Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Janusz Dziedzic | 31136 | 70.10% | 2 | 1.67% |
Aloka Dixit | 2877 | 6.48% | 13 | 10.83% |
Sriram R | 2442 | 5.50% | 13 | 10.83% |
Karthikeyan Periyasamy | 2341 | 5.27% | 25 | 20.83% |
Kang Yang | 1957 | 4.41% | 10 | 8.33% |
Baochen Qiang | 760 | 1.71% | 9 | 7.50% |
Lingbo Kong | 536 | 1.21% | 3 | 2.50% |
Pradeep Kumar Chitrapu | 475 | 1.07% | 6 | 5.00% |
Wen Gong | 414 | 0.93% | 6 | 5.00% |
Aditya Kumar Singh | 357 | 0.80% | 3 | 2.50% |
Muna Sinada | 323 | 0.73% | 2 | 1.67% |
Rameshkumar Sundaram | 224 | 0.50% | 1 | 0.83% |
Ramya Gnanasekar | 149 | 0.34% | 1 | 0.83% |
Karthik M | 104 | 0.23% | 2 | 1.67% |
Manish Dharanenthiran | 96 | 0.22% | 2 | 1.67% |
Jeff Johnson | 73 | 0.16% | 4 | 3.33% |
Johannes Berg | 38 | 0.09% | 2 | 1.67% |
Ajith C | 27 | 0.06% | 1 | 0.83% |
Aaradhana Sahu | 21 | 0.05% | 2 | 1.67% |
Arnd Bergmann | 13 | 0.03% | 3 | 2.50% |
Aishwarya R | 13 | 0.03% | 1 | 0.83% |
Balamurugan S | 9 | 0.02% | 1 | 0.83% |
Ramasamy Kaliappan | 8 | 0.02% | 1 | 0.83% |
Nicolas Escande | 6 | 0.01% | 1 | 0.83% |
Nathan Chancellor | 5 | 0.01% | 1 | 0.83% |
Emmanuel Grumbach | 3 | 0.01% | 1 | 0.83% |
Thiraviyam Mariyappan | 3 | 0.01% | 1 | 0.83% |
Ganesh Babu Jothiram | 3 | 0.01% | 1 | 0.83% |
Sidhanta Sahu | 2 | 0.00% | 1 | 0.83% |
Dmitry Antipov | 1 | 0.00% | 1 | 0.83% |
Total | 44416 | 120 |
// SPDX-License-Identifier: BSD-3-Clause-Clear /* * Copyright (c) 2018-2021 The Linux Foundation. All rights reserved. * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved. */ #include <net/mac80211.h> #include <linux/etherdevice.h> #include "mac.h" #include "core.h" #include "debug.h" #include "wmi.h" #include "hw.h" #include "dp_tx.h" #include "dp_rx.h" #include "peer.h" #include "debugfs.h" #include "hif.h" #include "wow.h" #define CHAN2G(_channel, _freq, _flags) { \ .band = NL80211_BAND_2GHZ, \ .hw_value = (_channel), \ .center_freq = (_freq), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define CHAN5G(_channel, _freq, _flags) { \ .band = NL80211_BAND_5GHZ, \ .hw_value = (_channel), \ .center_freq = (_freq), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define CHAN6G(_channel, _freq, _flags) { \ .band = NL80211_BAND_6GHZ, \ .hw_value = (_channel), \ .center_freq = (_freq), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } static const struct ieee80211_channel ath12k_2ghz_channels[] = { CHAN2G(1, 2412, 0), CHAN2G(2, 2417, 0), CHAN2G(3, 2422, 0), CHAN2G(4, 2427, 0), CHAN2G(5, 2432, 0), CHAN2G(6, 2437, 0), CHAN2G(7, 2442, 0), CHAN2G(8, 2447, 0), CHAN2G(9, 2452, 0), CHAN2G(10, 2457, 0), CHAN2G(11, 2462, 0), CHAN2G(12, 2467, 0), CHAN2G(13, 2472, 0), CHAN2G(14, 2484, 0), }; static const struct ieee80211_channel ath12k_5ghz_channels[] = { CHAN5G(36, 5180, 0), CHAN5G(40, 5200, 0), CHAN5G(44, 5220, 0), CHAN5G(48, 5240, 0), CHAN5G(52, 5260, 0), CHAN5G(56, 5280, 0), CHAN5G(60, 5300, 0), CHAN5G(64, 5320, 0), CHAN5G(100, 5500, 0), CHAN5G(104, 5520, 0), CHAN5G(108, 5540, 0), CHAN5G(112, 5560, 0), CHAN5G(116, 5580, 0), CHAN5G(120, 5600, 0), CHAN5G(124, 5620, 0), CHAN5G(128, 5640, 0), CHAN5G(132, 5660, 0), CHAN5G(136, 5680, 0), CHAN5G(140, 5700, 0), CHAN5G(144, 5720, 0), CHAN5G(149, 5745, 0), CHAN5G(153, 5765, 0), CHAN5G(157, 5785, 0), CHAN5G(161, 5805, 0), CHAN5G(165, 5825, 0), CHAN5G(169, 5845, 0), CHAN5G(173, 5865, 0), }; static const struct ieee80211_channel ath12k_6ghz_channels[] = { /* Operating Class 136 */ CHAN6G(2, 5935, 0), /* Operating Classes 131-135 */ CHAN6G(1, 5955, 0), CHAN6G(5, 5975, 0), CHAN6G(9, 5995, 0), CHAN6G(13, 6015, 0), CHAN6G(17, 6035, 0), CHAN6G(21, 6055, 0), CHAN6G(25, 6075, 0), CHAN6G(29, 6095, 0), CHAN6G(33, 6115, 0), CHAN6G(37, 6135, 0), CHAN6G(41, 6155, 0), CHAN6G(45, 6175, 0), CHAN6G(49, 6195, 0), CHAN6G(53, 6215, 0), CHAN6G(57, 6235, 0), CHAN6G(61, 6255, 0), CHAN6G(65, 6275, 0), CHAN6G(69, 6295, 0), CHAN6G(73, 6315, 0), CHAN6G(77, 6335, 0), CHAN6G(81, 6355, 0), CHAN6G(85, 6375, 0), CHAN6G(89, 6395, 0), CHAN6G(93, 6415, 0), CHAN6G(97, 6435, 0), CHAN6G(101, 6455, 0), CHAN6G(105, 6475, 0), CHAN6G(109, 6495, 0), CHAN6G(113, 6515, 0), CHAN6G(117, 6535, 0), CHAN6G(121, 6555, 0), CHAN6G(125, 6575, 0), CHAN6G(129, 6595, 0), CHAN6G(133, 6615, 0), CHAN6G(137, 6635, 0), CHAN6G(141, 6655, 0), CHAN6G(145, 6675, 0), CHAN6G(149, 6695, 0), CHAN6G(153, 6715, 0), CHAN6G(157, 6735, 0), CHAN6G(161, 6755, 0), CHAN6G(165, 6775, 0), CHAN6G(169, 6795, 0), CHAN6G(173, 6815, 0), CHAN6G(177, 6835, 0), CHAN6G(181, 6855, 0), CHAN6G(185, 6875, 0), CHAN6G(189, 6895, 0), CHAN6G(193, 6915, 0), CHAN6G(197, 6935, 0), CHAN6G(201, 6955, 0), CHAN6G(205, 6975, 0), CHAN6G(209, 6995, 0), CHAN6G(213, 7015, 0), CHAN6G(217, 7035, 0), CHAN6G(221, 7055, 0), CHAN6G(225, 7075, 0), CHAN6G(229, 7095, 0), CHAN6G(233, 7115, 0), }; static struct ieee80211_rate ath12k_legacy_rates[] = { { .bitrate = 10, .hw_value = ATH12K_HW_RATE_CCK_LP_1M }, { .bitrate = 20, .hw_value = ATH12K_HW_RATE_CCK_LP_2M, .hw_value_short = ATH12K_HW_RATE_CCK_SP_2M, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 55, .hw_value = ATH12K_HW_RATE_CCK_LP_5_5M, .hw_value_short = ATH12K_HW_RATE_CCK_SP_5_5M, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 110, .hw_value = ATH12K_HW_RATE_CCK_LP_11M, .hw_value_short = ATH12K_HW_RATE_CCK_SP_11M, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 60, .hw_value = ATH12K_HW_RATE_OFDM_6M }, { .bitrate = 90, .hw_value = ATH12K_HW_RATE_OFDM_9M }, { .bitrate = 120, .hw_value = ATH12K_HW_RATE_OFDM_12M }, { .bitrate = 180, .hw_value = ATH12K_HW_RATE_OFDM_18M }, { .bitrate = 240, .hw_value = ATH12K_HW_RATE_OFDM_24M }, { .bitrate = 360, .hw_value = ATH12K_HW_RATE_OFDM_36M }, { .bitrate = 480, .hw_value = ATH12K_HW_RATE_OFDM_48M }, { .bitrate = 540, .hw_value = ATH12K_HW_RATE_OFDM_54M }, }; static const int ath12k_phymodes[NUM_NL80211_BANDS][ATH12K_CHAN_WIDTH_NUM] = { [NL80211_BAND_2GHZ] = { [NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN, [NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN, [NL80211_CHAN_WIDTH_20_NOHT] = MODE_11BE_EHT20_2G, [NL80211_CHAN_WIDTH_20] = MODE_11BE_EHT20_2G, [NL80211_CHAN_WIDTH_40] = MODE_11BE_EHT40_2G, [NL80211_CHAN_WIDTH_80] = MODE_UNKNOWN, [NL80211_CHAN_WIDTH_80P80] = MODE_UNKNOWN, [NL80211_CHAN_WIDTH_160] = MODE_UNKNOWN, [NL80211_CHAN_WIDTH_320] = MODE_UNKNOWN, }, [NL80211_BAND_5GHZ] = { [NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN, [NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN, [NL80211_CHAN_WIDTH_20_NOHT] = MODE_11BE_EHT20, [NL80211_CHAN_WIDTH_20] = MODE_11BE_EHT20, [NL80211_CHAN_WIDTH_40] = MODE_11BE_EHT40, [NL80211_CHAN_WIDTH_80] = MODE_11BE_EHT80, [NL80211_CHAN_WIDTH_160] = MODE_11BE_EHT160, [NL80211_CHAN_WIDTH_80P80] = MODE_11BE_EHT80_80, [NL80211_CHAN_WIDTH_320] = MODE_11BE_EHT320, }, [NL80211_BAND_6GHZ] = { [NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN, [NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN, [NL80211_CHAN_WIDTH_20_NOHT] = MODE_11BE_EHT20, [NL80211_CHAN_WIDTH_20] = MODE_11BE_EHT20, [NL80211_CHAN_WIDTH_40] = MODE_11BE_EHT40, [NL80211_CHAN_WIDTH_80] = MODE_11BE_EHT80, [NL80211_CHAN_WIDTH_160] = MODE_11BE_EHT160, [NL80211_CHAN_WIDTH_80P80] = MODE_11BE_EHT80_80, [NL80211_CHAN_WIDTH_320] = MODE_11BE_EHT320, }, }; const struct htt_rx_ring_tlv_filter ath12k_mac_mon_status_filter_default = { .rx_filter = HTT_RX_FILTER_TLV_FLAGS_MPDU_START | HTT_RX_FILTER_TLV_FLAGS_PPDU_END | HTT_RX_FILTER_TLV_FLAGS_PPDU_END_STATUS_DONE, .pkt_filter_flags0 = HTT_RX_FP_MGMT_FILTER_FLAGS0, .pkt_filter_flags1 = HTT_RX_FP_MGMT_FILTER_FLAGS1, .pkt_filter_flags2 = HTT_RX_FP_CTRL_FILTER_FLASG2, .pkt_filter_flags3 = HTT_RX_FP_DATA_FILTER_FLASG3 | HTT_RX_FP_CTRL_FILTER_FLASG3 }; #define ATH12K_MAC_FIRST_OFDM_RATE_IDX 4 #define ath12k_g_rates ath12k_legacy_rates #define ath12k_g_rates_size (ARRAY_SIZE(ath12k_legacy_rates)) #define ath12k_a_rates (ath12k_legacy_rates + 4) #define ath12k_a_rates_size (ARRAY_SIZE(ath12k_legacy_rates) - 4) #define ATH12K_MAC_SCAN_TIMEOUT_MSECS 200 /* in msecs */ static const u32 ath12k_smps_map[] = { [WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC, [WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC, [WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE, [WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE, }; static int ath12k_start_vdev_delay(struct ath12k *ar, struct ath12k_vif *arvif); static void ath12k_mac_stop(struct ath12k *ar); static int ath12k_mac_vdev_create(struct ath12k *ar, struct ieee80211_vif *vif); static int ath12k_mac_vdev_delete(struct ath12k *ar, struct ieee80211_vif *vif); static const char *ath12k_mac_phymode_str(enum wmi_phy_mode mode) { switch (mode) { case MODE_11A: return "11a"; case MODE_11G: return "11g"; case MODE_11B: return "11b"; case MODE_11GONLY: return "11gonly"; case MODE_11NA_HT20: return "11na-ht20"; case MODE_11NG_HT20: return "11ng-ht20"; case MODE_11NA_HT40: return "11na-ht40"; case MODE_11NG_HT40: return "11ng-ht40"; case MODE_11AC_VHT20: return "11ac-vht20"; case MODE_11AC_VHT40: return "11ac-vht40"; case MODE_11AC_VHT80: return "11ac-vht80"; case MODE_11AC_VHT160: return "11ac-vht160"; case MODE_11AC_VHT80_80: return "11ac-vht80+80"; case MODE_11AC_VHT20_2G: return "11ac-vht20-2g"; case MODE_11AC_VHT40_2G: return "11ac-vht40-2g"; case MODE_11AC_VHT80_2G: return "11ac-vht80-2g"; case MODE_11AX_HE20: return "11ax-he20"; case MODE_11AX_HE40: return "11ax-he40"; case MODE_11AX_HE80: return "11ax-he80"; case MODE_11AX_HE80_80: return "11ax-he80+80"; case MODE_11AX_HE160: return "11ax-he160"; case MODE_11AX_HE20_2G: return "11ax-he20-2g"; case MODE_11AX_HE40_2G: return "11ax-he40-2g"; case MODE_11AX_HE80_2G: return "11ax-he80-2g"; case MODE_11BE_EHT20: return "11be-eht20"; case MODE_11BE_EHT40: return "11be-eht40"; case MODE_11BE_EHT80: return "11be-eht80"; case MODE_11BE_EHT80_80: return "11be-eht80+80"; case MODE_11BE_EHT160: return "11be-eht160"; case MODE_11BE_EHT160_160: return "11be-eht160+160"; case MODE_11BE_EHT320: return "11be-eht320"; case MODE_11BE_EHT20_2G: return "11be-eht20-2g"; case MODE_11BE_EHT40_2G: return "11be-eht40-2g"; case MODE_UNKNOWN: /* skip */ break; /* no default handler to allow compiler to check that the * enum is fully handled */ } return "<unknown>"; } enum rate_info_bw ath12k_mac_bw_to_mac80211_bw(enum ath12k_supported_bw bw) { u8 ret = RATE_INFO_BW_20; switch (bw) { case ATH12K_BW_20: ret = RATE_INFO_BW_20; break; case ATH12K_BW_40: ret = RATE_INFO_BW_40; break; case ATH12K_BW_80: ret = RATE_INFO_BW_80; break; case ATH12K_BW_160: ret = RATE_INFO_BW_160; break; case ATH12K_BW_320: ret = RATE_INFO_BW_320; break; } return ret; } enum ath12k_supported_bw ath12k_mac_mac80211_bw_to_ath12k_bw(enum rate_info_bw bw) { switch (bw) { case RATE_INFO_BW_20: return ATH12K_BW_20; case RATE_INFO_BW_40: return ATH12K_BW_40; case RATE_INFO_BW_80: return ATH12K_BW_80; case RATE_INFO_BW_160: return ATH12K_BW_160; case RATE_INFO_BW_320: return ATH12K_BW_320; default: return ATH12K_BW_20; } } int ath12k_mac_hw_ratecode_to_legacy_rate(u8 hw_rc, u8 preamble, u8 *rateidx, u16 *rate) { /* As default, it is OFDM rates */ int i = ATH12K_MAC_FIRST_OFDM_RATE_IDX; int max_rates_idx = ath12k_g_rates_size; if (preamble == WMI_RATE_PREAMBLE_CCK) { hw_rc &= ~ATH12K_HW_RATECODE_CCK_SHORT_PREAM_MASK; i = 0; max_rates_idx = ATH12K_MAC_FIRST_OFDM_RATE_IDX; } while (i < max_rates_idx) { if (hw_rc == ath12k_legacy_rates[i].hw_value) { *rateidx = i; *rate = ath12k_legacy_rates[i].bitrate; return 0; } i++; } return -EINVAL; } u8 ath12k_mac_bitrate_to_idx(const struct ieee80211_supported_band *sband, u32 bitrate) { int i; for (i = 0; i < sband->n_bitrates; i++) if (sband->bitrates[i].bitrate == bitrate) return i; return 0; } static u32 ath12k_mac_max_ht_nss(const u8 *ht_mcs_mask) { int nss; for (nss = IEEE80211_HT_MCS_MASK_LEN - 1; nss >= 0; nss--) if (ht_mcs_mask[nss]) return nss + 1; return 1; } static u32 ath12k_mac_max_vht_nss(const u16 *vht_mcs_mask) { int nss; for (nss = NL80211_VHT_NSS_MAX - 1; nss >= 0; nss--) if (vht_mcs_mask[nss]) return nss + 1; return 1; } static u8 ath12k_parse_mpdudensity(u8 mpdudensity) { /* From IEEE Std 802.11-2020 defined values for "Minimum MPDU Start Spacing": * 0 for no restriction * 1 for 1/4 us * 2 for 1/2 us * 3 for 1 us * 4 for 2 us * 5 for 4 us * 6 for 8 us * 7 for 16 us */ switch (mpdudensity) { case 0: return 0; case 1: case 2: case 3: /* Our lower layer calculations limit our precision to * 1 microsecond */ return 1; case 4: return 2; case 5: return 4; case 6: return 8; case 7: return 16; default: return 0; } } static int ath12k_mac_vif_chan(struct ieee80211_vif *vif, struct cfg80211_chan_def *def) { struct ieee80211_chanctx_conf *conf; rcu_read_lock(); conf = rcu_dereference(vif->bss_conf.chanctx_conf); if (!conf) { rcu_read_unlock(); return -ENOENT; } *def = conf->def; rcu_read_unlock(); return 0; } static bool ath12k_mac_bitrate_is_cck(int bitrate) { switch (bitrate) { case 10: case 20: case 55: case 110: return true; } return false; } u8 ath12k_mac_hw_rate_to_idx(const struct ieee80211_supported_band *sband, u8 hw_rate, bool cck) { const struct ieee80211_rate *rate; int i; for (i = 0; i < sband->n_bitrates; i++) { rate = &sband->bitrates[i]; if (ath12k_mac_bitrate_is_cck(rate->bitrate) != cck) continue; if (rate->hw_value == hw_rate) return i; else if (rate->flags & IEEE80211_RATE_SHORT_PREAMBLE && rate->hw_value_short == hw_rate) return i; } return 0; } static u8 ath12k_mac_bitrate_to_rate(int bitrate) { return DIV_ROUND_UP(bitrate, 5) | (ath12k_mac_bitrate_is_cck(bitrate) ? BIT(7) : 0); } static void ath12k_get_arvif_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct ath12k_vif_iter *arvif_iter = data; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); if (arvif->vdev_id == arvif_iter->vdev_id && arvif->ar == arvif_iter->ar) arvif_iter->arvif = arvif; } struct ath12k_vif *ath12k_mac_get_arvif(struct ath12k *ar, u32 vdev_id) { struct ath12k_vif_iter arvif_iter = {}; u32 flags; arvif_iter.vdev_id = vdev_id; arvif_iter.ar = ar; flags = IEEE80211_IFACE_ITER_RESUME_ALL; ieee80211_iterate_active_interfaces_atomic(ath12k_ar_to_hw(ar), flags, ath12k_get_arvif_iter, &arvif_iter); if (!arvif_iter.arvif) { ath12k_warn(ar->ab, "No VIF found for vdev %d\n", vdev_id); return NULL; } return arvif_iter.arvif; } struct ath12k_vif *ath12k_mac_get_arvif_by_vdev_id(struct ath12k_base *ab, u32 vdev_id) { int i; struct ath12k_pdev *pdev; struct ath12k_vif *arvif; for (i = 0; i < ab->num_radios; i++) { pdev = rcu_dereference(ab->pdevs_active[i]); if (pdev && pdev->ar && (pdev->ar->allocated_vdev_map & (1LL << vdev_id))) { arvif = ath12k_mac_get_arvif(pdev->ar, vdev_id); if (arvif) return arvif; } } return NULL; } struct ath12k *ath12k_mac_get_ar_by_vdev_id(struct ath12k_base *ab, u32 vdev_id) { int i; struct ath12k_pdev *pdev; for (i = 0; i < ab->num_radios; i++) { pdev = rcu_dereference(ab->pdevs_active[i]); if (pdev && pdev->ar) { if (pdev->ar->allocated_vdev_map & (1LL << vdev_id)) return pdev->ar; } } return NULL; } struct ath12k *ath12k_mac_get_ar_by_pdev_id(struct ath12k_base *ab, u32 pdev_id) { int i; struct ath12k_pdev *pdev; if (ab->hw_params->single_pdev_only) { pdev = rcu_dereference(ab->pdevs_active[0]); return pdev ? pdev->ar : NULL; } if (WARN_ON(pdev_id > ab->num_radios)) return NULL; for (i = 0; i < ab->num_radios; i++) { pdev = rcu_dereference(ab->pdevs_active[i]); if (pdev && pdev->pdev_id == pdev_id) return (pdev->ar ? pdev->ar : NULL); } return NULL; } static struct ath12k *ath12k_mac_get_ar_by_chan(struct ieee80211_hw *hw, struct ieee80211_channel *channel) { struct ath12k_hw *ah = hw->priv; struct ath12k *ar; int i; ar = ah->radio; if (ah->num_radio == 1) return ar; for_each_ar(ah, ar, i) { if (channel->center_freq >= ar->freq_low && channel->center_freq <= ar->freq_high) return ar; } return NULL; } static struct ath12k *ath12k_get_ar_by_ctx(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx) { if (!ctx) return NULL; return ath12k_mac_get_ar_by_chan(hw, ctx->def.chan); } static struct ath12k *ath12k_get_ar_by_vif(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_hw *ah = ath12k_hw_to_ah(hw); /* If there is one pdev within ah, then we return * ar directly. */ if (ah->num_radio == 1) return ah->radio; if (arvif->is_created) return arvif->ar; return NULL; } static struct ath12k_vif *ath12k_mac_get_vif_up(struct ath12k *ar) { struct ath12k_vif *arvif; lockdep_assert_held(&ar->conf_mutex); list_for_each_entry(arvif, &ar->arvifs, list) { if (arvif->is_up) return arvif; } return NULL; } static bool ath12k_mac_band_match(enum nl80211_band band1, enum WMI_HOST_WLAN_BAND band2) { switch (band1) { case NL80211_BAND_2GHZ: if (band2 & WMI_HOST_WLAN_2G_CAP) return true; break; case NL80211_BAND_5GHZ: case NL80211_BAND_6GHZ: if (band2 & WMI_HOST_WLAN_5G_CAP) return true; break; default: return false; } return false; } static u8 ath12k_mac_get_target_pdev_id_from_vif(struct ath12k_vif *arvif) { struct ath12k *ar = arvif->ar; struct ath12k_base *ab = ar->ab; struct ieee80211_vif *vif = arvif->vif; struct cfg80211_chan_def def; enum nl80211_band band; u8 pdev_id = ab->fw_pdev[0].pdev_id; int i; if (WARN_ON(ath12k_mac_vif_chan(vif, &def))) return pdev_id; band = def.chan->band; for (i = 0; i < ab->fw_pdev_count; i++) { if (ath12k_mac_band_match(band, ab->fw_pdev[i].supported_bands)) return ab->fw_pdev[i].pdev_id; } return pdev_id; } u8 ath12k_mac_get_target_pdev_id(struct ath12k *ar) { struct ath12k_vif *arvif; struct ath12k_base *ab = ar->ab; if (!ab->hw_params->single_pdev_only) return ar->pdev->pdev_id; arvif = ath12k_mac_get_vif_up(ar); /* fw_pdev array has pdev ids derived from phy capability * service ready event (pdev_and_hw_link_ids). * If no vif is active, return default first index. */ if (!arvif) return ar->ab->fw_pdev[0].pdev_id; /* If active vif is found, return the pdev id matching chandef band */ return ath12k_mac_get_target_pdev_id_from_vif(arvif); } static void ath12k_pdev_caps_update(struct ath12k *ar) { struct ath12k_base *ab = ar->ab; ar->max_tx_power = ab->target_caps.hw_max_tx_power; /* FIXME: Set min_tx_power to ab->target_caps.hw_min_tx_power. * But since the received value in svcrdy is same as hw_max_tx_power, * we can set ar->min_tx_power to 0 currently until * this is fixed in firmware */ ar->min_tx_power = 0; ar->txpower_limit_2g = ar->max_tx_power; ar->txpower_limit_5g = ar->max_tx_power; ar->txpower_scale = WMI_HOST_TP_SCALE_MAX; } static int ath12k_mac_txpower_recalc(struct ath12k *ar) { struct ath12k_pdev *pdev = ar->pdev; struct ath12k_vif *arvif; int ret, txpower = -1; u32 param; lockdep_assert_held(&ar->conf_mutex); list_for_each_entry(arvif, &ar->arvifs, list) { if (arvif->txpower <= 0) continue; if (txpower == -1) txpower = arvif->txpower; else txpower = min(txpower, arvif->txpower); } if (txpower == -1) return 0; /* txpwr is set as 2 units per dBm in FW*/ txpower = min_t(u32, max_t(u32, ar->min_tx_power, txpower), ar->max_tx_power) * 2; ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "txpower to set in hw %d\n", txpower / 2); if ((pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) && ar->txpower_limit_2g != txpower) { param = WMI_PDEV_PARAM_TXPOWER_LIMIT2G; ret = ath12k_wmi_pdev_set_param(ar, param, txpower, ar->pdev->pdev_id); if (ret) goto fail; ar->txpower_limit_2g = txpower; } if ((pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) && ar->txpower_limit_5g != txpower) { param = WMI_PDEV_PARAM_TXPOWER_LIMIT5G; ret = ath12k_wmi_pdev_set_param(ar, param, txpower, ar->pdev->pdev_id); if (ret) goto fail; ar->txpower_limit_5g = txpower; } return 0; fail: ath12k_warn(ar->ab, "failed to recalc txpower limit %d using pdev param %d: %d\n", txpower / 2, param, ret); return ret; } static int ath12k_recalc_rtscts_prot(struct ath12k_vif *arvif) { struct ath12k *ar = arvif->ar; u32 vdev_param, rts_cts; int ret; lockdep_assert_held(&ar->conf_mutex); vdev_param = WMI_VDEV_PARAM_ENABLE_RTSCTS; /* Enable RTS/CTS protection for sw retries (when legacy stations * are in BSS) or by default only for second rate series. * TODO: Check if we need to enable CTS 2 Self in any case */ rts_cts = WMI_USE_RTS_CTS; if (arvif->num_legacy_stations > 0) rts_cts |= WMI_RTSCTS_ACROSS_SW_RETRIES << 4; else rts_cts |= WMI_RTSCTS_FOR_SECOND_RATESERIES << 4; /* Need not send duplicate param value to firmware */ if (arvif->rtscts_prot_mode == rts_cts) return 0; arvif->rtscts_prot_mode = rts_cts; ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev %d recalc rts/cts prot %d\n", arvif->vdev_id, rts_cts); ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, rts_cts); if (ret) ath12k_warn(ar->ab, "failed to recalculate rts/cts prot for vdev %d: %d\n", arvif->vdev_id, ret); return ret; } static int ath12k_mac_set_kickout(struct ath12k_vif *arvif) { struct ath12k *ar = arvif->ar; u32 param; int ret; ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_STA_KICKOUT_TH, ATH12K_KICKOUT_THRESHOLD, ar->pdev->pdev_id); if (ret) { ath12k_warn(ar->ab, "failed to set kickout threshold on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } param = WMI_VDEV_PARAM_AP_KEEPALIVE_MIN_IDLE_INACTIVE_TIME_SECS; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, ATH12K_KEEPALIVE_MIN_IDLE); if (ret) { ath12k_warn(ar->ab, "failed to set keepalive minimum idle time on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } param = WMI_VDEV_PARAM_AP_KEEPALIVE_MAX_IDLE_INACTIVE_TIME_SECS; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, ATH12K_KEEPALIVE_MAX_IDLE); if (ret) { ath12k_warn(ar->ab, "failed to set keepalive maximum idle time on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } param = WMI_VDEV_PARAM_AP_KEEPALIVE_MAX_UNRESPONSIVE_TIME_SECS; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, ATH12K_KEEPALIVE_MAX_UNRESPONSIVE); if (ret) { ath12k_warn(ar->ab, "failed to set keepalive maximum unresponsive time on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } return 0; } void ath12k_mac_peer_cleanup_all(struct ath12k *ar) { struct ath12k_peer *peer, *tmp; struct ath12k_base *ab = ar->ab; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ab->base_lock); list_for_each_entry_safe(peer, tmp, &ab->peers, list) { ath12k_dp_rx_peer_tid_cleanup(ar, peer); list_del(&peer->list); kfree(peer); } spin_unlock_bh(&ab->base_lock); ar->num_peers = 0; ar->num_stations = 0; } static int ath12k_mac_vdev_setup_sync(struct ath12k *ar) { lockdep_assert_held(&ar->conf_mutex); if (test_bit(ATH12K_FLAG_CRASH_FLUSH, &ar->ab->dev_flags)) return -ESHUTDOWN; ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "vdev setup timeout %d\n", ATH12K_VDEV_SETUP_TIMEOUT_HZ); if (!wait_for_completion_timeout(&ar->vdev_setup_done, ATH12K_VDEV_SETUP_TIMEOUT_HZ)) return -ETIMEDOUT; return ar->last_wmi_vdev_start_status ? -EINVAL : 0; } static int ath12k_monitor_vdev_up(struct ath12k *ar, int vdev_id) { struct ath12k_wmi_vdev_up_params params = {}; int ret; params.vdev_id = vdev_id; params.bssid = ar->mac_addr; ret = ath12k_wmi_vdev_up(ar, ¶ms); if (ret) { ath12k_warn(ar->ab, "failed to put up monitor vdev %i: %d\n", vdev_id, ret); return ret; } ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac monitor vdev %i started\n", vdev_id); return 0; } static int ath12k_mac_monitor_vdev_start(struct ath12k *ar, int vdev_id, struct cfg80211_chan_def *chandef) { struct ieee80211_channel *channel; struct wmi_vdev_start_req_arg arg = {}; struct ath12k_wmi_vdev_up_params params = {}; int ret; lockdep_assert_held(&ar->conf_mutex); channel = chandef->chan; arg.vdev_id = vdev_id; arg.freq = channel->center_freq; arg.band_center_freq1 = chandef->center_freq1; arg.band_center_freq2 = chandef->center_freq2; arg.mode = ath12k_phymodes[chandef->chan->band][chandef->width]; arg.chan_radar = !!