t message) { struct r8152 *tp = usb_get_intfdata(intf); int ret; mutex_lock(&tp->control); if (PMSG_IS_AUTO(message)) ret = rtl8152_runtime_suspend(tp); else ret = rtl8152_system_suspend(tp); mutex_unlock(&tp->control); return ret; } static int rtl8152_resume(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); int ret; mutex_lock(&tp->control); rtl_reset_ocp_base(tp); if (test_bit(SELECTIVE_SUSPEND, &tp->flags)) ret = rtl8152_runtime_resume(tp); else ret = rtl8152_system_resume(tp); mutex_unlock(&tp->control); return ret; } static int rtl8152_reset_resume(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); clear_bit(SELECTIVE_SUSPEND, &tp->flags); rtl_reset_ocp_base(tp); tp->rtl_ops.init(tp); queue_delayed_work(system_long_wq, &tp->hw_phy_work, 0); set_ethernet_addr(tp, true); return rtl8152_resume(intf); } static void rtl8152_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct r8152 *tp = netdev_priv(dev); if (usb_autopm_get_interface(tp->intf) < 0) return; if (!rtl_can_wakeup(tp)) { wol->supported = 0; wol->wolopts = 0; } else { mutex_lock(&tp->control); wol->supported = WAKE_ANY; wol->wolopts = __rtl_get_wol(tp); mutex_unlock(&tp->control); } usb_autopm_put_interface(tp->intf); } static int rtl8152_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct r8152 *tp = netdev_priv(dev); int ret; if (!rtl_can_wakeup(tp)) return -EOPNOTSUPP; if (wol->wolopts & ~WAKE_ANY) return -EINVAL; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out_set_wol; mutex_lock(&tp->control); __rtl_set_wol(tp, wol->wolopts); tp->saved_wolopts = wol->wolopts & WAKE_ANY; mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out_set_wol: return ret; } static u32 rtl8152_get_msglevel(struct net_device *dev) { struct r8152 *tp = netdev_priv(dev); return tp->msg_enable; } static void rtl8152_set_msglevel(struct net_device *dev, u32 value) { struct r8152 *tp = netdev_priv(dev); tp->msg_enable = value; } static void rtl8152_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { struct r8152 *tp = netdev_priv(netdev); strscpy(info->driver, MODULENAME, sizeof(info->driver)); strscpy(info->version, DRIVER_VERSION, sizeof(info->version)); usb_make_path(tp->udev, info->bus_info, sizeof(info->bus_info)); if (!IS_ERR_OR_NULL(tp->rtl_fw.fw)) strscpy(info->fw_version, tp->rtl_fw.version, sizeof(info->fw_version)); } static int rtl8152_get_link_ksettings(struct net_device *netdev, struct ethtool_link_ksettings *cmd) { struct r8152 *tp = netdev_priv(netdev); int ret; if (!tp->mii.mdio_read) return -EOPNOTSUPP; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); mii_ethtool_get_link_ksettings(&tp->mii, cmd); linkmode_mod_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, cmd->link_modes.supported, tp->support_2500full); if (tp->support_2500full) { linkmode_mod_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, cmd->link_modes.advertising, ocp_reg_read(tp, OCP_10GBT_CTRL) & MDIO_AN_10GBT_CTRL_ADV2_5G); linkmode_mod_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, cmd->link_modes.lp_advertising, ocp_reg_read(tp, OCP_10GBT_STAT) & MDIO_AN_10GBT_STAT_LP2_5G); if (is_speed_2500(rtl8152_get_speed(tp))) cmd->base.speed = SPEED_2500; } mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static int rtl8152_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct r8152 *tp = netdev_priv(dev); u32 advertising = 0; int ret; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; if (test_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, cmd->link_modes.advertising)) advertising |= RTL_ADVERTISED_10_HALF; if (test_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, cmd->link_modes.advertising)) advertising |= RTL_ADVERTISED_10_FULL; if (test_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, cmd->link_modes.advertising)) advertising |= RTL_ADVERTISED_100_HALF; if (test_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, cmd->link_modes.advertising)) advertising |= RTL_ADVERTISED_100_FULL; if (test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, cmd->link_modes.advertising)) advertising |= RTL_ADVERTISED_1000_HALF; if (test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, cmd->link_modes.advertising)) advertising |= RTL_ADVERTISED_1000_FULL; if (test_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, cmd->link_modes.advertising)) advertising |= RTL_ADVERTISED_2500_FULL; mutex_lock(&tp->control); ret = rtl8152_set_speed(tp, cmd->base.autoneg, cmd->base.speed, cmd->base.duplex, advertising); if (!ret) { tp->autoneg = cmd->base.autoneg; tp->speed = cmd->base.speed; tp->duplex = cmd->base.duplex; tp->advertising = advertising; } mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static const char rtl8152_gstrings[][ETH_GSTRING_LEN] = { "tx_packets", "rx_packets", "tx_errors", "rx_errors", "rx_missed", "align_errors", "tx_single_collisions", "tx_multi_collisions", "rx_unicast", "rx_broadcast", "rx_multicast", "tx_aborted", "tx_underrun", }; static int rtl8152_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(rtl8152_gstrings); default: return -EOPNOTSUPP; } } static void rtl8152_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct r8152 *tp = netdev_priv(dev); struct tally_counter tally; if (usb_autopm_get_interface(tp->intf) < 0) return; generic_ocp_read(tp, PLA_TALLYCNT, sizeof(tally), &tally, MCU_TYPE_PLA); usb_autopm_put_interface(tp->intf); data[0] = le64_to_cpu(tally.tx_packets); data[1] = le64_to_cpu(tally.rx_packets); data[2] = le64_to_cpu(tally.tx_errors); data[3] = le32_to_cpu(tally.rx_errors); data[4] = le16_to_cpu(tally.rx_missed); data[5] = le16_to_cpu(tally.align_errors); data[6] = le32_to_cpu(tally.tx_one_collision); data[7] = le32_to_cpu(tally.tx_multi_collision); data[8] = le64_to_cpu(tally.rx_unicast); data[9] = le64_to_cpu(tally.rx_broadcast); data[10] = le32_to_cpu(tally.rx_multicast); data[11] = le16_to_cpu(tally.tx_aborted); data[12] = le16_to_cpu(tally.tx_underrun); } static void rtl8152_get_strings(struct net_device *dev, u32 stringset, u8 *data) { switch (stringset) { case ETH_SS_STATS: memcpy(data, rtl8152_gstrings, sizeof(rtl8152_gstrings)); break; } } static int r8152_get_eee(struct r8152 *tp, struct ethtool_keee *eee) { __ETHTOOL_DECLARE_LINK_MODE_MASK(common); u16 val; val = r8152_mmd_read(tp, MDIO_MMD_PCS, MDIO_PCS_EEE_ABLE); mii_eee_cap1_mod_linkmode_t(eee->supported, val); val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_ADV); mii_eee_cap1_mod_linkmode_t(eee->advertised, val); val = r8152_mmd_read(tp, MDIO_MMD_AN, MDIO_AN_EEE_LPABLE); mii_eee_cap1_mod_linkmode_t(eee->lp_advertised, val); eee->eee_enabled = tp->eee_en; linkmode_and(common, eee->advertised, eee->lp_advertised); eee->eee_active = phy_check_valid(tp->speed, tp->duplex, common); return 0; } static int r8152_set_eee(struct r8152 *tp, struct ethtool_keee *eee) { u16 val = linkmode_to_mii_eee_cap1_t(eee->advertised); tp->eee_en = eee->eee_enabled; tp->eee_adv = val; rtl_eee_enable(tp, tp->eee_en); return 0; } static int r8153_get_eee(struct r8152 *tp, struct ethtool_keee *eee) { __ETHTOOL_DECLARE_LINK_MODE_MASK(common); u16 val; val = ocp_reg_read(tp, OCP_EEE_ABLE); mii_eee_cap1_mod_linkmode_t(eee->supported, val); val = ocp_reg_read(tp, OCP_EEE_ADV); mii_eee_cap1_mod_linkmode_t(eee->advertised, val); val = ocp_reg_read(tp, OCP_EEE_LPABLE); mii_eee_cap1_mod_linkmode_t(eee->lp_advertised, val); eee->eee_enabled = tp->eee_en; linkmode_and(common, eee->advertised, eee->lp_advertised); eee->eee_active = phy_check_valid(tp->speed, tp->duplex, common); return 0; } static int rtl_ethtool_get_eee(struct net_device *net, struct ethtool_keee *edata) { struct r8152 *tp = netdev_priv(net); int ret; if (!tp->rtl_ops.eee_get) { ret = -EOPNOTSUPP; goto out; } ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); ret = tp->rtl_ops.eee_get(tp, edata); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static int rtl_ethtool_set_eee(struct net_device *net, struct ethtool_keee *edata) { struct r8152 *tp = netdev_priv(net); int ret; if (!tp->rtl_ops.eee_set) { ret = -EOPNOTSUPP; goto out; } ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); ret = tp->rtl_ops.eee_set(tp, edata); if (!ret) ret = mii_nway_restart(&tp->mii); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static int rtl8152_nway_reset(struct net_device *dev) { struct r8152 *tp = netdev_priv(dev); int ret; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) goto out; mutex_lock(&tp->control); ret = mii_nway_restart(&tp->mii); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); out: return ret; } static int rtl8152_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *coalesce, struct kernel_ethtool_coalesce *kernel_coal, struct netlink_ext_ack *extack) { struct r8152 *tp = netdev_priv(netdev); switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: return -EOPNOTSUPP; default: break; } coalesce->rx_coalesce_usecs = tp->coalesce; return 0; } static int rtl8152_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *coalesce, struct kernel_ethtool_coalesce *kernel_coal, struct netlink_ext_ack *extack) { struct r8152 *tp = netdev_priv(netdev); int ret; switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: return -EOPNOTSUPP; default: break; } if (coalesce->rx_coalesce_usecs > COALESCE_SLOW) return -EINVAL; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) return ret; mutex_lock(&tp->control); if (tp->coalesce != coalesce->rx_coalesce_usecs) { tp->coalesce = coalesce->rx_coalesce_usecs; if (netif_running(netdev) && netif_carrier_ok(netdev)) { netif_stop_queue(netdev); napi_disable(&tp->napi); tp->rtl_ops.disable(tp); tp->rtl_ops.enable(tp); rtl_start_rx(tp); clear_bit(RTL8152_SET_RX_MODE, &tp->flags); _rtl8152_set_rx_mode(netdev); napi_enable(&tp->napi); netif_wake_queue(netdev); } } mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); return ret; } static int rtl8152_get_tunable(struct net_device *netdev, const struct ethtool_tunable *tunable, void *d) { struct r8152 *tp = netdev_priv(netdev); switch (tunable->id) { case ETHTOOL_RX_COPYBREAK: *(u32 *)d = tp->rx_copybreak; break; default: return -EOPNOTSUPP; } return 0; } static int rtl8152_set_tunable(struct net_device *netdev, const struct ethtool_tunable *tunable, const void *d) { struct r8152 *tp = netdev_priv(netdev); u32 val; switch (tunable->id) { case ETHTOOL_RX_COPYBREAK: val = *(u32 *)d; if (val < ETH_ZLEN) { netif_err(tp, rx_err, netdev, "Invalid rx copy break value\n"); return -EINVAL; } if (tp->rx_copybreak != val) { if (netdev->flags & IFF_UP) { mutex_lock(&tp->control); napi_disable(&tp->napi); tp->rx_copybreak = val; napi_enable(&tp->napi); mutex_unlock(&tp->control); } else { tp->rx_copybreak = val; } } break; default: return -EOPNOTSUPP; } return 0; } static void rtl8152_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct r8152 *tp = netdev_priv(netdev); ring->rx_max_pending = RTL8152_RX_MAX_PENDING; ring->rx_pending = tp->rx_pending; } static int rtl8152_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct r8152 *tp = netdev_priv(netdev); if (ring->rx_pending < (RTL8152_MAX_RX * 2)) return -EINVAL; if (tp->rx_pending != ring->rx_pending) { if (netdev->flags & IFF_UP) { mutex_lock(&tp->control); napi_disable(&tp->napi); tp->rx_pending = ring->rx_pending; napi_enable(&tp->napi); mutex_unlock(&tp->control); } else { tp->rx_pending = ring->rx_pending; } } return 0; } static void rtl8152_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) { struct r8152 *tp = netdev_priv(netdev); u16 bmcr, lcladv, rmtadv; u8 cap; if (usb_autopm_get_interface(tp->intf) < 0) return; mutex_lock(&tp->control); bmcr = r8152_mdio_read(tp, MII_BMCR); lcladv = r8152_mdio_read(tp, MII_ADVERTISE); rmtadv = r8152_mdio_read(tp, MII_LPA); mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); if (!(bmcr & BMCR_ANENABLE)) { pause->autoneg = 0; pause->rx_pause = 0; pause->tx_pause = 0; return; } pause->autoneg = 1; cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv); if (cap & FLOW_CTRL_RX) pause->rx_pause = 1; if (cap & FLOW_CTRL_TX) pause->tx_pause = 1; } static int rtl8152_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) { struct r8152 *tp = netdev_priv(netdev); u16 old, new1; u8 cap = 0; int ret; ret = usb_autopm_get_interface(tp->intf); if (ret < 0) return ret; mutex_lock(&tp->control); if (pause->autoneg && !