Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kalle Valo | 2924 | 41.89% | 7 | 7.37% |
Francesco Magliocca | 1283 | 18.38% | 1 | 1.05% |
Michal Kazior | 783 | 11.22% | 19 | 20.00% |
Erik Stromdahl | 433 | 6.20% | 4 | 4.21% |
Rajkumar Manoharan | 359 | 5.14% | 11 | 11.58% |
Govind Singh | 302 | 4.33% | 7 | 7.37% |
Wen Gong | 203 | 2.91% | 7 | 7.37% |
Raja Mani | 170 | 2.44% | 3 | 3.16% |
Anilkumar Kolli | 129 | 1.85% | 2 | 2.11% |
Manikanta Pubbisetty | 92 | 1.32% | 2 | 2.11% |
Abhishek Ambure | 39 | 0.56% | 1 | 1.05% |
Peter Oh | 37 | 0.53% | 3 | 3.16% |
Vasanthakumar Thiagarajan | 31 | 0.44% | 2 | 2.11% |
Gustavo A. R. Silva | 30 | 0.43% | 2 | 2.11% |
Rakesh Pillai | 28 | 0.40% | 1 | 1.05% |
Janusz Dziedzic | 25 | 0.36% | 3 | 3.16% |
David Liu | 18 | 0.26% | 1 | 1.05% |
Venkateswara Naralasetty | 18 | 0.26% | 1 | 1.05% |
Kees Cook | 16 | 0.23% | 1 | 1.05% |
Maharaja Kennadyrajan | 8 | 0.11% | 2 | 2.11% |
Marcin Rokicki | 7 | 0.10% | 1 | 1.05% |
Mohammed Shafi Shajakhan | 7 | 0.10% | 1 | 1.05% |
Arnd Bergmann | 7 | 0.10% | 2 | 2.11% |
Bartosz Markowski | 6 | 0.09% | 1 | 1.05% |
Jeff Johnson | 6 | 0.09% | 3 | 3.16% |
Vivek Natarajan | 6 | 0.09% | 2 | 2.11% |
Balaji Pothunoori | 6 | 0.09% | 1 | 1.05% |
Joe Perches | 4 | 0.06% | 1 | 1.05% |
Colin Ian King | 2 | 0.03% | 1 | 1.05% |
Linus Lüssing | 1 | 0.01% | 1 | 1.05% |
Sujith Manoharan | 1 | 0.01% | 1 | 1.05% |
Total | 6981 | 95 |
/* SPDX-License-Identifier: ISC */ /* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2017 Qualcomm Atheros, Inc. * Copyright (c) 2018, The Linux Foundation. All rights reserved. * Copyright (c) 2021, 2023-2024 Qualcomm Innovation Center, Inc. All rights reserved. */ #ifndef _HTT_H_ #define _HTT_H_ #include <linux/bug.h> #include <linux/interrupt.h> #include <linux/dmapool.h> #include <linux/hashtable.h> #include <linux/kfifo.h> #include <net/mac80211.h> #include "htc.h" #include "hw.h" #include "rx_desc.h" enum htt_dbg_stats_type { HTT_DBG_STATS_WAL_PDEV_TXRX = 1 << 0, HTT_DBG_STATS_RX_REORDER = 1 << 1, HTT_DBG_STATS_RX_RATE_INFO = 1 << 2, HTT_DBG_STATS_TX_PPDU_LOG = 1 << 3, HTT_DBG_STATS_TX_RATE_INFO = 1 << 4, /* bits 5-23 currently reserved */ HTT_DBG_NUM_STATS /* keep this last */ }; enum htt_h2t_msg_type { /* host-to-target */ HTT_H2T_MSG_TYPE_VERSION_REQ = 0, HTT_H2T_MSG_TYPE_TX_FRM = 1, HTT_H2T_MSG_TYPE_RX_RING_CFG = 2, HTT_H2T_MSG_TYPE_STATS_REQ = 3, HTT_H2T_MSG_TYPE_SYNC = 4, HTT_H2T_MSG_TYPE_AGGR_CFG = 5, HTT_H2T_MSG_TYPE_FRAG_DESC_BANK_CFG = 6, /* This command is used for sending management frames in HTT < 3.0. * HTT >= 3.0 uses TX_FRM for everything. */ HTT_H2T_MSG_TYPE_MGMT_TX = 7, HTT_H2T_MSG_TYPE_TX_FETCH_RESP = 11, HTT_H2T_NUM_MSGS /* keep this last */ }; struct htt_cmd_hdr { u8 msg_type; } __packed; struct htt_ver_req { u8 pad[sizeof(u32) - sizeof(struct htt_cmd_hdr)]; } __packed; /* * HTT tx MSDU descriptor * * The HTT tx MSDU descriptor is created by the host HTT SW for each * tx MSDU. The HTT tx MSDU descriptor contains the information that * the target firmware needs for the FW's tx processing, particularly * for creating the HW msdu descriptor. * The same HTT tx descriptor is used for HL and LL systems, though * a few fields within the tx descriptor are used only by LL or * only by HL. * The HTT tx descriptor is defined in two manners: by a struct with * bitfields, and by a series of [dword offset, bit mask, bit shift] * definitions. * The target should use the struct def, for simplicity and clarity, * but the host shall use the bit-mast + bit-shift defs, to be endian- * neutral. Specifically, the host shall use the get/set macros built * around the mask + shift defs. */ struct htt_data_tx_desc_frag { union { struct double_word_addr { __le32 paddr; __le32 len; } __packed dword_addr; struct triple_word_addr { __le32 paddr_lo; __le16 paddr_hi; __le16 len_16; } __packed tword_addr; } __packed; } __packed; struct htt_msdu_ext_desc { __le32 tso_flag[3]; __le16 ip_identification; u8 flags; u8 reserved; struct htt_data_tx_desc_frag frags[6]; }; struct htt_msdu_ext_desc_64 { __le32 tso_flag[5]; __le16 ip_identification; u8 flags; u8 reserved; struct htt_data_tx_desc_frag frags[6]; }; #define HTT_MSDU_EXT_DESC_FLAG_IPV4_CSUM_ENABLE BIT(0) #define HTT_MSDU_EXT_DESC_FLAG_UDP_IPV4_CSUM_ENABLE BIT(1) #define HTT_MSDU_EXT_DESC_FLAG_UDP_IPV6_CSUM_ENABLE BIT(2) #define HTT_MSDU_EXT_DESC_FLAG_TCP_IPV4_CSUM_ENABLE BIT(3) #define HTT_MSDU_EXT_DESC_FLAG_TCP_IPV6_CSUM_ENABLE BIT(4) #define HTT_MSDU_CHECKSUM_ENABLE (HTT_MSDU_EXT_DESC_FLAG_IPV4_CSUM_ENABLE \ | HTT_MSDU_EXT_DESC_FLAG_UDP_IPV4_CSUM_ENABLE \ | HTT_MSDU_EXT_DESC_FLAG_UDP_IPV6_CSUM_ENABLE \ | HTT_MSDU_EXT_DESC_FLAG_TCP_IPV4_CSUM_ENABLE \ | HTT_MSDU_EXT_DESC_FLAG_TCP_IPV6_CSUM_ENABLE) #define HTT_MSDU_EXT_DESC_FLAG_IPV4_CSUM_ENABLE_64 BIT(16) #define HTT_MSDU_EXT_DESC_FLAG_UDP_IPV4_CSUM_ENABLE_64 BIT(17) #define HTT_MSDU_EXT_DESC_FLAG_UDP_IPV6_CSUM_ENABLE_64 BIT(18) #define HTT_MSDU_EXT_DESC_FLAG_TCP_IPV4_CSUM_ENABLE_64 BIT(19) #define HTT_MSDU_EXT_DESC_FLAG_TCP_IPV6_CSUM_ENABLE_64 BIT(20) #define HTT_MSDU_EXT_DESC_FLAG_PARTIAL_CSUM_ENABLE_64 BIT(21) #define HTT_MSDU_CHECKSUM_ENABLE_64 (HTT_MSDU_EXT_DESC_FLAG_IPV4_CSUM_ENABLE_64 \ | HTT_MSDU_EXT_DESC_FLAG_UDP_IPV4_CSUM_ENABLE_64 \ | HTT_MSDU_EXT_DESC_FLAG_UDP_IPV6_CSUM_ENABLE_64 \ | HTT_MSDU_EXT_DESC_FLAG_TCP_IPV4_CSUM_ENABLE_64 \ | HTT_MSDU_EXT_DESC_FLAG_TCP_IPV6_CSUM_ENABLE_64) enum htt_data_tx_desc_flags0 { HTT_DATA_TX_DESC_FLAGS0_MAC_HDR_PRESENT = 1 << 0, HTT_DATA_TX_DESC_FLAGS0_NO_AGGR = 1 << 1, HTT_DATA_TX_DESC_FLAGS0_NO_ENCRYPT = 1 << 2, HTT_DATA_TX_DESC_FLAGS0_NO_CLASSIFY = 1 << 3, HTT_DATA_TX_DESC_FLAGS0_RSVD0 = 1 << 4 #define HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE_MASK 0xE0 #define HTT_DATA_TX_DESC_FLAGS0_PKT_TYPE_LSB 5 }; enum htt_data_tx_desc_flags1 { #define HTT_DATA_TX_DESC_FLAGS1_VDEV_ID_BITS 6 #define HTT_DATA_TX_DESC_FLAGS1_VDEV_ID_MASK 0x003F #define HTT_DATA_TX_DESC_FLAGS1_VDEV_ID_LSB 0 #define HTT_DATA_TX_DESC_FLAGS1_EXT_TID_BITS 5 #define HTT_DATA_TX_DESC_FLAGS1_EXT_TID_MASK 0x07C0 #define HTT_DATA_TX_DESC_FLAGS1_EXT_TID_LSB 6 HTT_DATA_TX_DESC_FLAGS1_POSTPONED = 1 << 11, HTT_DATA_TX_DESC_FLAGS1_MORE_IN_BATCH = 1 << 12, HTT_DATA_TX_DESC_FLAGS1_CKSUM_L3_OFFLOAD = 1 << 13, HTT_DATA_TX_DESC_FLAGS1_CKSUM_L4_OFFLOAD = 1 << 14, HTT_DATA_TX_DESC_FLAGS1_TX_COMPLETE = 1 << 15 }; #define HTT_TX_CREDIT_DELTA_ABS_M 0xffff0000 #define HTT_TX_CREDIT_DELTA_ABS_S 16 #define HTT_TX_CREDIT_DELTA_ABS_GET(word) \ (((word) & HTT_TX_CREDIT_DELTA_ABS_M) >> HTT_TX_CREDIT_DELTA_ABS_S) #define HTT_TX_CREDIT_SIGN_BIT_M 0x00000100 #define HTT_TX_CREDIT_SIGN_BIT_S 8 #define HTT_TX_CREDIT_SIGN_BIT_GET(word) \ (((word) & HTT_TX_CREDIT_SIGN_BIT_M) >> HTT_TX_CREDIT_SIGN_BIT_S) enum htt_data_tx_ext_tid { HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST = 16, HTT_DATA_TX_EXT_TID_MGMT = 17, HTT_DATA_TX_EXT_TID_INVALID = 31 }; #define HTT_INVALID_PEERID 0xFFFF /* * htt_data_tx_desc - used for data tx path * * Note: vdev_id irrelevant for pkt_type == raw and no_classify == 1. * ext_tid: for qos-data frames (0-15), see %HTT_DATA_TX_EXT_TID_ * for special kinds of tids * postponed: only for HL hosts. indicates if this is a resend * (HL hosts manage queues on the host ) * more_in_batch: only for HL hosts. indicates if more packets are * pending. this allows target to wait and aggregate * freq: 0 means home channel of given vdev. intended for offchannel */ struct htt_data_tx_desc { u8 flags0; /* %HTT_DATA_TX_DESC_FLAGS0_ */ __le16 flags1; /* %HTT_DATA_TX_DESC_FLAGS1_ */ __le16 len; __le16 id; __le32 frags_paddr; union { __le32 peerid; struct { __le16 peerid; __le16 freq; } __packed offchan_tx; } __packed; u8 prefetch[0]; /* start of frame, for FW classification engine */ } __packed; struct htt_data_tx_desc_64 { u8 flags0; /* %HTT_DATA_TX_DESC_FLAGS0_ */ __le16 flags1; /* %HTT_DATA_TX_DESC_FLAGS1_ */ __le16 len; __le16 id; __le64 frags_paddr; union { __le32 peerid; struct { __le16 peerid; __le16 freq; } __packed offchan_tx; } __packed; u8 prefetch[0]; /* start of frame, for FW classification engine */ } __packed; enum htt_rx_ring_flags { HTT_RX_RING_FLAGS_MAC80211_HDR = 1 << 0, HTT_RX_RING_FLAGS_MSDU_PAYLOAD = 1 << 1, HTT_RX_RING_FLAGS_PPDU_START = 1 << 2, HTT_RX_RING_FLAGS_PPDU_END = 1 << 3, HTT_RX_RING_FLAGS_MPDU_START = 1 << 4, HTT_RX_RING_FLAGS_MPDU_END = 1 << 5, HTT_RX_RING_FLAGS_MSDU_START = 1 << 6, HTT_RX_RING_FLAGS_MSDU_END = 1 << 7, HTT_RX_RING_FLAGS_RX_ATTENTION = 1 << 8, HTT_RX_RING_FLAGS_FRAG_INFO = 1 << 9, HTT_RX_RING_FLAGS_UNICAST_RX = 1 << 10, HTT_RX_RING_FLAGS_MULTICAST_RX = 1 << 11, HTT_RX_RING_FLAGS_CTRL_RX = 1 << 12, HTT_RX_RING_FLAGS_MGMT_RX = 1 << 13, HTT_RX_RING_FLAGS_NULL_RX = 1 << 14, HTT_RX_RING_FLAGS_PHY_DATA_RX = 1 << 15 }; #define HTT_RX_RING_SIZE_MIN 128 #define HTT_RX_RING_SIZE_MAX 2048 #define HTT_RX_RING_SIZE HTT_RX_RING_SIZE_MAX #define HTT_RX_RING_FILL_LEVEL (((HTT_RX_RING_SIZE) / 2) - 1) #define HTT_RX_RING_FILL_LEVEL_DUAL_MAC (HTT_RX_RING_SIZE - 1) struct htt_rx_ring_rx_desc_offsets { /* the following offsets are in 4-byte units */ __le16 mac80211_hdr_offset; __le16 msdu_payload_offset; __le16 ppdu_start_offset; __le16 ppdu_end_offset; __le16 mpdu_start_offset; __le16 mpdu_end_offset; __le16 msdu_start_offset; __le16 msdu_end_offset; __le16 rx_attention_offset; __le16 frag_info_offset; } __packed; struct htt_rx_ring_setup_ring32 { __le32 fw_idx_shadow_reg_paddr; __le32 rx_ring_base_paddr; __le16 rx_ring_len; /* in 4-byte words */ __le16 rx_ring_bufsize; /* rx skb size - in bytes */ __le16 flags; /* %HTT_RX_RING_FLAGS_ */ __le16 fw_idx_init_val; struct htt_rx_ring_rx_desc_offsets offsets; } __packed; struct htt_rx_ring_setup_ring64 { __le64 fw_idx_shadow_reg_paddr; __le64 rx_ring_base_paddr; __le16 rx_ring_len; /* in 4-byte words */ __le16 rx_ring_bufsize; /* rx skb size - in bytes */ __le16 flags; /* %HTT_RX_RING_FLAGS_ */ __le16 fw_idx_init_val; struct htt_rx_ring_rx_desc_offsets offsets; } __packed; struct htt_rx_ring_setup_hdr { u8 num_rings; /* supported values: 1, 2 */ __le16 rsvd0; } __packed; struct htt_rx_ring_setup_32 { struct htt_rx_ring_setup_hdr hdr; struct htt_rx_ring_setup_ring32 rings[]; } __packed; struct htt_rx_ring_setup_64 { struct htt_rx_ring_setup_hdr hdr; struct htt_rx_ring_setup_ring64 rings[]; } __packed; /* * htt_stats_req - request target to send specified statistics * * @msg_type: hardcoded %HTT_H2T_MSG_TYPE_STATS_REQ * @upload_types: see %htt_dbg_stats_type. this is 24bit field actually * so make sure its little-endian. * @reset_types: see %htt_dbg_stats_type. this is 24bit field actually * so make sure its little-endian. * @cfg_val: stat_type specific configuration * @stat_type: see %htt_dbg_stats_type * @cookie_lsb: used for confirmation message from target->host * @cookie_msb: ditto as %cookie */ struct htt_stats_req { u8 upload_types[3]; u8 rsvd0; u8 reset_types[3]; struct { u8 mpdu_bytes; u8 mpdu_num_msdus; u8 msdu_bytes; } __packed; u8 stat_type; __le32 cookie_lsb; __le32 cookie_msb; } __packed; #define HTT_STATS_REQ_CFG_STAT_TYPE_INVALID 0xff #define HTT_STATS_BIT_MASK GENMASK(16, 0) /* * htt_oob_sync_req - request out-of-band sync * * The HTT SYNC tells the target to suspend processing of subsequent * HTT host-to-target messages until some other target agent locally * informs the target HTT FW that the current sync counter is equal to * or greater than (in a modulo sense) the sync counter specified in * the SYNC message. * * This allows other host-target components to synchronize their operation * with HTT, e.g. to ensure that tx frames don't get transmitted until a * security key has been downloaded to and activated by the target. * In the absence of any explicit synchronization counter value * specification, the target HTT FW will use zero as the default current * sync value. * * The HTT target FW will suspend its host->target message processing as long * as 0 < (in-band sync counter - out-of-band sync counter) & 0xff < 128. */ struct htt_oob_sync_req { u8 sync_count; __le16 rsvd0; } __packed; struct htt_aggr_conf { u8 max_num_ampdu_subframes; /* amsdu_subframes is limited by 0x1F mask */ u8 max_num_amsdu_subframes; } __packed; struct htt_aggr_conf_v2 { u8 max_num_ampdu_subframes; /* amsdu_subframes is limited by 0x1F mask */ u8 max_num_amsdu_subframes; u8 reserved; } __packed; #define HTT_MGMT_FRM_HDR_DOWNLOAD_LEN 32 struct htt_mgmt_tx_desc_qca99x0 { __le32 rate; } __packed; struct htt_mgmt_tx_desc { u8 pad[sizeof(u32) - sizeof(struct htt_cmd_hdr)]; __le32 msdu_paddr; __le32 desc_id; __le32 len; __le32 vdev_id; u8 hdr[HTT_MGMT_FRM_HDR_DOWNLOAD_LEN]; union { struct htt_mgmt_tx_desc_qca99x0 qca99x0; } __packed; } __packed; enum htt_mgmt_tx_status { HTT_MGMT_TX_STATUS_OK = 0, HTT_MGMT_TX_STATUS_RETRY = 1, HTT_MGMT_TX_STATUS_DROP = 2 }; /*=== target -> host messages ===============================================*/ enum htt_main_t2h_msg_type { HTT_MAIN_T2H_MSG_TYPE_VERSION_CONF = 0x0, HTT_MAIN_T2H_MSG_TYPE_RX_IND = 0x1, HTT_MAIN_T2H_MSG_TYPE_RX_FLUSH = 0x2, HTT_MAIN_T2H_MSG_TYPE_PEER_MAP = 0x3, HTT_MAIN_T2H_MSG_TYPE_PEER_UNMAP = 0x4, HTT_MAIN_T2H_MSG_TYPE_RX_ADDBA = 0x5, HTT_MAIN_T2H_MSG_TYPE_RX_DELBA = 0x6, HTT_MAIN_T2H_MSG_TYPE_TX_COMPL_IND = 0x7, HTT_MAIN_T2H_MSG_TYPE_PKTLOG = 0x8, HTT_MAIN_T2H_MSG_TYPE_STATS_CONF = 0x9, HTT_MAIN_T2H_MSG_TYPE_RX_FRAG_IND = 0xa, HTT_MAIN_T2H_MSG_TYPE_SEC_IND = 0xb, HTT_MAIN_T2H_MSG_TYPE_TX_INSPECT_IND = 0xd, HTT_MAIN_T2H_MSG_TYPE_MGMT_TX_COMPL_IND = 0xe, HTT_MAIN_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND = 0xf, HTT_MAIN_T2H_MSG_TYPE_RX_PN_IND = 0x10, HTT_MAIN_T2H_MSG_TYPE_RX_OFFLOAD_DELIVER_IND = 0x11, HTT_MAIN_T2H_MSG_TYPE_TEST, /* keep this last */ HTT_MAIN_T2H_NUM_MSGS }; enum htt_10x_t2h_msg_type { HTT_10X_T2H_MSG_TYPE_VERSION_CONF = 0x0, HTT_10X_T2H_MSG_TYPE_RX_IND = 0x1, HTT_10X_T2H_MSG_TYPE_RX_FLUSH = 0x2, HTT_10X_T2H_MSG_TYPE_PEER_MAP = 0x3, HTT_10X_T2H_MSG_TYPE_PEER_UNMAP = 0x4, HTT_10X_T2H_MSG_TYPE_RX_ADDBA = 0x5, HTT_10X_T2H_MSG_TYPE_RX_DELBA = 0x6, HTT_10X_T2H_MSG_TYPE_TX_COMPL_IND = 0x7, HTT_10X_T2H_MSG_TYPE_PKTLOG = 0x8, HTT_10X_T2H_MSG_TYPE_STATS_CONF = 0x9, HTT_10X_T2H_MSG_TYPE_RX_FRAG_IND = 0xa, HTT_10X_T2H_MSG_TYPE_SEC_IND = 0xb, HTT_10X_T2H_MSG_TYPE_RC_UPDATE_IND = 0xc, HTT_10X_T2H_MSG_TYPE_TX_INSPECT_IND = 0xd, HTT_10X_T2H_MSG_TYPE_TEST = 0xe, HTT_10X_T2H_MSG_TYPE_CHAN_CHANGE = 0xf, HTT_10X_T2H_MSG_TYPE_AGGR_CONF = 0x11, HTT_10X_T2H_MSG_TYPE_STATS_NOUPLOAD = 0x12, HTT_10X_T2H_MSG_TYPE_MGMT_TX_COMPL_IND = 0x13, /* keep this last */ HTT_10X_T2H_NUM_MSGS }; enum htt_tlv_t2h_msg_type { HTT_TLV_T2H_MSG_TYPE_VERSION_CONF = 0x0, HTT_TLV_T2H_MSG_TYPE_RX_IND = 0x1, HTT_TLV_T2H_MSG_TYPE_RX_FLUSH = 0x2, HTT_TLV_T2H_MSG_TYPE_PEER_MAP = 0x3, HTT_TLV_T2H_MSG_TYPE_PEER_UNMAP = 0x4, HTT_TLV_T2H_MSG_TYPE_RX_ADDBA = 0x5, HTT_TLV_T2H_MSG_TYPE_RX_DELBA = 0x6, HTT_TLV_T2H_MSG_TYPE_TX_COMPL_IND = 0x7, HTT_TLV_T2H_MSG_TYPE_PKTLOG = 0x8, HTT_TLV_T2H_MSG_TYPE_STATS_CONF = 0x9, HTT_TLV_T2H_MSG_TYPE_RX_FRAG_IND = 0xa, HTT_TLV_T2H_MSG_TYPE_SEC_IND = 0xb, HTT_TLV_T2H_MSG_TYPE_RC_UPDATE_IND = 0xc, /* deprecated */ HTT_TLV_T2H_MSG_TYPE_TX_INSPECT_IND = 0xd, HTT_TLV_T2H_MSG_TYPE_MGMT_TX_COMPL_IND = 0xe, HTT_TLV_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND = 0xf, HTT_TLV_T2H_MSG_TYPE_RX_PN_IND = 0x10, HTT_TLV_T2H_MSG_TYPE_RX_OFFLOAD_DELIVER_IND = 0x11, HTT_TLV_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND = 0x12, /* 0x13 reservd */ HTT_TLV_T2H_MSG_TYPE_WDI_IPA_OP_RESPONSE = 0x14, HTT_TLV_T2H_MSG_TYPE_CHAN_CHANGE = 0x15, HTT_TLV_T2H_MSG_TYPE_RX_OFLD_PKT_ERR = 0x16, HTT_TLV_T2H_MSG_TYPE_TEST, /* keep this last */ HTT_TLV_T2H_NUM_MSGS }; enum htt_10_4_t2h_msg_type { HTT_10_4_T2H_MSG_TYPE_VERSION_CONF = 0x0, HTT_10_4_T2H_MSG_TYPE_RX_IND = 0x1, HTT_10_4_T2H_MSG_TYPE_RX_FLUSH = 0x2, HTT_10_4_T2H_MSG_TYPE_PEER_MAP = 0x3, HTT_10_4_T2H_MSG_TYPE_PEER_UNMAP = 0x4, HTT_10_4_T2H_MSG_TYPE_RX_ADDBA = 0x5, HTT_10_4_T2H_MSG_TYPE_RX_DELBA = 0x6, HTT_10_4_T2H_MSG_TYPE_TX_COMPL_IND = 0x7, HTT_10_4_T2H_MSG_TYPE_PKTLOG = 0x8, HTT_10_4_T2H_MSG_TYPE_STATS_CONF = 0x9, HTT_10_4_T2H_MSG_TYPE_RX_FRAG_IND = 0xa, HTT_10_4_T2H_MSG_TYPE_SEC_IND = 0xb, HTT_10_4_T2H_MSG_TYPE_RC_UPDATE_IND = 0xc, HTT_10_4_T2H_MSG_TYPE_TX_INSPECT_IND = 0xd, HTT_10_4_T2H_MSG_TYPE_MGMT_TX_COMPL_IND = 0xe, HTT_10_4_T2H_MSG_TYPE_CHAN_CHANGE = 0xf, HTT_10_4_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND = 0x10, HTT_10_4_T2H_MSG_TYPE_RX_PN_IND = 0x11, HTT_10_4_T2H_MSG_TYPE_RX_OFFLOAD_DELIVER_IND = 0x12, HTT_10_4_T2H_MSG_TYPE_TEST = 0x13, HTT_10_4_T2H_MSG_TYPE_EN_STATS = 0x14, HTT_10_4_T2H_MSG_TYPE_AGGR_CONF = 0x15, HTT_10_4_T2H_MSG_TYPE_TX_FETCH_IND = 0x16, HTT_10_4_T2H_MSG_TYPE_TX_FETCH_CONFIRM = 0x17, HTT_10_4_T2H_MSG_TYPE_STATS_NOUPLOAD = 0x18, /* 0x19 to 0x2f are reserved */ HTT_10_4_T2H_MSG_TYPE_TX_MODE_SWITCH_IND = 0x30, HTT_10_4_T2H_MSG_TYPE_PEER_STATS = 0x31, /* keep this last */ HTT_10_4_T2H_NUM_MSGS }; enum htt_t2h_msg_type { HTT_T2H_MSG_TYPE_VERSION_CONF, HTT_T2H_MSG_TYPE_RX_IND, HTT_T2H_MSG_TYPE_RX_FLUSH, HTT_T2H_MSG_TYPE_PEER_MAP, HTT_T2H_MSG_TYPE_PEER_UNMAP, HTT_T2H_MSG_TYPE_RX_ADDBA, HTT_T2H_MSG_TYPE_RX_DELBA, HTT_T2H_MSG_TYPE_TX_COMPL_IND, HTT_T2H_MSG_TYPE_PKTLOG, HTT_T2H_MSG_TYPE_STATS_CONF, HTT_T2H_MSG_TYPE_RX_FRAG_IND, HTT_T2H_MSG_TYPE_SEC_IND, HTT_T2H_MSG_TYPE_RC_UPDATE_IND, HTT_T2H_MSG_TYPE_TX_INSPECT_IND, HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION, HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND, HTT_T2H_MSG_TYPE_RX_PN_IND, HTT_T2H_MSG_TYPE_RX_OFFLOAD_DELIVER_IND, HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND, HTT_T2H_MSG_TYPE_WDI_IPA_OP_RESPONSE, HTT_T2H_MSG_TYPE_CHAN_CHANGE, HTT_T2H_MSG_TYPE_RX_OFLD_PKT_ERR, HTT_T2H_MSG_TYPE_AGGR_CONF, HTT_T2H_MSG_TYPE_STATS_NOUPLOAD, HTT_T2H_MSG_TYPE_TEST, HTT_T2H_MSG_TYPE_EN_STATS, HTT_T2H_MSG_TYPE_TX_FETCH_IND, HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM, HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND, HTT_T2H_MSG_TYPE_PEER_STATS, /* keep