(channel->flags & IEEE80211_CHAN_RADAR); arg.min_power = 0; arg.max_power = channel->max_power; arg.max_reg_power = channel->max_reg_power; arg.max_antenna_gain = channel->max_antenna_gain; arg.pref_tx_streams = ar->num_tx_chains; arg.pref_rx_streams = ar->num_rx_chains; arg.punct_bitmap = 0xFFFFFFFF; arg.passive |= !!(chandef->chan->flags & IEEE80211_CHAN_NO_IR); reinit_completion(&ar->vdev_setup_done); reinit_completion(&ar->vdev_delete_done); ret = ath12k_wmi_vdev_start(ar, &arg, false); if (ret) { ath12k_warn(ar->ab, "failed to request monitor vdev %i start: %d\n", vdev_id, ret); return ret; } ret = ath12k_mac_vdev_setup_sync(ar); if (ret) { ath12k_warn(ar->ab, "failed to synchronize setup for monitor vdev %i start: %d\n", vdev_id, ret); return ret; } params.vdev_id = vdev_id; params.bssid = ar->mac_addr; ret = ath12k_wmi_vdev_up(ar, ¶ms); if (ret) { ath12k_warn(ar->ab, "failed to put up monitor vdev %i: %d\n", vdev_id, ret); goto vdev_stop; } ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac monitor vdev %i started\n", vdev_id); return 0; vdev_stop: ret = ath12k_wmi_vdev_stop(ar, vdev_id); if (ret) ath12k_warn(ar->ab, "failed to stop monitor vdev %i after start failure: %d\n", vdev_id, ret); return ret; } static int ath12k_mac_monitor_vdev_stop(struct ath12k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); reinit_completion(&ar->vdev_setup_done); ret = ath12k_wmi_vdev_stop(ar, ar->monitor_vdev_id); if (ret) ath12k_warn(ar->ab, "failed to request monitor vdev %i stop: %d\n", ar->monitor_vdev_id, ret); ret = ath12k_mac_vdev_setup_sync(ar); if (ret) ath12k_warn(ar->ab, "failed to synchronize monitor vdev %i stop: %d\n", ar->monitor_vdev_id, ret); ret = ath12k_wmi_vdev_down(ar, ar->monitor_vdev_id); if (ret) ath12k_warn(ar->ab, "failed to put down monitor vdev %i: %d\n", ar->monitor_vdev_id, ret); ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac monitor vdev %i stopped\n", ar->monitor_vdev_id); return ret; } static int ath12k_mac_monitor_vdev_create(struct ath12k *ar) { struct ath12k_pdev *pdev = ar->pdev; struct ath12k_wmi_vdev_create_arg arg = {}; int bit, ret; u8 tmp_addr[6]; u16 nss; lockdep_assert_held(&ar->conf_mutex); if (ar->monitor_vdev_created) return 0; if (ar->ab->free_vdev_map == 0) { ath12k_warn(ar->ab, "failed to find free vdev id for monitor vdev\n"); return -ENOMEM; } bit = __ffs64(ar->ab->free_vdev_map); ar->monitor_vdev_id = bit; arg.if_id = ar->monitor_vdev_id; arg.type = WMI_VDEV_TYPE_MONITOR; arg.subtype = WMI_VDEV_SUBTYPE_NONE; arg.pdev_id = pdev->pdev_id; arg.if_stats_id = ATH12K_INVAL_VDEV_STATS_ID; if (pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) { arg.chains[NL80211_BAND_2GHZ].tx = ar->num_tx_chains; arg.chains[NL80211_BAND_2GHZ].rx = ar->num_rx_chains; } if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) { arg.chains[NL80211_BAND_5GHZ].tx = ar->num_tx_chains; arg.chains[NL80211_BAND_5GHZ].rx = ar->num_rx_chains; } ret = ath12k_wmi_vdev_create(ar, tmp_addr, &arg); if (ret) { ath12k_warn(ar->ab, "failed to request monitor vdev %i creation: %d\n", ar->monitor_vdev_id, ret); ar->monitor_vdev_id = -1; return ret; } nss = hweight32(ar->cfg_tx_chainmask) ? : 1; ret = ath12k_wmi_vdev_set_param_cmd(ar, ar->monitor_vdev_id, WMI_VDEV_PARAM_NSS, nss); if (ret) { ath12k_warn(ar->ab, "failed to set vdev %d chainmask 0x%x, nss %d :%d\n", ar->monitor_vdev_id, ar->cfg_tx_chainmask, nss, ret); return ret; } ret = ath12k_mac_txpower_recalc(ar); if (ret) return ret; ar->allocated_vdev_map |= 1LL << ar->monitor_vdev_id; ar->ab->free_vdev_map &= ~(1LL << ar->monitor_vdev_id); ar->num_created_vdevs++; ar->monitor_vdev_created = true; ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac monitor vdev %d created\n", ar->monitor_vdev_id); return 0; } static int ath12k_mac_monitor_vdev_delete(struct ath12k *ar) { int ret; unsigned long time_left; lockdep_assert_held(&ar->conf_mutex); if (!ar->monitor_vdev_created) return 0; reinit_completion(&ar->vdev_delete_done); ret = ath12k_wmi_vdev_delete(ar, ar->monitor_vdev_id); if (ret) { ath12k_warn(ar->ab, "failed to request wmi monitor vdev %i removal: %d\n", ar->monitor_vdev_id, ret); return ret; } time_left = wait_for_completion_timeout(&ar->vdev_delete_done, ATH12K_VDEV_DELETE_TIMEOUT_HZ); if (time_left == 0) { ath12k_warn(ar->ab, "Timeout in receiving vdev delete response\n"); } else { ar->allocated_vdev_map &= ~(1LL << ar->monitor_vdev_id); ar->ab->free_vdev_map |= 1LL << (ar->monitor_vdev_id); ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac monitor vdev %d deleted\n", ar->monitor_vdev_id); ar->num_created_vdevs--; ar->monitor_vdev_id = -1; ar->monitor_vdev_created = false; } return ret; } static void ath12k_mac_get_any_chandef_iter(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *conf, void *data) { struct cfg80211_chan_def **def = data; *def = &conf->def; } static int ath12k_mac_monitor_start(struct ath12k *ar) { struct cfg80211_chan_def *chandef = NULL; int ret; lockdep_assert_held(&ar->conf_mutex); if (ar->monitor_started) return 0; ieee80211_iter_chan_contexts_atomic(ath12k_ar_to_hw(ar), ath12k_mac_get_any_chandef_iter, &chandef); if (!chandef) return 0; ret = ath12k_mac_monitor_vdev_start(ar, ar->monitor_vdev_id, chandef); if (ret) { ath12k_warn(ar->ab, "failed to start monitor vdev: %d\n", ret); ath12k_mac_monitor_vdev_delete(ar); return ret; } ar->monitor_started = true; ar->num_started_vdevs++; ret = ath12k_dp_tx_htt_monitor_mode_ring_config(ar, false); ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac monitor started ret %d\n", ret); return ret; } static int ath12k_mac_monitor_stop(struct ath12k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); if (!ar->monitor_started) return 0; ret = ath12k_mac_monitor_vdev_stop(ar); if (ret) { ath12k_warn(ar->ab, "failed to stop monitor vdev: %d\n", ret); return ret; } ar->monitor_started = false; ar->num_started_vdevs--; ret = ath12k_dp_tx_htt_monitor_mode_ring_config(ar, true); ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac monitor stopped ret %d\n", ret); return ret; } static int ath12k_mac_vdev_stop(struct ath12k_vif *arvif) { struct ath12k *ar = arvif->ar; int ret; lockdep_assert_held(&ar->conf_mutex); reinit_completion(&ar->vdev_setup_done); ret = ath12k_wmi_vdev_stop(ar, arvif->vdev_id); if (ret) { ath12k_warn(ar->ab, "failed to stop WMI vdev %i: %d\n", arvif->vdev_id, ret); goto err; } ret = ath12k_mac_vdev_setup_sync(ar); if (ret) { ath12k_warn(ar->ab, "failed to synchronize setup for vdev %i: %d\n", arvif->vdev_id, ret); goto err; } WARN_ON(ar->num_started_vdevs == 0); ar->num_started_vdevs--; ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "vdev %pM stopped, vdev_id %d\n", arvif->vif->addr, arvif->vdev_id); if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) { clear_bit(ATH12K_CAC_RUNNING, &ar->dev_flags); ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "CAC Stopped for vdev %d\n", arvif->vdev_id); } return 0; err: return ret; } static int ath12k_mac_config(struct ath12k *ar, u32 changed) { struct ieee80211_hw *hw = ath12k_ar_to_hw(ar); struct ieee80211_conf *conf = &hw->conf; int ret = 0; mutex_lock(&ar->conf_mutex); if (changed & IEEE80211_CONF_CHANGE_MONITOR) { ar->monitor_conf_enabled = conf->flags & IEEE80211_CONF_MONITOR; if (ar->monitor_conf_enabled) { if (ar->monitor_vdev_created) goto exit; ret = ath12k_mac_monitor_vdev_create(ar); if (ret) goto exit; ret = ath12k_mac_monitor_start(ar); if (ret) goto err_mon_del; } else { if (!ar->monitor_vdev_created) goto exit; ret = ath12k_mac_monitor_stop(ar); if (ret) goto exit; ath12k_mac_monitor_vdev_delete(ar); } } exit: mutex_unlock(&ar->conf_mutex); return ret; err_mon_del: ath12k_mac_monitor_vdev_delete(ar); mutex_unlock(&ar->conf_mutex); return ret; } static int ath12k_mac_op_config(struct ieee80211_hw *hw, u32 changed) { struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k *ar; int ret; ar = ath12k_ah_to_ar(ah, 0); ret = ath12k_mac_config(ar, changed); if (ret) ath12k_warn(ar->ab, "failed to update config pdev idx %d: %d\n", ar->pdev_idx, ret); return ret; } static int ath12k_mac_setup_bcn_p2p_ie(struct ath12k_vif *arvif, struct sk_buff *bcn) { struct ath12k *ar = arvif->ar; struct ieee80211_mgmt *mgmt; const u8 *p2p_ie; int ret; mgmt = (void *)bcn->data; p2p_ie = cfg80211_find_vendor_ie(WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P, mgmt->u.beacon.variable, bcn->len - (mgmt->u.beacon.variable - bcn->data)); if (!p2p_ie) { ath12k_warn(ar->ab, "no P2P ie found in beacon\n"); return -ENOENT; } ret = ath12k_wmi_p2p_go_bcn_ie(ar, arvif->vdev_id, p2p_ie); if (ret) { ath12k_warn(ar->ab, "failed to submit P2P GO bcn ie for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } return 0; } static int ath12k_mac_remove_vendor_ie(struct sk_buff *skb, unsigned int oui, u8 oui_type, size_t ie_offset) { const u8 *next, *end; size_t len; u8 *ie; if (WARN_ON(skb->len < ie_offset)) return -EINVAL; ie = (u8 *)cfg80211_find_vendor_ie(oui, oui_type, skb->data + ie_offset, skb->len - ie_offset); if (!ie) return -ENOENT; len = ie[1] + 2; end = skb->data + skb->len; next = ie + len; if (WARN_ON(next > end)) return -EINVAL; memmove(ie, next, end - next); skb_trim(skb, skb->len - len); return 0; } static void ath12k_mac_set_arvif_ies(struct ath12k_vif *arvif, struct sk_buff *bcn, u8 bssid_index, bool *nontx_profile_found) { struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)bcn->data; const struct element *elem, *nontx, *index, *nie; const u8 *start, *tail; u16 rem_len; u8 i; start = bcn->data + ieee80211_get_hdrlen_from_skb(bcn) + sizeof(mgmt->u.beacon); tail = skb_tail_pointer(bcn); rem_len = tail - start; arvif->rsnie_present = false; arvif->wpaie_present = false; if (cfg80211_find_ie(WLAN_EID_RSN, start, rem_len)) arvif->rsnie_present = true; if (cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, WLAN_OUI_TYPE_MICROSOFT_WPA, start, rem_len)) arvif->wpaie_present = true; /* Return from here for the transmitted profile */ if (!bssid_index) return; /* Initial rsnie_present for the nontransmitted profile is set to be same as that * of the transmitted profile. It will be changed if security configurations are * different. */ *nontx_profile_found = false; for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, rem_len) { /* Fixed minimum MBSSID element length with at least one * nontransmitted BSSID profile is 12 bytes as given below; * 1 (max BSSID indicator) + * 2 (Nontransmitted BSSID profile: Subelement ID + length) + * 4 (Nontransmitted BSSID Capabilities: tag + length + info) * 2 (Nontransmitted BSSID SSID: tag + length) * 3 (Nontransmitted BSSID Index: tag + length + BSSID index */ if (elem->datalen < 12 || elem->data[0] < 1) continue; /* Max BSSID indicator must be >=1 */ for_each_element(nontx, elem->data + 1, elem->datalen - 1) { start = nontx->data; if (nontx->id != 0 || nontx->datalen < 4) continue; /* Invalid nontransmitted profile */ if (nontx->data[0] != WLAN_EID_NON_TX_BSSID_CAP || nontx->data[1] != 2) { continue; /* Missing nontransmitted BSS capabilities */ } if (nontx->data[4] != WLAN_EID_SSID) continue; /* Missing SSID for nontransmitted BSS */ index = cfg80211_find_elem(WLAN_EID_MULTI_BSSID_IDX, start, nontx->datalen); if (!index || index->datalen < 1 || index->data[0] == 0) continue; /* Invalid MBSSID Index element */ if (index->data[0] == bssid_index) { *nontx_profile_found = true; if (cfg80211_find_ie(WLAN_EID_RSN, nontx->data, nontx->datalen)) { arvif->rsnie_present = true; return; } else if (!arvif->rsnie_present) { return; /* Both tx and nontx BSS are open */ } nie = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, nontx->data, nontx->datalen); if (!nie || nie->datalen < 2) return; /* Invalid non-inheritance element */ for (i = 1; i < nie->datalen - 1; i++) { if (nie->data[i] == WLAN_EID_RSN) { arvif->rsnie_present = false; break; } } return; } } } } static int ath12k_mac_setup_bcn_tmpl_ema(struct ath12k_vif *arvif) { struct ieee80211_bss_conf *bss_conf = &arvif->vif->bss_conf; struct ath12k_wmi_bcn_tmpl_ema_arg ema_args; struct ieee80211_ema_beacons *beacons; struct ath12k_vif *tx_arvif; bool nontx_profile_found = false; int ret = 0; u8 i; tx_arvif = ath12k_vif_to_arvif(arvif->vif->mbssid_tx_vif); beacons = ieee80211_beacon_get_template_ema_list(ath12k_ar_to_hw(tx_arvif->ar), tx_arvif->vif, 0); if (!beacons || !beacons->cnt) { ath12k_warn(arvif->ar->ab, "failed to get ema beacon templates from mac80211\n"); return -EPERM; } if (tx_arvif == arvif) ath12k_mac_set_arvif_ies(arvif, beacons->bcn[0].skb, 0, NULL); for (i = 0; i < beacons->cnt; i++) { if (tx_arvif != arvif && !nontx_profile_found) ath12k_mac_set_arvif_ies(arvif, beacons->bcn[i].skb, bss_conf->bssid_index, &nontx_profile_found); ema_args.bcn_cnt = beacons->cnt; ema_args.bcn_index = i; ret = ath12k_wmi_bcn_tmpl(tx_arvif->ar, tx_arvif->vdev_id, &beacons->bcn[i].offs, beacons->bcn[i].skb, &ema_args); if (ret) { ath12k_warn(tx_arvif->ar->ab, "failed to set ema beacon template id %i error %d\n", i, ret); break; } } if (tx_arvif != arvif && !nontx_profile_found) ath12k_warn(arvif->ar->ab, "nontransmitted bssid index %u not found in beacon template\n", bss_conf->bssid_index); ieee80211_beacon_free_ema_list(beacons); return ret; } static int ath12k_mac_setup_bcn_tmpl(struct ath12k_vif *arvif) { struct ath12k_vif *tx_arvif = arvif; struct ath12k *ar = arvif->ar; struct ath12k_base *ab = ar->ab; struct ieee80211_vif *vif = arvif->vif; struct ieee80211_mutable_offsets offs = {}; bool nontx_profile_found = false; struct sk_buff *bcn; int ret; if (arvif->vdev_type != WMI_VDEV_TYPE_AP) return 0; if (vif->mbssid_tx_vif) { tx_arvif = ath12k_vif_to_arvif(vif->mbssid_tx_vif); if (tx_arvif != arvif && arvif->is_up) return 0; if (vif->bss_conf.ema_ap) return ath12k_mac_setup_bcn_tmpl_ema(arvif); } bcn = ieee80211_beacon_get_template(ath12k_ar_to_hw(tx_arvif->ar), tx_arvif->vif, &offs, 0); if (!bcn) { ath12k_warn(ab, "failed to get beacon template from mac80211\n"); return -EPERM; } if (tx_arvif == arvif) { ath12k_mac_set_arvif_ies(arvif, bcn, 0, NULL); } else { ath12k_mac_set_arvif_ies(arvif, bcn, arvif->vif->bss_conf.bssid_index, &nontx_profile_found); if (!nontx_profile_found) ath12k_warn(ab, "nontransmitted profile not found in beacon template\n"); } if (arvif->vif->type == NL80211_IFTYPE_AP && arvif->vif->p2p) { ret = ath12k_mac_setup_bcn_p2p_ie(arvif, bcn); if (ret) { ath12k_warn(ab, "failed to setup P2P GO bcn ie: %d\n", ret); goto free_bcn_skb; } /* P2P IE is inserted by firmware automatically (as * configured above) so remove it from the base beacon * template to avoid duplicate P2P IEs in beacon frames. */ ret = ath12k_mac_remove_vendor_ie(bcn, WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P, offsetof(struct ieee80211_mgmt, u.beacon.variable)); if (ret) { ath12k_warn(ab, "failed to remove P2P vendor ie: %d\n", ret); goto free_bcn_skb; } } ret = ath12k_wmi_bcn_tmpl(ar, arvif->vdev_id, &offs, bcn, NULL); if (ret) ath12k_warn(ab, "failed to submit beacon template command: %d\n", ret); free_bcn_skb: kfree_skb(bcn); return ret; } static void ath12k_control_beaconing(struct ath12k_vif *arvif, struct ieee80211_bss_conf *info) { struct ath12k_wmi_vdev_up_params params = {}; struct ath12k *ar = arvif->ar; int ret; lockdep_assert_held(&arvif->ar->conf_mutex); if (!info->enable_beacon) { ret = ath12k_wmi_vdev_down(ar, arvif->vdev_id); if (ret) ath12k_warn(ar->ab, "failed to down vdev_id %i: %d\n", arvif->vdev_id, ret); arvif->is_up = false; return; } /* Install the beacon template to the FW */ ret = ath12k_mac_setup_bcn_tmpl(arvif); if (ret) { ath12k_warn(ar->ab, "failed to update bcn tmpl during vdev up: %d\n", ret); return; } arvif->aid = 0; ether_addr_copy(arvif->bssid, info->bssid); params.vdev_id = arvif->vdev_id; params.aid = arvif->aid; params.bssid = arvif->bssid; if (arvif->vif->mbssid_tx_vif) { params.tx_bssid = ath12k_vif_to_arvif(arvif->vif->mbssid_tx_vif)->bssid; params.nontx_profile_idx = info->bssid_index; params.nontx_profile_cnt = 1 << info->bssid_indicator; } ret = ath12k_wmi_vdev_up(arvif->ar, ¶ms); if (ret) { ath12k_warn(ar->ab, "failed to bring up vdev %d: %i\n", arvif->vdev_id, ret); return; } arvif->is_up = true; ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id); } static void ath12k_mac_handle_beacon_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct sk_buff *skb = data; struct ieee80211_mgmt *mgmt = (void *)skb->data; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); if (vif->type != NL80211_IFTYPE_STATION) return; if (!ether_addr_equal(mgmt->bssid, vif->bss_conf.bssid)) return; cancel_delayed_work(&arvif->connection_loss_work); } void ath12k_mac_handle_beacon(struct ath12k *ar, struct sk_buff *skb) { ieee80211_iterate_active_interfaces_atomic(ath12k_ar_to_hw(ar), IEEE80211_IFACE_ITER_NORMAL, ath12k_mac_handle_beacon_iter, skb); } static void ath12k_mac_handle_beacon_miss_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { u32 *vdev_id = data; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k *ar = arvif->ar; struct ieee80211_hw *hw = ath12k_ar_to_hw(ar); if (arvif->vdev_id != *vdev_id) return; if (!arvif->is_up) return; ieee80211_beacon_loss(vif); /* Firmware doesn't report beacon loss events repeatedly. If AP probe * (done by mac80211) succeeds but beacons do not resume then it * doesn't make sense to continue operation. Queue connection loss work * which can be cancelled when beacon is received. */ ieee80211_queue_delayed_work(hw, &arvif->connection_loss_work, ATH12K_CONNECTION_LOSS_HZ); } void ath12k_mac_handle_beacon_miss(struct ath12k *ar, u32 vdev_id) { ieee80211_iterate_active_interfaces_atomic(ath12k_ar_to_hw(ar), IEEE80211_IFACE_ITER_NORMAL, ath12k_mac_handle_beacon_miss_iter, &vdev_id); } static void ath12k_mac_vif_sta_connection_loss_work(struct work_struct *work) { struct ath12k_vif *arvif = container_of(work, struct ath12k_vif, connection_loss_work.work); struct ieee80211_vif *vif = arvif->vif; if (!arvif->is_up) return; ieee80211_connection_loss(vif); } static void ath12k_peer_assoc_h_basic(struct ath12k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ath12k_wmi_peer_assoc_arg *arg) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ieee80211_hw *hw = ath12k_ar_to_hw(ar); u32 aid; lockdep_assert_held(&ar->conf_mutex); if (vif->type == NL80211_IFTYPE_STATION) aid = vif->cfg.aid; else aid = sta->aid; ether_addr_copy(arg->peer_mac, sta->addr); arg->vdev_id = arvif->vdev_id; arg->peer_associd = aid; arg->auth_flag = true; /* TODO: STA WAR in ath10k for listen interval required? */ arg->peer_listen_intval = hw->conf.listen_interval; arg->peer_nss = 1; arg->peer_caps = vif->bss_conf.assoc_capability; } static void ath12k_peer_assoc_h_crypto(struct ath12k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ath12k_wmi_peer_assoc_arg *arg) { struct ieee80211_bss_conf *info = &vif->bss_conf; struct cfg80211_chan_def def; struct cfg80211_bss *bss; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ieee80211_hw *hw = ath12k_ar_to_hw(ar); const u8 *rsnie = NULL; const u8 *wpaie = NULL; lockdep_assert_held(&ar->conf_mutex); if (WARN_ON(ath12k_mac_vif_chan(vif, &def))) return; bss = cfg80211_get_bss(hw->wiphy, def.chan, info->bssid, NULL, 0, IEEE80211_BSS_TYPE_ANY, IEEE80211_PRIVACY_ANY); if (arvif->rsnie_present || arvif->wpaie_present) { arg->need_ptk_4_way = true; if (arvif->wpaie_present) arg->need_gtk_2_way = true; } else if (bss) { const struct cfg80211_bss_ies *ies; rcu_read_lock(); rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN); ies = rcu_dereference(bss->ies); wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, WLAN_OUI_TYPE_MICROSOFT_WPA, ies->data, ies->len); rcu_read_unlock(); cfg80211_put_bss(hw->wiphy, bss); } /* FIXME: base on RSN IE/WPA IE is a correct idea? */ if (rsnie || wpaie) { ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "%s: rsn ie found\n", __func__); arg->need_ptk_4_way = true; } if (wpaie) { ath12k_dbg(ar->ab, ATH12K_DBG_WMI, "%s: wpa ie found\n", __func__); arg->need_gtk_2_way = true; } if (sta->mfp) { /* TODO: Need to check if FW supports PMF? */ arg->is_pmf_enabled = true; } /* TODO: safe_mode_enabled (bypass 4-way handshake) flag req? */ } static void ath12k_peer_assoc_h_rates(struct ath12k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ath12k_wmi_peer_assoc_arg *arg) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates; struct cfg80211_chan_def def; const struct ieee80211_supported_band *sband; const struct ieee80211_rate *rates; struct ieee80211_hw *hw = ath12k_ar_to_hw(ar); enum nl80211_band band; u32 ratemask; u8 rate; int i; lockdep_assert_held(&ar->conf_mutex); if (WARN_ON(ath12k_mac_vif_chan(vif, &def))) return; band = def.chan->band; sband = hw->wiphy->bands[band]; ratemask = sta->deflink.supp_rates[band]; ratemask &= arvif->bitrate_mask.control[band].legacy; rates = sband->bitrates; rateset->num_rates = 0; for (i = 0; i < 32; i++, ratemask >>= 1, rates++) { if (!