(r8152_mdio_read(tp, MII_BMCR) & BMCR_ANENABLE)) { ret = -EINVAL; goto out; } if (pause->rx_pause) cap |= FLOW_CTRL_RX; if (pause->tx_pause) cap |= FLOW_CTRL_TX; old = r8152_mdio_read(tp, MII_ADVERTISE); new1 = (old & ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) | mii_advertise_flowctrl(cap); if (old != new1) r8152_mdio_write(tp, MII_ADVERTISE, new1); out: mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); return ret; } static const struct ethtool_ops ops = { .supported_coalesce_params = ETHTOOL_COALESCE_USECS, .get_drvinfo = rtl8152_get_drvinfo, .get_link = ethtool_op_get_link, .nway_reset = rtl8152_nway_reset, .get_msglevel = rtl8152_get_msglevel, .set_msglevel = rtl8152_set_msglevel, .get_wol = rtl8152_get_wol, .set_wol = rtl8152_set_wol, .get_strings = rtl8152_get_strings, .get_sset_count = rtl8152_get_sset_count, .get_ethtool_stats = rtl8152_get_ethtool_stats, .get_coalesce = rtl8152_get_coalesce, .set_coalesce = rtl8152_set_coalesce, .get_eee = rtl_ethtool_get_eee, .set_eee = rtl_ethtool_set_eee, .get_link_ksettings = rtl8152_get_link_ksettings, .set_link_ksettings = rtl8152_set_link_ksettings, .get_tunable = rtl8152_get_tunable, .set_tunable = rtl8152_set_tunable, .get_ringparam = rtl8152_get_ringparam, .set_ringparam = rtl8152_set_ringparam, .get_pauseparam = rtl8152_get_pauseparam, .set_pauseparam = rtl8152_set_pauseparam, }; static int rtl8152_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd) { struct r8152 *tp = netdev_priv(netdev); struct mii_ioctl_data *data = if_mii(rq); int res; if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return -ENODEV; res = usb_autopm_get_interface(tp->intf); if (res < 0) goto out; switch (cmd) { case SIOCGMIIPHY: data->phy_id = R8152_PHY_ID; /* Internal PHY */ break; case SIOCGMIIREG: mutex_lock(&tp->control); data->val_out = r8152_mdio_read(tp, data->reg_num); mutex_unlock(&tp->control); break; case SIOCSMIIREG: if (!capable(CAP_NET_ADMIN)) { res = -EPERM; break; } mutex_lock(&tp->control); r8152_mdio_write(tp, data->reg_num, data->val_in); mutex_unlock(&tp->control); break; default: res = -EOPNOTSUPP; } usb_autopm_put_interface(tp->intf); out: return res; } static int rtl8152_change_mtu(struct net_device *dev, int new_mtu) { struct r8152 *tp = netdev_priv(dev); int ret; switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: WRITE_ONCE(dev->mtu, new_mtu); return 0; default: break; } ret = usb_autopm_get_interface(tp->intf); if (ret < 0) return ret; mutex_lock(&tp->control); WRITE_ONCE(dev->mtu, new_mtu); if (netif_running(dev)) { if (tp->rtl_ops.change_mtu) tp->rtl_ops.change_mtu(tp); if (netif_carrier_ok(dev)) { netif_stop_queue(dev); napi_disable(&tp->napi); tasklet_disable(&tp->tx_tl); tp->rtl_ops.disable(tp); tp->rtl_ops.enable(tp); rtl_start_rx(tp); tasklet_enable(&tp->tx_tl); napi_enable(&tp->napi); rtl8152_set_rx_mode(dev); netif_wake_queue(dev); } } mutex_unlock(&tp->control); usb_autopm_put_interface(tp->intf); return ret; } static const struct net_device_ops rtl8152_netdev_ops = { .ndo_open = rtl8152_open, .ndo_stop = rtl8152_close, .ndo_eth_ioctl = rtl8152_ioctl, .ndo_start_xmit = rtl8152_start_xmit, .ndo_tx_timeout = rtl8152_tx_timeout, .ndo_set_features = rtl8152_set_features, .ndo_set_rx_mode = rtl8152_set_rx_mode, .ndo_set_mac_address = rtl8152_set_mac_address, .ndo_change_mtu = rtl8152_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_features_check = rtl8152_features_check, }; static void rtl8152_unload(struct r8152 *tp) { if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; if (tp->version != RTL_VER_01) r8152_power_cut_en(tp, true); } static void rtl8153_unload(struct r8152 *tp) { if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; r8153_power_cut_en(tp, false); } static void rtl8153b_unload(struct r8152 *tp) { if (test_bit(RTL8152_INACCESSIBLE, &tp->flags)) return; r8153b_power_cut_en(tp, false); } static int rtl_ops_init(struct r8152 *tp) { struct rtl_ops *ops = &tp->rtl_ops; int ret = 0; switch (tp->version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: ops->init = r8152b_init; ops->enable = rtl8152_enable; ops->disable = rtl8152_disable; ops->up = rtl8152_up; ops->down = rtl8152_down; ops->unload = rtl8152_unload; ops->eee_get = r8152_get_eee; ops->eee_set = r8152_set_eee; ops->in_nway = rtl8152_in_nway; ops->hw_phy_cfg = r8152b_hw_phy_cfg; ops->autosuspend_en = rtl_runtime_suspend_enable; tp->rx_buf_sz = 16 * 1024; tp->eee_en = true; tp->eee_adv = MDIO_EEE_100TX; break; case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: ops->init = r8153_init; ops->enable = rtl8153_enable; ops->disable = rtl8153_disable; ops->up = rtl8153_up; ops->down = rtl8153_down; ops->unload = rtl8153_unload; ops->eee_get = r8153_get_eee; ops->eee_set = r8152_set_eee; ops->in_nway = rtl8153_in_nway; ops->hw_phy_cfg = r8153_hw_phy_cfg; ops->autosuspend_en = rtl8153_runtime_enable; ops->change_mtu = rtl8153_change_mtu; if (tp->udev->speed < USB_SPEED_SUPER) tp->rx_buf_sz = 16 * 1024; else tp->rx_buf_sz = 32 * 1024; tp->eee_en = true; tp->eee_adv = MDIO_EEE_1000T | MDIO_EEE_100TX; break; case RTL_VER_08: case RTL_VER_09: ops->init = r8153b_init; ops->enable = rtl8153_enable; ops->disable = rtl8153_disable; ops->up = rtl8153b_up; ops->down = rtl8153b_down; ops->unload = rtl8153b_unload; ops->eee_get = r8153_get_eee; ops->eee_set = r8152_set_eee; ops->in_nway = rtl8153_in_nway; ops->hw_phy_cfg = r8153b_hw_phy_cfg; ops->autosuspend_en = rtl8153b_runtime_enable; ops->change_mtu = rtl8153_change_mtu; tp->rx_buf_sz = 32 * 1024; tp->eee_en = true; tp->eee_adv = MDIO_EEE_1000T | MDIO_EEE_100TX; break; case RTL_VER_11: tp->eee_en = true; tp->eee_adv = MDIO_EEE_1000T | MDIO_EEE_100TX; fallthrough; case RTL_VER_10: ops->init = r8156_init; ops->enable = rtl8156_enable; ops->disable = rtl8156_disable; ops->up = rtl8156_up; ops->down = rtl8156_down; ops->unload = rtl8153_unload; ops->eee_get = r8153_get_eee; ops->eee_set = r8152_set_eee; ops->in_nway = rtl8153_in_nway; ops->hw_phy_cfg = r8156_hw_phy_cfg; ops->autosuspend_en = rtl8156_runtime_enable; ops->change_mtu = rtl8156_change_mtu; tp->rx_buf_sz = 48 * 1024; tp->support_2500full = 1; break; case RTL_VER_12: case RTL_VER_13: tp->support_2500full = 1; fallthrough; case RTL_VER_15: tp->eee_en = true; tp->eee_adv = MDIO_EEE_1000T | MDIO_EEE_100TX; ops->init = r8156b_init; ops->enable = rtl8156b_enable; ops->disable = rtl8153_disable; ops->up = rtl8156_up; ops->down = rtl8156_down; ops->unload = rtl8153_unload; ops->eee_get = r8153_get_eee; ops->eee_set = r8152_set_eee; ops->in_nway = rtl8153_in_nway; ops->hw_phy_cfg = r8156b_hw_phy_cfg; ops->autosuspend_en = rtl8156_runtime_enable; ops->change_mtu = rtl8156_change_mtu; tp->rx_buf_sz = 48 * 1024; break; case RTL_VER_14: ops->init = r8153c_init; ops->enable = rtl8153_enable; ops->disable = rtl8153_disable; ops->up = rtl8153c_up; ops->down = rtl8153b_down; ops->unload = rtl8153_unload; ops->eee_get = r8153_get_eee; ops->eee_set = r8152_set_eee; ops->in_nway = rtl8153_in_nway; ops->hw_phy_cfg = r8153c_hw_phy_cfg; ops->autosuspend_en = rtl8153c_runtime_enable; ops->change_mtu = rtl8153c_change_mtu; tp->rx_buf_sz = 32 * 1024; tp->eee_en = true; tp->eee_adv = MDIO_EEE_1000T | MDIO_EEE_100TX; break; default: ret = -ENODEV; dev_err(&tp->intf->dev, "Unknown Device\n"); break; } return ret; } #define FIRMWARE_8153A_2 "rtl_nic/rtl8153a-2.fw" #define FIRMWARE_8153A_3 "rtl_nic/rtl8153a-3.fw" #define FIRMWARE_8153A_4 "rtl_nic/rtl8153a-4.fw" #define FIRMWARE_8153B_2 "rtl_nic/rtl8153b-2.fw" #define FIRMWARE_8153C_1 "rtl_nic/rtl8153c-1.fw" #define FIRMWARE_8156A_2 "rtl_nic/rtl8156a-2.fw" #define FIRMWARE_8156B_2 "rtl_nic/rtl8156b-2.fw" MODULE_FIRMWARE(FIRMWARE_8153A_2); MODULE_FIRMWARE(FIRMWARE_8153A_3); MODULE_FIRMWARE(FIRMWARE_8153A_4); MODULE_FIRMWARE(FIRMWARE_8153B_2); MODULE_FIRMWARE(FIRMWARE_8153C_1); MODULE_FIRMWARE(FIRMWARE_8156A_2); MODULE_FIRMWARE(FIRMWARE_8156B_2); static int rtl_fw_init(struct r8152 *tp) { struct rtl_fw *rtl_fw = &tp->rtl_fw; switch (tp->version) { case