this last */ HTT_T2H_NUM_MSGS }; /* * htt_resp_hdr - header for target-to-host messages * * msg_type: see htt_t2h_msg_type */ struct htt_resp_hdr { u8 msg_type; } __packed; #define HTT_RESP_HDR_MSG_TYPE_OFFSET 0 #define HTT_RESP_HDR_MSG_TYPE_MASK 0xff #define HTT_RESP_HDR_MSG_TYPE_LSB 0 /* htt_ver_resp - response sent for htt_ver_req */ struct htt_ver_resp { u8 minor; u8 major; u8 rsvd0; } __packed; #define HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI BIT(0) #define HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK GENMASK(7, 0) struct htt_mgmt_tx_completion { u8 rsvd0; u8 rsvd1; u8 flags; __le32 desc_id; __le32 status; __le32 ppdu_id; __le32 info; } __packed; #define HTT_RX_INDICATION_INFO0_EXT_TID_MASK (0x1F) #define HTT_RX_INDICATION_INFO0_EXT_TID_LSB (0) #define HTT_RX_INDICATION_INFO0_FLUSH_VALID (1 << 5) #define HTT_RX_INDICATION_INFO0_RELEASE_VALID (1 << 6) #define HTT_RX_INDICATION_INFO0_PPDU_DURATION BIT(7) #define HTT_RX_INDICATION_INFO1_FLUSH_START_SEQNO_MASK 0x0000003F #define HTT_RX_INDICATION_INFO1_FLUSH_START_SEQNO_LSB 0 #define HTT_RX_INDICATION_INFO1_FLUSH_END_SEQNO_MASK 0x00000FC0 #define HTT_RX_INDICATION_INFO1_FLUSH_END_SEQNO_LSB 6 #define HTT_RX_INDICATION_INFO1_RELEASE_START_SEQNO_MASK 0x0003F000 #define HTT_RX_INDICATION_INFO1_RELEASE_START_SEQNO_LSB 12 #define HTT_RX_INDICATION_INFO1_RELEASE_END_SEQNO_MASK 0x00FC0000 #define HTT_RX_INDICATION_INFO1_RELEASE_END_SEQNO_LSB 18 #define HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES_MASK 0xFF000000 #define HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES_LSB 24 #define HTT_TX_CMPL_FLAG_DATA_RSSI BIT(0) #define HTT_TX_CMPL_FLAG_PPID_PRESENT BIT(1) #define HTT_TX_CMPL_FLAG_PA_PRESENT BIT(2) #define HTT_TX_CMPL_FLAG_PPDU_DURATION_PRESENT BIT(3) #define HTT_TX_DATA_RSSI_ENABLE_WCN3990 BIT(3) #define HTT_TX_DATA_APPEND_RETRIES BIT(0) #define HTT_TX_DATA_APPEND_TIMESTAMP BIT(1) struct htt_rx_indication_hdr { u8 info0; /* %HTT_RX_INDICATION_INFO0_ */ __le16 peer_id; __le32 info1; /* %HTT_RX_INDICATION_INFO1_ */ } __packed; #define HTT_RX_INDICATION_INFO0_PHY_ERR_VALID (1 << 0) #define HTT_RX_INDICATION_INFO0_LEGACY_RATE_MASK (0x1E) #define HTT_RX_INDICATION_INFO0_LEGACY_RATE_LSB (1) #define HTT_RX_INDICATION_INFO0_LEGACY_RATE_CCK (1 << 5) #define HTT_RX_INDICATION_INFO0_END_VALID (1 << 6) #define HTT_RX_INDICATION_INFO0_START_VALID (1 << 7) #define HTT_RX_INDICATION_INFO1_VHT_SIG_A1_MASK 0x00FFFFFF #define HTT_RX_INDICATION_INFO1_VHT_SIG_A1_LSB 0 #define HTT_RX_INDICATION_INFO1_PREAMBLE_TYPE_MASK 0xFF000000 #define HTT_RX_INDICATION_INFO1_PREAMBLE_TYPE_LSB 24 #define HTT_RX_INDICATION_INFO2_VHT_SIG_A1_MASK 0x00FFFFFF #define HTT_RX_INDICATION_INFO2_VHT_SIG_A1_LSB 0 #define HTT_RX_INDICATION_INFO2_SERVICE_MASK 0xFF000000 #define HTT_RX_INDICATION_INFO2_SERVICE_LSB 24 enum htt_rx_legacy_rate { HTT_RX_OFDM_48 = 0, HTT_RX_OFDM_24 = 1, HTT_RX_OFDM_12, HTT_RX_OFDM_6, HTT_RX_OFDM_54, HTT_RX_OFDM_36, HTT_RX_OFDM_18, HTT_RX_OFDM_9, /* long preamble */ HTT_RX_CCK_11_LP = 0, HTT_RX_CCK_5_5_LP = 1, HTT_RX_CCK_2_LP, HTT_RX_CCK_1_LP, /* short preamble */ HTT_RX_CCK_11_SP, HTT_RX_CCK_5_5_SP, HTT_RX_CCK_2_SP }; enum htt_rx_legacy_rate_type { HTT_RX_LEGACY_RATE_OFDM = 0, HTT_RX_LEGACY_RATE_CCK }; enum htt_rx_preamble_type { HTT_RX_LEGACY = 0x4, HTT_RX_HT = 0x8, HTT_RX_HT_WITH_TXBF = 0x9, HTT_RX_VHT = 0xC, HTT_RX_VHT_WITH_TXBF = 0xD, }; /* * Fields: phy_err_valid, phy_err_code, tsf, * usec_timestamp, sub_usec_timestamp * ..are valid only if end_valid == 1. * * Fields: rssi_chains, legacy_rate_type, * legacy_rate_cck, preamble_type, service, * vht_sig_* * ..are valid only if start_valid == 1; */ struct htt_rx_indication_ppdu { u8 combined_rssi; u8 sub_usec_timestamp; u8 phy_err_code; u8 info0; /* HTT_RX_INDICATION_INFO0_ */ struct { u8 pri20_db; u8 ext20_db; u8 ext40_db; u8 ext80_db; } __packed rssi_chains[4]; __le32 tsf; __le32 usec_timestamp; __le32 info1; /* HTT_RX_INDICATION_INFO1_ */ __le32 info2; /* HTT_RX_INDICATION_INFO2_ */ } __packed; enum htt_rx_mpdu_status { HTT_RX_IND_MPDU_STATUS_UNKNOWN = 0x0, HTT_RX_IND_MPDU_STATUS_OK, HTT_RX_IND_MPDU_STATUS_ERR_FCS, HTT_RX_IND_MPDU_STATUS_ERR_DUP, HTT_RX_IND_MPDU_STATUS_ERR_REPLAY, HTT_RX_IND_MPDU_STATUS_ERR_INV_PEER, /* only accept EAPOL frames */ HTT_RX_IND_MPDU_STATUS_UNAUTH_PEER, HTT_RX_IND_MPDU_STATUS_OUT_OF_SYNC, /* Non-data in promiscuous mode */ HTT_RX_IND_MPDU_STATUS_MGMT_CTRL, HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR, HTT_RX_IND_MPDU_STATUS_DECRYPT_ERR, HTT_RX_IND_MPDU_STATUS_MPDU_LENGTH_ERR, HTT_RX_IND_MPDU_STATUS_ENCRYPT_REQUIRED_ERR, HTT_RX_IND_MPDU_STATUS_PRIVACY_ERR, /* * MISC: discard for unspecified reasons. * Leave this enum value last. */ HTT_RX_IND_MPDU_STATUS_ERR_MISC = 0xFF }; struct htt_rx_indication_mpdu_range { u8 mpdu_count; u8 mpdu_range_status; /* %htt_rx_mpdu_status */ u8 pad0; u8 pad1; } __packed; struct htt_rx_indication_prefix { __le16 fw_rx_desc_bytes; u8 pad0; u8 pad1; } __packed; struct htt_rx_indication { struct htt_rx_indication_hdr hdr; struct htt_rx_indication_ppdu ppdu; struct htt_rx_indication_prefix prefix; /* * the following fields are both dynamically sized, so * take care addressing them */ /* the size of this is %fw_rx_desc_bytes */ struct fw_rx_desc_base fw_desc; /* * %mpdu_ranges starts after &%prefix + roundup(%fw_rx_desc_bytes, 4) * and has %num_mpdu_ranges elements. */ struct htt_rx_indication_mpdu_range mpdu_ranges[]; } __packed; /* High latency version of the RX indication */ struct htt_rx_indication_hl { struct htt_rx_indication_hdr hdr; struct htt_rx_indication_ppdu ppdu; struct htt_rx_indication_prefix prefix; struct fw_rx_desc_hl fw_desc; struct htt_rx_indication_mpdu_range mpdu_ranges[]; } __packed; struct htt_hl_rx_desc { __le32 info; __le32 pn_31_0; union { struct { __le16 pn_47_32; __le16 pn_63_48; } pn16; __le32 pn_63_32; } u0; __le32 pn_95_64; __le32 pn_127_96; } __packed; static inline struct htt_rx_indication_mpdu_range * htt_rx_ind_get_mpdu_ranges(struct htt_rx_indication *rx_ind) { void *ptr = rx_ind; ptr += sizeof(rx_ind->hdr) + sizeof(rx_ind->ppdu) + sizeof(rx_ind->prefix) + roundup(__le16_to_cpu(rx_ind->prefix.fw_rx_desc_bytes), 4); return ptr; } static inline struct htt_rx_indication_mpdu_range * htt_rx_ind_get_mpdu_ranges_hl(struct htt_rx_indication_hl *rx_ind) { void *ptr = rx_ind; ptr += sizeof(rx_ind->hdr) + sizeof(rx_ind->ppdu) + sizeof(rx_ind->prefix) + sizeof(rx_ind->fw_desc); return ptr; } enum htt_rx_flush_mpdu_status { HTT_RX_FLUSH_MPDU_DISCARD = 0, HTT_RX_FLUSH_MPDU_REORDER = 1, }; /* * htt_rx_flush - discard or reorder given range of mpdus * * Note: host must check if all sequence numbers between * [seq_num_start, seq_num_end-1] are valid. */ struct htt_rx_flush { __le16 peer_id; u8 tid; u8 rsvd0; u8 mpdu_status; /* %htt_rx_flush_mpdu_status */ u8 seq_num_start; /* it is 6 LSBs of 802.11 seq no */ u8 seq_num_end; /* it is 6 LSBs of 802.11 seq no */ }; struct htt_rx_peer_map { u8 vdev_id; __le16 peer_id; u8 addr[6]; u8 rsvd0; u8 rsvd1; } __packed; struct htt_rx_peer_unmap { u8 rsvd0; __le16 peer_id; } __packed; enum htt_txrx_sec_cast_type { HTT_TXRX_SEC_MCAST = 0, HTT_TXRX_SEC_UCAST }; enum htt_rx_pn_check_type { HTT_RX_NON_PN_CHECK = 0, HTT_RX_PN_CHECK }; enum htt_rx_tkip_demic_type { HTT_RX_NON_TKIP_MIC = 0, HTT_RX_TKIP_MIC }; enum htt_security_types { HTT_SECURITY_NONE, HTT_SECURITY_WEP128, HTT_SECURITY_WEP104, HTT_SECURITY_WEP40, HTT_SECURITY_TKIP, HTT_SECURITY_TKIP_NOMIC, HTT_SECURITY_AES_CCMP, HTT_SECURITY_WAPI, HTT_NUM_SECURITY_TYPES /* keep this last! */ }; #define ATH10K_HTT_TXRX_PEER_SECURITY_MAX 2 #define ATH10K_TXRX_NUM_EXT_TIDS 19 #define ATH10K_TXRX_NON_QOS_TID 16 enum htt_security_flags { #define HTT_SECURITY_TYPE_MASK 0x7F #define HTT_SECURITY_TYPE_LSB 0 HTT_SECURITY_IS_UNICAST = 1 << 7 }; struct htt_security_indication { union { /* dont use bitfields; undefined behaviour */ u8 flags; /* %htt_security_flags */ struct { u8 security_type:7, /* %htt_security_types */ is_unicast:1; } __packed; } __packed; __le16 peer_id; u8 michael_key[8]; u8 wapi_rsc[16]; } __packed; #define HTT_RX_BA_INFO0_TID_MASK 0x000F #define HTT_RX_BA_INFO0_TID_LSB 0 #define HTT_RX_BA_INFO0_PEER_ID_MASK 0xFFF0 #define HTT_RX_BA_INFO0_PEER_ID_LSB 4 struct htt_rx_addba { u8 window_size; __le16 info0; /* %HTT_RX_BA_INFO0_ */ } __packed; struct htt_rx_delba { u8 rsvd0; __le16 info0; /* %HTT_RX_BA_INFO0_ */ } __packed; enum htt_data_tx_status { HTT_DATA_TX_STATUS_OK = 0, HTT_DATA_TX_STATUS_DISCARD = 1, HTT_DATA_TX_STATUS_NO_ACK = 2, HTT_DATA_TX_STATUS_POSTPONE = 3 /* HL only */ }; enum htt_data_tx_flags { #define HTT_DATA_TX_STATUS_MASK 0x07 #define HTT_DATA_TX_STATUS_LSB 0 #define HTT_DATA_TX_TID_MASK 0x78 #define HTT_DATA_TX_TID_LSB 3 HTT_DATA_TX_TID_INVALID = 1 << 7 }; #define HTT_TX_COMPL_INV_MSDU_ID 0xFFFF struct htt_append_retries { __le16 msdu_id; u8 tx_retries; u8 flag; } __packed; struct htt_data_tx_completion_ext { struct htt_append_retries