(ratemask & 1)) continue; rate = ath12k_mac_bitrate_to_rate(rates->bitrate); rateset->rates[rateset->num_rates] = rate; rateset->num_rates++; } } static bool ath12k_peer_assoc_h_ht_masked(const u8 *ht_mcs_mask) { int nss; for (nss = 0; nss < IEEE80211_HT_MCS_MASK_LEN; nss++) if (ht_mcs_mask[nss]) return false; return true; } static bool ath12k_peer_assoc_h_vht_masked(const u16 *vht_mcs_mask) { int nss; for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) if (vht_mcs_mask[nss]) return false; return true; } static void ath12k_peer_assoc_h_ht(struct ath12k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ath12k_wmi_peer_assoc_arg *arg) { const struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct cfg80211_chan_def def; enum nl80211_band band; const u8 *ht_mcs_mask; int i, n; u8 max_nss; u32 stbc; lockdep_assert_held(&ar->conf_mutex); if (WARN_ON(ath12k_mac_vif_chan(vif, &def))) return; if (!ht_cap->ht_supported) return; band = def.chan->band; ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; if (ath12k_peer_assoc_h_ht_masked(ht_mcs_mask)) return; arg->ht_flag = true; arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + ht_cap->ampdu_factor)) - 1; arg->peer_mpdu_density = ath12k_parse_mpdudensity(ht_cap->ampdu_density); arg->peer_ht_caps = ht_cap->cap; arg->peer_rate_caps |= WMI_HOST_RC_HT_FLAG; if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING) arg->ldpc_flag = true; if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) { arg->bw_40 = true; arg->peer_rate_caps |= WMI_HOST_RC_CW40_FLAG; } if (arvif->bitrate_mask.control[band].gi != NL80211_TXRATE_FORCE_LGI) { if (ht_cap->cap & (IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40)) arg->peer_rate_caps |= WMI_HOST_RC_SGI_FLAG; } if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) { arg->peer_rate_caps |= WMI_HOST_RC_TX_STBC_FLAG; arg->stbc_flag = true; } if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) { stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC; stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT; stbc = stbc << WMI_HOST_RC_RX_STBC_FLAG_S; arg->peer_rate_caps |= stbc; arg->stbc_flag = true; } if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2]) arg->peer_rate_caps |= WMI_HOST_RC_TS_FLAG; else if (ht_cap->mcs.rx_mask[1]) arg->peer_rate_caps |= WMI_HOST_RC_DS_FLAG; for (i = 0, n = 0, max_nss = 0; i < IEEE80211_HT_MCS_MASK_LEN * 8; i++) if ((ht_cap->mcs.rx_mask[i / 8] & BIT(i % 8)) && (ht_mcs_mask[i / 8] & BIT(i % 8))) { max_nss = (i / 8) + 1; arg->peer_ht_rates.rates[n++] = i; } /* This is a workaround for HT-enabled STAs which break the spec * and have no HT capabilities RX mask (no HT RX MCS map). * * As per spec, in section 20.3.5 Modulation and coding scheme (MCS), * MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs. * * Firmware asserts if such situation occurs. */ if (n == 0) { arg->peer_ht_rates.num_rates = 8; for (i = 0; i < arg->peer_ht_rates.num_rates; i++) arg->peer_ht_rates.rates[i] = i; } else { arg->peer_ht_rates.num_rates = n; arg->peer_nss = min(sta->deflink.rx_nss, max_nss); } ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n", arg->peer_mac, arg->peer_ht_rates.num_rates, arg->peer_nss); } static int ath12k_mac_get_max_vht_mcs_map(u16 mcs_map, int nss) { switch ((mcs_map >> (2 * nss)) & 0x3) { case IEEE80211_VHT_MCS_SUPPORT_0_7: return BIT(8) - 1; case IEEE80211_VHT_MCS_SUPPORT_0_8: return BIT(9) - 1; case IEEE80211_VHT_MCS_SUPPORT_0_9: return BIT(10) - 1; } return 0; } static u16 ath12k_peer_assoc_h_vht_limit(u16 tx_mcs_set, const u16 vht_mcs_limit[NL80211_VHT_NSS_MAX]) { int idx_limit; int nss; u16 mcs_map; u16 mcs; for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) { mcs_map = ath12k_mac_get_max_vht_mcs_map(tx_mcs_set, nss) & vht_mcs_limit[nss]; if (mcs_map) idx_limit = fls(mcs_map) - 1; else idx_limit = -1; switch (idx_limit) { case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7: mcs = IEEE80211_VHT_MCS_SUPPORT_0_7; break; case 8: mcs = IEEE80211_VHT_MCS_SUPPORT_0_8; break; case 9: mcs = IEEE80211_VHT_MCS_SUPPORT_0_9; break; default: WARN_ON(1); fallthrough; case -1: mcs = IEEE80211_VHT_MCS_NOT_SUPPORTED; break; } tx_mcs_set &= ~(0x3 << (nss * 2)); tx_mcs_set |= mcs << (nss * 2); } return tx_mcs_set; } static void ath12k_peer_assoc_h_vht(struct ath12k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ath12k_wmi_peer_assoc_arg *arg) { const struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct cfg80211_chan_def def; enum nl80211_band band; const u16 *vht_mcs_mask; u16 tx_mcs_map; u8 ampdu_factor; u8 max_nss, vht_mcs; int i; if (WARN_ON(ath12k_mac_vif_chan(vif, &def))) return; if (!vht_cap->vht_supported) return; band = def.chan->band; vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; if (ath12k_peer_assoc_h_vht_masked(vht_mcs_mask)) return; arg->vht_flag = true; /* TODO: similar flags required? */ arg->vht_capable = true; if (def.chan->band == NL80211_BAND_2GHZ) arg->vht_ng_flag = true; arg->peer_vht_caps = vht_cap->cap; ampdu_factor = (vht_cap->cap & IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >> IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; /* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to * zero in VHT IE. Using it would result in degraded throughput. * arg->peer_max_mpdu at this point contains HT max_mpdu so keep * it if VHT max_mpdu is smaller. */ arg->peer_max_mpdu = max(arg->peer_max_mpdu, (1U << (IEEE80211_HT_MAX_AMPDU_FACTOR + ampdu_factor)) - 1); if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) arg->bw_80 = true; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) arg->bw_160 = true; /* Calculate peer NSS capability from VHT capabilities if STA * supports VHT. */ for (i = 0, max_nss = 0, vht_mcs = 0; i < NL80211_VHT_NSS_MAX; i++) { vht_mcs = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map) >> (2 * i) & 3; if (vht_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED && vht_mcs_mask[i]) max_nss = i + 1; } arg->peer_nss = min(sta->deflink.rx_nss, max_nss); arg->rx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.rx_highest); arg->rx_mcs_set = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map); arg->tx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.tx_highest); tx_mcs_map = __le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map); arg->tx_mcs_set = ath12k_peer_assoc_h_vht_limit(tx_mcs_map, vht_mcs_mask); /* In QCN9274 platform, VHT MCS rate 10 and 11 is enabled by default. * VHT MCS rate 10 and 11 is not supported in 11ac standard. * so explicitly disable the VHT MCS rate 10 and 11 in 11ac mode. */ arg->tx_mcs_set &= ~IEEE80211_VHT_MCS_SUPPORT_0_11_MASK; arg->tx_mcs_set |= IEEE80211_DISABLE_VHT_MCS_SUPPORT_0_11; if ((arg->tx_mcs_set & IEEE80211_VHT_MCS_NOT_SUPPORTED) == IEEE80211_VHT_MCS_NOT_SUPPORTED) arg->peer_vht_caps &= ~IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; /* TODO: Check */ arg->tx_max_mcs_nss = 0xFF; ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vht peer %pM max_mpdu %d flags 0x%x\n", sta->addr, arg->peer_max_mpdu, arg->peer_flags); /* TODO: rxnss_override */ } static void ath12k_peer_assoc_h_he(struct ath12k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ath12k_wmi_peer_assoc_arg *arg) { const struct ieee80211_sta_he_cap *he_cap = &sta->deflink.he_cap; int i; u8 ampdu_factor, max_nss; u8 rx_mcs_80 = IEEE80211_HE_MCS_NOT_SUPPORTED; u8 rx_mcs_160 = IEEE80211_HE_MCS_NOT_SUPPORTED; u16 mcs_160_map, mcs_80_map; bool support_160; u16 v; if (!he_cap->has_he) return; arg->he_flag = true; support_160 = !!(he_cap->he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G); /* Supported HE-MCS and NSS Set of peer he_cap is intersection with self he_cp */ mcs_160_map = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_160); mcs_80_map = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80); if (support_160) { for (i = 7; i >= 0; i--) { u8 mcs_160 = (mcs_160_map >> (2 * i)) & 3; if (mcs_160 != IEEE80211_HE_MCS_NOT_SUPPORTED) { rx_mcs_160 = i + 1; break; } } } for (i = 7; i >= 0; i--) { u8 mcs_80 = (mcs_80_map >> (2 * i)) & 3; if (mcs_80 != IEEE80211_HE_MCS_NOT_SUPPORTED) { rx_mcs_80 = i + 1; break; } } if (support_160) max_nss = min(rx_mcs_80, rx_mcs_160); else max_nss = rx_mcs_80; arg->peer_nss = min(sta->deflink.rx_nss, max_nss); memcpy(&arg->peer_he_cap_macinfo, he_cap->he_cap_elem.mac_cap_info, sizeof(he_cap->he_cap_elem.mac_cap_info)); memcpy(&arg->peer_he_cap_phyinfo, he_cap->he_cap_elem.phy_cap_info, sizeof(he_cap->he_cap_elem.phy_cap_info)); arg->peer_he_ops = vif->bss_conf.he_oper.params; /* the top most byte is used to indicate BSS color info */ arg->peer_he_ops &= 0xffffff; /* As per section 26.6.1 IEEE Std 802.11ax‐2022, if the Max AMPDU * Exponent Extension in HE cap is zero, use the arg->peer_max_mpdu * as calculated while parsing VHT caps(if VHT caps is present) * or HT caps (if VHT caps is not present). * * For non-zero value of Max AMPDU Exponent Extension in HE MAC caps, * if a HE STA sends VHT cap and HE cap IE in assoc request then, use * MAX_AMPDU_LEN_FACTOR as 20 to calculate max_ampdu length. * If a HE STA that does not send VHT cap, but HE and HT cap in assoc * request, then use MAX_AMPDU_LEN_FACTOR as 16 to calculate max_ampdu * length. */ ampdu_factor = (he_cap->he_cap_elem.mac_cap_info[3] & IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK) >> IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK; if (ampdu_factor) { if (sta->deflink.vht_cap.vht_supported) arg->peer_max_mpdu = (1 << (IEEE80211_HE_VHT_MAX_AMPDU_FACTOR + ampdu_factor)) - 1; else if (sta->deflink.ht_cap.ht_supported) arg->peer_max_mpdu = (1 << (IEEE80211_HE_HT_MAX_AMPDU_FACTOR + ampdu_factor)) - 1; } if (he_cap->he_cap_elem.phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) { int bit = 7; int nss, ru; arg->peer_ppet.numss_m1 = he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK; arg->peer_ppet.ru_bit_mask = (he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK) >> IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS; for (nss = 0; nss <= arg->peer_ppet.numss_m1; nss++) { for (ru = 0; ru < 4; ru++) { u32 val = 0; int i; if ((arg->peer_ppet.ru_bit_mask & BIT(ru)) == 0) continue; for (i = 0; i < 6; i++) { val >>= 1; val |= ((he_cap->ppe_thres[bit / 8] >> (bit % 8)) & 0x1) << 5; bit++; } arg->peer_ppet.ppet16_ppet8_ru3_ru0[nss] |= val << (ru * 6); } } } if (he_cap->he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_RES) arg->twt_responder = true; if (he_cap->he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_REQ) arg->twt_requester = true; switch (sta->deflink.bandwidth) { case IEEE80211_STA_RX_BW_160: if (he_cap->he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) { v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80p80); arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80_80] = v; v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_80p80); arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80_80] = v; arg->peer_he_mcs_count++; } v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_160); arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_160] = v; v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_160); arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_160] = v; arg->peer_he_mcs_count++; fallthrough; default: v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80); arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80] = v; v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_80); arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80] = v; arg->peer_he_mcs_count++; break; } } static void ath12k_peer_assoc_h_he_6ghz(struct ath12k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ath12k_wmi_peer_assoc_arg *arg) { const struct ieee80211_sta_he_cap *he_cap = &sta->deflink.he_cap; struct cfg80211_chan_def def; enum nl80211_band band; u8 ampdu_factor, mpdu_density; if (WARN_ON(ath12k_mac_vif_chan(vif, &def))) return; band = def.chan->band; if (!arg->he_flag || band != NL80211_BAND_6GHZ || !sta->deflink.he_6ghz_capa.capa) return; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) arg->bw_40 = true; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) arg->bw_80 = true; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) arg->bw_160 = true; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_320) arg->bw_320 = true; arg->peer_he_caps_6ghz = le16_to_cpu(sta->deflink.he_6ghz_capa.capa); mpdu_density = u32_get_bits(arg->peer_he_caps_6ghz, IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START); arg->peer_mpdu_density = ath12k_parse_mpdudensity(mpdu_density); /* From IEEE Std 802.11ax-2021 - Section 10.12.2: An HE STA shall be capable of * receiving A-MPDU where the A-MPDU pre-EOF padding length is up to the value * indicated by the Maximum A-MPDU Length Exponent Extension field in the HE * Capabilities element and the Maximum A-MPDU Length Exponent field in HE 6 GHz * Band Capabilities element in the 6 GHz band. * * Here, we are extracting the Max A-MPDU Exponent Extension from HE caps and * factor is the Maximum A-MPDU Length Exponent from HE 6 GHZ Band capability. */ ampdu_factor = u8_get_bits(he_cap->he_cap_elem.mac_cap_info[3], IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK) + u32_get_bits(arg->peer_he_caps_6ghz, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP); arg->peer_max_mpdu = (1u << (IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR + ampdu_factor)) - 1; } static int ath12k_get_smps_from_capa(const struct ieee80211_sta_ht_cap *ht_cap, const struct ieee80211_he_6ghz_capa *he_6ghz_capa, int *smps) { if (ht_cap->ht_supported) *smps = u16_get_bits(ht_cap->cap, IEEE80211_HT_CAP_SM_PS); else *smps = le16_get_bits(he_6ghz_capa->capa, IEEE80211_HE_6GHZ_CAP_SM_PS); if (*smps >= ARRAY_SIZE(ath12k_smps_map)) return -EINVAL; return 0; } static void ath12k_peer_assoc_h_smps(struct ieee80211_sta *sta, struct ath12k_wmi_peer_assoc_arg *arg) { const struct ieee80211_he_6ghz_capa *he_6ghz_capa = &sta->deflink.he_6ghz_capa; const struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap; int smps; if (!ht_cap->ht_supported && !he_6ghz_capa->capa) return; if (ath12k_get_smps_from_capa(ht_cap, he_6ghz_capa, &smps)) return; switch (smps) { case WLAN_HT_CAP_SM_PS_STATIC: arg->static_mimops_flag = true; break; case WLAN_HT_CAP_SM_PS_DYNAMIC: arg->dynamic_mimops_flag = true; break; case WLAN_HT_CAP_SM_PS_DISABLED: arg->spatial_mux_flag = true; break; default: break; } } static void ath12k_peer_assoc_h_qos(struct ath12k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ath12k_wmi_peer_assoc_arg *arg) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); switch (arvif->vdev_type) { case WMI_VDEV_TYPE_AP: if (sta->wme) { /* TODO: Check WME vs QoS */ arg->is_wme_set = true; arg->qos_flag = true; } if (sta->wme && sta->uapsd_queues) { /* TODO: Check WME vs QoS */ arg->is_wme_set = true; arg->apsd_flag = true; arg->peer_rate_caps |= WMI_HOST_RC_UAPSD_FLAG; } break; case WMI_VDEV_TYPE_STA: if (sta->wme) { arg->is_wme_set = true; arg->qos_flag = true; } break; default: break; } ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac peer %pM qos %d\n", sta->addr, arg->qos_flag); } static int ath12k_peer_assoc_qos_ap(struct ath12k *ar, struct ath12k_vif *arvif, struct ieee80211_sta *sta) { struct ath12k_wmi_ap_ps_arg arg; u32 max_sp; u32 uapsd; int ret; lockdep_assert_held(&ar->conf_mutex); arg.vdev_id = arvif->vdev_id; ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n", sta->uapsd_queues, sta->max_sp); uapsd = 0; if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN | WMI_AP_PS_UAPSD_AC3_TRIGGER_EN; if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI) uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN | WMI_AP_PS_UAPSD_AC2_TRIGGER_EN; if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK) uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN | WMI_AP_PS_UAPSD_AC1_TRIGGER_EN; if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE) uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN | WMI_AP_PS_UAPSD_AC0_TRIGGER_EN; max_sp = 0; if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP) max_sp = sta->max_sp; arg.param = WMI_AP_PS_PEER_PARAM_UAPSD; arg.value = uapsd; ret = ath12k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, &arg); if (ret) goto err; arg.param = WMI_AP_PS_PEER_PARAM_MAX_SP; arg.value = max_sp; ret = ath12k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, &arg); if (ret) goto err; /* TODO: revisit during testing */ arg.param = WMI_AP_PS_PEER_PARAM_SIFS_RESP_FRMTYPE; arg.value = DISABLE_SIFS_RESPONSE_TRIGGER; ret = ath12k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, &arg); if (ret) goto err; arg.param = WMI_AP_PS_PEER_PARAM_SIFS_RESP_UAPSD; arg.value = DISABLE_SIFS_RESPONSE_TRIGGER; ret = ath12k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, &arg); if (ret) goto err; return 0; err: ath12k_warn(ar->ab, "failed to set ap ps peer param %d for vdev %i: %d\n", arg.param, arvif->vdev_id, ret); return ret; } static bool ath12k_mac_sta_has_ofdm_only(struct ieee80211_sta *sta) { return sta->deflink.supp_rates[NL80211_BAND_2GHZ] >> ATH12K_MAC_FIRST_OFDM_RATE_IDX; } static enum wmi_phy_mode ath12k_mac_get_phymode_vht(struct ath12k *ar, struct ieee80211_sta *sta) { if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) { switch (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) { case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ: return MODE_11AC_VHT160; case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ: return MODE_11AC_VHT80_80; default: /* not sure if this is a valid case? */ return MODE_11AC_VHT160; } } if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) return MODE_11AC_VHT80; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) return MODE_11AC_VHT40; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20) return MODE_11AC_VHT20; return MODE_UNKNOWN; } static enum wmi_phy_mode ath12k_mac_get_phymode_he(struct ath12k *ar, struct ieee80211_sta *sta) { if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) { if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) return MODE_11AX_HE160; else if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) return MODE_11AX_HE80_80; /* not sure if this is a valid case? */ return MODE_11AX_HE160; } if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) return MODE_11AX_HE80; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) return MODE_11AX_HE40; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20) return MODE_11AX_HE20; return MODE_UNKNOWN; } static enum wmi_phy_mode ath12k_mac_get_phymode_eht(struct ath12k *ar, struct ieee80211_sta *sta) { if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_320) if (sta->deflink.eht_cap.eht_cap_elem.phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) return MODE_11BE_EHT320; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) { if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) return