RTL_VER_04: rtl_fw->fw_name = FIRMWARE_8153A_2; rtl_fw->pre_fw = r8153_pre_firmware_1; rtl_fw->post_fw = r8153_post_firmware_1; break; case RTL_VER_05: rtl_fw->fw_name = FIRMWARE_8153A_3; rtl_fw->pre_fw = r8153_pre_firmware_2; rtl_fw->post_fw = r8153_post_firmware_2; break; case RTL_VER_06: rtl_fw->fw_name = FIRMWARE_8153A_4; rtl_fw->post_fw = r8153_post_firmware_3; break; case RTL_VER_09: rtl_fw->fw_name = FIRMWARE_8153B_2; rtl_fw->pre_fw = r8153b_pre_firmware_1; rtl_fw->post_fw = r8153b_post_firmware_1; break; case RTL_VER_11: rtl_fw->fw_name = FIRMWARE_8156A_2; rtl_fw->post_fw = r8156a_post_firmware_1; break; case RTL_VER_13: case RTL_VER_15: rtl_fw->fw_name = FIRMWARE_8156B_2; break; case RTL_VER_14: rtl_fw->fw_name = FIRMWARE_8153C_1; rtl_fw->pre_fw = r8153b_pre_firmware_1; rtl_fw->post_fw = r8153c_post_firmware_1; break; default: break; } return 0; } static u8 __rtl_get_hw_ver(struct usb_device *udev) { u32 ocp_data = 0; __le32 *tmp; u8 version; int ret; int i; tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); if (!tmp) return 0; /* Retry up to 3 times in case there is a transitory error. We do this * since retrying a read of the version is always safe and this * function doesn't take advantage of r8152_control_msg(). */ for (i = 0; i < 3; i++) { ret = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), RTL8152_REQ_GET_REGS, RTL8152_REQT_READ, PLA_TCR0, MCU_TYPE_PLA, tmp, sizeof(*tmp), USB_CTRL_GET_TIMEOUT); if (ret > 0) { ocp_data = (__le32_to_cpu(*tmp) >> 16) & VERSION_MASK; break; } } if (i != 0 && ret > 0) dev_warn(&udev->dev, "Needed %d retries to read version\n", i); kfree(tmp); switch (ocp_data) { case 0x4c00: version = RTL_VER_01; break; case 0x4c10: version = RTL_VER_02; break; case 0x5c00: version = RTL_VER_03; break; case 0x5c10: version = RTL_VER_04; break; case 0x5c20: version = RTL_VER_05; break; case 0x5c30: version = RTL_VER_06; break; case 0x4800: version = RTL_VER_07; break; case 0x6000: version = RTL_VER_08; break; case 0x6010: version = RTL_VER_09; break; case 0x7010: version = RTL_TEST_01; break; case 0x7020: version = RTL_VER_10; break; case 0x7030: version = RTL_VER_11; break; case 0x7400: version = RTL_VER_12; break; case 0x7410: version = RTL_VER_13; break; case 0x6400: version = RTL_VER_14; break; case 0x7420: version = RTL_VER_15; break; default: version = RTL_VER_UNKNOWN; dev_info(&udev->dev, "Unknown version 0x%04x\n", ocp_data); break; } return version; } u8 rtl8152_get_version(struct usb_interface *intf) { u8 version; version = __rtl_get_hw_ver(interface_to_usbdev(intf)); dev_dbg(&intf->dev, "Detected version 0x%04x\n", version); return version; } EXPORT_SYMBOL_GPL(rtl8152_get_version); static bool rtl8152_supports_lenovo_macpassthru(struct usb_device *udev) { int parent_vendor_id = le16_to_cpu(udev->parent->descriptor.idVendor); int product_id = le16_to_cpu(udev->descriptor.idProduct); int vendor_id = le16_to_cpu(udev->descriptor.idVendor); if (vendor_id == VENDOR_ID_LENOVO) { switch (product_id) { case DEVICE_ID_LENOVO_USB_C_TRAVEL_HUB: case DEVICE_ID_THINKPAD_ONELINK_PLUS_DOCK: case DEVICE_ID_THINKPAD_THUNDERBOLT3_DOCK_GEN2: case DEVICE_ID_THINKPAD_USB_C_DOCK_GEN2: case DEVICE_ID_THINKPAD_USB_C_DOCK_GEN3: case DEVICE_ID_THINKPAD_USB_C_DONGLE: return 1; } } else if (vendor_id == VENDOR_ID_REALTEK && parent_vendor_id == VENDOR_ID_LENOVO) { switch (product_id) { case 0x8153: return 1; } } return 0; } static int rtl8152_probe_once(struct usb_interface *intf, const struct usb_device_id *id, u8 version) { struct usb_device *udev = interface_to_usbdev(intf); struct r8152 *tp; struct net_device *netdev; int ret; usb_reset_device(udev); netdev = alloc_etherdev(sizeof(struct r8152)); if (!netdev) { dev_err(&intf->dev, "Out of memory\n"); return -ENOMEM; } SET_NETDEV_DEV(netdev, &intf->dev); tp = netdev_priv(netdev); tp->msg_enable = 0x7FFF; tp->udev = udev; tp->netdev = netdev; tp->intf = intf; tp->version = version; tp->pipe_ctrl_in = usb_rcvctrlpipe(udev, 0); tp->pipe_ctrl_out = usb_sndctrlpipe(udev, 0); tp->pipe_in = usb_rcvbulkpipe(udev, 