a_retries; __le32 t_stamp; __le16 msdus_rssi[]; } __packed; /* * @brief target -> host TX completion indication message definition * * @details * The following diagram shows the format of the TX completion indication sent * from the target to the host * * |31 28|27|26|25|24|23 16| 15 |14 11|10 8|7 0| * |-------------------------------------------------------------| * header: |rsvd |A2|TP|A1|A0| num | t_i| tid |status| msg_type | * |-------------------------------------------------------------| * payload: | MSDU1 ID | MSDU0 ID | * |-------------------------------------------------------------| * : MSDU3 ID : MSDU2 ID : * |-------------------------------------------------------------| * | struct htt_tx_compl_ind_append_retries | * |- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -| * | struct htt_tx_compl_ind_append_tx_tstamp | * |- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -| * | MSDU1 ACK RSSI | MSDU0 ACK RSSI | * |-------------------------------------------------------------| * : MSDU3 ACK RSSI : MSDU2 ACK RSSI : * |- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -| * -msg_type * Bits 7:0 * Purpose: identifies this as HTT TX completion indication * -status * Bits 10:8 * Purpose: the TX completion status of payload fragmentations descriptors * Value: could be HTT_TX_COMPL_IND_STAT_OK or HTT_TX_COMPL_IND_STAT_DISCARD * -tid * Bits 14:11 * Purpose: the tid associated with those fragmentation descriptors. It is * valid or not, depending on the tid_invalid bit. * Value: 0 to 15 * -tid_invalid * Bits 15:15 * Purpose: this bit indicates whether the tid field is valid or not * Value: 0 indicates valid, 1 indicates invalid * -num * Bits 23:16 * Purpose: the number of payload in this indication * Value: 1 to 255 * -A0 = append * Bits 24:24 * Purpose: append the struct htt_tx_compl_ind_append_retries which contains * the number of tx retries for one MSDU at the end of this message * Value: 0 indicates no appending, 1 indicates appending * -A1 = append1 * Bits 25:25 * Purpose: Append the struct htt_tx_compl_ind_append_tx_tstamp which * contains the timestamp info for each TX msdu id in payload. * Value: 0 indicates no appending, 1 indicates appending * -TP = MSDU tx power presence * Bits 26:26 * Purpose: Indicate whether the TX_COMPL_IND includes a tx power report * for each MSDU referenced by the TX_COMPL_IND message. * The order of the per-MSDU tx power reports matches the order * of the MSDU IDs. * Value: 0 indicates not appending, 1 indicates appending * -A2 = append2 * Bits 27:27 * Purpose: Indicate whether data ACK RSSI is appended for each MSDU in * TX_COMP_IND message. The order of the per-MSDU ACK RSSI report * matches the order of the MSDU IDs. * The ACK RSSI values are valid when status is COMPLETE_OK (and * this append2 bit is set). * Value: 0 indicates not appending, 1 indicates appending */ struct htt_data_tx_completion { union { u8 flags; struct { u8 status:3, tid:4, tid_invalid:1; } __packed; } __packed; u8 num_msdus; u8 flags2; /* HTT_TX_CMPL_FLAG_DATA_RSSI */ __le16 msdus[]; /* variable length based on %num_msdus */ } __packed; #define HTT_TX_PPDU_DUR_INFO0_PEER_ID_MASK GENMASK(15, 0) #define HTT_TX_PPDU_DUR_INFO0_TID_MASK GENMASK(20, 16) struct htt_data_tx_ppdu_dur { __le32 info0; /* HTT_TX_PPDU_DUR_INFO0_ */ __le32 tx_duration; /* in usecs */ } __packed; #define HTT_TX_COMPL_PPDU_DUR_INFO0_NUM_ENTRIES_MASK GENMASK(7, 0) struct htt_data_tx_compl_ppdu_dur { __le32 info0; /* HTT_TX_COMPL_PPDU_DUR_INFO0_ */ struct htt_data_tx_ppdu_dur ppdu_dur[]; } __packed; struct htt_tx_compl_ind_base { u32 hdr; u16 payload[1/*or more*/]; } __packed; struct htt_rc_tx_done_params { u32 rate_code; u32 rate_code_flags; u32 flags; u32 num_enqued; /* 1 for non-AMPDU */ u32 num_retries; u32 num_failed; /* for AMPDU */ u32 ack_rssi; u32 time_stamp; u32 is_probe; }; struct htt_rc_update { u8 vdev_id; __le16 peer_id; u8 addr[6]; u8 num_elems; u8 rsvd0; struct htt_rc_tx_done_params params[]; /* variable length %num_elems */ } __packed; /* see htt_rx_indication for similar fields and descriptions */ struct htt_rx_fragment_indication { union { u8 info0; /* %HTT_RX_FRAG_IND_INFO0_ */ struct { u8 ext_tid:5, flush_valid:1; } __packed; } __packed; __le16 peer_id; __le32 info1; /* %HTT_RX_FRAG_IND_INFO1_ */ __le16 fw_rx_desc_bytes; __le16 rsvd0; u8 fw_msdu_rx_desc[]; } __packed; #define ATH10K_IEEE80211_EXTIV BIT(5) #define ATH10K_IEEE80211_TKIP_MICLEN 8 /* trailing MIC */ #define HTT_RX_FRAG_IND_INFO0_HEADER_LEN 16 #define HTT_RX_FRAG_IND_INFO0_EXT_TID_MASK 0x1F #define HTT_RX_FRAG_IND_INFO0_EXT_TID_LSB 0 #define HTT_RX_FRAG_IND_INFO0_FLUSH_VALID_MASK 0x20 #define HTT_RX_FRAG_IND_INFO0_FLUSH_VALID_LSB 5 #define HTT_RX_FRAG_IND_INFO1_FLUSH_SEQ_NUM_START_MASK 0x0000003F #define HTT_RX_FRAG_IND_INFO1_FLUSH_SEQ_NUM_START_LSB 0 #define HTT_RX_FRAG_IND_INFO1_FLUSH_SEQ_NUM_END_MASK 0x00000FC0 #define HTT_RX_FRAG_IND_INFO1_FLUSH_SEQ_NUM_END_LSB 6 struct htt_rx_pn_ind { __le16 peer_id; u8 tid; u8 seqno_start; u8 seqno_end; u8 pn_ie_count; u8 reserved; u8 pn_ies[]; } __packed; struct htt_rx_offload_msdu { __le16 msdu_len; __le16 peer_id; u8 vdev_id; u8 tid; u8 fw_desc; u8 payload[]; } __packed; struct htt_rx_offload_ind { u8 reserved; __le16 msdu_count; } __packed; struct htt_rx_in_ord_msdu_desc { __le32 msdu_paddr; __le16 msdu_len; u8 fw_desc; u8 reserved; } __packed; struct htt_rx_in_ord_msdu_desc_ext { __le64 msdu_paddr; __le16 msdu_len; u8 fw_desc; u8 reserved; } __packed; struct htt_rx_in_ord_ind { u8 info; __le16 peer_id; u8 vdev_id; u8 reserved; __le16 msdu_count; union { DECLARE_FLEX_ARRAY(struct htt_rx_in_ord_msdu_desc, msdu_descs32); DECLARE_FLEX_ARRAY(struct htt_rx_in_ord_msdu_desc_ext, msdu_descs64); } __packed; } __packed; #define HTT_RX_IN_ORD_IND_INFO_TID_MASK 0x0000001f #define HTT_RX_IN_ORD_IND_INFO_TID_LSB 0 #define HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK 0x00000020 #define HTT_RX_IN_ORD_IND_INFO_OFFLOAD_LSB 5 #define HTT_RX_IN_ORD_IND_INFO_FRAG_MASK 0x00000040 #define HTT_RX_IN_ORD_IND_INFO_FRAG_LSB 6 /* * target -> host test message definition * * The following field definitions describe the format of the test * message sent from the target to the host. * The message consists of a 4-octet header, followed by a variable * number of 32-bit integer values, followed by a variable number * of 8-bit character values. * * |31 16|15 8|7 0| * |-----------------------------------------------------------| * | num chars | num ints | msg type | * |-----------------------------------------------------------| * | int 0 | * |-----------------------------------------------------------| * | int 1 | * |-----------------------------------------------------------| * | ... | * |-----------------------------------------------------------| * | char 3 | char 2 | char 1 | char 0 | * |-----------------------------------------------------------| * | | | ... | char 4 | * |-----------------------------------------------------------| * - MSG_TYPE * Bits 7:0 * Purpose: identifies this as a test message * Value: HTT_MSG_TYPE_TEST * - NUM_INTS * Bits 15:8 * Purpose: indicate how many 32-bit integers follow the message header * - NUM_CHARS * Bits 31:16 * Purpose: indicate how many 8-bit characters follow the series of integers */ struct htt_rx_test { u8 num_ints; __le16 num_chars; /* payload consists of 2 lists: * a) num_ints * sizeof(__le32) * b) num_chars * sizeof(u8) aligned to 4bytes */ u8 payload[]; } __packed; static inline __le32 *htt_rx_test_get_ints(struct htt_rx_test *rx_test) { return (__le32 *)rx_test->payload; } static inline u8 *htt_rx_test_get_chars(struct htt_rx_test *rx_test) { return rx_test->payload + (rx_test->num_ints * sizeof(__le32)); } /* * target -> host packet log message * * The following field definitions describe the format of the packet log * message sent from the target to the host. * The message consists of a 4-octet header,followed by a variable number * of 32-bit character values. * * |31 24|23 16|15 8|7 0| * |-----------------------------------------------------------| * | | | | msg type | * |-----------------------------------------------------------| * | payload | * |-----------------------------------------------------------| * - MSG_TYPE * Bits 7:0 * Purpose: identifies this as a test message * Value: HTT_MSG_TYPE_PACKETLOG */ struct htt_pktlog_msg { u8 pad[3]; u8 payload[]; } __packed; struct htt_dbg_stats_rx_reorder_stats { /* Non QoS MPDUs received */ __le32 deliver_non_qos; /* MPDUs received in-order */ __le32 deliver_in_order; /* Flush due to reorder timer expired */ __le32 deliver_flush_timeout; /* Flush due to move out of window */ __le32 deliver_flush_oow; /* Flush due to DELBA */ __le32 deliver_flush_delba; /* MPDUs dropped due to FCS error */ __le32 fcs_error; /* MPDUs dropped due to monitor mode non-data packet */ __le32 mgmt_ctrl; /* MPDUs dropped due to invalid peer */ __le32 invalid_peer; /* MPDUs dropped due to