MODE_11BE_EHT160; if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) return MODE_11BE_EHT80_80; ath12k_warn(ar->ab, "invalid EHT PHY capability info for 160 Mhz: %d\n", sta->deflink.he_cap.he_cap_elem.phy_cap_info[0]); return MODE_11BE_EHT160; } if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) return MODE_11BE_EHT80; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) return MODE_11BE_EHT40; if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20) return MODE_11BE_EHT20; return MODE_UNKNOWN; } static void ath12k_peer_assoc_h_phymode(struct ath12k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ath12k_wmi_peer_assoc_arg *arg) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct cfg80211_chan_def def; enum nl80211_band band; const u8 *ht_mcs_mask; const u16 *vht_mcs_mask; enum wmi_phy_mode phymode = MODE_UNKNOWN; if (WARN_ON(ath12k_mac_vif_chan(vif, &def))) return; band = def.chan->band; ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; switch (band) { case NL80211_BAND_2GHZ: if (sta->deflink.eht_cap.has_eht) { if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) phymode = MODE_11BE_EHT40_2G; else phymode = MODE_11BE_EHT20_2G; } else if (sta->deflink.he_cap.has_he) { if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) phymode = MODE_11AX_HE80_2G; else if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) phymode = MODE_11AX_HE40_2G; else phymode = MODE_11AX_HE20_2G; } else if (sta->deflink.vht_cap.vht_supported && !ath12k_peer_assoc_h_vht_masked(vht_mcs_mask)) { if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) phymode = MODE_11AC_VHT40; else phymode = MODE_11AC_VHT20; } else if (sta->deflink.ht_cap.ht_supported && !ath12k_peer_assoc_h_ht_masked(ht_mcs_mask)) { if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) phymode = MODE_11NG_HT40; else phymode = MODE_11NG_HT20; } else if (ath12k_mac_sta_has_ofdm_only(sta)) { phymode = MODE_11G; } else { phymode = MODE_11B; } break; case NL80211_BAND_5GHZ: case NL80211_BAND_6GHZ: /* Check EHT first */ if (sta->deflink.eht_cap.has_eht) { phymode = ath12k_mac_get_phymode_eht(ar, sta); } else if (sta->deflink.he_cap.has_he) { phymode = ath12k_mac_get_phymode_he(ar, sta); } else if (sta->deflink.vht_cap.vht_supported && !ath12k_peer_assoc_h_vht_masked(vht_mcs_mask)) { phymode = ath12k_mac_get_phymode_vht(ar, sta); } else if (sta->deflink.ht_cap.ht_supported && !ath12k_peer_assoc_h_ht_masked(ht_mcs_mask)) { if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) phymode = MODE_11NA_HT40; else phymode = MODE_11NA_HT20; } else { phymode = MODE_11A; } break; default: break; } ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac peer %pM phymode %s\n", sta->addr, ath12k_mac_phymode_str(phymode)); arg->peer_phymode = phymode; WARN_ON(phymode == MODE_UNKNOWN); } static void ath12k_mac_set_eht_mcs(u8 rx_tx_mcs7, u8 rx_tx_mcs9, u8 rx_tx_mcs11, u8 rx_tx_mcs13, u32 *rx_mcs, u32 *tx_mcs) { *rx_mcs = 0; u32p_replace_bits(rx_mcs, u8_get_bits(rx_tx_mcs7, IEEE80211_EHT_MCS_NSS_RX), WMI_EHT_MCS_NSS_0_7); u32p_replace_bits(rx_mcs, u8_get_bits(rx_tx_mcs9, IEEE80211_EHT_MCS_NSS_RX), WMI_EHT_MCS_NSS_8_9); u32p_replace_bits(rx_mcs, u8_get_bits(rx_tx_mcs11, IEEE80211_EHT_MCS_NSS_RX), WMI_EHT_MCS_NSS_10_11); u32p_replace_bits(rx_mcs, u8_get_bits(rx_tx_mcs13, IEEE80211_EHT_MCS_NSS_RX), WMI_EHT_MCS_NSS_12_13); *tx_mcs = 0; u32p_replace_bits(tx_mcs, u8_get_bits(rx_tx_mcs7, IEEE80211_EHT_MCS_NSS_TX), WMI_EHT_MCS_NSS_0_7); u32p_replace_bits(tx_mcs, u8_get_bits(rx_tx_mcs9, IEEE80211_EHT_MCS_NSS_TX), WMI_EHT_MCS_NSS_8_9); u32p_replace_bits(tx_mcs, u8_get_bits(rx_tx_mcs11, IEEE80211_EHT_MCS_NSS_TX), WMI_EHT_MCS_NSS_10_11); u32p_replace_bits(tx_mcs, u8_get_bits(rx_tx_mcs13, IEEE80211_EHT_MCS_NSS_TX), WMI_EHT_MCS_NSS_12_13); } static void ath12k_mac_set_eht_ppe_threshold(const u8 *ppe_thres, struct ath12k_wmi_ppe_threshold_arg *ppet) { u32 bit_pos = IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE, val; u8 nss, ru, i; u8 ppet_bit_len_per_ru = IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2; ppet->numss_m1 = u8_get_bits(ppe_thres[0], IEEE80211_EHT_PPE_THRES_NSS_MASK); ppet->ru_bit_mask = u16_get_bits(get_unaligned_le16(ppe_thres), IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK); for (nss = 0; nss <= ppet->numss_m1; nss++) { for (ru = 0; ru < hweight16(IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK); ru++) { if ((ppet->ru_bit_mask & BIT(ru)) == 0) continue; val = 0; for (i = 0; i < ppet_bit_len_per_ru; i++) { val |= (((ppe_thres[bit_pos / 8] >> (bit_pos % 8)) & 0x1) << i); bit_pos++; } ppet->ppet16_ppet8_ru3_ru0[nss] |= (val << (ru * ppet_bit_len_per_ru)); } } } static void ath12k_peer_assoc_h_eht(struct ath12k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ath12k_wmi_peer_assoc_arg *arg) { const struct ieee80211_sta_eht_cap *eht_cap = &sta->deflink.eht_cap; const struct ieee80211_sta_he_cap *he_cap = &sta->deflink.he_cap; const struct ieee80211_eht_mcs_nss_supp_20mhz_only *bw_20; const struct ieee80211_eht_mcs_nss_supp_bw *bw; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); u32 *rx_mcs, *tx_mcs; if (!sta->deflink.he_cap.has_he || !eht_cap->has_eht) return; arg->eht_flag = true; if ((eht_cap->eht_cap_elem.phy_cap_info[5] & IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) && eht_cap->eht_ppe_thres[0] != 0) ath12k_mac_set_eht_ppe_threshold(eht_cap->eht_ppe_thres, &arg->peer_eht_ppet); memcpy(arg->peer_eht_cap_mac, eht_cap->eht_cap_elem.mac_cap_info, sizeof(eht_cap->eht_cap_elem.mac_cap_info)); memcpy(arg->peer_eht_cap_phy, eht_cap->eht_cap_elem.phy_cap_info, sizeof(eht_cap->eht_cap_elem.phy_cap_info)); rx_mcs = arg->peer_eht_rx_mcs_set; tx_mcs = arg->peer_eht_tx_mcs_set; switch (sta->deflink.bandwidth) { case IEEE80211_STA_RX_BW_320: bw = &eht_cap->eht_mcs_nss_supp.bw._320; ath12k_mac_set_eht_mcs(bw->rx_tx_mcs9_max_nss, bw->rx_tx_mcs9_max_nss, bw->rx_tx_mcs11_max_nss, bw->rx_tx_mcs13_max_nss, &rx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_320], &tx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_320]); arg->peer_eht_mcs_count++; fallthrough; case IEEE80211_STA_RX_BW_160: bw = &eht_cap->eht_mcs_nss_supp.bw._160; ath12k_mac_set_eht_mcs(bw->rx_tx_mcs9_max_nss, bw->rx_tx_mcs9_max_nss, bw->rx_tx_mcs11_max_nss, bw->rx_tx_mcs13_max_nss, &rx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_160], &tx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_160]); arg->peer_eht_mcs_count++; fallthrough; default: if ((he_cap->he_cap_elem.phy_cap_info[0] & (IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)) == 0) { bw_20 = &eht_cap->eht_mcs_nss_supp.only_20mhz; ath12k_mac_set_eht_mcs(bw_20->rx_tx_mcs7_max_nss, bw_20->rx_tx_mcs9_max_nss, bw_20->rx_tx_mcs11_max_nss, bw_20->rx_tx_mcs13_max_nss, &rx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_80], &tx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_80]); } else { bw = &eht_cap->eht_mcs_nss_supp.bw._80; ath12k_mac_set_eht_mcs(bw->rx_tx_mcs9_max_nss, bw->rx_tx_mcs9_max_nss, bw->rx_tx_mcs11_max_nss, bw->rx_tx_mcs13_max_nss, &rx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_80], &tx_mcs[WMI_EHTCAP_TXRX_MCS_NSS_IDX_80]); } arg->peer_eht_mcs_count++; break; } arg->punct_bitmap = ~arvif->punct_bitmap; } static void ath12k_peer_assoc_prepare(struct ath12k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ath12k_wmi_peer_assoc_arg *arg, bool reassoc) { lockdep_assert_held(&ar->conf_mutex); memset(arg, 0, sizeof(*arg)); reinit_completion(&ar->peer_assoc_done); arg->peer_new_assoc = !reassoc; ath12k_peer_assoc_h_basic(ar, vif, sta, arg); ath12k_peer_assoc_h_crypto(ar, vif, sta, arg); ath12k_peer_assoc_h_rates(ar, vif, sta, arg); ath12k_peer_assoc_h_ht(ar, vif, sta, arg); ath12k_peer_assoc_h_vht(ar, vif, sta, arg); ath12k_peer_assoc_h_he(ar, vif, sta, arg); ath12k_peer_assoc_h_he_6ghz(ar, vif, sta, arg); ath12k_peer_assoc_h_eht(ar, vif, sta, arg); ath12k_peer_assoc_h_qos(ar, vif, sta, arg); ath12k_peer_assoc_h_phymode(ar, vif, sta, arg); ath12k_peer_assoc_h_smps(sta, arg); /* TODO: amsdu_disable req? */ } static int ath12k_setup_peer_smps(struct ath12k *ar, struct ath12k_vif *arvif, const u8 *addr, const struct ieee80211_sta_ht_cap *ht_cap, const struct ieee80211_he_6ghz_capa *he_6ghz_capa) { int smps, ret = 0; if (!ht_cap->ht_supported && !he_6ghz_capa) return 0; ret = ath12k_get_smps_from_capa(ht_cap, he_6ghz_capa, &smps); if (ret < 0) return ret; return ath12k_wmi_set_peer_param(ar, addr, arvif->vdev_id, WMI_PEER_MIMO_PS_STATE, ath12k_smps_map[smps]); } static void ath12k_bss_assoc(struct ath12k *ar, struct ath12k_vif *arvif, struct ieee80211_bss_conf *bss_conf) { struct ieee80211_vif *vif = arvif->vif; struct ath12k_wmi_vdev_up_params params = {}; struct ath12k_wmi_peer_assoc_arg peer_arg; struct ieee80211_sta *ap_sta; struct ath12k_peer *peer; bool is_auth = false; int ret; lockdep_assert_held(&ar->conf_mutex); ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev %i assoc bssid %pM aid %d\n", arvif->vdev_id, arvif->bssid, arvif->aid); rcu_read_lock(); ap_sta = ieee80211_find_sta(vif, bss_conf->bssid); if (!ap_sta) { ath12k_warn(ar->ab, "failed to find station entry for bss %pM vdev %i\n", bss_conf->bssid, arvif->vdev_id); rcu_read_unlock(); return; } ath12k_peer_assoc_prepare(ar, vif, ap_sta, &peer_arg, false); rcu_read_unlock(); ret = ath12k_wmi_send_peer_assoc_cmd(ar, &peer_arg); if (ret) { ath12k_warn(ar->ab, "failed to run peer assoc for %pM vdev %i: %d\n", bss_conf->bssid, arvif->vdev_id, ret); return; } if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ)) { ath12k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n", bss_conf->bssid, arvif->vdev_id); return; } ret = ath12k_setup_peer_smps(ar, arvif, bss_conf->bssid, &ap_sta->deflink.ht_cap, &ap_sta->deflink.he_6ghz_capa); if (ret) { ath12k_warn(ar->ab, "failed to setup peer SMPS for vdev %d: %d\n", arvif->vdev_id, ret); return; } WARN_ON(arvif->is_up); arvif->aid = vif->cfg.aid; ether_addr_copy(arvif->bssid, bss_conf->bssid); params.vdev_id = arvif->vdev_id; params.aid = arvif->aid; params.bssid = arvif->bssid; ret = ath12k_wmi_vdev_up(ar, ¶ms); if (ret) { ath12k_warn(ar->ab, "failed to set vdev %d up: %d\n", arvif->vdev_id, ret); return; } arvif->is_up = true; arvif->rekey_data.enable_offload = false; ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev %d up (associated) bssid %pM aid %d\n", arvif->vdev_id, bss_conf->bssid, vif->cfg.aid); spin_lock_bh(&ar->ab->base_lock); peer = ath12k_peer_find(ar->ab, arvif->vdev_id, arvif->bssid); if (peer && peer->is_authorized) is_auth = true; spin_unlock_bh(&ar->ab->base_lock); /* Authorize BSS Peer */ if (is_auth) { ret = ath12k_wmi_set_peer_param(ar, arvif->bssid, arvif->vdev_id, WMI_PEER_AUTHORIZE, 1); if (ret) ath12k_warn(ar->ab, "Unable to authorize BSS peer: %d\n", ret); } ret = ath12k_wmi_send_obss_spr_cmd(ar, arvif->vdev_id, &bss_conf->he_obss_pd); if (ret) ath12k_warn(ar->ab, "failed to set vdev %i OBSS PD parameters: %d\n", arvif->vdev_id, ret); } static void ath12k_bss_disassoc(struct ath12k *ar, struct ath12k_vif *arvif) { int ret; lockdep_assert_held(&ar->conf_mutex); ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev %i disassoc bssid %pM\n", arvif->vdev_id, arvif->bssid); ret = ath12k_wmi_vdev_down(ar, arvif->vdev_id); if (ret) ath12k_warn(ar->ab, "failed to down vdev %i: %d\n", arvif->vdev_id, ret); arvif->is_up = false; memset(&arvif->rekey_data, 0, sizeof(arvif->rekey_data)); cancel_delayed_work(&arvif->connection_loss_work); } static u32 ath12k_mac_get_rate_hw_value(int bitrate) { u32 preamble; u16 hw_value; int rate; size_t i; if (ath12k_mac_bitrate_is_cck(bitrate)) preamble = WMI_RATE_PREAMBLE_CCK; else preamble = WMI_RATE_PREAMBLE_OFDM; for (i = 0; i < ARRAY_SIZE(ath12k_legacy_rates); i++) { if (ath12k_legacy_rates[i].bitrate != bitrate) continue; hw_value = ath12k_legacy_rates[i].hw_value; rate = ATH12K_HW_RATE_CODE(hw_value, 0, preamble); return rate; } return -EINVAL; } static void ath12k_recalculate_mgmt_rate(struct ath12k *ar, struct ieee80211_vif *vif, struct cfg80211_chan_def *def) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ieee80211_hw *hw = ath12k_ar_to_hw(ar); const struct ieee80211_supported_band *sband; u8 basic_rate_idx; int hw_rate_code; u32 vdev_param; u16 bitrate; int ret; lockdep_assert_held(&ar->conf_mutex); sband = hw->wiphy->bands[def->chan->band]; basic_rate_idx = ffs(vif->bss_conf.basic_rates) - 1; bitrate = sband->bitrates[basic_rate_idx].bitrate; hw_rate_code = ath12k_mac_get_rate_hw_value(bitrate); if (hw_rate_code < 0) { ath12k_warn(ar->ab, "bitrate not supported %d\n", bitrate); return; } vdev_param = WMI_VDEV_PARAM_MGMT_RATE; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, hw_rate_code); if (ret) ath12k_warn(ar->ab, "failed to set mgmt tx rate %d\n", ret); vdev_param = WMI_VDEV_PARAM_BEACON_RATE; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, hw_rate_code); if (ret) ath12k_warn(ar->ab, "failed to set beacon tx rate %d\n", ret); } static int ath12k_mac_fils_discovery(struct ath12k_vif *arvif, struct ieee80211_bss_conf *info) { struct ath12k *ar = arvif->ar; struct ieee80211_hw *hw = ath12k_ar_to_hw(ar); struct sk_buff *tmpl; int ret; u32 interval; bool unsol_bcast_probe_resp_enabled = false; if (info->fils_discovery.max_interval) { interval = info->fils_discovery.max_interval; tmpl = ieee80211_get_fils_discovery_tmpl(hw, arvif->vif); if (tmpl) ret = ath12k_wmi_fils_discovery_tmpl(ar, arvif->vdev_id, tmpl); } else if (info->unsol_bcast_probe_resp_interval) { unsol_bcast_probe_resp_enabled = 1; interval = info->unsol_bcast_probe_resp_interval; tmpl = ieee80211_get_unsol_bcast_probe_resp_tmpl(hw, arvif->vif); if (tmpl) ret = ath12k_wmi_probe_resp_tmpl(ar, arvif->vdev_id, tmpl); } else { /* Disable */ return ath12k_wmi_fils_discovery(ar, arvif->vdev_id, 0, false); } if (!tmpl) { ath12k_warn(ar->ab, "mac vdev %i failed to retrieve %s template\n", arvif->vdev_id, (unsol_bcast_probe_resp_enabled ? "unsolicited broadcast probe response" : "FILS discovery")); return -EPERM; } kfree_skb(tmpl); if (!ret) ret = ath12k_wmi_fils_discovery(ar, arvif->vdev_id, interval, unsol_bcast_probe_resp_enabled); return ret; } static void ath12k_mac_vif_setup_ps(struct ath12k_vif *arvif) { struct ath12k *ar = arvif->ar; struct ieee80211_vif *vif = arvif->vif; struct ieee80211_conf *conf = &ath12k_ar_to_hw(ar)->conf; enum wmi_sta_powersave_param param; enum wmi_sta_ps_mode psmode; int ret; int timeout; bool enable_ps; lockdep_assert_held(&ar->conf_mutex); if (vif->type != NL80211_IFTYPE_STATION) return; enable_ps = arvif->ps; if (enable_ps) { psmode = WMI_STA_PS_MODE_ENABLED; param = WMI_STA_PS_PARAM_INACTIVITY_TIME; timeout = conf->dynamic_ps_timeout; if (timeout == 0) { /* firmware doesn't like 0 */ timeout = ieee80211_tu_to_usec(vif->bss_conf.beacon_int) / 1000; } ret = ath12k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, timeout); if (ret) { ath12k_warn(ar->ab, "failed to set inactivity time for vdev %d: %i\n", arvif->vdev_id, ret); return; } } else { psmode = WMI_STA_PS_MODE_DISABLED; } ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev %d psmode %s\n", arvif->vdev_id, psmode ? "enable" : "disable"); ret = ath12k_wmi_pdev_set_ps_mode(ar, arvif->vdev_id, psmode); if (ret) ath12k_warn(ar->ab, "failed to set sta power save mode %d for vdev %d: %d\n", psmode, arvif->vdev_id, ret); } static void ath12k_mac_bss_info_changed(struct ath12k *ar, struct ath12k_vif *arvif, struct ieee80211_bss_conf *info, u64 changed) { struct ieee80211_vif *vif = arvif->vif; struct ieee80211_vif_cfg *vif_cfg = &vif->cfg; struct cfg80211_chan_def def; u32 param_id, param_value; enum nl80211_band band; u32 vdev_param; int mcast_rate; u32 preamble; u16 hw_value; u16 bitrate; int ret; u8 rateidx; u32 rate; lockdep_assert_held(&ar->conf_mutex); if (changed & BSS_CHANGED_BEACON_INT) { arvif->beacon_interval = info->beacon_int; param_id = WMI_VDEV_PARAM_BEACON_INTERVAL; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param_id, arvif->beacon_interval); if (ret) ath12k_warn(ar->ab, "Failed to set beacon interval for VDEV: %d\n", arvif->vdev_id); else ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "Beacon interval: %d set for VDEV: %d\n", arvif->beacon_interval, arvif->vdev_id); } if (changed & BSS_CHANGED_BEACON) { param_id = WMI_PDEV_PARAM_BEACON_TX_MODE; param_value = WMI_BEACON_BURST_MODE; ret = ath12k_wmi_pdev_set_param(ar, param_id, param_value, ar->pdev->pdev_id); if (ret) ath12k_warn(ar->ab, "Failed to set beacon mode for VDEV: %d\n", arvif->vdev_id); else ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "Set burst beacon mode for VDEV: %d\n", arvif->vdev_id); ret = ath12k_mac_setup_bcn_tmpl(arvif); if (ret) ath12k_warn(ar->ab, "failed to update bcn template: %d\n", ret); } if (changed & (BSS_CHANGED_BEACON_INFO | BSS_CHANGED_BEACON)) { arvif->dtim_period = info->dtim_period; param_id = WMI_VDEV_PARAM_DTIM_PERIOD; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param_id, arvif->dtim_period); if (ret) ath12k_warn(ar->ab, "Failed to set dtim period for VDEV %d: %i\n", arvif->vdev_id, ret); else ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "DTIM period: %d set for VDEV: %d\n", arvif->dtim_period, arvif->vdev_id); } if (changed & BSS_CHANGED_SSID && vif->type == NL80211_IFTYPE_AP) { arvif->u.ap.ssid_len = vif->cfg.ssid_len; if (vif->cfg.ssid_len) memcpy(arvif->u.ap.ssid, vif->cfg.ssid, vif->cfg.ssid_len); arvif->u.ap.hidden_ssid = info->hidden_ssid; } if (changed & BSS_CHANGED_BSSID && !is_zero_ether_addr(info->bssid)) ether_addr_copy(arvif->bssid, info->bssid); if (changed & BSS_CHANGED_BEACON_ENABLED) { ath12k_control_beaconing(arvif, info); if (arvif->is_up && vif->bss_conf.he_support && vif->bss_conf.he_oper.params) { /* TODO: Extend to support 1024 BA Bitmap size */ ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, WMI_VDEV_PARAM_BA_MODE, WMI_BA_MODE_BUFFER_SIZE_256); if (ret) ath12k_warn(ar->ab, "failed to set BA BUFFER SIZE 256 for vdev: %d\n", arvif->vdev_id); param_id = WMI_VDEV_PARAM_HEOPS_0_31; param_value = vif->bss_conf.he_oper.params; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param_id, param_value); ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "he oper param: %x set for VDEV: %d\n", param_value, arvif->vdev_id); if (ret) ath12k_warn(ar->ab, "Failed to set he oper params %x for VDEV %d: %i\n", param_value, arvif->vdev_id, ret); } } if (changed & BSS_CHANGED_ERP_CTS_PROT) { u32 cts_prot; cts_prot = !!