1); tp->pipe_out = usb_sndbulkpipe(udev, 2); tp->pipe_intr = usb_rcvintpipe(udev, 3); switch (version) { case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: tp->mii.supports_gmii = 0; break; default: tp->mii.supports_gmii = 1; break; } ret = rtl_ops_init(tp); if (ret) goto out; rtl_fw_init(tp); mutex_init(&tp->control); INIT_DELAYED_WORK(&tp->schedule, rtl_work_func_t); INIT_DELAYED_WORK(&tp->hw_phy_work, rtl_hw_phy_work_func_t); tasklet_setup(&tp->tx_tl, bottom_half); tasklet_disable(&tp->tx_tl); netdev->netdev_ops = &rtl8152_netdev_ops; netdev->watchdog_timeo = RTL8152_TX_TIMEOUT; netdev->features |= NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_FRAGLIST | NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_FRAGLIST | NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX; netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | NETIF_F_IPV6_CSUM | NETIF_F_TSO6; if (tp->version == RTL_VER_01) { netdev->features &= ~NETIF_F_RXCSUM; netdev->hw_features &= ~NETIF_F_RXCSUM; } tp->lenovo_macpassthru = rtl8152_supports_lenovo_macpassthru(udev); if (le16_to_cpu(udev->descriptor.bcdDevice) == 0x3011 && udev->serial && (!strcmp(udev->serial, "000001000000") || !strcmp(udev->serial, "000002000000"))) { dev_info(&udev->dev, "Dell TB16 Dock, disable RX aggregation"); tp->dell_tb_rx_agg_bug = 1; } netdev->ethtool_ops = &ops; netif_set_tso_max_size(netdev, RTL_LIMITED_TSO_SIZE); /* MTU range: 68 - 1500 or 9194 */ netdev->min_mtu = ETH_MIN_MTU; switch (tp->version) { case RTL_VER_03: case RTL_VER_04: case RTL_VER_05: case RTL_VER_06: case RTL_VER_08: case RTL_VER_09: case RTL_VER_14: netdev->max_mtu = size_to_mtu(9 * 1024); break; case RTL_VER_10: case RTL_VER_11: netdev->max_mtu = size_to_mtu(15 * 1024); break; case RTL_VER_12: case RTL_VER_13: case RTL_VER_15: netdev->max_mtu = size_to_mtu(16 * 1024); break; case RTL_VER_01: case RTL_VER_02: case RTL_VER_07: default: netdev->max_mtu = ETH_DATA_LEN; break; } tp->mii.dev = netdev; tp->mii.mdio_read = read_mii_word; tp->mii.mdio_write = write_mii_word; tp->mii.phy_id_mask = 0x3f; tp->mii.reg_num_mask = 0x1f; tp->mii.phy_id = R8152_PHY_ID; tp->autoneg = AUTONEG_ENABLE; tp->speed = SPEED_100; tp->advertising = RTL_ADVERTISED_10_HALF | RTL_ADVERTISED_10_FULL | RTL_ADVERTISED_100_HALF | RTL_ADVERTISED_100_FULL; if (tp->mii.supports_gmii) { if (tp->support_2500full && tp->udev->speed >= USB_SPEED_SUPER) { tp->speed = SPEED_2500; tp->advertising |= RTL_ADVERTISED_2500_FULL; } else { tp->speed = SPEED_1000; } tp->advertising |= RTL_ADVERTISED_1000_FULL; } tp->duplex = DUPLEX_FULL; tp->rx_copybreak = RTL8152_RXFG_HEADSZ; tp->rx_pending = 10 * RTL8152_MAX_RX; intf->needs_remote_wakeup = 1; if (!rtl_can_wakeup(tp)) __rtl_set_wol(tp, 0); else tp->saved_wolopts = __rtl_get_wol(tp); tp->rtl_ops.init(tp); #if IS_BUILTIN(CONFIG_USB_RTL8152) /* Retry in case request_firmware() is not ready yet. */ tp->rtl_fw.retry = true; #endif queue_delayed_work(system_long_wq, &tp->hw_phy_work, 0); set_ethernet_addr(tp, false); usb_set_intfdata(intf, tp); netif_napi_add(netdev, &tp->napi, r8152_poll); ret = register_netdev(netdev); if (ret != 0) { dev_err(&intf->dev, "couldn't register the device\n"); goto out1; } if (tp->saved_wolopts) device_set_wakeup_enable(&udev->dev, true); else device_set_wakeup_enable(&udev->dev, false); /* If we saw a control transfer error while probing then we may * want to try probe() again. Consider this an error. */ if (test_bit(PROBE_SHOULD_RETRY, &tp->flags)) goto out2; set_bit(PROBED_WITH_NO_ERRORS, &tp->flags); netif_info(tp, probe, netdev, "%s\n", DRIVER_VERSION); return 0; out2: unregister_netdev(netdev); out1: tasklet_kill(&tp->tx_tl); cancel_delayed_work_sync(&tp->hw_phy_work); if (tp->rtl_ops.unload) tp->rtl_ops.unload(tp); rtl8152_release_firmware(tp); usb_set_intfdata(intf, NULL); out: if (test_bit(PROBE_SHOULD_RETRY, &tp->flags)) ret = -EAGAIN; free_netdev(netdev); return ret; } #define RTL8152_PROBE_TRIES 3 static int rtl8152_probe(struct usb_interface *intf, const struct usb_device_id *id) { u8 version; int