duplication (non aggregation) */ __le32 dup_non_aggr; /* MPDUs dropped due to processed before */ __le32 dup_past; /* MPDUs dropped due to duplicate in reorder queue */ __le32 dup_in_reorder; /* Reorder timeout happened */ __le32 reorder_timeout; /* invalid bar ssn */ __le32 invalid_bar_ssn; /* reorder reset due to bar ssn */ __le32 ssn_reset; }; struct htt_dbg_stats_wal_tx_stats { /* Num HTT cookies queued to dispatch list */ __le32 comp_queued; /* Num HTT cookies dispatched */ __le32 comp_delivered; /* Num MSDU queued to WAL */ __le32 msdu_enqued; /* Num MPDU queue to WAL */ __le32 mpdu_enqued; /* Num MSDUs dropped by WMM limit */ __le32 wmm_drop; /* Num Local frames queued */ __le32 local_enqued; /* Num Local frames done */ __le32 local_freed; /* Num queued to HW */ __le32 hw_queued; /* Num PPDU reaped from HW */ __le32 hw_reaped; /* Num underruns */ __le32 underrun; /* Num PPDUs cleaned up in TX abort */ __le32 tx_abort; /* Num MPDUs requeued by SW */ __le32 mpdus_requeued; /* excessive retries */ __le32 tx_ko; /* data hw rate code */ __le32 data_rc; /* Scheduler self triggers */ __le32 self_triggers; /* frames dropped due to excessive sw retries */ __le32 sw_retry_failure; /* illegal rate phy errors */ __le32 illgl_rate_phy_err; /* wal pdev continuous xretry */ __le32 pdev_cont_xretry; /* wal pdev continuous xretry */ __le32 pdev_tx_timeout; /* wal pdev resets */ __le32 pdev_resets; __le32 phy_underrun; /* MPDU is more than txop limit */ __le32 txop_ovf; } __packed; struct htt_dbg_stats_wal_rx_stats { /* Cnts any change in ring routing mid-ppdu */ __le32 mid_ppdu_route_change; /* Total number of statuses processed */ __le32 status_rcvd; /* Extra frags on rings 0-3 */ __le32 r0_frags; __le32 r1_frags; __le32 r2_frags; __le32 r3_frags; /* MSDUs / MPDUs delivered to HTT */ __le32 htt_msdus; __le32 htt_mpdus; /* MSDUs / MPDUs delivered to local stack */ __le32 loc_msdus; __le32 loc_mpdus; /* AMSDUs that have more MSDUs than the status ring size */ __le32 oversize_amsdu; /* Number of PHY errors */ __le32 phy_errs; /* Number of PHY errors drops */ __le32 phy_err_drop; /* Number of mpdu errors - FCS, MIC, ENC etc. */ __le32 mpdu_errs; } __packed; struct htt_dbg_stats_wal_peer_stats { __le32 dummy; /* REMOVE THIS ONCE REAL PEER STAT COUNTERS ARE ADDED */ } __packed; struct htt_dbg_stats_wal_pdev_txrx { struct htt_dbg_stats_wal_tx_stats tx_stats; struct htt_dbg_stats_wal_rx_stats rx_stats; struct htt_dbg_stats_wal_peer_stats peer_stats; } __packed; struct htt_dbg_stats_rx_rate_info { __le32 mcs[10]; __le32 sgi[10]; __le32 nss[4]; __le32 stbc[10]; __le32 bw[3]; __le32 pream[6]; __le32 ldpc; __le32 txbf; }; /* * htt_dbg_stats_status - * present - The requested stats have been delivered in full. * This indicates that either the stats information was contained * in its entirety within this message, or else this message * completes the delivery of the requested stats info that was * partially delivered through earlier STATS_CONF messages. * partial - The requested stats have been delivered in part. * One or more subsequent STATS_CONF messages with the same * cookie value will be sent to deliver the remainder of the * information. * error - The requested stats could not be delivered, for example due * to a shortage of memory to construct a message holding the * requested stats. * invalid - The requested stat type is either not recognized, or the * target is configured to not gather the stats type in question. * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * series_done - This special value indicates that no further stats info * elements are present within a series of stats info elems * (within a stats upload confirmation message). */ enum htt_dbg_stats_status { HTT_DBG_STATS_STATUS_PRESENT = 0, HTT_DBG_STATS_STATUS_PARTIAL = 1, HTT_DBG_STATS_STATUS_ERROR = 2, HTT_DBG_STATS_STATUS_INVALID = 3, HTT_DBG_STATS_STATUS_SERIES_DONE = 7 }; /* * host -> target FRAG DESCRIPTOR/MSDU_EXT DESC bank * * The following field definitions describe the format of the HTT host * to target frag_desc/msdu_ext bank configuration message. * The message contains the based address and the min and max id of the * MSDU_EXT/FRAG_DESC that will be used by the HTT to map MSDU DESC and * MSDU_EXT/FRAG_DESC. * HTT will use id in HTT descriptor instead sending the frag_desc_ptr. * For QCA988X HW the firmware will use fragment_desc_ptr but in WIFI2.0 * the hardware does the mapping/translation. * * Total banks that can be configured is configured to 16. * * This should be called before any TX has be initiated by the HTT * * |31 16|15 8|7 5|4 0| * |------------------------------------------------------------| * | DESC_SIZE | NUM_BANKS | RES |SWP|pdev| msg type | * |------------------------------------------------------------| * | BANK0_BASE_ADDRESS | * |------------------------------------------------------------| * | ... | * |------------------------------------------------------------| * | BANK15_BASE_ADDRESS | * |------------------------------------------------------------| * | BANK0_MAX_ID | BANK0_MIN_ID | * |------------------------------------------------------------| * | ... | * |------------------------------------------------------------| * | BANK15_MAX_ID | BANK15_MIN_ID | * |------------------------------------------------------------| * Header fields: * - MSG_TYPE * Bits 7:0 * Value: 0x6 * - BANKx_BASE_ADDRESS * Bits 31:0 * Purpose: Provide a mechanism to specify the base address of the MSDU_EXT * bank physical/bus address. * - BANKx_MIN_ID * Bits 15:0 * Purpose: Provide a mechanism to specify the min index that needs to * mapped. * - BANKx_MAX_ID * Bits 31:16 * Purpose: Provide a mechanism to specify the max index that needs to * */ struct htt_frag_desc_bank_id { __le16 bank_min_id; __le16 bank_max_id; } __packed; /* real is 16 but it wouldn't fit in the max htt message size * so we use a conservatively safe value for now */ #define HTT_FRAG_DESC_BANK_MAX 4 #define HTT_FRAG_DESC_BANK_CFG_INFO_PDEV_ID_MASK 0x03 #define HTT_FRAG_DESC_BANK_CFG_INFO_PDEV_ID_LSB 0 #define HTT_FRAG_DESC_BANK_CFG_INFO_SWAP BIT(2) #define HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_VALID BIT(3) #define HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE_MASK BIT(4) #define HTT_FRAG_DESC_BANK_CFG_INFO_Q_STATE_DEPTH_TYPE_LSB 4 enum htt_q_depth_type { HTT_Q_DEPTH_TYPE_BYTES = 0, HTT_Q_DEPTH_TYPE_MSDUS = 1, }; #define HTT_TX_Q_STATE_NUM_PEERS (TARGET_10_4_NUM_QCACHE_PEERS_MAX + \ TARGET_10_4_NUM_VDEVS) #define HTT_TX_Q_STATE_NUM_TIDS 8 #define HTT_TX_Q_STATE_ENTRY_SIZE 1 #define HTT_TX_Q_STATE_ENTRY_MULTIPLIER 0 /** * struct htt_q_state_conf - part of htt_frag_desc_bank_cfg for host q state config * * Defines host q state format and behavior. See htt_q_state. * * @paddr: Queue physical address * @num_peers: Number of supported peers * @num_tids: Number of supported TIDs * @record_size: Defines the size of each host q entry in bytes. In practice * however firmware (at least 10.4.3-00191) ignores this host * configuration value and uses hardcoded value of 1. * @record_multiplier: This is valid only when q depth type is MSDUs. It * defines the exponent for the power of 2 multiplication. * @pad: struct padding for 32-bit alignment */ struct htt_q_state_conf { __le32 paddr; __le16 num_peers; __le16 num_tids; u8 record_size; u8 record_multiplier; u8 pad[2]; } __packed; struct htt_frag_desc_bank_cfg32 { u8 info; /* HTT_FRAG_DESC_BANK_CFG_INFO_ */ u8 num_banks; u8 desc_size; __le32 bank_base_addrs[HTT_FRAG_DESC_BANK_MAX]; struct htt_frag_desc_bank_id bank_id[HTT_FRAG_DESC_BANK_MAX]; struct htt_q_state_conf q_state; } __packed; struct htt_frag_desc_bank_cfg64 { u8 info; /* HTT_FRAG_DESC_BANK_CFG_INFO_ */ u8 num_banks; u8 desc_size; __le64 bank_base_addrs[HTT_FRAG_DESC_BANK_MAX]; struct htt_frag_desc_bank_id bank_id[HTT_FRAG_DESC_BANK_MAX]; struct htt_q_state_conf q_state; } __packed; #define HTT_TX_Q_STATE_ENTRY_COEFFICIENT 128 #define HTT_TX_Q_STATE_ENTRY_FACTOR_MASK 0x3f #define HTT_TX_Q_STATE_ENTRY_FACTOR_LSB 0 #define HTT_TX_Q_STATE_ENTRY_EXP_MASK 0xc0 #define HTT_TX_Q_STATE_ENTRY_EXP_LSB 6 /** * struct htt_q_state - shared between host and firmware via DMA * * This structure is used for the host to expose it's software queue state to * firmware so that its rate control can schedule fetch requests for optimized * performance. This is most notably used for MU-MIMO aggregation when multiple * MU clients are connected. * * @count: Each element defines the host queue depth. When q depth type was * configured as HTT_Q_DEPTH_TYPE_BYTES then each entry is defined as: * FACTOR * 128 * 8^EXP (see HTT_TX_Q_STATE_ENTRY_FACTOR_MASK and * HTT_TX_Q_STATE_ENTRY_EXP_MASK). When q depth type was configured as * HTT_Q_DEPTH_TYPE_MSDUS the number of packets is scaled by 2 ** * record_multiplier (see htt_q_state_conf). * @map: Used by firmware to quickly check which host queues are not empty. It * is a bitmap simply saying. * @seq: Used by firmware to quickly check if the host queues were updated * since it last checked. * * FIXME: Is the q_state map[] size calculation really correct? */ struct htt_q_state { u8 count[HTT_TX_Q_STATE_NUM_TIDS][HTT_TX_Q_STATE_NUM_PEERS]; u32 map[HTT_TX_Q_STATE_NUM_TIDS][(HTT_TX_Q_STATE_NUM_PEERS + 31) / 32]; __le32 seq; } __packed; #define HTT_TX_FETCH_RECORD_INFO_PEER_ID_MASK 0x0fff #define HTT_TX_FETCH_RECORD_INFO_PEER_ID_LSB 0 #define HTT_TX_FETCH_RECORD_INFO_TID_MASK 0xf000 #define HTT_TX_FETCH_RECORD_INFO_TID_LSB 12 struct htt_tx_fetch_record { __le16 info; /* HTT_TX_FETCH_IND_RECORD_INFO_ */ __le16 num_msdus; __le32 num_bytes; } __packed; struct htt_tx_fetch_ind { u8 pad0; __le16 fetch_seq_num; __le32 token; __le16 num_resp_ids; __le16 num_records; union { /* ath10k_htt_get_tx_fetch_ind_resp_ids() */ DECLARE_FLEX_ARRAY(__le32, resp_ids); DECLARE_FLEX_ARRAY(struct htt_tx_fetch_record, records); } __packed; } __packed; static inline void * ath10k_htt_get_tx_fetch_ind_resp_ids(struct htt_tx_fetch_ind *ind) { return (void *)&ind->records[le16_to_cpu(ind->num_records)]; } struct htt_tx_fetch_resp { u8 pad0; __le16 resp_id; __le16 fetch_seq_num; __le16 num_records; __le32 token; struct htt_tx_fetch_record records[]; } __packed; struct htt_tx_fetch_confirm { u8 pad0; __le16 num_resp_ids; __le32 resp_ids[]; } __packed; enum htt_tx_mode_switch_mode { HTT_TX_MODE_SWITCH_PUSH = 0, HTT_TX_MODE_SWITCH_PUSH_PULL = 1, }; #define HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE BIT(0) #define HTT_TX_MODE_SWITCH_IND_INFO0_NUM_RECORDS_MASK 0xfffe #define HTT_TX_MODE_SWITCH_IND_INFO0_NUM_RECORDS_LSB 1 #define HTT_TX_MODE_SWITCH_IND_INFO1_MODE_MASK 0x0003 #define HTT_TX_MODE_SWITCH_IND_INFO1_MODE_LSB 0 #define HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD_MASK 0xfffc #define HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD_LSB 2 #define HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID_MASK 0x0fff #define HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID_LSB 0 #define HTT_TX_MODE_SWITCH_RECORD_INFO0_TID_MASK 0xf000 #define HTT_TX_MODE_SWITCH_RECORD_INFO0_TID_LSB 12 struct htt_tx_mode_switch_record { __le16 info0; /* HTT_TX_MODE_SWITCH_RECORD_INFO0_ */ __le16 num_max_msdus; } __packed; struct htt_tx_mode_switch_ind { u8 pad0; __le16 info0; /* HTT_TX_MODE_SWITCH_IND_INFO0_ */ __le16 info1; /* HTT_TX_MODE_SWITCH_IND_INFO1_ */ u8 pad1[2]; struct htt_tx_mode_switch_record records[]; } __packed; struct htt_channel_change { u8 pad[3]; __le32 freq; __le32 center_freq1; __le32 center_freq2; __le32 phymode; } __packed; struct htt_per_peer_tx_stats_ind { __le32 succ_bytes; __le32 retry_bytes; __le32 failed_bytes; u8 ratecode; u8 flags; __le16 peer_id; __le16 succ_pkts; __le16 retry_pkts; __le16 failed_pkts; __le16 tx_duration; __le32 reserved1; __le32 reserved2; } __packed; struct htt_peer_tx_stats { u8 num_ppdu; u8 ppdu_len; u8 version; u8 payload[]; } __packed; #define ATH10K_10_2_TX_STATS_OFFSET 136 #define PEER_STATS_FOR_NO_OF_PPDUS 4 struct ath10k_10_2_peer_tx_stats { u8 ratecode[PEER_STATS_FOR_NO_OF_PPDUS]; u8 success_pkts[PEER_STATS_FOR_NO_OF_PPDUS]; __le16 success_bytes[PEER_STATS_FOR_NO_OF_PPDUS]; u8 retry_pkts[PEER_STATS_FOR_NO_OF_PPDUS]; __le16 retry_bytes[PEER_STATS_FOR_NO_OF_PPDUS]; u8 failed_pkts[PEER_STATS_FOR_NO_OF_PPDUS]; __le16 failed_bytes[PEER_STATS_FOR_NO_OF_PPDUS]; u8 flags[PEER_STATS_FOR_NO_OF_PPDUS]; __le32 tx_duration; u8 tx_ppdu_cnt; u8 peer_id; } __packed; union htt_rx_pn_t { /* WEP: 24-bit PN */ u32 pn24; /* TKIP or CCMP: 48-bit PN */ u64 pn48; /* WAPI: 128-bit PN */ u64 pn128[2]; }; struct htt_cmd { struct htt_cmd_hdr hdr; union { struct htt_ver_req ver_req; struct htt_mgmt_tx_desc mgmt_tx; struct htt_data_tx_desc data_tx; struct htt_rx_ring_setup_32 rx_setup_32; struct htt_rx_ring_setup_64 rx_setup_64; struct htt_stats_req stats_req; struct htt_oob_sync_req oob_sync_req; struct htt_aggr_conf aggr_conf; struct htt_aggr_conf_v2 aggr_conf_v2; struct htt_frag_desc_bank_cfg32 frag_desc_bank_cfg32; struct htt_frag_desc_bank_cfg64 frag_desc_bank_cfg64; struct htt_tx_fetch_resp tx_fetch_resp; }; } __packed; struct htt_resp { struct htt_resp_hdr hdr; union { struct htt_ver_resp ver_resp; struct htt_mgmt_tx_completion mgmt_tx_completion; struct htt_data_tx_completion data_tx_completion; struct htt_rx_indication rx_ind; struct htt_rx_indication_hl rx_ind_hl; struct htt_rx_fragment_indication rx_frag_ind; struct htt_rx_peer_map peer_map; struct htt_rx_peer_unmap peer_unmap; struct htt_rx_flush rx_flush; struct htt_rx_addba rx_addba; struct htt_rx_delba rx_delba; struct htt_security_indication security_indication; struct htt_rc_update rc_update; struct htt_rx_test rx_test; struct htt_pktlog_msg pktlog_msg; struct htt_rx_pn_ind rx_pn_ind; struct htt_rx_offload_ind rx_offload_ind; struct htt_rx_in_ord_ind rx_in_ord_ind; struct htt_tx_fetch_ind tx_fetch_ind; struct htt_tx_fetch_confirm tx_fetch_confirm; struct htt_tx_mode_switch_ind tx_mode_switch_ind; struct htt_channel_change chan_change; struct htt_peer_tx_stats peer_tx_stats; } __packed; } __packed; /*** host side structures follow ***/ struct htt_tx_done { u16 msdu_id; u16 status; u8 ack_rssi; }; enum htt_tx_compl_state { HTT_TX_COMPL_STATE_NONE, HTT_TX_COMPL_STATE_ACK, HTT_TX_COMPL_STATE_NOACK, HTT_TX_COMPL_STATE_DISCARD, }; struct htt_peer_map_event { u8 vdev_id; u16 peer_id; u8 addr[ETH_ALEN]; }; struct htt_peer_unmap_event { u16 peer_id; }; struct ath10k_htt_txbuf_32 { struct htt_data_tx_desc_frag frags[2]; struct ath10k_htc_hdr htc_hdr; struct htt_cmd_hdr cmd_hdr; struct htt_data_tx_desc cmd_tx; } __packed __aligned(4); struct ath10k_htt_txbuf_64 { struct htt_data_tx_desc_frag frags[2]; struct ath10k_htc_hdr htc_hdr; struct htt_cmd_hdr cmd_hdr; struct htt_data_tx_desc_64 cmd_tx; } __packed __aligned(4); struct ath10k_htt { struct ath10k *ar; enum ath10k_htc_ep_id eid; struct sk_buff_head rx_indication_head; u8 target_version_major; u8 target_version_minor; struct completion target_version_received; u8 max_num_amsdu; u8 max_num_ampdu; const enum htt_t2h_msg_type *t2h_msg_types; u32 t2h_msg_types_max; struct { /* * Ring of network buffer objects - This ring is * used exclusively by the host SW. This ring * mirrors the dev_addrs_ring that is shared * between the host SW and the MAC HW. The host SW * uses this netbufs ring to locate the network * buffer objects whose data buffers the HW has * filled. */ struct sk_buff **netbufs_ring; /* This is used only with firmware supporting IN_ORD_IND. * * With Full Rx Reorder the HTT Rx Ring is more of a temporary * buffer ring from which buffer addresses are copied by the * firmware to MAC Rx ring. Firmware then delivers IN_ORD_IND * pointing to specific (re-ordered) buffers. * * FIXME: With kernel generic hashing functions there's a lot * of hash collisions for sk_buffs. */ bool in_ord_rx; DECLARE_HASHTABLE(skb_table, 4); /* * Ring of buffer addresses - * This ring holds the "physical" device address of the * rx buffers the host SW provides for the MAC HW to * fill. */ union { __le64 *paddrs_ring_64; __le32 *paddrs_ring_32; }; /* * Base address of ring, as a "physical" device address * rather than a CPU address. */ dma_addr_t base_paddr; /* how many elems in the ring (power of 2) */ int size; /* size - 1 */ unsigned int size_mask; /* how many rx buffers to keep in the ring */ int fill_level; /* how many rx buffers (full+empty) are in the ring */ int fill_cnt; /* * alloc_idx - where HTT SW has deposited empty buffers * This is allocated in consistent mem, so that the FW can * read this variable, and program the HW's FW_IDX reg with * the value of this shadow register. */ struct { __le32 *vaddr; dma_addr_t paddr; } alloc_idx; /* where HTT SW has processed bufs filled by rx MAC DMA */ struct { unsigned int msdu_payld; } sw_rd_idx; /* * refill_retry_timer - timer triggered when the ring is * not refilled to the level expected */ struct timer_list refill_retry_timer; /* Protects access to all rx ring buffer state variables */ spinlock_t lock; } rx_ring; unsigned int prefetch_len; /* Protects access to pending_tx, num_pending_tx */ spinlock_t tx_lock; int max_num_pending_tx; int num_pending_tx; int num_pending_mgmt_tx; struct idr pending_tx; wait_queue_head_t empty_tx_wq; /* FIFO for storing tx done status {ack, no-ack, discard} and msdu id */ DECLARE_KFIFO_PTR(txdone_fifo, struct htt_tx_done); /* set if host-fw communication goes haywire * used to avoid further failures */ bool rx_confused; atomic_t num_mpdus_ready; /* This is used to group tx/rx completions separately and process them * in batches to reduce cache stalls */ struct sk_buff_head rx_msdus_q; struct sk_buff_head rx_in_ord_compl_q; struct sk_buff_head tx_fetch_ind_q; /* rx_status template */ struct ieee80211_rx_status rx_status; struct { dma_addr_t paddr; union { struct htt_msdu_ext_desc *vaddr_desc_32; struct htt_msdu_ext_desc_64 *vaddr_desc_64; }; size_t size; } frag_desc; struct { dma_addr_t paddr; union { struct ath10k_htt_txbuf_32 *vaddr_txbuff_32; struct ath10k_htt_txbuf_64 *vaddr_txbuff_64; }; size_t size; } txbuf; struct { bool enabled; struct htt_q_state *vaddr; dma_addr_t paddr; u16 num_push_allowed; u16 num_peers; u16 num_tids; enum htt_tx_mode_switch_mode mode; enum htt_q_depth_type type; } tx_q_state; bool tx_mem_allocated; const struct ath10k_htt_tx_ops *tx_ops; const struct ath10k_htt_rx_ops *rx_ops; bool disable_tx_comp; bool bundle_tx; struct sk_buff_head tx_req_head; struct sk_buff_head tx_complete_head; }; struct ath10k_htt_tx_ops { int (*htt_send_rx_ring_cfg)(struct ath10k_htt *htt); int (*htt_send_frag_desc_bank_cfg)(struct ath10k_htt *htt); int (*htt_alloc_frag_desc)(struct ath10k_htt *htt); void (*htt_free_frag_desc)(struct ath10k_htt *htt); int (*htt_tx)(struct ath10k_htt *htt, enum ath10k_hw_txrx_mode txmode, struct sk_buff *msdu); int (*htt_alloc_txbuff)(struct ath10k_htt *htt); void (*htt_free_txbuff)(struct ath10k_htt *htt); int (*htt_h2t_aggr_cfg_msg)(struct ath10k_htt *htt, u8 max_subfrms_ampdu, u8 max_subfrms_amsdu); void (*htt_flush_tx)(struct ath10k_htt *htt); }; static inline int ath10k_htt_send_rx_ring_cfg(struct ath10k_htt *htt) { if (!htt->tx_ops->htt_send_rx_ring_cfg) return -EOPNOTSUPP; return htt->tx_ops->htt_send_rx_ring_cfg(htt); } static inline int ath10k_htt_send_frag_desc_bank_cfg(struct ath10k_htt *htt) { if (!htt->tx_ops->htt_send_frag_desc_bank_cfg) return -EOPNOTSUPP; return htt->tx_ops->htt_send_frag_desc_bank_cfg(htt); } static inline int ath10k_htt_alloc_frag_desc(struct ath10k_htt *htt) { if (!htt->tx_ops->htt_alloc_frag_desc) return -EOPNOTSUPP; return htt->tx_ops->htt_alloc_frag_desc(htt); } static inline void ath10k_htt_free_frag_desc(struct ath10k_htt *htt) { if (htt->tx_ops->htt_free_frag_desc) htt->tx_ops->htt_free_frag_desc(htt); } static inline int ath10k_htt_tx(struct ath10k_htt *htt, enum ath10k_hw_txrx_mode txmode, struct sk_buff *msdu) { return htt->tx_ops->htt_tx(htt, txmode, msdu); } static inline void ath10k_htt_flush_tx(struct ath10k_htt *htt) { if (htt->tx_ops->htt_flush_tx) htt->tx_ops->htt_flush_tx(htt); } static inline int ath10k_htt_alloc_txbuff(struct ath10k_htt *htt) { if (!htt->tx_ops->htt_alloc_txbuff) return -EOPNOTSUPP; return htt->tx_ops->htt_alloc_txbuff(htt); } static inline void ath10k_htt_free_txbuff(struct ath10k_htt *htt) { if (htt->tx_ops->htt_free_txbuff) htt->tx_ops->htt_free_txbuff(htt); } static inline int ath10k_htt_h2t_aggr_cfg_msg(struct ath10k_htt *htt, u8 max_subfrms_ampdu, u8 max_subfrms_amsdu) { if (!htt->tx_ops->htt_h2t_aggr_cfg_msg) return -EOPNOTSUPP; return htt->tx_ops->htt_h2t_aggr_cfg_msg(htt, max_subfrms_ampdu, max_subfrms_amsdu); } struct ath10k_htt_rx_ops { size_t (*htt_get_rx_ring_size)(struct ath10k_htt *htt); void (*htt_config_paddrs_ring)(struct ath10k_htt *htt, void *vaddr); void (*htt_set_paddrs_ring)(struct ath10k_htt *htt, dma_addr_t paddr, int idx); void* (*htt_get_vaddr_ring)(struct ath10k_htt *htt); void (*htt_reset_paddrs_ring)(struct ath10k_htt *htt, int idx); bool (*htt_rx_proc_rx_frag_ind)(struct ath10k_htt *htt, struct htt_rx_fragment_indication *rx, struct sk_buff *skb); }; static inline size_t ath10k_htt_get_rx_ring_size(struct ath10k_htt *htt) { if (!htt->rx_ops->htt_get_rx_ring_size) return 0; return htt->rx_ops->htt_get_rx_ring_size(htt); } static inline void ath10k_htt_config_paddrs_ring(struct ath10k_htt *htt, void *vaddr) { if (htt->rx_ops->htt_config_paddrs_ring) htt->rx_ops->htt_config_paddrs_ring(htt, vaddr); } static inline void ath10k_htt_set_paddrs_ring(struct ath10k_htt *htt, dma_addr_t paddr, int idx) { if (htt->rx_ops->htt_set_paddrs_ring) htt->rx_ops->htt_set_paddrs_ring(htt, paddr, idx); } static inline void *ath10k_htt_get_vaddr_ring(struct ath10k_htt *htt) { if (!htt->rx_ops->htt_get_vaddr_ring) return NULL; return htt->rx_ops->htt_get_vaddr_ring(htt); } static inline void ath10k_htt_reset_paddrs_ring(struct ath10k_htt *htt, int idx) { if (htt->rx_ops->htt_reset_paddrs_ring) htt->rx_ops->htt_reset_paddrs_ring(htt, idx); } static inline bool ath10k_htt_rx_proc_rx_frag_ind(struct ath10k_htt *htt, struct htt_rx_fragment_indication *rx, struct sk_buff *skb) { if (!htt->rx_ops->htt_rx_proc_rx_frag_ind) return true; return htt->rx_ops->htt_rx_proc_rx_frag_ind(htt, rx, skb); } /* the driver strongly assumes that the rx header status be 64 bytes long, * so all possible rx_desc structures must respect this assumption. */ #define RX_HTT_HDR_STATUS_LEN 64 /* The rx descriptor structure layout is programmed via rx ring setup * so that FW knows how to transfer the rx descriptor to the host. * Unfortunately, though, QCA6174's firmware doesn't currently behave correctly * when modifying the structure layout of the rx descriptor beyond what it expects * (even if it correctly programmed during the rx ring setup). * Therefore we must keep two different memory layouts, abstract the rx descriptor * representation and use ath10k_rx_desc_ops * for correctly accessing rx descriptor data. */ /* base struct used for abstracting the rx descriptor representation */ struct htt_rx_desc { union { /* This field is filled on the host using the msdu buffer * from htt_rx_indication */ struct fw_rx_desc_base fw_desc; u32 pad; } __packed; } __packed; /* rx descriptor for wcn3990 and possibly extensible for newer cards * Buffers like this are placed on the rx ring. */ struct htt_rx_desc_v2 { struct htt_rx_desc base; struct { struct rx_attention attention; struct rx_frag_info frag_info; struct rx_mpdu_start mpdu_start; struct rx_msdu_start msdu_start; struct rx_msdu_end msdu_end; struct rx_mpdu_end mpdu_end; struct rx_ppdu_start ppdu_start; struct rx_ppdu_end ppdu_end; } __packed; u8 rx_hdr_status[RX_HTT_HDR_STATUS_LEN]; u8 msdu_payload[]; }; /* QCA6174, QCA988x, QCA99x0 dedicated rx descriptor to make sure their firmware * works correctly. We keep a single rx descriptor for all these three * families of cards because from tests it seems to be the most stable solution, * e.g. having a rx descriptor only for QCA6174 seldom caused firmware crashes * during some tests. * Buffers like this are placed on the rx ring. */ struct htt_rx_desc_v1 { struct htt_rx_desc base; struct { struct rx_attention attention; struct rx_frag_info_v1 frag_info; struct rx_mpdu_start mpdu_start; struct rx_msdu_start_v1 msdu_start; struct rx_msdu_end_v1 msdu_end; struct rx_mpdu_end mpdu_end; struct rx_ppdu_start ppdu_start; struct rx_ppdu_end_v1 ppdu_end; } __packed; u8 rx_hdr_status[RX_HTT_HDR_STATUS_LEN]; u8 msdu_payload[]; }; /* rx_desc abstraction */ struct ath10k_htt_rx_desc_ops { /* These fields are mandatory, they must be specified in any instance */ /* sizeof() of the rx_desc structure used by this hw */ size_t rx_desc_size; /* offset of msdu_payload inside the rx_desc structure used by this hw */ size_t rx_desc_msdu_payload_offset; /* These fields are options. * When a field is not provided the default implementation gets used * (see the ath10k_rx_desc_* operations below for more info about the defaults) */ bool (*rx_desc_get_msdu_limit_error)(struct htt_rx_desc *rxd); int (*rx_desc_get_l3_pad_bytes)(struct htt_rx_desc *rxd); /* Safely cast from a void* buffer containing an rx descriptor * to the proper rx_desc structure */ struct htt_rx_desc *(*rx_desc_from_raw_buffer)(void *buff); void (*rx_desc_get_offsets)(struct htt_rx_ring_rx_desc_offsets *offs); struct rx_attention *(*rx_desc_get_attention)(struct htt_rx_desc *rxd); struct rx_frag_info_common *(*rx_desc_get_frag_info)(struct htt_rx_desc *rxd); struct rx_mpdu_start *(*rx_desc_get_mpdu_start)(struct htt_rx_desc *rxd); struct rx_mpdu_end *(*rx_desc_get_mpdu_end)(struct htt_rx_desc *rxd); struct rx_msdu_start_common *(*rx_desc_get_msdu_start)(struct htt_rx_desc *rxd); struct rx_msdu_end_common *(*rx_desc_get_msdu_end)(struct htt_rx_desc *rxd); struct rx_ppdu_start *(*rx_desc_get_ppdu_start)(struct htt_rx_desc *rxd); struct rx_ppdu_end_common *(*rx_desc_get_ppdu_end)(struct htt_rx_desc *rxd); u8 *(*rx_desc_get_rx_hdr_status)(struct htt_rx_desc *rxd); u8 *(*rx_desc_get_msdu_payload)(struct htt_rx_desc *rxd); }; extern const struct ath10k_htt_rx_desc_ops qca988x_rx_desc_ops; extern const struct ath10k_htt_rx_desc_ops qca99x0_rx_desc_ops; extern const struct ath10k_htt_rx_desc_ops wcn3990_rx_desc_ops; static inline int ath10k_htt_rx_desc_get_l3_pad_bytes(struct ath10k_hw_params *hw, struct htt_rx_desc *rxd) { if (hw->rx_desc_ops->rx_desc_get_l3_pad_bytes) return hw->rx_desc_ops->rx_desc_get_l3_pad_bytes(rxd); return 0; } static inline bool ath10k_htt_rx_desc_msdu_limit_error(struct ath10k_hw_params *hw, struct htt_rx_desc *rxd) { if (hw->rx_desc_ops->rx_desc_get_msdu_limit_error) return hw->rx_desc_ops->rx_desc_get_msdu_limit_error(rxd); return false; } /* The default implementation of all these getters is using the old rx_desc, * so that it is easier to define the ath10k_htt_rx_desc_ops instances. * But