(info->use_cts_prot); param_id = WMI_VDEV_PARAM_PROTECTION_MODE; if (arvif->is_started) { ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param_id, cts_prot); if (ret) ath12k_warn(ar->ab, "Failed to set CTS prot for VDEV: %d\n", arvif->vdev_id); else ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "Set CTS prot: %d for VDEV: %d\n", cts_prot, arvif->vdev_id); } else { ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "defer protection mode setup, vdev is not ready yet\n"); } } if (changed & BSS_CHANGED_ERP_SLOT) { u32 slottime; if (info->use_short_slot) slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */ else slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */ param_id = WMI_VDEV_PARAM_SLOT_TIME; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param_id, slottime); if (ret) ath12k_warn(ar->ab, "Failed to set erp slot for VDEV: %d\n", arvif->vdev_id); else ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "Set slottime: %d for VDEV: %d\n", slottime, arvif->vdev_id); } if (changed & BSS_CHANGED_ERP_PREAMBLE) { u32 preamble; if (info->use_short_preamble) preamble = WMI_VDEV_PREAMBLE_SHORT; else preamble = WMI_VDEV_PREAMBLE_LONG; param_id = WMI_VDEV_PARAM_PREAMBLE; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param_id, preamble); if (ret) ath12k_warn(ar->ab, "Failed to set preamble for VDEV: %d\n", arvif->vdev_id); else ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "Set preamble: %d for VDEV: %d\n", preamble, arvif->vdev_id); } if (changed & BSS_CHANGED_ASSOC) { if (vif->cfg.assoc) ath12k_bss_assoc(ar, arvif, info); else ath12k_bss_disassoc(ar, arvif); } if (changed & BSS_CHANGED_TXPOWER) { ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev_id %i txpower %d\n", arvif->vdev_id, info->txpower); arvif->txpower = info->txpower; ath12k_mac_txpower_recalc(ar); } if (changed & BSS_CHANGED_MCAST_RATE && !ath12k_mac_vif_chan(arvif->vif, &def)) { band = def.chan->band; mcast_rate = vif->bss_conf.mcast_rate[band]; if (mcast_rate > 0) rateidx = mcast_rate - 1; else rateidx = ffs(vif->bss_conf.basic_rates) - 1; if (ar->pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) rateidx += ATH12K_MAC_FIRST_OFDM_RATE_IDX; bitrate = ath12k_legacy_rates[rateidx].bitrate; hw_value = ath12k_legacy_rates[rateidx].hw_value; if (ath12k_mac_bitrate_is_cck(bitrate)) preamble = WMI_RATE_PREAMBLE_CCK; else preamble = WMI_RATE_PREAMBLE_OFDM; rate = ATH12K_HW_RATE_CODE(hw_value, 0, preamble); ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev %d mcast_rate %x\n", arvif->vdev_id, rate); vdev_param = WMI_VDEV_PARAM_MCAST_DATA_RATE; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, rate); if (ret) ath12k_warn(ar->ab, "failed to set mcast rate on vdev %i: %d\n", arvif->vdev_id, ret); vdev_param = WMI_VDEV_PARAM_BCAST_DATA_RATE; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, rate); if (ret) ath12k_warn(ar->ab, "failed to set bcast rate on vdev %i: %d\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_BASIC_RATES && !ath12k_mac_vif_chan(arvif->vif, &def)) ath12k_recalculate_mgmt_rate(ar, vif, &def); if (changed & BSS_CHANGED_TWT) { if (info->twt_requester || info->twt_responder) ath12k_wmi_send_twt_enable_cmd(ar, ar->pdev->pdev_id); else ath12k_wmi_send_twt_disable_cmd(ar, ar->pdev->pdev_id); } if (changed & BSS_CHANGED_HE_OBSS_PD) ath12k_wmi_send_obss_spr_cmd(ar, arvif->vdev_id, &info->he_obss_pd); if (changed & BSS_CHANGED_HE_BSS_COLOR) { if (vif->type == NL80211_IFTYPE_AP) { ret = ath12k_wmi_obss_color_cfg_cmd(ar, arvif->vdev_id, info->he_bss_color.color, ATH12K_BSS_COLOR_AP_PERIODS, info->he_bss_color.enabled); if (ret) ath12k_warn(ar->ab, "failed to set bss color collision on vdev %i: %d\n", arvif->vdev_id, ret); } else if (vif->type == NL80211_IFTYPE_STATION) { ret = ath12k_wmi_send_bss_color_change_enable_cmd(ar, arvif->vdev_id, 1); if (ret) ath12k_warn(ar->ab, "failed to enable bss color change on vdev %i: %d\n", arvif->vdev_id, ret); ret = ath12k_wmi_obss_color_cfg_cmd(ar, arvif->vdev_id, 0, ATH12K_BSS_COLOR_STA_PERIODS, 1); if (ret) ath12k_warn(ar->ab, "failed to set bss color collision on vdev %i: %d\n", arvif->vdev_id, ret); } } ath12k_mac_fils_discovery(arvif, info); if (changed & BSS_CHANGED_PS && ar->ab->hw_params->supports_sta_ps) { arvif->ps = vif_cfg->ps; ath12k_mac_vif_setup_ps(arvif); } } static struct ath12k_vif_cache *ath12k_arvif_get_cache(struct ath12k_vif *arvif) { if (!arvif->cache) arvif->cache = kzalloc(sizeof(*arvif->cache), GFP_KERNEL); return arvif->cache; } static void ath12k_arvif_put_cache(struct ath12k_vif *arvif) { kfree(arvif->cache); arvif->cache = NULL; } static void ath12k_mac_op_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u64 changed) { struct ath12k *ar; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_vif_cache *cache; ar = ath12k_get_ar_by_vif(hw, vif); /* if the vdev is not created on a certain radio, * cache the info to be updated later on vdev creation */ if (!ar) { cache = ath12k_arvif_get_cache(arvif); if (!cache) return; arvif->cache->bss_conf_changed |= changed; return; } mutex_lock(&ar->conf_mutex); ath12k_mac_bss_info_changed(ar, arvif, info, changed); mutex_unlock(&ar->conf_mutex); } static struct ath12k* ath12k_mac_select_scan_device(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 center_freq) { struct ath12k_hw *ah = hw->priv; enum nl80211_band band; struct ath12k *ar; int i; if (ah->num_radio == 1) return ah->radio; /* Currently mac80211 supports splitting scan requests into * multiple scan requests per band. * Loop through first channel and determine the scan radio * TODO: There could be 5 GHz low/high channels in that case * split the hw request and perform multiple scans */ if (center_freq < ATH12K_MIN_5G_FREQ) band = NL80211_BAND_2GHZ; else if (center_freq < ATH12K_MIN_6G_FREQ) band = NL80211_BAND_5GHZ; else band = NL80211_BAND_6GHZ; for_each_ar(ah, ar, i) { /* TODO 5 GHz low high split changes */ if (ar->mac.sbands[band].channels) return ar; } return NULL; } void __ath12k_mac_scan_finish(struct ath12k *ar) { struct ieee80211_hw *hw = ath12k_ar_to_hw(ar); lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH12K_SCAN_IDLE: break; case ATH12K_SCAN_RUNNING: case ATH12K_SCAN_ABORTING: if (ar->scan.is_roc && ar->scan.roc_notify) ieee80211_remain_on_channel_expired(hw); fallthrough; case ATH12K_SCAN_STARTING: if (!ar->scan.is_roc) { struct cfg80211_scan_info info = { .aborted = ((ar->scan.state == ATH12K_SCAN_ABORTING) || (ar->scan.state == ATH12K_SCAN_STARTING)), }; ieee80211_scan_completed(hw, &info); } ar->scan.state = ATH12K_SCAN_IDLE; ar->scan_channel = NULL; ar->scan.roc_freq = 0; cancel_delayed_work(&ar->scan.timeout); complete(&ar->scan.completed); break; } } void ath12k_mac_scan_finish(struct ath12k *ar) { spin_lock_bh(&ar->data_lock); __ath12k_mac_scan_finish(ar); spin_unlock_bh(&ar->data_lock); } static int ath12k_scan_stop(struct ath12k *ar) { struct ath12k_wmi_scan_cancel_arg arg = { .req_type = WLAN_SCAN_CANCEL_SINGLE, .scan_id = ATH12K_SCAN_ID, }; int ret; lockdep_assert_held(&ar->conf_mutex); /* TODO: Fill other STOP Params */ arg.pdev_id = ar->pdev->pdev_id; ret = ath12k_wmi_send_scan_stop_cmd(ar, &arg); if (ret) { ath12k_warn(ar->ab, "failed to stop wmi scan: %d\n", ret); goto out; } ret = wait_for_completion_timeout(&ar->scan.completed, 3 * HZ); if (ret == 0) { ath12k_warn(ar->ab, "failed to receive scan abort comple: timed out\n"); ret = -ETIMEDOUT; } else if (ret > 0) { ret = 0; } out: /* Scan state should be updated upon scan completion but in case * firmware fails to deliver the event (for whatever reason) it is * desired to clean up scan state anyway. Firmware may have just * dropped the scan completion event delivery due to transport pipe * being overflown with data and/or it can recover on its own before * next scan request is submitted. */ spin_lock_bh(&ar->data_lock); if (ar->scan.state != ATH12K_SCAN_IDLE) __ath12k_mac_scan_finish(ar); spin_unlock_bh(&ar->data_lock); return ret; } static void ath12k_scan_abort(struct ath12k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); switch (ar->scan.state) { case ATH12K_SCAN_IDLE: /* This can happen if timeout worker kicked in and called * abortion while scan completion was being processed. */ break; case ATH12K_SCAN_STARTING: case ATH12K_SCAN_ABORTING: ath12k_warn(ar->ab, "refusing scan abortion due to invalid scan state: %d\n", ar->scan.state); break; case ATH12K_SCAN_RUNNING: ar->scan.state = ATH12K_SCAN_ABORTING; spin_unlock_bh(&ar->data_lock); ret = ath12k_scan_stop(ar); if (ret) ath12k_warn(ar->ab, "failed to abort scan: %d\n", ret); spin_lock_bh(&ar->data_lock); break; } spin_unlock_bh(&ar->data_lock); } static void ath12k_scan_timeout_work(struct work_struct *work) { struct ath12k *ar = container_of(work, struct ath12k, scan.timeout.work); mutex_lock(&ar->conf_mutex); ath12k_scan_abort(ar); mutex_unlock(&ar->conf_mutex); } static int ath12k_start_scan(struct ath12k *ar, struct ath12k_wmi_scan_req_arg *arg) { int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath12k_wmi_send_scan_start_cmd(ar, arg); if (ret) return ret; ret = wait_for_completion_timeout(&ar->scan.started, 1 * HZ); if (ret == 0) { ret = ath12k_scan_stop(ar); if (ret) ath12k_warn(ar->ab, "failed to stop scan: %d\n", ret); return -ETIMEDOUT; } /* If we failed to start the scan, return error code at * this point. This is probably due to some issue in the * firmware, but no need to wedge the driver due to that... */ spin_lock_bh(&ar->data_lock); if (ar->scan.state == ATH12K_SCAN_IDLE) { spin_unlock_bh(&ar->data_lock); return -EINVAL; } spin_unlock_bh(&ar->data_lock); return 0; } static int ath12k_mac_op_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_scan_request *hw_req) { struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k *ar, *prev_ar; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct cfg80211_scan_request *req = &hw_req->req; struct ath12k_wmi_scan_req_arg arg = {}; int ret; int i; bool create = true; if (ah->num_radio == 1) { WARN_ON(!arvif->is_created); ar = ath12k_ah_to_ar(ah, 0); goto scan; } /* Since the targeted scan device could depend on the frequency * requested in the hw_req, select the corresponding radio */ ar = ath12k_mac_select_scan_device(hw, vif, hw_req->req.channels[0]->center_freq); if (!ar) return -EINVAL; /* If the vif is already assigned to a specific vdev of an ar, * check whether its already started, vdev which is started * are not allowed to switch to a new radio. * If the vdev is not started, but was earlier created on a * different ar, delete that vdev and create a new one. We don't * delete at the scan stop as an optimization to avoid redundant * delete-create vdev's for the same ar, in case the request is * always on the same band for the vif */ if (arvif->is_created) { if (WARN_ON(!arvif->ar)) return -EINVAL; if (ar != arvif->ar && arvif->is_started) return -EINVAL; if (ar != arvif->ar) { /* backup the previously used ar ptr, since the vdev delete * would assign the arvif->ar to NULL after the call */ prev_ar = arvif->ar; mutex_lock(&prev_ar->conf_mutex); ret = ath12k_mac_vdev_delete(prev_ar, vif); mutex_unlock(&prev_ar->conf_mutex); if (ret) ath12k_warn(prev_ar->ab, "unable to delete scan vdev %d\n", ret); } else { create = false; } } if (create) { mutex_lock(&ar->conf_mutex); ret = ath12k_mac_vdev_create(ar, vif); mutex_unlock(&ar->conf_mutex); if (ret) { ath12k_warn(ar->ab, "unable to create scan vdev %d\n", ret); return -EINVAL; } } scan: mutex_lock(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); switch (ar->scan.state) { case ATH12K_SCAN_IDLE: reinit_completion(&ar->scan.started); reinit_completion(&ar->scan.completed); ar->scan.state = ATH12K_SCAN_STARTING; ar->scan.is_roc = false; ar->scan.vdev_id = arvif->vdev_id; ret = 0; break; case ATH12K_SCAN_STARTING: case ATH12K_SCAN_RUNNING: case ATH12K_SCAN_ABORTING: ret = -EBUSY; break; } spin_unlock_bh(&ar->data_lock); if (ret) goto exit; ath12k_wmi_start_scan_init(ar, &arg); arg.vdev_id = arvif->vdev_id; arg.scan_id = ATH12K_SCAN_ID; if (req->ie_len) { arg.extraie.ptr = kmemdup(req->ie, req->ie_len, GFP_KERNEL); if (!arg.extraie.ptr) { ret = -ENOMEM; goto exit; } arg.extraie.len = req->ie_len; } if (req->n_ssids) { arg.num_ssids = req->n_ssids; for (i = 0; i < arg.num_ssids; i++) arg.ssid[i] = req->ssids[i]; } else { arg.scan_f_passive = 1; } if (req->n_channels) { arg.num_chan = req->n_channels; arg.chan_list = kcalloc(arg.num_chan, sizeof(*arg.chan_list), GFP_KERNEL); if (!arg.chan_list) { ret = -ENOMEM; goto exit; } for (i = 0; i < arg.num_chan; i++) arg.chan_list[i] = req->channels[i]->center_freq; } ret = ath12k_start_scan(ar, &arg); if (ret) { ath12k_warn(ar->ab, "failed to start hw scan: %d\n", ret); spin_lock_bh(&ar->data_lock); ar->scan.state = ATH12K_SCAN_IDLE; spin_unlock_bh(&ar->data_lock); } /* Add a margin to account for event/command processing */ ieee80211_queue_delayed_work(ath12k_ar_to_hw(ar), &ar->scan.timeout, msecs_to_jiffies(arg.max_scan_time + ATH12K_MAC_SCAN_TIMEOUT_MSECS)); exit: kfree(arg.chan_list); if (req->ie_len) kfree(arg.extraie.ptr); mutex_unlock(&ar->conf_mutex); return ret; } static void ath12k_mac_op_cancel_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k *ar; if (!arvif->is_created) return; ar = arvif->ar; mutex_lock(&ar->conf_mutex); ath12k_scan_abort(ar); mutex_unlock(&ar->conf_mutex); cancel_delayed_work_sync(&ar->scan.timeout); } static int ath12k_install_key(struct ath12k_vif *arvif, struct ieee80211_key_conf *key, enum set_key_cmd cmd, const u8 *macaddr, u32 flags) { int ret; struct ath12k *ar = arvif->ar; struct wmi_vdev_install_key_arg arg = { .vdev_id = arvif->vdev_id, .key_idx = key->keyidx, .key_len = key->keylen, .key_data = key->key, .key_flags = flags, .macaddr = macaddr, }; lockdep_assert_held(&arvif->ar->conf_mutex); reinit_completion(&ar->install_key_done); if (test_bit(ATH12K_FLAG_HW_CRYPTO_DISABLED, &ar->ab->dev_flags)) return 0; if (cmd == DISABLE_KEY) { /* TODO: Check if FW expects value other than NONE for del */ /* arg.key_cipher = WMI_CIPHER_NONE; */ arg.key_len = 0; arg.key_data = NULL; goto install; } switch (key->cipher) { case WLAN_CIPHER_SUITE_CCMP: arg.key_cipher = WMI_CIPHER_AES_CCM; /* TODO: Re-check if flag is valid */ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT; break; case WLAN_CIPHER_SUITE_TKIP: arg.key_cipher = WMI_CIPHER_TKIP; arg.key_txmic_len = 8; arg.key_rxmic_len = 8; break; case WLAN_CIPHER_SUITE_CCMP_256: arg.key_cipher = WMI_CIPHER_AES_CCM; break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: arg.key_cipher = WMI_CIPHER_AES_GCM; break; default: ath12k_warn(ar->ab, "cipher %d is not supported\n", key->cipher); return -EOPNOTSUPP; } if (test_bit(ATH12K_FLAG_RAW_MODE, &ar->ab->dev_flags)) key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV | IEEE80211_KEY_FLAG_RESERVE_TAILROOM; install: ret = ath12k_wmi_vdev_install_key(arvif->ar, &arg); if (ret) return ret; if (!wait_for_completion_timeout(&ar->install_key_done, 1 * HZ)) return -ETIMEDOUT; if (ether_addr_equal(macaddr, arvif->vif->addr)) arvif->key_cipher = key->cipher; return ar->install_key_status ? -EINVAL : 0; } static int ath12k_clear_peer_keys(struct ath12k_vif *arvif, const u8 *addr) { struct ath12k *ar = arvif->ar; struct ath12k_base *ab = ar->ab; struct ath12k_peer *peer; int first_errno = 0; int ret; int i; u32 flags = 0; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ab->base_lock); peer = ath12k_peer_find(ab, arvif->vdev_id, addr); spin_unlock_bh(&ab->base_lock); if (!peer) return -ENOENT; for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { if (!peer->keys[i]) continue; /* key flags are not required to delete the key */ ret = ath12k_install_key(arvif, peer->keys[i], DISABLE_KEY, addr, flags); if (ret < 0 && first_errno == 0) first_errno = ret; if (ret < 0) ath12k_warn(ab, "failed to remove peer key %d: %d\n", i, ret); spin_lock_bh(&ab->base_lock); peer->keys[i] = NULL; spin_unlock_bh(&ab->base_lock); } return first_errno; } static int ath12k_mac_set_key(struct ath12k *ar, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct ath12k_base *ab = ar->ab; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_peer *peer; struct ath12k_sta *arsta; const u8 *peer_addr; int ret = 0; u32 flags = 0; lockdep_assert_held(&ar->conf_mutex); if (test_bit(ATH12K_FLAG_HW_CRYPTO_DISABLED, &ab->dev_flags)) return 1; if (sta) peer_addr = sta->addr; else if (arvif->vdev_type == WMI_VDEV_TYPE_STA) peer_addr = vif->bss_conf.bssid; else peer_addr = vif->addr; key->hw_key_idx = key->keyidx; /* the peer should not disappear in mid-way (unless FW goes awry) since * we already hold conf_mutex. we just make sure its there now. */ spin_lock_bh(&ab->base_lock); peer = ath12k_peer_find(ab, arvif->vdev_id, peer_addr); spin_unlock_bh(&ab->base_lock); if (!peer) { if (cmd == SET_KEY) { ath12k_warn(ab, "cannot install key for non-existent peer %pM\n", peer_addr); ret = -EOPNOTSUPP; goto exit; } else { /* if the peer doesn't exist there is no key to disable * anymore */ goto exit; } } if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) flags |= WMI_KEY_PAIRWISE; else flags |= WMI_KEY_GROUP; ret = ath12k_install_key(arvif, key, cmd, peer_addr, flags); if (ret) { ath12k_warn(ab, "ath12k_install_key failed (%d)\n", ret); goto exit; } ret = ath12k_dp_rx_peer_pn_replay_config(arvif, peer_addr, cmd, key); if (ret) { ath12k_warn(ab, "failed to offload PN replay detection %d\n", ret); goto exit; } spin_lock_bh(&ab->base_lock); peer = ath12k_peer_find(ab, arvif->vdev_id, peer_addr); if (peer && cmd == SET_KEY) { peer->keys[key->keyidx] = key; if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) { peer->ucast_keyidx = key->keyidx; peer->sec_type = ath12k_dp_tx_get_encrypt_type(key->cipher); } else { peer->mcast_keyidx = key->keyidx; peer->sec_type_grp = ath12k_dp_tx_get_encrypt_type(key->cipher); } } else if (peer && cmd == DISABLE_KEY) { peer->keys[key->keyidx] = NULL; if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) peer->ucast_keyidx = 0; else peer->mcast_keyidx = 0; } else if (!peer) /* impossible unless FW goes crazy */ ath12k_warn(ab, "peer %pM disappeared!\n", peer_addr); if (sta) { arsta = ath12k_sta_to_arsta(sta); switch (key->cipher) { case WLAN_CIPHER_SUITE_TKIP: case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: if (cmd == SET_KEY) arsta->pn_type = HAL_PN_TYPE_WPA; else arsta->pn_type = HAL_PN_TYPE_NONE; break; default: arsta->pn_type = HAL_PN_TYPE_NONE; break; } } spin_unlock_bh(&ab->base_lock); exit: return ret; } static int ath12k_mac_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_vif_cache *cache; struct ath12k *ar; int ret; /* BIP needs to be done in software */ if (key->cipher == WLAN_CIPHER_SUITE_AES_CMAC || key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_128 || key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_256 || key->cipher == WLAN_CIPHER_SUITE_BIP_CMAC_256) return 1; if (key->keyidx > WMI_MAX_KEY_INDEX) return -ENOSPC; ar = ath12k_get_ar_by_vif(hw, vif); if (!ar) { /* ar is expected to be valid when sta ptr is available */ if (sta) { WARN_ON_ONCE(1); return -EINVAL; } cache = ath12k_arvif_get_cache(arvif); if (!cache) return -ENOSPC; cache->key_conf.cmd = cmd; cache->key_conf.key = key; cache->key_conf.changed = true; return 0; } mutex_lock(&ar->conf_mutex); ret = ath12k_mac_set_key(ar, cmd, vif, sta, key); mutex_unlock(&ar->conf_mutex); return ret; } static int ath12k_mac_bitrate_mask_num_vht_rates(struct ath12k *ar, enum nl80211_band band, const struct cfg80211_bitrate_mask *mask) { int num_rates = 0; int i; for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) num_rates += hweight16(mask->control[band].vht_mcs[i]); return num_rates; } static int ath12k_mac_set_peer_vht_fixed_rate(struct ath12k_vif *arvif, struct ieee80211_sta *sta, const struct cfg80211_bitrate_mask *mask, enum nl80211_band band) { struct ath12k *ar = arvif->ar; u8 vht_rate, nss; u32 rate_code; int ret, i; lockdep_assert_held(&ar->conf_mutex); nss = 0; for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) { if (hweight16(mask->control[band].vht_mcs[i]) == 1) { nss = i + 1; vht_rate = ffs(mask->control[band].vht_mcs[i]) - 1; } } if (!nss) { ath12k_warn(ar->ab, "No single VHT Fixed rate found to set for %pM", sta->addr); return -EINVAL; } ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "Setting Fixed VHT Rate for peer %pM. Device will not switch to any other selected rates", sta->addr); rate_code = ATH12K_HW_RATE_CODE(vht_rate, nss - 1, WMI_RATE_PREAMBLE_VHT); ret = ath12k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, WMI_PEER_PARAM_FIXED_RATE, rate_code); if (ret) ath12k_warn(ar->ab, "failed to update STA %pM Fixed Rate %d: %d\n", sta->addr, rate_code, ret); return ret; } static int ath12k_station_assoc(struct ath12k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool reassoc) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_wmi_peer_assoc_arg peer_arg; int ret; struct cfg80211_chan_def def; enum nl80211_band band; struct cfg80211_bitrate_mask *mask; u8 num_vht_rates; lockdep_assert_held(&ar->conf_mutex); if (WARN_ON(ath12k_mac_vif_chan(vif, &def))) return -EPERM; band = def.chan->band; mask = &arvif->bitrate_mask; ath12k_peer_assoc_prepare(ar, vif, sta, &peer_arg, reassoc); if (peer_arg.peer_nss < 1) { ath12k_warn(ar->ab, "invalid peer NSS %d\n", peer_arg.peer_nss); return -EINVAL; } ret = ath12k_wmi_send_peer_assoc_cmd(ar, &peer_arg); if (ret) { ath12k_warn(ar->ab, "failed to run peer assoc for STA %pM vdev %i: %d\n", sta->addr, arvif->vdev_id, ret); return ret; } if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ)) { ath12k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n", sta->addr, arvif->vdev_id); return -ETIMEDOUT; } num_vht_rates = ath12k_mac_bitrate_mask_num_vht_rates(ar, band, mask); /* If single VHT rate is configured (by set_bitrate_mask()), * peer_assoc will disable VHT. This is now enabled by a peer specific * fixed param. * Note that all other rates and NSS will be disabled for this peer. */ if (sta->deflink.vht_cap.vht_supported && num_vht_rates == 1) { ret = ath12k_mac_set_peer_vht_fixed_rate(arvif, sta, mask, band); if (ret) return ret; } /* Re-assoc is run only to update supported rates for given station. It * doesn't make much sense to reconfigure the peer completely. */ if (reassoc) return 0; ret = ath12k_setup_peer_smps(ar, arvif, sta->addr, &sta->deflink.ht_cap, &sta->deflink.he_6ghz_capa); if (ret) { ath12k_warn(ar->ab, "failed to setup peer SMPS for vdev %d: %d\n", arvif->vdev_id, ret); return ret; } if (!sta->wme) { arvif->num_legacy_stations++; ret = ath12k_recalc_rtscts_prot(arvif); if (ret) return ret; } if (sta->wme && sta->uapsd_queues) { ret = ath12k_peer_assoc_qos_ap(ar, arvif, sta); if (ret) { ath12k_warn(ar->ab, "failed to set qos params for STA %pM for vdev %i: %d\n", sta->addr, arvif->vdev_id, ret); return ret; } } return 0; } static int ath12k_station_disassoc(struct ath12k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); int ret; lockdep_assert_held(&ar->conf_mutex); if (!sta->wme) { arvif->num_legacy_stations--; ret = ath12k_recalc_rtscts_prot(arvif); if (ret) return ret; } ret = ath12k_clear_peer_keys(arvif, sta->addr); if (ret) { ath12k_warn(ar->ab, "failed to clear all peer keys for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } return 0; } static void ath12k_sta_rc_update_wk(struct work_struct *wk) { struct ath12k *ar; struct ath12k_vif *arvif; struct ath12k_sta *arsta; struct ieee80211_sta *sta; struct cfg80211_chan_def def; enum nl80211_band band; const u8 *ht_mcs_mask; const u16 *vht_mcs_mask; u32 changed, bw, nss, smps, bw_prev; int err, num_vht_rates; const struct cfg80211_bitrate_mask *mask; struct ath12k_wmi_peer_assoc_arg peer_arg; enum wmi_phy_mode peer_phymode; arsta = container_of(wk, struct