ret; int i; if (intf->cur_altsetting->desc.bInterfaceClass != USB_CLASS_VENDOR_SPEC) return -ENODEV; if (!rtl_check_vendor_ok(intf)) return -ENODEV; version = rtl8152_get_version(intf); if (version == RTL_VER_UNKNOWN) return -ENODEV; for (i = 0; i < RTL8152_PROBE_TRIES; i++) { ret = rtl8152_probe_once(intf, id, version); if (ret != -EAGAIN) break; } if (ret == -EAGAIN) { dev_err(&intf->dev, "r8152 failed probe after %d tries; giving up\n", i); return -ENODEV; } return ret; } static void rtl8152_disconnect(struct usb_interface *intf) { struct r8152 *tp = usb_get_intfdata(intf); usb_set_intfdata(intf, NULL); if (tp) { rtl_set_unplug(tp); unregister_netdev(tp->netdev); tasklet_kill(&tp->tx_tl); cancel_delayed_work_sync(&tp->hw_phy_work); if (tp->rtl_ops.unload) tp->rtl_ops.unload(tp); rtl8152_release_firmware(tp); free_netdev(tp->netdev); } } /* table of devices that work with this driver */ static const struct usb_device_id rtl8152_table[] = { /* Realtek */ { USB_DEVICE(VENDOR_ID_REALTEK, 0x8050) }, { USB_DEVICE(VENDOR_ID_REALTEK, 0x8053) }, { USB_DEVICE(VENDOR_ID_REALTEK, 0x8152) }, { USB_DEVICE(VENDOR_ID_REALTEK, 0x8153) }, { USB_DEVICE(VENDOR_ID_REALTEK, 0x8155) }, { USB_DEVICE(VENDOR_ID_REALTEK, 0x8156) }, /* Microsoft */ { USB_DEVICE(VENDOR_ID_MICROSOFT, 0x07ab) }, { USB_DEVICE(VENDOR_ID_MICROSOFT, 0x07c6) }, { USB_DEVICE(VENDOR_ID_MICROSOFT, 0x0927) }, { USB_DEVICE(VENDOR_ID_MICROSOFT, 0x0c5e) }, { USB_DEVICE(VENDOR_ID_SAMSUNG, 0xa101) }, { USB_DEVICE(VENDOR_ID_LENOVO, 0x304f) }, { USB_DEVICE(VENDOR_ID_LENOVO, 0x3054) }, { USB_DEVICE(VENDOR_ID_LENOVO, 0x3062) }, { USB_DEVICE(VENDOR_ID_LENOVO, 0x3069) }, { USB_DEVICE(VENDOR_ID_LENOVO, 0x3082) }, { USB_DEVICE(VENDOR_ID_LENOVO, 0x7205) }, { USB_DEVICE(VENDOR_ID_LENOVO, 0x720c) }, { USB_DEVICE(VENDOR_ID_LENOVO, 0x7214) }, { USB_DEVICE(VENDOR_ID_LENOVO, 0x721e) }, { USB_DEVICE(VENDOR_ID_LENOVO, 0xa387) }, { USB_DEVICE(VENDOR_ID_LINKSYS, 0x0041) }, { USB_DEVICE(VENDOR_ID_NVIDIA, 0x09ff) }, { USB_DEVICE(VENDOR_ID_TPLINK, 0x0601) }, { USB_DEVICE(VENDOR_ID_DLINK, 0xb301) }, { USB_DEVICE(VENDOR_ID_ASUS, 0x1976) }, {} }; MODULE_DEVICE_TABLE(usb, rtl8152_table); static struct usb_driver rtl8152_driver = { .name = MODULENAME, .id_table = rtl8152_table, .probe = rtl8152_probe, .disconnect = rtl8152_disconnect, .suspend = rtl8152_suspend, .resume = rtl8152_resume, .reset_resume = rtl8152_reset_resume, .pre_reset = rtl8152_pre_reset, .post_reset = rtl8152_post_reset, .supports_autosuspend = 1, .disable_hub_initiated_lpm = 1, }; static int rtl8152_cfgselector_choose_configuration(struct usb_device *udev) { struct usb_host_config *c; int i, num_configs; /* Switch the device to vendor mode, if and only if the vendor mode * driver supports it. */ if (__rtl_get_hw_ver(udev) == RTL_VER_UNKNOWN) return -ENODEV; /* The vendor mode is not always config #1, so to find it out. */ c = udev->config; num_configs = udev->descriptor.bNumConfigurations; for (i = 0; i < num_configs; (i++, c++)) { struct usb_interface_descriptor *desc = NULL; if (!c->desc.bNumInterfaces) continue; desc = &c->intf_cache[0]->altsetting->desc; if (desc->bInterfaceClass == USB_CLASS_VENDOR_SPEC) break; } if (i == num_configs) return -ENODEV; return c->desc.bConfigurationValue; } static struct usb_device_driver rtl8152_cfgselector_driver = { .name = MODULENAME "-cfgselector", .choose_configuration = rtl8152_cfgselector_choose_configuration, .id_table = rtl8152_table, .generic_subclass = 1, .supports_autosuspend = 1, }; static int __init rtl8152_driver_init(void) { int ret; ret = usb_register_device_driver(&rtl8152_cfgselector_driver, THIS_MODULE); if (ret) return ret; return usb_register(&rtl8152_driver); } static void __exit rtl8152_driver_exit(void) { usb_deregister(&rtl8152_driver); usb_deregister_device_driver(&rtl8152_cfgselector_driver); } module_init(rtl8152_driver_init); module_exit(rtl8152_driver_exit); MODULE_AUTHOR(DRIVER_AUTHOR); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); MODULE_VERSION(DRIVER_VERSION);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1