probably, if new wireless cards must be supported, it would be better * to switch the default implementation to the new rx_desc, since this would * make the extension easier . */ static inline struct htt_rx_desc * ath10k_htt_rx_desc_from_raw_buffer(struct ath10k_hw_params *hw, void *buff) { if (hw->rx_desc_ops->rx_desc_from_raw_buffer) return hw->rx_desc_ops->rx_desc_from_raw_buffer(buff); return &((struct htt_rx_desc_v1 *)buff)->base; } static inline void ath10k_htt_rx_desc_get_offsets(struct ath10k_hw_params *hw, struct htt_rx_ring_rx_desc_offsets *off) { if (hw->rx_desc_ops->rx_desc_get_offsets) { hw->rx_desc_ops->rx_desc_get_offsets(off); } else { #define desc_offset(x) (offsetof(struct htt_rx_desc_v1, x) / 4) off->mac80211_hdr_offset = __cpu_to_le16(desc_offset(rx_hdr_status)); off->msdu_payload_offset = __cpu_to_le16(desc_offset(msdu_payload)); off->ppdu_start_offset = __cpu_to_le16(desc_offset(ppdu_start)); off->ppdu_end_offset = __cpu_to_le16(desc_offset(ppdu_end)); off->mpdu_start_offset = __cpu_to_le16(desc_offset(mpdu_start)); off->mpdu_end_offset = __cpu_to_le16(desc_offset(mpdu_end)); off->msdu_start_offset = __cpu_to_le16(desc_offset(msdu_start)); off->msdu_end_offset = __cpu_to_le16(desc_offset(msdu_end)); off->rx_attention_offset = __cpu_to_le16(desc_offset(attention)); off->frag_info_offset = __cpu_to_le16(desc_offset(frag_info)); #undef desc_offset } } static inline struct rx_attention * ath10k_htt_rx_desc_get_attention(struct ath10k_hw_params *hw, struct htt_rx_desc *rxd) { struct htt_rx_desc_v1 *rx_desc; if (hw->rx_desc_ops->rx_desc_get_attention) return hw->rx_desc_ops->rx_desc_get_attention(rxd); rx_desc = container_of(rxd, struct htt_rx_desc_v1, base); return &rx_desc->attention; } static inline struct rx_frag_info_common * ath10k_htt_rx_desc_get_frag_info(struct ath10k_hw_params *hw, struct htt_rx_desc *rxd) { struct htt_rx_desc_v1 *rx_desc; if (hw->rx_desc_ops->rx_desc_get_frag_info) return hw->rx_desc_ops->rx_desc_get_frag_info(rxd); rx_desc = container_of(rxd, struct htt_rx_desc_v1, base); return &rx_desc->frag_info.common; } static inline struct rx_mpdu_start * ath10k_htt_rx_desc_get_mpdu_start(struct ath10k_hw_params *hw, struct htt_rx_desc *rxd) { struct htt_rx_desc_v1 *rx_desc; if (hw->rx_desc_ops->rx_desc_get_mpdu_start) return hw->rx_desc_ops->rx_desc_get_mpdu_start(rxd); rx_desc = container_of(rxd, struct htt_rx_desc_v1, base); return &rx_desc->mpdu_start; } static inline struct rx_mpdu_end * ath10k_htt_rx_desc_get_mpdu_end(struct ath10k_hw_params *hw, struct htt_rx_desc *rxd) { struct htt_rx_desc_v1 *rx_desc; if (hw->rx_desc_ops->rx_desc_get_mpdu_end) return hw->rx_desc_ops->rx_desc_get_mpdu_end(rxd); rx_desc = container_of(rxd, struct htt_rx_desc_v1, base); return &rx_desc->mpdu_end; } static inline struct rx_msdu_start_common * ath10k_htt_rx_desc_get_msdu_start(struct ath10k_hw_params *hw, struct htt_rx_desc *rxd) { struct htt_rx_desc_v1 *rx_desc; if (hw->rx_desc_ops->rx_desc_get_msdu_start) return hw->rx_desc_ops->rx_desc_get_msdu_start(rxd); rx_desc = container_of(rxd, struct htt_rx_desc_v1, base); return &rx_desc->msdu_start.common; } static inline struct rx_msdu_end_common * ath10k_htt_rx_desc_get_msdu_end(struct ath10k_hw_params *hw, struct htt_rx_desc *rxd) { struct htt_rx_desc_v1 *rx_desc; if (hw->rx_desc_ops->rx_desc_get_msdu_end) return hw->rx_desc_ops->rx_desc_get_msdu_end(rxd); rx_desc = container_of(rxd, struct htt_rx_desc_v1, base); return &rx_desc->msdu_end.common; } static inline struct rx_ppdu_start * ath10k_htt_rx_desc_get_ppdu_start(struct ath10k_hw_params *hw, struct htt_rx_desc *rxd) { struct htt_rx_desc_v1 *rx_desc; if (hw->rx_desc_ops->rx_desc_get_ppdu_start) return hw->rx_desc_ops->rx_desc_get_ppdu_start(rxd); rx_desc = container_of(rxd, struct htt_rx_desc_v1, base); return &rx_desc->ppdu_start; } static inline struct rx_ppdu_end_common * ath10k_htt_rx_desc_get_ppdu_end(struct ath10k_hw_params *hw, struct htt_rx_desc *rxd) { struct htt_rx_desc_v1 *rx_desc; if (hw->rx_desc_ops->rx_desc_get_ppdu_end) return hw->rx_desc_ops->rx_desc_get_ppdu_end(rxd); rx_desc = container_of(rxd, struct htt_rx_desc_v1, base); return &rx_desc->ppdu_end.common; } static inline u8 * ath10k_htt_rx_desc_get_rx_hdr_status(struct ath10k_hw_params *hw, struct htt_rx_desc *rxd) { struct htt_rx_desc_v1 *rx_desc; if (hw->rx_desc_ops->rx_desc_get_rx_hdr_status) return hw->rx_desc_ops->rx_desc_get_rx_hdr_status(rxd); rx_desc = container_of(rxd, struct htt_rx_desc_v1, base); return rx_desc->rx_hdr_status; } static inline u8 * ath10k_htt_rx_desc_get_msdu_payload(struct ath10k_hw_params *hw, struct htt_rx_desc *rxd) { struct htt_rx_desc_v1 *rx_desc; if (hw->rx_desc_ops->rx_desc_get_msdu_payload) return hw->rx_desc_ops->rx_desc_get_msdu_payload(rxd); rx_desc = container_of(rxd, struct htt_rx_desc_v1, base); return rx_desc->msdu_payload; } #define HTT_RX_DESC_HL_INFO_SEQ_NUM_MASK 0x00000fff #define HTT_RX_DESC_HL_INFO_SEQ_NUM_LSB 0 #define HTT_RX_DESC_HL_INFO_ENCRYPTED_MASK 0x00001000 #define HTT_RX_DESC_HL_INFO_ENCRYPTED_LSB 12 #define HTT_RX_DESC_HL_INFO_CHAN_INFO_PRESENT_MASK 0x00002000 #define HTT_RX_DESC_HL_INFO_CHAN_INFO_PRESENT_LSB 13 #define HTT_RX_DESC_HL_INFO_MCAST_BCAST_MASK 0x00010000 #define HTT_RX_DESC_HL_INFO_MCAST_BCAST_LSB 16 #define HTT_RX_DESC_HL_INFO_KEY_ID_OCT_MASK 0x01fe0000 #define HTT_RX_DESC_HL_INFO_KEY_ID_OCT_LSB 17 struct htt_rx_desc_base_hl { __le32 info; /* HTT_RX_DESC_HL_INFO_ */ }; struct htt_rx_chan_info { __le16 primary_chan_center_freq_mhz; __le16 contig_chan1_center_freq_mhz; __le16 contig_chan2_center_freq_mhz; u8 phy_mode; u8 reserved; } __packed; #define HTT_RX_DESC_ALIGN 8 #define HTT_MAC_ADDR_LEN 6 /* * FIX THIS * Should be: sizeof(struct htt_host_rx_desc) + max rx MSDU size, * rounded up to a cache line size. */ #define HTT_RX_BUF_SIZE 2048 /* The HTT_RX_MSDU_SIZE can't be statically computed anymore, * because it depends on the underlying device rx_desc representation */ static inline int ath10k_htt_rx_msdu_size(struct ath10k_hw_params *hw) { return HTT_RX_BUF_SIZE - (int)hw->rx_desc_ops->rx_desc_size; } /* Refill a bunch of RX buffers for each refill round so that FW/HW can handle * aggregated traffic more nicely. */ #define ATH10K_HTT_MAX_NUM_REFILL 100 /* * DMA_MAP expects the buffer to be an integral number of cache lines. * Rather than checking the actual cache line size, this code makes a * conservative estimate of what the cache line size could be. */ #define HTT_LOG2_MAX_CACHE_LINE_SIZE 7 /* 2^7 = 128 */ #define HTT_MAX_CACHE_LINE_SIZE_MASK ((1 << HTT_LOG2_MAX_CACHE_LINE_SIZE) - 1) /* These values are default in most firmware revisions and apparently are a * sweet spot performance wise. */ #define ATH10K_HTT_MAX_NUM_AMSDU_DEFAULT 3 #define ATH10K_HTT_MAX_NUM_AMPDU_DEFAULT 64 int ath10k_htt_connect(struct ath10k_htt *htt); int ath10k_htt_init(struct ath10k *ar); int ath10k_htt_setup(struct ath10k_htt *htt); int ath10k_htt_tx_start(struct ath10k_htt *htt); void ath10k_htt_tx_stop(struct ath10k_htt *htt); void ath10k_htt_tx_destroy(struct ath10k_htt *htt); void ath10k_htt_tx_free(struct ath10k_htt *htt); int ath10k_htt_rx_alloc(struct ath10k_htt *htt); int ath10k_htt_rx_ring_refill(struct ath10k *ar); void ath10k_htt_rx_free(struct ath10k_htt *htt); void ath10k_htt_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb); void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb); bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb); int ath10k_htt_h2t_ver_req_msg(struct ath10k_htt *htt); int ath10k_htt_h2t_stats_req(struct ath10k_htt *htt, u32 mask, u32 reset_mask, u64 cookie); void ath10k_htt_hif_tx_complete(struct ath10k *ar, struct sk_buff *skb); int ath10k_htt_tx_fetch_resp(struct ath10k *ar, __le32 token, __le16 fetch_seq_num, struct htt_tx_fetch_record *records, size_t num_records); void ath10k_htt_op_ep_tx_credits(struct ath10k *ar); void ath10k_htt_tx_txq_update(struct ieee80211_hw *hw, struct ieee80211_txq *txq); void ath10k_htt_tx_txq_recalc(struct ieee80211_hw *hw, struct ieee80211_txq *txq); void ath10k_htt_tx_txq_sync(struct ath10k *ar); void ath10k_htt_tx_dec_pending(struct ath10k_htt *htt); int ath10k_htt_tx_inc_pending(struct ath10k_htt *htt); void ath10k_htt_tx_mgmt_dec_pending(struct ath10k_htt *htt); int ath10k_htt_tx_mgmt_inc_pending(struct ath10k_htt *htt, bool is_mgmt, bool is_presp); int ath10k_htt_tx_alloc_msdu_id(struct ath10k_htt *htt, struct sk_buff *skb); void ath10k_htt_tx_free_msdu_id(struct ath10k_htt *htt, u16 msdu_id); int ath10k_htt_mgmt_tx(struct ath10k_htt *htt, struct sk_buff *msdu); void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar, struct sk_buff *skb); int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget); int ath10k_htt_rx_hl_indication(struct ath10k *ar, int budget); void ath10k_htt_set_tx_ops(struct ath10k_htt *htt); void ath10k_htt_set_rx_ops(struct ath10k_htt *htt); #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1