ath12k_sta, update_wk); sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv); arvif = arsta->arvif; ar = arvif->ar; if (WARN_ON(ath12k_mac_vif_chan(arvif->vif, &def))) return; band = def.chan->band; ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; spin_lock_bh(&ar->data_lock); changed = arsta->changed; arsta->changed = 0; bw = arsta->bw; bw_prev = arsta->bw_prev; nss = arsta->nss; smps = arsta->smps; spin_unlock_bh(&ar->data_lock); mutex_lock(&ar->conf_mutex); nss = max_t(u32, 1, nss); nss = min(nss, max(ath12k_mac_max_ht_nss(ht_mcs_mask), ath12k_mac_max_vht_nss(vht_mcs_mask))); if (changed & IEEE80211_RC_BW_CHANGED) { ath12k_peer_assoc_h_phymode(ar, arvif->vif, sta, &peer_arg); peer_phymode = peer_arg.peer_phymode; if (bw > bw_prev) { /* Phymode shows maximum supported channel width, if we * upgrade bandwidth then due to sanity check of firmware, * we have to send WMI_PEER_PHYMODE followed by * WMI_PEER_CHWIDTH */ ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac bandwidth upgrade for sta %pM new %d old %d\n", sta->addr, bw, bw_prev); err = ath12k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, WMI_PEER_PHYMODE, peer_phymode); if (err) { ath12k_warn(ar->ab, "failed to update STA %pM to peer phymode %d: %d\n", sta->addr, peer_phymode, err); goto err_rc_bw_changed; } err = ath12k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, WMI_PEER_CHWIDTH, bw); if (err) ath12k_warn(ar->ab, "failed to update STA %pM to peer bandwidth %d: %d\n", sta->addr, bw, err); } else { /* When we downgrade bandwidth this will conflict with phymode * and cause to trigger firmware crash. In this case we send * WMI_PEER_CHWIDTH followed by WMI_PEER_PHYMODE */ ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac bandwidth downgrade for sta %pM new %d old %d\n", sta->addr, bw, bw_prev); err = ath12k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, WMI_PEER_CHWIDTH, bw); if (err) { ath12k_warn(ar->ab, "failed to update STA %pM peer to bandwidth %d: %d\n", sta->addr, bw, err); goto err_rc_bw_changed; } err = ath12k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, WMI_PEER_PHYMODE, peer_phymode); if (err) ath12k_warn(ar->ab, "failed to update STA %pM to peer phymode %d: %d\n", sta->addr, peer_phymode, err); } } if (changed & IEEE80211_RC_NSS_CHANGED) { ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac update sta %pM nss %d\n", sta->addr, nss); err = ath12k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, WMI_PEER_NSS, nss); if (err) ath12k_warn(ar->ab, "failed to update STA %pM nss %d: %d\n", sta->addr, nss, err); } if (changed & IEEE80211_RC_SMPS_CHANGED) { ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac update sta %pM smps %d\n", sta->addr, smps); err = ath12k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, WMI_PEER_MIMO_PS_STATE, smps); if (err) ath12k_warn(ar->ab, "failed to update STA %pM smps %d: %d\n", sta->addr, smps, err); } if (changed & IEEE80211_RC_SUPP_RATES_CHANGED) { mask = &arvif->bitrate_mask; num_vht_rates = ath12k_mac_bitrate_mask_num_vht_rates(ar, band, mask); /* Peer_assoc_prepare will reject vht rates in * bitrate_mask if its not available in range format and * sets vht tx_rateset as unsupported. So multiple VHT MCS * setting(eg. MCS 4,5,6) per peer is not supported here. * But, Single rate in VHT mask can be set as per-peer * fixed rate. But even if any HT rates are configured in * the bitrate mask, device will not switch to those rates * when per-peer Fixed rate is set. * TODO: Check RATEMASK_CMDID to support auto rates selection * across HT/VHT and for multiple VHT MCS support. */ if (sta->deflink.vht_cap.vht_supported && num_vht_rates == 1) { ath12k_mac_set_peer_vht_fixed_rate(arvif, sta, mask, band); } else { /* If the peer is non-VHT or no fixed VHT rate * is provided in the new bitrate mask we set the * other rates using peer_assoc command. */ ath12k_peer_assoc_prepare(ar, arvif->vif, sta, &peer_arg, true); err = ath12k_wmi_send_peer_assoc_cmd(ar, &peer_arg); if (err) ath12k_warn(ar->ab, "failed to run peer assoc for STA %pM vdev %i: %d\n", sta->addr, arvif->vdev_id, err); if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ)) ath12k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n", sta->addr, arvif->vdev_id); } } err_rc_bw_changed: mutex_unlock(&ar->conf_mutex); } static int ath12k_mac_inc_num_stations(struct ath12k_vif *arvif, struct ieee80211_sta *sta) { struct ath12k *ar = arvif->ar; lockdep_assert_held(&ar->conf_mutex); if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls) return 0; if (ar->num_stations >= ar->max_num_stations) return -ENOBUFS; ar->num_stations++; return 0; } static void ath12k_mac_dec_num_stations(struct ath12k_vif *arvif, struct ieee80211_sta *sta) { struct ath12k *ar = arvif->ar; lockdep_assert_held(&ar->conf_mutex); if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls) return; ar->num_stations--; } static int ath12k_mac_station_add(struct ath12k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct ath12k_base *ab = ar->ab; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_sta *arsta = ath12k_sta_to_arsta(sta); struct ath12k_wmi_peer_create_arg peer_param; int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath12k_mac_inc_num_stations(arvif, sta); if (ret) { ath12k_warn(ab, "refusing to associate station: too many connected already (%d)\n", ar->max_num_stations); goto exit; } arsta->rx_stats = kzalloc(sizeof(*arsta->rx_stats), GFP_KERNEL); if (!arsta->rx_stats) { ret = -ENOMEM; goto dec_num_station; } peer_param.vdev_id = arvif->vdev_id; peer_param.peer_addr = sta->addr; peer_param.peer_type = WMI_PEER_TYPE_DEFAULT; ret = ath12k_peer_create(ar, arvif, sta, &peer_param); if (ret) { ath12k_warn(ab, "Failed to add peer: %pM for VDEV: %d\n", sta->addr, arvif->vdev_id); goto free_peer; } ath12k_dbg(ab, ATH12K_DBG_MAC, "Added peer: %pM for VDEV: %d\n", sta->addr, arvif->vdev_id); if (ieee80211_vif_is_mesh(vif)) { ret = ath12k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, WMI_PEER_USE_4ADDR, 1); if (ret) { ath12k_warn(ab, "failed to STA %pM 4addr capability: %d\n", sta->addr, ret); goto free_peer; } } ret = ath12k_dp_peer_setup(ar, arvif->vdev_id, sta->addr); if (ret) { ath12k_warn(ab, "failed to setup dp for peer %pM on vdev %i (%d)\n", sta->addr, arvif->vdev_id, ret); goto free_peer; } if (ab->hw_params->vdev_start_delay && !arvif->is_started && arvif->vdev_type != WMI_VDEV_TYPE_AP) { ret = ath12k_start_vdev_delay(ar, arvif); if (ret) { ath12k_warn(ab, "failed to delay vdev start: %d\n", ret); goto free_peer; } } return 0; free_peer: ath12k_peer_delete(ar, arvif->vdev_id, sta->addr); dec_num_station: ath12k_mac_dec_num_stations(arvif, sta); exit: return ret; } static u32 ath12k_mac_ieee80211_sta_bw_to_wmi(struct ath12k *ar, struct ieee80211_sta *sta) { u32 bw = WMI_PEER_CHWIDTH_20MHZ; switch (sta->deflink.bandwidth) { case IEEE80211_STA_RX_BW_20: bw = WMI_PEER_CHWIDTH_20MHZ; break; case IEEE80211_STA_RX_BW_40: bw = WMI_PEER_CHWIDTH_40MHZ; break; case IEEE80211_STA_RX_BW_80: bw = WMI_PEER_CHWIDTH_80MHZ; break; case IEEE80211_STA_RX_BW_160: bw = WMI_PEER_CHWIDTH_160MHZ; break; case IEEE80211_STA_RX_BW_320: bw = WMI_PEER_CHWIDTH_320MHZ; break; default: ath12k_warn(ar->ab, "Invalid bandwidth %d in rc update for %pM\n", sta->deflink.bandwidth, sta->addr); bw = WMI_PEER_CHWIDTH_20MHZ; break; } return bw; } static int ath12k_mac_op_sta_state(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state) { struct ath12k *ar; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_sta *arsta = ath12k_sta_to_arsta(sta); struct ath12k_peer *peer; int ret = 0; /* cancel must be done outside the mutex to avoid deadlock */ if ((old_state == IEEE80211_STA_NONE && new_state == IEEE80211_STA_NOTEXIST)) cancel_work_sync(&arsta->update_wk); ar = ath12k_get_ar_by_vif(hw, vif); if (!ar) { WARN_ON_ONCE(1); return -EINVAL; } mutex_lock(&ar->conf_mutex); if (old_state == IEEE80211_STA_NOTEXIST && new_state == IEEE80211_STA_NONE) { memset(arsta, 0, sizeof(*arsta)); arsta->arvif = arvif; INIT_WORK(&arsta->update_wk, ath12k_sta_rc_update_wk); ret = ath12k_mac_station_add(ar, vif, sta); if (ret) ath12k_warn(ar->ab, "Failed to add station: %pM for VDEV: %d\n", sta->addr, arvif->vdev_id); } else if ((old_state == IEEE80211_STA_NONE && new_state == IEEE80211_STA_NOTEXIST)) { if (arvif->vdev_type == WMI_VDEV_TYPE_STA) { ath12k_bss_disassoc(ar, arvif); ret = ath12k_mac_vdev_stop(arvif); if (ret) ath12k_warn(ar->ab, "failed to stop vdev %i: %d\n", arvif->vdev_id, ret); } ath12k_dp_peer_cleanup(ar, arvif->vdev_id, sta->addr); ret = ath12k_peer_delete(ar, arvif->vdev_id, sta->addr); if (ret) ath12k_warn(ar->ab, "Failed to delete peer: %pM for VDEV: %d\n", sta->addr, arvif->vdev_id); else ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "Removed peer: %pM for VDEV: %d\n", sta->addr, arvif->vdev_id); ath12k_mac_dec_num_stations(arvif, sta); spin_lock_bh(&ar->ab->base_lock); peer = ath12k_peer_find(ar->ab, arvif->vdev_id, sta->addr); if (peer && peer->sta == sta) { ath12k_warn(ar->ab, "Found peer entry %pM n vdev %i after it was supposedly removed\n", vif->addr, arvif->vdev_id); peer->sta = NULL; list_del(&peer->list); kfree(peer); ar->num_peers--; } spin_unlock_bh(&ar->ab->base_lock); kfree(arsta->rx_stats); arsta->rx_stats = NULL; } else if (old_state == IEEE80211_STA_AUTH && new_state == IEEE80211_STA_ASSOC && (vif->type == NL80211_IFTYPE_AP || vif->type == NL80211_IFTYPE_MESH_POINT || vif->type == NL80211_IFTYPE_ADHOC)) { ret = ath12k_station_assoc(ar, vif, sta, false); if (ret) ath12k_warn(ar->ab, "Failed to associate station: %pM\n", sta->addr); spin_lock_bh(&ar->data_lock); arsta->bw = ath12k_mac_ieee80211_sta_bw_to_wmi(ar, sta); arsta->bw_prev = sta->deflink.bandwidth; spin_unlock_bh(&ar->data_lock); } else if (old_state == IEEE80211_STA_ASSOC && new_state == IEEE80211_STA_AUTHORIZED) { spin_lock_bh(&ar->ab->base_lock); peer = ath12k_peer_find(ar->ab, arvif->vdev_id, sta->addr); if (peer) peer->is_authorized = true; spin_unlock_bh(&ar->ab->base_lock); if (vif->type == NL80211_IFTYPE_STATION && arvif->is_up) { ret = ath12k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, WMI_PEER_AUTHORIZE, 1); if (ret) ath12k_warn(ar->ab, "Unable to authorize peer %pM vdev %d: %d\n", sta->addr, arvif->vdev_id, ret); } } else if (old_state == IEEE80211_STA_AUTHORIZED && new_state == IEEE80211_STA_ASSOC) { spin_lock_bh(&ar->ab->base_lock); peer = ath12k_peer_find(ar->ab, arvif->vdev_id, sta->addr); if (peer) peer->is_authorized = false; spin_unlock_bh(&ar->ab->base_lock); } else if (old_state == IEEE80211_STA_ASSOC && new_state == IEEE80211_STA_AUTH && (vif->type == NL80211_IFTYPE_AP || vif->type == NL80211_IFTYPE_MESH_POINT || vif->type == NL80211_IFTYPE_ADHOC)) { ret = ath12k_station_disassoc(ar, vif, sta); if (ret) ath12k_warn(ar->ab, "Failed to disassociate station: %pM\n", sta->addr); } mutex_unlock(&ar->conf_mutex); return ret; } static int ath12k_mac_op_sta_set_txpwr(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k *ar; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); int ret; s16 txpwr; if (sta->deflink.txpwr.type == NL80211_TX_POWER_AUTOMATIC) { txpwr = 0; } else { txpwr = sta->deflink.txpwr.power; if (!txpwr) return -EINVAL; } if (txpwr > ATH12K_TX_POWER_MAX_VAL || txpwr < ATH12K_TX_POWER_MIN_VAL) return -EINVAL; ar = ath12k_ah_to_ar(ah, 0); mutex_lock(&ar->conf_mutex); ret = ath12k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, WMI_PEER_USE_FIXED_PWR, txpwr); if (ret) { ath12k_warn(ar->ab, "failed to set tx power for station ret: %d\n", ret); goto out; } out: mutex_unlock(&ar->conf_mutex); return ret; } static void ath12k_mac_op_sta_rc_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u32 changed) { struct ath12k *ar; struct ath12k_sta *arsta = ath12k_sta_to_arsta(sta); struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_peer *peer; u32 bw, smps; ar = ath12k_get_ar_by_vif(hw, vif); if (!ar) { WARN_ON_ONCE(1); return; } spin_lock_bh(&ar->ab->base_lock); peer = ath12k_peer_find(ar->ab, arvif->vdev_id, sta->addr); if (!peer) { spin_unlock_bh(&ar->ab->base_lock); ath12k_warn(ar->ab, "mac sta rc update failed to find peer %pM on vdev %i\n", sta->addr, arvif->vdev_id); return; } spin_unlock_bh(&ar->ab->base_lock); ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac sta rc update for %pM changed %08x bw %d nss %d smps %d\n", sta->addr, changed, sta->deflink.bandwidth, sta->deflink.rx_nss, sta->deflink.smps_mode); spin_lock_bh(&ar->data_lock); if (changed & IEEE80211_RC_BW_CHANGED) { bw = ath12k_mac_ieee80211_sta_bw_to_wmi(ar, sta); arsta->bw_prev = arsta->bw; arsta->bw = bw; } if (changed & IEEE80211_RC_NSS_CHANGED) arsta->nss = sta->deflink.rx_nss; if (changed & IEEE80211_RC_SMPS_CHANGED) { smps = WMI_PEER_SMPS_PS_NONE; switch (sta->deflink.smps_mode) { case IEEE80211_SMPS_AUTOMATIC: case IEEE80211_SMPS_OFF: smps = WMI_PEER_SMPS_PS_NONE; break; case IEEE80211_SMPS_STATIC: smps = WMI_PEER_SMPS_STATIC; break; case IEEE80211_SMPS_DYNAMIC: smps = WMI_PEER_SMPS_DYNAMIC; break; default: ath12k_warn(ar->ab, "Invalid smps %d in sta rc update for %pM\n", sta->deflink.smps_mode, sta->addr); smps = WMI_PEER_SMPS_PS_NONE; break; } arsta->smps = smps; } arsta->changed |= changed; spin_unlock_bh(&ar->data_lock); ieee80211_queue_work(hw, &arsta->update_wk); } static int ath12k_conf_tx_uapsd(struct ath12k_vif *arvif, u16 ac, bool enable) { struct ath12k *ar = arvif->ar; u32 value; int ret; if (arvif->vdev_type != WMI_VDEV_TYPE_STA) return 0; switch (ac) { case IEEE80211_AC_VO: value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN | WMI_STA_PS_UAPSD_AC3_TRIGGER_EN; break; case IEEE80211_AC_VI: value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN | WMI_STA_PS_UAPSD_AC2_TRIGGER_EN; break; case IEEE80211_AC_BE: value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN | WMI_STA_PS_UAPSD_AC1_TRIGGER_EN; break; case IEEE80211_AC_BK: value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN | WMI_STA_PS_UAPSD_AC0_TRIGGER_EN; break; } if (enable) arvif->u.sta.uapsd |= value; else arvif->u.sta.uapsd &= ~value; ret = ath12k_wmi_set_sta_ps_param(ar, arvif->vdev_id, WMI_STA_PS_PARAM_UAPSD, arvif->u.sta.uapsd); if (ret) { ath12k_warn(ar->ab, "could not set uapsd params %d\n", ret); goto exit; } if (arvif->u.sta.uapsd) value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD; else value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; ret = ath12k_wmi_set_sta_ps_param(ar, arvif->vdev_id, WMI_STA_PS_PARAM_RX_WAKE_POLICY, value); if (ret) ath12k_warn(ar->ab, "could not set rx wake param %d\n", ret); exit: return ret; } static int ath12k_mac_conf_tx(struct ath12k_vif *arvif, unsigned int link_id, u16 ac, const struct ieee80211_tx_queue_params *params) { struct wmi_wmm_params_arg *p = NULL; struct ath12k *ar = arvif->ar; struct ath12k_base *ab = ar->ab; int ret; lockdep_assert_held(&ar->conf_mutex); switch (ac) { case IEEE80211_AC_VO: p = &arvif->wmm_params.ac_vo; break; case IEEE80211_AC_VI: p = &arvif->wmm_params.ac_vi; break; case IEEE80211_AC_BE: p = &arvif->wmm_params.ac_be; break; case IEEE80211_AC_BK: p = &arvif->wmm_params.ac_bk; break; } if (WARN_ON(!p)) { ret = -EINVAL; goto exit; } p->cwmin = params->cw_min; p->cwmax = params->cw_max; p->aifs = params->aifs; p->txop = params->txop; ret = ath12k_wmi_send_wmm_update_cmd(ar, arvif->vdev_id, &arvif->wmm_params); if (ret) { ath12k_warn(ab, "pdev idx %d failed to set wmm params: %d\n", ar->pdev_idx, ret); goto exit; } ret = ath12k_conf_tx_uapsd(arvif, ac, params->uapsd); if (ret) ath12k_warn(ab, "pdev idx %d failed to set sta uapsd: %d\n", ar->pdev_idx, ret); exit: return ret; } static int ath12k_mac_op_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, unsigned int link_id, u16 ac, const struct ieee80211_tx_queue_params *params) { struct ath12k *ar; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_vif_cache *cache = arvif->cache; int ret; ar = ath12k_get_ar_by_vif(hw, vif); if (!ar) { /* cache the info and apply after vdev is created */ cache = ath12k_arvif_get_cache(arvif); if (!cache) return -ENOSPC; cache->tx_conf.changed = true; cache->tx_conf.ac = ac; cache->tx_conf.tx_queue_params = *params; return 0; } mutex_lock(&ar->conf_mutex); ret = ath12k_mac_conf_tx(arvif, link_id, ac, params); mutex_unlock(&ar->conf_mutex); return ret; } static struct ieee80211_sta_ht_cap ath12k_create_ht_cap(struct ath12k *ar, u32 ar_ht_cap, u32 rate_cap_rx_chainmask) { int i; struct ieee80211_sta_ht_cap ht_cap = {0}; u32 ar_vht_cap = ar->pdev->cap.vht_cap; if (!(ar_ht_cap & WMI_HT_CAP_ENABLED)) return ht_cap; ht_cap.ht_supported = 1; ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_NONE; ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40; ht_cap.cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT; if (ar_ht_cap & WMI_HT_CAP_HT20_SGI) ht_cap.cap |= IEEE80211_HT_CAP_SGI_20; if (ar_ht_cap & WMI_HT_CAP_HT40_SGI) ht_cap.cap |= IEEE80211_HT_CAP_SGI_40; if (ar_ht_cap & WMI_HT_CAP_DYNAMIC_SMPS) { u32 smps; smps = WLAN_HT_CAP_SM_PS_DYNAMIC; smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT; ht_cap.cap |= smps; } if (ar_ht_cap & WMI_HT_CAP_TX_STBC) ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC; if (ar_ht_cap & WMI_HT_CAP_RX_STBC) { u32 stbc; stbc = ar_ht_cap; stbc &= WMI_HT_CAP_RX_STBC; stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT; stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT; stbc &= IEEE80211_HT_CAP_RX_STBC; ht_cap.cap |= stbc; } if (ar_ht_cap & WMI_HT_CAP_RX_LDPC) ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING; if (ar_ht_cap & WMI_HT_CAP_L_SIG_TXOP_PROT) ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT; if (ar_vht_cap & WMI_VHT_CAP_MAX_MPDU_LEN_MASK) ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU; for (i = 0; i < ar->num_rx_chains; i++) { if (rate_cap_rx_chainmask & BIT(i)) ht_cap.mcs.rx_mask[i] = 0xFF; } ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED; return ht_cap; } static int ath12k_mac_set_txbf_conf(struct ath12k_vif *arvif) { u32 value = 0; struct ath12k *ar = arvif->ar; int nsts; int sound_dim; u32 vht_cap = ar->pdev->cap.vht_cap; u32 vdev_param = WMI_VDEV_PARAM_TXBF; if (vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)) { nsts = vht_cap & IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK; nsts >>= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT; value |= SM(nsts, WMI_TXBF_STS_CAP_OFFSET); } if (vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)) { sound_dim = vht_cap & IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK; sound_dim >>= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT; if (sound_dim > (ar->num_tx_chains - 1)) sound_dim = ar->num_tx_chains - 1; value |= SM(sound_dim, WMI_BF_SOUND_DIM_OFFSET); } if (!value) return 0; if (vht_cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE) { value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER; if ((vht_cap & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE) && arvif->vdev_type == WMI_VDEV_TYPE_AP) value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFER; } if (vht_cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE) { value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE; if ((vht_cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) && arvif->vdev_type == WMI_VDEV_TYPE_STA) value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFEE; } return ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, value); } static void ath12k_set_vht_txbf_cap(struct ath12k *ar, u32 *vht_cap) { bool subfer, subfee; int sound_dim = 0; subfer = !!(*vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)); subfee = !!(*vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)); if (ar->num_tx_chains < 2) { *vht_cap &= ~(IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE); subfer = false; } /* If SU Beaformer is not set, then disable MU Beamformer Capability */ if (!subfer) *vht_cap &= ~(IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE); /* If SU Beaformee is not set, then disable MU Beamformee Capability */ if (!subfee) *vht_cap &= ~(IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE); sound_dim = u32_get_bits(*vht_cap, IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK); *vht_cap = u32_replace_bits(*vht_cap, 0, IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK); /* TODO: Need to check invalid STS and Sound_dim values set by FW? */ /* Enable Sounding Dimension Field only if SU BF is enabled */ if (subfer) { if (sound_dim > (ar->num_tx_chains - 1)) sound_dim = ar->num_tx_chains - 1; *vht_cap = u32_replace_bits(*vht_cap, sound_dim, IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK); } /* Use the STS advertised by FW unless SU Beamformee is not supported*/ if (!subfee) *vht_cap &= ~(IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK); } static struct ieee80211_sta_vht_cap ath12k_create_vht_cap(struct ath12k *ar, u32 rate_cap_tx_chainmask, u32 rate_cap_rx_chainmask) { struct ieee80211_sta_vht_cap vht_cap = {0}; u16 txmcs_map, rxmcs_map; int i; vht_cap.vht_supported = 1; vht_cap.cap = ar->pdev->cap.vht_cap; ath12k_set_vht_txbf_cap(ar, &vht_cap.cap); /* TODO: Enable back VHT160 mode once association issues are fixed */ /* Disabling VHT160 and VHT80+80 modes */ vht_cap.cap &= ~IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK; vht_cap.cap &= ~IEEE80211_VHT_CAP_SHORT_GI_160; rxmcs_map = 0; txmcs_map = 0; for (i = 0; i < 8; i++) { if (i < ar->num_tx_chains && rate_cap_tx_chainmask & BIT(i)) txmcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2); else txmcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2); if (i < ar->num_rx_chains && rate_cap_rx_chainmask & BIT(i)) rxmcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2); else rxmcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2); } if (rate_cap_tx_chainmask <= 1) vht_cap.cap &= ~IEEE80211_VHT_CAP_TXSTBC; vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(rxmcs_map); vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(txmcs_map); return vht_cap; } static void ath12k_mac_setup_ht_vht_cap(struct ath12k *ar, struct ath12k_pdev_cap *cap, u32 *ht_cap_info) { struct ieee80211_supported_band *band; u32 rate_cap_tx_chainmask; u32 rate_cap_rx_chainmask; u32 ht_cap; rate_cap_tx_chainmask = ar->cfg_tx_chainmask >> cap->tx_chain_mask_shift; rate_cap_rx_chainmask = ar->cfg_rx_chainmask >> cap->rx_chain_mask_shift; if (cap->supported_bands & WMI_HOST_WLAN_2G_CAP) { band = &ar->mac.sbands[NL80211_BAND_2GHZ]; ht_cap = cap->band[NL80211_BAND_2GHZ].ht_cap_info; if (ht_cap_info) *ht_cap_info = ht_cap; band->ht_cap = ath12k_create_ht_cap(ar, ht_cap, rate_cap_rx_chainmask); } if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP && (ar->ab->hw_params->single_pdev_only || !ar->supports_6ghz)) { band = &ar->mac.sbands[NL80211_BAND_5GHZ]; ht_cap = cap->band[NL80211_BAND_5GHZ].ht_cap_info; if (ht_cap_info) *ht_cap_info = ht_cap; band->ht_cap = ath12k_create_ht_cap(ar, ht_cap, rate_cap_rx_chainmask); band->vht_cap = ath12k_create_vht_cap(ar, rate_cap_tx_chainmask, rate_cap_rx_chainmask); } } static int ath12k_check_chain_mask(struct ath12k *ar, u32 ant, bool is_tx_ant) { /* TODO: Check the request chainmask against the supported * chainmask table which is advertised in extented_service_ready event */ return 0; } static void ath12k_gen_ppe_thresh(struct ath12k_wmi_ppe_threshold_arg *fw_ppet, u8 *he_ppet) { int nss, ru; u8 bit = 7; he_ppet[0] = fw_ppet->numss_m1 & IEEE80211_PPE_THRES_NSS_MASK; he_ppet[0] |= (fw_ppet->ru_bit_mask << IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS) & IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK; for (nss = 0; nss <= fw_ppet->numss_m1; nss++) { for (ru = 0; ru < 4; ru++) { u8 val; int i; if ((fw_ppet->ru_bit_mask & BIT(ru)) == 0) continue; val = (fw_ppet->ppet16_ppet8_ru3_ru0[nss] >> (ru * 6)) & 0x3f; val = ((val >> 3) & 0x7) | ((val & 0x7) << 3); for (i = 5; i >= 0; i--) { he_ppet[bit / 8] |= ((val >> i) & 0x1) << ((bit % 8)); bit++; } } } } static void ath12k_mac_filter_he_cap_mesh(struct ieee80211_he_cap_elem *he_cap_elem) { u8 m; m = IEEE80211_HE_MAC_CAP0_TWT_RES | IEEE80211_HE_MAC_CAP0_TWT_REQ; he_cap_elem->mac_cap_info[0] &= ~m; m = IEEE80211_HE_MAC_CAP2_TRS | IEEE80211_HE_MAC_CAP2_BCAST_TWT | IEEE80211_HE_MAC_CAP2_MU_CASCADING; he_cap_elem->mac_cap_info[2] &= ~m; m = IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED | IEEE80211_HE_MAC_CAP2_BCAST_TWT | IEEE80211_HE_MAC_CAP2_MU_CASCADING; he_cap_elem->mac_cap_info[3] &= ~m; m = IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG | IEEE80211_HE_MAC_CAP4_BQR; he_cap_elem->mac_cap_info[4] &= ~m; m = IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION | IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU | IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING | IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX; he_cap_elem->mac_cap_info[5] &= ~m; m = IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO | IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO; he_cap_elem->phy_cap_info[2] &= ~m; m = IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU | IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK | IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK; he_cap_elem->phy_cap_info[3] &= ~m; m = IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER; he_cap_elem->phy_cap_info[4] &= ~m; m = IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK; he_cap_elem->phy_cap_info[5] &= ~m; m = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU | IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB | IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB | IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO; he_cap_elem->phy_cap_info[6] &= ~m; m = IEEE80211_HE_PHY_CAP7_PSR_BASED_SR | IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP | IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ; he_cap_elem->phy_cap_info[7] &= ~m; m = IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU; he_cap_elem->phy_cap_info[8] &= ~m; m = IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM | IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK | IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU | IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU | IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB; he_cap_elem->phy_cap_info[9] &= ~m; } static __le16 ath12k_mac_setup_he_6ghz_cap(struct ath12k_pdev_cap *pcap, struct ath12k_band_cap *bcap) { u8 val; bcap->he_6ghz_capa = IEEE80211_HT_MPDU_DENSITY_NONE; if (bcap->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) bcap->he_6ghz_capa |= u32_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, IEEE80211_HE_6GHZ_CAP_SM_PS); else bcap->he_6ghz_capa |= u32_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, IEEE80211_HE_6GHZ_CAP_SM_PS); val = u32_get_bits(pcap->vht_cap, IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); bcap->he_6ghz_capa |= u32_encode_bits(val, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP); val = u32_get_bits(pcap->vht_cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK); bcap->he_6ghz_capa |= u32_encode_bits(val, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN); if (pcap->vht_cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN) bcap->he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS; if (pcap->vht_cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN) bcap->he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS; return cpu_to_le16(bcap->he_6ghz_capa); } static void ath12k_mac_copy_he_cap(struct ath12k_band_cap *band_cap, int iftype, u8 num_tx_chains, struct ieee80211_sta_he_cap *he_cap) { struct ieee80211_he_cap_elem *he_cap_elem = &he_cap->he_cap_elem; struct ieee80211_he_mcs_nss_supp *mcs_nss = &he_cap->he_mcs_nss_supp; he_cap->has_he = true; memcpy(he_cap_elem->mac_cap_info, band_cap->he_cap_info, sizeof(he_cap_elem->mac_cap_info)); memcpy(he_cap_elem->phy_cap_info, band_cap->he_cap_phy_info, sizeof(he_cap_elem->phy_cap_info)); he_cap_elem->mac_cap_info[1] &= IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK; he_cap_elem->phy_cap_info[5] &= ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK; he_cap_elem->phy_cap_info[5] &= ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK; he_cap_elem->phy_cap_info[5] |= num_tx_chains - 1; switch (iftype) { case NL80211_IFTYPE_AP: he_cap_elem->phy_cap_info[3] &= ~IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK; he_cap_elem->phy_cap_info[9] |= IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU; break; case NL80211_IFTYPE_STATION: he_cap_elem->mac_cap_info[0] &= ~IEEE80211_HE_MAC_CAP0_TWT_RES; he_cap_elem->mac_cap_info[0] |= IEEE80211_HE_MAC_CAP0_TWT_REQ; he_cap_elem->phy_cap_info[9] |= IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU; break; case NL80211_IFTYPE_MESH_POINT: ath12k_mac_filter_he_cap_mesh(he_cap_elem); break; } mcs_nss->rx_mcs_80 = cpu_to_le16(band_cap->he_mcs & 0xffff); mcs_nss->tx_mcs_80 = cpu_to_le16(band_cap->he_mcs & 0xffff); mcs_nss->rx_mcs_160 = cpu_to_le16((band_cap->he_mcs >> 16) & 0xffff); mcs_nss->tx_mcs_160 = cpu_to_le16((band_cap->he_mcs >> 16) & 0xffff); mcs_nss->rx_mcs_80p80 = cpu_to_le16((band_cap->he_mcs >> 16) & 0xffff); mcs_nss->tx_mcs_80p80 = cpu_to_le16((band_cap->he_mcs >> 16) & 0xffff); memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres)); if (he_cap_elem->phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) ath12k_gen_ppe_thresh(&band_cap->he_ppet, he_cap->ppe_thres); } static void ath12k_mac_copy_eht_mcs_nss(struct ath12k_band_cap *band_cap, struct ieee80211_eht_mcs_nss_supp *mcs_nss, const struct ieee80211_he_cap_elem *he_cap, const struct ieee80211_eht_cap_elem_fixed *eht_cap) { if ((he_cap->phy_cap_info[0] & (IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)) == 0) memcpy(&mcs_nss->only_20mhz, &band_cap->eht_mcs_20_only, sizeof(struct ieee80211_eht_mcs_nss_supp_20mhz_only)); if (he_cap->phy_cap_info[0] & (IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G | IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)) memcpy(&mcs_nss->bw._80, &band_cap->eht_mcs_80, sizeof(struct ieee80211_eht_mcs_nss_supp_bw)); if (he_cap->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) memcpy(&mcs_nss->bw._160, &band_cap->eht_mcs_160, sizeof(struct ieee80211_eht_mcs_nss_supp_bw)); if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) memcpy(&mcs_nss->bw._320, &band_cap->eht_mcs_320, sizeof(struct ieee80211_eht_mcs_nss_supp_bw)); } static void ath12k_mac_copy_eht_ppe_thresh(struct ath12k_wmi_ppe_threshold_arg *fw_ppet, struct ieee80211_sta_eht_cap *cap) { u16 bit = IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE; u8 i, nss, ru, ppet_bit_len_per_ru = IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2; u8p_replace_bits(&cap->eht_ppe_thres[0], fw_ppet->numss_m1, IEEE80211_EHT_PPE_THRES_NSS_MASK); u16p_replace_bits((u16 *)&cap->eht_ppe_thres[0], fw_ppet->ru_bit_mask, IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK); for (nss = 0; nss <= fw_ppet->numss_m1; nss++) { for (ru = 0; ru < hweight16(IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK); ru++) { u32 val = 0; if ((fw_ppet->ru_bit_mask & BIT(ru)) == 0) continue; u32p_replace_bits(&val, fw_ppet->ppet16_ppet8_ru3_ru0[nss] >> (ru * ppet_bit_len_per_ru), GENMASK(ppet_bit_len_per_ru - 1, 0)); for (i = 0; i < ppet_bit_len_per_ru; i++) { cap->eht_ppe_thres[bit / 8] |= (((val >> i) & 0x1) << ((bit % 8))); bit++; } } } } static void ath12k_mac_filter_eht_cap_mesh(struct ieee80211_eht_cap_elem_fixed *eht_cap_elem) { u8 m; m = IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS; eht_cap_elem->mac_cap_info[0] &= ~m; m = IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO; eht_cap_elem->phy_cap_info[0] &= ~m; m = IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK | IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK | IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK; eht_cap_elem->phy_cap_info[3] &= ~m; m = IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO | IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP | IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP | IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI; eht_cap_elem->phy_cap_info[4] &= ~m; m = IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK | IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP | IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP | IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK; eht_cap_elem->phy_cap_info[5] &= ~m; m = IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK; eht_cap_elem->phy_cap_info[6] &= ~m; m = IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ | IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ | IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ; eht_cap_elem->phy_cap_info[7] &= ~m; } static void ath12k_mac_copy_eht_cap(struct ath12k *ar, struct ath12k_band_cap *band_cap, struct ieee80211_he_cap_elem *he_cap_elem, int iftype, struct ieee80211_sta_eht_cap *eht_cap) { struct ieee80211_eht_cap_elem_fixed *eht_cap_elem = &eht_cap->eht_cap_elem; memset(eht_cap, 0, sizeof(struct ieee80211_sta_eht_cap)); if (!(test_bit(WMI_TLV_SERVICE_11BE, ar->ab->wmi_ab.svc_map))) return; eht_cap->has_eht = true; memcpy(eht_cap_elem->mac_cap_info, band_cap->eht_cap_mac_info, sizeof(eht_cap_elem->mac_cap_info)); memcpy(eht_cap_elem->phy_cap_info, band_cap->eht_cap_phy_info, sizeof(eht_cap_elem->phy_cap_info)); switch (iftype) { case NL80211_IFTYPE_AP: eht_cap_elem->phy_cap_info[0] &= ~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ; eht_cap_elem->phy_cap_info[4] &= ~IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO; eht_cap_elem->phy_cap_info[5] &= ~IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP; break; case NL80211_IFTYPE_STATION: eht_cap_elem->phy_cap_info[7] &= ~(IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ | IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ | IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ); eht_cap_elem->phy_cap_info[7] &= ~(IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ | IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ); break; case NL80211_IFTYPE_MESH_POINT: ath12k_mac_filter_eht_cap_mesh(eht_cap_elem); break; default: break; } ath12k_mac_copy_eht_mcs_nss(band_cap, &eht_cap->eht_mcs_nss_supp, he_cap_elem, eht_cap_elem); if (eht_cap_elem->phy_cap_info[5] & IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) ath12k_mac_copy_eht_ppe_thresh(&band_cap->eht_ppet, eht_cap); } static int ath12k_mac_copy_sband_iftype_data(struct ath12k *ar, struct ath12k_pdev_cap *cap, struct ieee80211_sband_iftype_data *data, int band) { struct ath12k_band_cap *band_cap = &cap->band[band]; int i, idx = 0; for (i = 0; i < NUM_NL80211_IFTYPES; i++) { struct ieee80211_sta_he_cap *he_cap = &data[idx].he_cap; switch (i) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_MESH_POINT: break; default: continue; } data[idx].types_mask = BIT(i); ath12k_mac_copy_he_cap(band_cap, i, ar->num_tx_chains, he_cap); if (band == NL80211_BAND_6GHZ) { data[idx].he_6ghz_capa.capa = ath12k_mac_setup_he_6ghz_cap(cap, band_cap); } ath12k_mac_copy_eht_cap(ar, band_cap, &he_cap->he_cap_elem, i, &data[idx].eht_cap); idx++; } return idx; } static void ath12k_mac_setup_sband_iftype_data(struct ath12k *ar, struct ath12k_pdev_cap *cap) { struct ieee80211_supported_band *sband; enum nl80211_band band; int count; if (cap->supported_bands & WMI_HOST_WLAN_2G_CAP) { band = NL80211_BAND_2GHZ; count = ath12k_mac_copy_sband_iftype_data(ar, cap, ar->mac.iftype[band], band); sband = &ar->mac.sbands[band]; _ieee80211_set_sband_iftype_data(sband, ar->mac.iftype[band], count); } if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP) { band = NL80211_BAND_5GHZ; count = ath12k_mac_copy_sband_iftype_data(ar, cap, ar->mac.iftype[band], band); sband = &ar->mac.sbands[band]; _ieee80211_set_sband_iftype_data(sband, ar->mac.iftype[band], count); } if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP && ar->supports_6ghz) { band = NL80211_BAND_6GHZ; count = ath12k_mac_copy_sband_iftype_data(ar, cap, ar->mac.iftype[band], band); sband = &ar->mac.sbands[band]; _ieee80211_set_sband_iftype_data(sband, ar->mac.iftype[band], count); } } static int __ath12k_set_antenna(struct ath12k *ar, u32 tx_ant, u32 rx_ant) { struct ath12k_hw *ah = ath12k_ar_to_ah(ar); int ret; lockdep_assert_held(&ar->conf_mutex); if (ath12k_check_chain_mask(ar, tx_ant, true)) return -EINVAL; if (ath12k_check_chain_mask(ar, rx_ant, false)) return -EINVAL; /* Since we advertised the max cap of all radios combined during wiphy * registration, ensure we don't set the antenna config higher than the * limits */ tx_ant = min_t(u32, tx_ant, ar->pdev->cap.tx_chain_mask); rx_ant = min_t(u32, rx_ant, ar->pdev->cap.rx_chain_mask); ar->cfg_tx_chainmask = tx_ant; ar->cfg_rx_chainmask = rx_ant; if (ah->state != ATH12K_HW_STATE_ON && ah->state != ATH12K_HW_STATE_RESTARTED) return 0; ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_TX_CHAIN_MASK, tx_ant, ar->pdev->pdev_id); if (ret) { ath12k_warn(ar->ab, "failed to set tx-chainmask: %d, req 0x%x\n", ret, tx_ant); return ret; } ar->num_tx_chains = hweight32(tx_ant); ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_RX_CHAIN_MASK, rx_ant, ar->pdev->pdev_id); if (ret) { ath12k_warn(ar->ab, "failed to set rx-chainmask: %d, req 0x%x\n", ret, rx_ant); return ret; } ar->num_rx_chains = hweight32(rx_ant); /* Reload HT/VHT/HE capability */ ath12k_mac_setup_ht_vht_cap(ar, &ar->pdev->cap, NULL); ath12k_mac_setup_sband_iftype_data(ar, &ar->pdev->cap); return 0; } static void ath12k_mgmt_over_wmi_tx_drop(struct ath12k *ar, struct sk_buff *skb) { int num_mgmt; ieee80211_free_txskb(ath12k_ar_to_hw(ar), skb); num_mgmt = atomic_dec_if_positive(&ar->num_pending_mgmt_tx); if (num_mgmt < 0) WARN_ON_ONCE(1); if (!num_mgmt) wake_up(&ar->txmgmt_empty_waitq); } int ath12k_mac_tx_mgmt_pending_free(int buf_id, void *skb, void *ctx) { struct sk_buff *msdu = skb; struct ieee80211_tx_info *info; struct ath12k *ar = ctx; struct ath12k_base *ab = ar->ab; spin_lock_bh(&ar->txmgmt_idr_lock); idr_remove(&ar->txmgmt_idr, buf_id); spin_unlock_bh(&ar->txmgmt_idr_lock); dma_unmap_single(ab->dev, ATH12K_SKB_CB(msdu)->paddr, msdu->len, DMA_TO_DEVICE); info = IEEE80211_SKB_CB(msdu); memset(&info->status, 0, sizeof(info->status)); ath12k_mgmt_over_wmi_tx_drop(ar, skb); return 0; } static int ath12k_mac_vif_txmgmt_idr_remove(int buf_id, void *skb, void *ctx) { struct ieee80211_vif *vif = ctx; struct ath12k_skb_cb *skb_cb = ATH12K_SKB_CB(skb); struct sk_buff *msdu = skb; struct ath12k *ar = skb_cb->ar; struct ath12k_base *ab = ar->ab; if (skb_cb->vif == vif) { spin_lock_bh(&ar->txmgmt_idr_lock); idr_remove(&ar->txmgmt_idr, buf_id); spin_unlock_bh(&ar->txmgmt_idr_lock); dma_unmap_single(ab->dev, skb_cb->paddr, msdu->len, DMA_TO_DEVICE); } return 0; } static int ath12k_mac_mgmt_tx_wmi(struct ath12k *ar, struct ath12k_vif *arvif, struct sk_buff *skb) { struct ath12k_base *ab = ar->ab; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_tx_info *info; dma_addr_t paddr; int buf_id; int ret; ATH12K_SKB_CB(skb)->ar = ar; spin_lock_bh(&ar->txmgmt_idr_lock); buf_id = idr_alloc(&ar->txmgmt_idr, skb, 0, ATH12K_TX_MGMT_NUM_PENDING_MAX, GFP_ATOMIC); spin_unlock_bh(&ar->txmgmt_idr_lock); if (buf_id < 0) return -ENOSPC; info = IEEE80211_SKB_CB(skb); if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)) { if ((ieee80211_is_action(hdr->frame_control) || ieee80211_is_deauth(hdr->frame_control) || ieee80211_is_disassoc(hdr->frame_control)) && ieee80211_has_protected(hdr->frame_control)) { skb_put(skb, IEEE80211_CCMP_MIC_LEN); } } paddr = dma_map_single(ab->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(ab->dev, paddr)) { ath12k_warn(ab, "failed to DMA map mgmt Tx buffer\n"); ret = -EIO; goto err_free_idr; } ATH12K_SKB_CB(skb)->paddr = paddr; ret = ath12k_wmi_mgmt_send(ar, arvif->vdev_id, buf_id, skb); if (ret) { ath12k_warn(ar->ab, "failed to send mgmt frame: %d\n", ret); goto err_unmap_buf; } return 0; err_unmap_buf: dma_unmap_single(ab->dev, ATH12K_SKB_CB(skb)->paddr, skb->len, DMA_TO_DEVICE); err_free_idr: spin_lock_bh(&ar->txmgmt_idr_lock); idr_remove(&ar->txmgmt_idr, buf_id); spin_unlock_bh(&ar->txmgmt_idr_lock); return ret; } static void ath12k_mgmt_over_wmi_tx_purge(struct ath12k *ar) { struct sk_buff *skb; while ((skb = skb_dequeue(&ar->wmi_mgmt_tx_queue)) != NULL) ath12k_mgmt_over_wmi_tx_drop(ar, skb); } static void ath12k_mgmt_over_wmi_tx_work(struct work_struct *work) { struct ath12k *ar = container_of(work, struct ath12k, wmi_mgmt_tx_work); struct ath12k_skb_cb *skb_cb; struct ath12k_vif *arvif; struct sk_buff *skb; int ret; while ((skb = skb_dequeue(&ar->wmi_mgmt_tx_queue)) != NULL) { skb_cb = ATH12K_SKB_CB(skb); if (!skb_cb->vif) { ath12k_warn(ar->ab, "no vif found for mgmt frame\n"); ath12k_mgmt_over_wmi_tx_drop(ar, skb); continue; } arvif = ath12k_vif_to_arvif(skb_cb->vif); if (ar->allocated_vdev_map & (1LL << arvif->vdev_id)) { ret = ath12k_mac_mgmt_tx_wmi(ar, arvif, skb); if (ret) { ath12k_warn(ar->ab, "failed to tx mgmt frame, vdev_id %d :%d\n", arvif->vdev_id, ret); ath12k_mgmt_over_wmi_tx_drop(ar, skb); } } else { ath12k_warn(ar->ab, "dropping mgmt frame for vdev %d, is_started %d\n", arvif->vdev_id, arvif->is_started); ath12k_mgmt_over_wmi_tx_drop(ar, skb); } } } static int ath12k_mac_mgmt_tx(struct ath12k *ar, struct sk_buff *skb, bool is_prb_rsp) { struct sk_buff_head *q = &ar->wmi_mgmt_tx_queue; if (test_bit(ATH12K_FLAG_CRASH_FLUSH, &ar->ab->dev_flags)) return -ESHUTDOWN; /* Drop probe response packets when the pending management tx * count has reached a certain threshold, so as to prioritize * other mgmt packets like auth and assoc to be sent on time * for establishing successful connections. */ if (is_prb_rsp && atomic_read(&ar->num_pending_mgmt_tx) > ATH12K_PRB_RSP_DROP_THRESHOLD) { ath12k_warn(ar->ab, "dropping probe response as pending queue is almost full\n"); return -ENOSPC; } if (skb_queue_len_lockless(q) >= ATH12K_TX_MGMT_NUM_PENDING_MAX) { ath12k_warn(ar->ab, "mgmt tx queue is full\n"); return -ENOSPC; } skb_queue_tail(q, skb); atomic_inc(&ar->num_pending_mgmt_tx); ieee80211_queue_work(ath12k_ar_to_hw(ar), &ar->wmi_mgmt_tx_work); return 0; } static void ath12k_mac_add_p2p_noa_ie(struct ath12k *ar, struct ieee80211_vif *vif, struct sk_buff *skb, bool is_prb_rsp) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); if (likely(!is_prb_rsp)) return; spin_lock_bh(&ar->data_lock); if (arvif->u.ap.noa_data && !pskb_expand_head(skb, 0, arvif->u.ap.noa_len, GFP_ATOMIC)) skb_put_data(skb, arvif->u.ap.noa_data, arvif->u.ap.noa_len); spin_unlock_bh(&ar->data_lock); } static void ath12k_mac_op_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct ath12k_skb_cb *skb_cb = ATH12K_SKB_CB(skb); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_vif *vif = info->control.vif; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k *ar = arvif->ar; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_key_conf *key = info->control.hw_key; u32 info_flags = info->flags; bool is_prb_rsp; int ret; memset(skb_cb, 0, sizeof(*skb_cb)); skb_cb->vif = vif; if (key) { skb_cb->cipher = key->cipher; skb_cb->flags |= ATH12K_SKB_CIPHER_SET; } is_prb_rsp = ieee80211_is_probe_resp(hdr->frame_control); if (info_flags & IEEE80211_TX_CTL_HW_80211_ENCAP) { skb_cb->flags |= ATH12K_SKB_HW_80211_ENCAP; } else if (ieee80211_is_mgmt(hdr->frame_control)) { ret = ath12k_mac_mgmt_tx(ar, skb, is_prb_rsp); if (ret) { ath12k_warn(ar->ab, "failed to queue management frame %d\n", ret); ieee80211_free_txskb(hw, skb); } return; } /* This is case only for P2P_GO */ if (vif->type == NL80211_IFTYPE_AP && vif->p2p) ath12k_mac_add_p2p_noa_ie(ar, vif, skb, is_prb_rsp); ret = ath12k_dp_tx(ar, arvif, skb); if (ret) { ath12k_warn(ar->ab, "failed to transmit frame %d\n", ret); ieee80211_free_txskb(hw, skb); } } void ath12k_mac_drain_tx(struct ath12k *ar) { /* make sure rcu-protected mac80211 tx path itself is drained */ synchronize_net(); cancel_work_sync(&ar->wmi_mgmt_tx_work); ath12k_mgmt_over_wmi_tx_purge(ar); } static int ath12k_mac_config_mon_status_default(struct ath12k *ar, bool enable) { return -EOPNOTSUPP; /* TODO: Need to support new monitor mode */ } static int ath12k_mac_start(struct ath12k *ar) { struct ath12k_hw *ah = ar->ah; struct ath12k_base *ab = ar->ab; struct ath12k_pdev *pdev = ar->pdev; int ret; lockdep_assert_held(&ah->hw_mutex); mutex_lock(&ar->conf_mutex); ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_PMF_QOS, 1, pdev->pdev_id); if (ret) { ath12k_err(ab, "failed to enable PMF QOS: (%d\n", ret); goto err; } ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_DYNAMIC_BW, 1, pdev->pdev_id); if (ret) { ath12k_err(ab, "failed to enable dynamic bw: %d\n", ret); goto err; } ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_ARP_AC_OVERRIDE, 0, pdev->pdev_id); if (ret) { ath12k_err(ab, "failed to set ac override for ARP: %d\n", ret); goto err; } ret = ath12k_wmi_send_dfs_phyerr_offload_enable_cmd(ar, pdev->pdev_id); if (ret) { ath12k_err(ab, "failed to offload radar detection: %d\n", ret); goto err; } ret = ath12k_dp_tx_htt_h2t_ppdu_stats_req(ar, HTT_PPDU_STATS_TAG_DEFAULT); if (ret) { ath12k_err(ab, "failed to req ppdu stats: %d\n", ret); goto err; } ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_MESH_MCAST_ENABLE, 1, pdev->pdev_id); if (ret) { ath12k_err(ab, "failed to enable MESH MCAST ENABLE: (%d\n", ret); goto err; } __ath12k_set_antenna(ar, ar->cfg_tx_chainmask, ar->cfg_rx_chainmask); /* TODO: Do we need to enable ANI? */ ath12k_reg_update_chan_list(ar); ar->num_started_vdevs = 0; ar->num_created_vdevs = 0; ar->num_peers = 0; ar->allocated_vdev_map = 0; /* Configure monitor status ring with default rx_filter to get rx status * such as rssi, rx_duration. */ ret = ath12k_mac_config_mon_status_default(ar, true); if (ret && (ret != -EOPNOTSUPP)) { ath12k_err(ab, "failed to configure monitor status ring with default rx_filter: (%d)\n", ret); goto err; } if (ret == -EOPNOTSUPP) ath12k_dbg(ab, ATH12K_DBG_MAC, "monitor status config is not yet supported"); /* Configure the hash seed for hash based reo dest ring selection */ ath12k_wmi_pdev_lro_cfg(ar, ar->pdev->pdev_id); /* allow device to enter IMPS */ if (ab->hw_params->idle_ps) { ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_IDLE_PS_CONFIG, 1, pdev->pdev_id); if (ret) { ath12k_err(ab, "failed to enable idle ps: %d\n", ret); goto err; } } mutex_unlock(&ar->conf_mutex); rcu_assign_pointer(ab->pdevs_active[ar->pdev_idx], &ab->pdevs[ar->pdev_idx]); return 0; err: mutex_unlock(&ar->conf_mutex); return ret; } static void ath12k_drain_tx(struct ath12k_hw *ah) { struct ath12k *ar; int i; for_each_ar(ah, ar, i) ath12k_mac_drain_tx(ar); } static int ath12k_mac_op_start(struct ieee80211_hw *hw) { struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k *ar; int ret, i; ath12k_drain_tx(ah); guard(mutex)(&ah->hw_mutex); switch (ah->state) { case ATH12K_HW_STATE_OFF: ah->state = ATH12K_HW_STATE_ON; break; case ATH12K_HW_STATE_RESTARTING: ah->state = ATH12K_HW_STATE_RESTARTED; break; case ATH12K_HW_STATE_RESTARTED: case ATH12K_HW_STATE_WEDGED: case ATH12K_HW_STATE_ON: ah->state = ATH12K_HW_STATE_OFF; WARN_ON(1); return -EINVAL; } for_each_ar(ah, ar, i) { ret = ath12k_mac_start(ar); if (ret) { ah->state = ATH12K_HW_STATE_OFF; ath12k_err(ar->ab, "fail to start mac operations in pdev idx %d ret %d\n", ar->pdev_idx, ret); goto fail_start; } } return 0; fail_start: for (; i > 0; i--) { ar = ath12k_ah_to_ar(ah, i - 1); ath12k_mac_stop(ar); } return ret; } int ath12k_mac_rfkill_config(struct ath12k *ar) { struct ath12k_base *ab = ar->ab; u32 param; int ret; if (ab->hw_params->rfkill_pin == 0) return -EOPNOTSUPP; ath12k_dbg(ab, ATH12K_DBG_MAC, "mac rfkill_pin %d rfkill_cfg %d rfkill_on_level %d", ab->hw_params->rfkill_pin, ab->hw_params->rfkill_cfg, ab->hw_params->rfkill_on_level); param = u32_encode_bits(ab->hw_params->rfkill_on_level, WMI_RFKILL_CFG_RADIO_LEVEL) | u32_encode_bits(ab->hw_params->rfkill_pin, WMI_RFKILL_CFG_GPIO_PIN_NUM) | u32_encode_bits(ab->hw_params->rfkill_cfg, WMI_RFKILL_CFG_PIN_AS_GPIO); ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_HW_RFKILL_CONFIG, param, ar->pdev->pdev_id); if (ret) { ath12k_warn(ab, "failed to set rfkill config 0x%x: %d\n", param, ret); return ret; } return 0; } int ath12k_mac_rfkill_enable_radio(struct ath12k *ar, bool enable) { enum wmi_rfkill_enable_radio param; int ret; if (enable) param = WMI_RFKILL_ENABLE_RADIO_ON; else param = WMI_RFKILL_ENABLE_RADIO_OFF; ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac %d rfkill enable %d", ar->pdev_idx, param); ret = ath12k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_RFKILL_ENABLE, param, ar->pdev->pdev_id); if (ret) { ath12k_warn(ar->ab, "failed to set rfkill enable param %d: %d\n", param, ret); return ret; } return 0; } static void ath12k_mac_stop(struct ath12k *ar) { struct ath12k_hw *ah = ar->ah; struct htt_ppdu_stats_info *ppdu_stats, *tmp; int ret; lockdep_assert_held(&ah->hw_mutex); mutex_lock(&ar->conf_mutex); ret = ath12k_mac_config_mon_status_default(ar, false); if (ret && (ret != -EOPNOTSUPP)) ath12k_err(ar->ab, "failed to clear rx_filter for monitor status ring: (%d)\n", ret); clear_bit(ATH12K_CAC_RUNNING, &ar->dev_flags); mutex_unlock(&ar->conf_mutex); cancel_delayed_work_sync(&ar->scan.timeout); cancel_work_sync(&ar->regd_update_work); cancel_work_sync(&ar->ab->rfkill_work); spin_lock_bh(&ar->data_lock); list_for_each_entry_safe(ppdu_stats, tmp, &ar->ppdu_stats_info, list) { list_del(&ppdu_stats->list); kfree(ppdu_stats); } spin_unlock_bh(&ar->data_lock); rcu_assign_pointer(ar->ab->pdevs_active[ar->pdev_idx], NULL); synchronize_rcu(); atomic_set(&ar->num_pending_mgmt_tx, 0); } static void ath12k_mac_op_stop(struct ieee80211_hw *hw, bool suspend) { struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k *ar; int i; ath12k_drain_tx(ah); mutex_lock(&ah->hw_mutex); ah->state = ATH12K_HW_STATE_OFF; for_each_ar(ah, ar, i) ath12k_mac_stop(ar); mutex_unlock(&ah->hw_mutex); } static u8 ath12k_mac_get_vdev_stats_id(struct ath12k_vif *arvif) { struct ath12k_base *ab = arvif->ar->ab; u8 vdev_stats_id = 0; do { if (ab->free_vdev_stats_id_map & (1LL << vdev_stats_id)) { vdev_stats_id++; if (vdev_stats_id >= ATH12K_MAX_VDEV_STATS_ID) { vdev_stats_id = ATH12K_INVAL_VDEV_STATS_ID; break; } } else { ab->free_vdev_stats_id_map |= (1LL << vdev_stats_id); break; } } while (vdev_stats_id); arvif->vdev_stats_id = vdev_stats_id; return vdev_stats_id; } static int ath12k_mac_setup_vdev_params_mbssid(struct ath12k_vif *arvif, u32 *flags, u32 *tx_vdev_id) { struct ieee80211_vif *tx_vif = arvif->vif->mbssid_tx_vif; struct ath12k *ar = arvif->ar; struct ath12k_vif *tx_arvif; if (!tx_vif) return 0; tx_arvif = ath12k_vif_to_arvif(tx_vif); if (arvif->vif->bss_conf.nontransmitted) { if (ar->ah->hw->wiphy != ieee80211_vif_to_wdev(tx_vif)->wiphy) return -EINVAL; *flags = WMI_VDEV_MBSSID_FLAGS_NON_TRANSMIT_AP; *tx_vdev_id = tx_arvif->vdev_id; } else if (tx_arvif == arvif) { *flags = WMI_VDEV_MBSSID_FLAGS_TRANSMIT_AP; } else { return -EINVAL; } if (arvif->vif->bss_conf.ema_ap) *flags |= WMI_VDEV_MBSSID_FLAGS_EMA_MODE; return 0; } static int ath12k_mac_setup_vdev_create_arg(struct ath12k_vif *arvif, struct ath12k_wmi_vdev_create_arg *arg) { struct ath12k *ar = arvif->ar; struct ath12k_pdev *pdev = ar->pdev; int ret; arg->if_id = arvif->vdev_id; arg->type = arvif->vdev_type; arg->subtype = arvif->vdev_subtype; arg->pdev_id = pdev->pdev_id; arg->mbssid_flags = WMI_VDEV_MBSSID_FLAGS_NON_MBSSID_AP; arg->mbssid_tx_vdev_id = 0; if (!test_bit(WMI_TLV_SERVICE_MBSS_PARAM_IN_VDEV_START_SUPPORT, ar->ab->wmi_ab.svc_map)) { ret = ath12k_mac_setup_vdev_params_mbssid(arvif, &arg->mbssid_flags, &arg->mbssid_tx_vdev_id); if (ret) return ret; } if (pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) { arg->chains[NL80211_BAND_2GHZ].tx = ar->num_tx_chains; arg->chains[NL80211_BAND_2GHZ].rx = ar->num_rx_chains; } if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) { arg->chains[NL80211_BAND_5GHZ].tx = ar->num_tx_chains; arg->chains[NL80211_BAND_5GHZ].rx = ar->num_rx_chains; } if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP && ar->supports_6ghz) { arg->chains[NL80211_BAND_6GHZ].tx = ar->num_tx_chains; arg->chains[NL80211_BAND_6GHZ].rx = ar->num_rx_chains; } arg->if_stats_id = ath12k_mac_get_vdev_stats_id(arvif); return 0; } static u32 ath12k_mac_prepare_he_mode(struct ath12k_pdev *pdev, u32 viftype) { struct ath12k_pdev_cap *pdev_cap = &pdev->cap; struct ath12k_band_cap *cap_band = NULL; u32 *hecap_phy_ptr = NULL; u32 hemode; if (pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) cap_band = &pdev_cap->band[NL80211_BAND_2GHZ]; else cap_band = &pdev_cap->band[NL80211_BAND_5GHZ]; hecap_phy_ptr = &cap_band->he_cap_phy_info[0]; hemode = u32_encode_bits(HE_SU_BFEE_ENABLE, HE_MODE_SU_TX_BFEE) | u32_encode_bits(HECAP_PHY_SUBFMR_GET(hecap_phy_ptr), HE_MODE_SU_TX_BFER) | u32_encode_bits(HECAP_PHY_ULMUMIMO_GET(hecap_phy_ptr), HE_MODE_UL_MUMIMO); /* TODO: WDS and other modes */ if (viftype == NL80211_IFTYPE_AP) { hemode |= u32_encode_bits(HECAP_PHY_MUBFMR_GET(hecap_phy_ptr), HE_MODE_MU_TX_BFER) | u32_encode_bits(HE_DL_MUOFDMA_ENABLE, HE_MODE_DL_OFDMA) | u32_encode_bits(HE_UL_MUOFDMA_ENABLE, HE_MODE_UL_OFDMA); } else { hemode |= u32_encode_bits(HE_MU_BFEE_ENABLE, HE_MODE_MU_TX_BFEE); } return hemode; } static int ath12k_set_he_mu_sounding_mode(struct ath12k *ar, struct ath12k_vif *arvif) { u32 param_id, param_value; struct ath12k_base *ab = ar->ab; int ret; param_id = WMI_VDEV_PARAM_SET_HEMU_MODE; param_value = ath12k_mac_prepare_he_mode(ar->pdev, arvif->vif->type); ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param_id, param_value); if (ret) { ath12k_warn(ab, "failed to set vdev %d HE MU mode: %d param_value %x\n", arvif->vdev_id, ret, param_value); return ret; } param_id = WMI_VDEV_PARAM_SET_HE_SOUNDING_MODE; param_value = u32_encode_bits(HE_VHT_SOUNDING_MODE_ENABLE, HE_VHT_SOUNDING_MODE) | u32_encode_bits(HE_TRIG_NONTRIG_SOUNDING_MODE_ENABLE, HE_TRIG_NONTRIG_SOUNDING_MODE); ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param_id, param_value); if (ret) { ath12k_warn(ab, "failed to set vdev %d HE MU mode: %d\n", arvif->vdev_id, ret); return ret; } return ret; } static void ath12k_mac_update_vif_offload(struct ath12k_vif *arvif) { struct ieee80211_vif *vif = arvif->vif; struct ath12k *ar = arvif->ar; struct ath12k_base *ab = ar->ab; u32 param_id, param_value; int ret; param_id = WMI_VDEV_PARAM_TX_ENCAP_TYPE; if (vif->type != NL80211_IFTYPE_STATION && vif->type != NL80211_IFTYPE_AP) vif->offload_flags &= ~(IEEE80211_OFFLOAD_ENCAP_ENABLED | IEEE80211_OFFLOAD_DECAP_ENABLED); if (vif->offload_flags & IEEE80211_OFFLOAD_ENCAP_ENABLED) arvif->tx_encap_type = ATH12K_HW_TXRX_ETHERNET; else if (test_bit(ATH12K_FLAG_RAW_MODE, &ab->dev_flags)) arvif->tx_encap_type = ATH12K_HW_TXRX_RAW; else arvif->tx_encap_type = ATH12K_HW_TXRX_NATIVE_WIFI; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param_id, arvif->tx_encap_type); if (ret) { ath12k_warn(ab, "failed to set vdev %d tx encap mode: %d\n", arvif->vdev_id, ret); vif->offload_flags &= ~IEEE80211_OFFLOAD_ENCAP_ENABLED; } param_id = WMI_VDEV_PARAM_RX_DECAP_TYPE; if (vif->offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED) param_value = ATH12K_HW_TXRX_ETHERNET; else if (test_bit(ATH12K_FLAG_RAW_MODE, &ab->dev_flags)) param_value = ATH12K_HW_TXRX_RAW; else param_value = ATH12K_HW_TXRX_NATIVE_WIFI; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param_id, param_value); if (ret) { ath12k_warn(ab, "failed to set vdev %d rx decap mode: %d\n", arvif->vdev_id, ret); vif->offload_flags &= ~IEEE80211_OFFLOAD_DECAP_ENABLED; } } static void ath12k_mac_op_update_vif_offload(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); ath12k_mac_update_vif_offload(arvif); } static int ath12k_mac_vdev_create(struct ath12k *ar, struct ieee80211_vif *vif) { struct ath12k_hw *ah = ar->ah; struct ath12k_base *ab = ar->ab; struct ieee80211_hw *hw = ah->hw; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_wmi_vdev_create_arg vdev_arg = {0}; struct ath12k_wmi_peer_create_arg peer_param; u32 param_id, param_value; u16 nss; int i; int ret, vdev_id; lockdep_assert_held(&ar->conf_mutex); arvif->ar = ar; vdev_id = __ffs64(ab->free_vdev_map); arvif->vdev_id = vdev_id; arvif->vdev_subtype = WMI_VDEV_SUBTYPE_NONE; switch (vif->type) { case NL80211_IFTYPE_UNSPECIFIED: case NL80211_IFTYPE_STATION: arvif->vdev_type = WMI_VDEV_TYPE_STA; if (vif->p2p) arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_CLIENT; break; case NL80211_IFTYPE_MESH_POINT: arvif->vdev_subtype = WMI_VDEV_SUBTYPE_MESH_11S; fallthrough; case NL80211_IFTYPE_AP: arvif->vdev_type = WMI_VDEV_TYPE_AP; if (vif->p2p) arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_GO; break; case NL80211_IFTYPE_MONITOR: arvif->vdev_type = WMI_VDEV_TYPE_MONITOR; ar->monitor_vdev_id = vdev_id; break; case NL80211_IFTYPE_P2P_DEVICE: arvif->vdev_type = WMI_VDEV_TYPE_STA; arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_DEVICE; break; default: WARN_ON(1); break; } ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev create id %d type %d subtype %d map %llx\n", arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype, ab->free_vdev_map); vif->cab_queue = arvif->vdev_id % (ATH12K_HW_MAX_QUEUES - 1); for (i = 0; i < ARRAY_SIZE(vif->hw_queue); i++) vif->hw_queue[i] = i % (ATH12K_HW_MAX_QUEUES - 1); ret = ath12k_mac_setup_vdev_create_arg(arvif, &vdev_arg); if (ret) { ath12k_warn(ab, "failed to create vdev parameters %d: %d\n", arvif->vdev_id, ret); goto err; } ret = ath12k_wmi_vdev_create(ar, vif->addr, &vdev_arg); if (ret) { ath12k_warn(ab, "failed to create WMI vdev %d: %d\n", arvif->vdev_id, ret); goto err; } ar->num_created_vdevs++; arvif->is_created = true; ath12k_dbg(ab, ATH12K_DBG_MAC, "vdev %pM created, vdev_id %d\n", vif->addr, arvif->vdev_id); ar->allocated_vdev_map |= 1LL << arvif->vdev_id; ab->free_vdev_map &= ~(1LL << arvif->vdev_id); spin_lock_bh(&ar->data_lock); list_add(&arvif->list, &ar->arvifs); spin_unlock_bh(&ar->data_lock); ath12k_mac_update_vif_offload(arvif); nss = hweight32(ar->cfg_tx_chainmask) ? : 1; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, WMI_VDEV_PARAM_NSS, nss); if (ret) { ath12k_warn(ab, "failed to set vdev %d chainmask 0x%x, nss %d :%d\n", arvif->vdev_id, ar->cfg_tx_chainmask, nss, ret); goto err_vdev_del; } switch (arvif->vdev_type) { case WMI_VDEV_TYPE_AP: peer_param.vdev_id = arvif->vdev_id; peer_param.peer_addr = vif->addr; peer_param.peer_type = WMI_PEER_TYPE_DEFAULT; ret = ath12k_peer_create(ar, arvif, NULL, &peer_param); if (ret) { ath12k_warn(ab, "failed to vdev %d create peer for AP: %d\n", arvif->vdev_id, ret); goto err_vdev_del; } ret = ath12k_mac_set_kickout(arvif); if (ret) { ath12k_warn(ar->ab, "failed to set vdev %i kickout parameters: %d\n", arvif->vdev_id, ret); goto err_peer_del; } break; case WMI_VDEV_TYPE_STA: param_id = WMI_STA_PS_PARAM_RX_WAKE_POLICY; param_value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; ret = ath12k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param_id, param_value); if (ret) { ath12k_warn(ar->ab, "failed to set vdev %d RX wake policy: %d\n", arvif->vdev_id, ret); goto err_peer_del; } param_id = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD; param_value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS; ret = ath12k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param_id, param_value); if (ret) { ath12k_warn(ar->ab, "failed to set vdev %d TX wake threshold: %d\n", arvif->vdev_id, ret); goto err_peer_del; } param_id = WMI_STA_PS_PARAM_PSPOLL_COUNT; param_value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX; ret = ath12k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param_id, param_value); if (ret) { ath12k_warn(ar->ab, "failed to set vdev %d pspoll count: %d\n", arvif->vdev_id, ret); goto err_peer_del; } ret = ath12k_wmi_pdev_set_ps_mode(ar, arvif->vdev_id, false); if (ret) { ath12k_warn(ar->ab, "failed to disable vdev %d ps mode: %d\n", arvif->vdev_id, ret); goto err_peer_del; } break; default: break; } arvif->txpower = vif->bss_conf.txpower; ret = ath12k_mac_txpower_recalc(ar); if (ret) goto err_peer_del; param_id = WMI_VDEV_PARAM_RTS_THRESHOLD; param_value = hw->wiphy->rts_threshold; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param_id, param_value); if (ret) { ath12k_warn(ar->ab, "failed to set rts threshold for vdev %d: %d\n", arvif->vdev_id, ret); } ath12k_dp_vdev_tx_attach(ar, arvif); if (vif->type != NL80211_IFTYPE_MONITOR && ar->monitor_conf_enabled) ath12k_mac_monitor_vdev_create(ar); arvif->ar = ar; return ret; err_peer_del: if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { reinit_completion(&ar->peer_delete_done); ret = ath12k_wmi_send_peer_delete_cmd(ar, vif->addr, arvif->vdev_id); if (ret) { ath12k_warn(ar->ab, "failed to delete peer vdev_id %d addr %pM\n", arvif->vdev_id, vif->addr); goto err; } ret = ath12k_wait_for_peer_delete_done(ar, arvif->vdev_id, vif->addr); if (ret) goto err; ar->num_peers--; } err_vdev_del: ath12k_wmi_vdev_delete(ar, arvif->vdev_id); ar->num_created_vdevs--; arvif->is_created = false; arvif->ar = NULL; ar->allocated_vdev_map &= ~(1LL << arvif->vdev_id); ab->free_vdev_map |= 1LL << arvif->vdev_id; ab->free_vdev_stats_id_map &= ~(1LL << arvif->vdev_stats_id); spin_lock_bh(&ar->data_lock); list_del(&arvif->list); spin_unlock_bh(&ar->data_lock); err: arvif->ar = NULL; return ret; } static void ath12k_mac_vif_cache_flush(struct ath12k *ar, struct ieee80211_vif *vif) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_vif_cache *cache = arvif->cache; struct ath12k_base *ab = ar->ab; int ret; lockdep_assert_held(&ar->conf_mutex); if (!cache) return; if (cache->tx_conf.changed) { ret = ath12k_mac_conf_tx(arvif, 0, cache->tx_conf.ac, &cache->tx_conf.tx_queue_params); if (ret) ath12k_warn(ab, "unable to apply tx config parameters to vdev %d\n", ret); } if (cache->bss_conf_changed) { ath12k_mac_bss_info_changed(ar, arvif, &vif->bss_conf, cache->bss_conf_changed); } if (cache->key_conf.changed) { ret = ath12k_mac_set_key(ar, cache->key_conf.cmd, vif, NULL, cache->key_conf.key); if (ret) ath12k_warn(ab, "unable to apply set key param to vdev %d ret %d\n", arvif->vdev_id, ret); } ath12k_arvif_put_cache(arvif); } static struct ath12k *ath12k_mac_assign_vif_to_vdev(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_chanctx_conf *ctx) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_hw *ah = hw->priv; struct ath12k *ar, *prev_ar; struct ath12k_base *ab; int ret; if (ah->num_radio == 1) ar = ah->radio; else if (ctx) ar = ath12k_get_ar_by_ctx(hw, ctx); else return NULL; if (!ar) return NULL; if (arvif->ar) { /* This is not expected really */ if (WARN_ON(!arvif->is_created)) { arvif->ar = NULL; return NULL; } if (ah->num_radio == 1) return arvif->ar; /* This can happen as scan vdev gets created during multiple scans * across different radios before a vdev is brought up in * a certain radio. */ if (ar != arvif->ar) { if (WARN_ON(arvif->is_started)) return NULL; /* backup the previously used ar ptr since arvif->ar would * be set to NULL after vdev delete is done */ prev_ar = arvif->ar; mutex_lock(&prev_ar->conf_mutex); ret = ath12k_mac_vdev_delete(prev_ar, vif); if (ret) ath12k_warn(prev_ar->ab, "unable to delete vdev %d\n", ret); mutex_unlock(&prev_ar->conf_mutex); } } ab = ar->ab; mutex_lock(&ar->conf_mutex); if (arvif->is_created) goto flush; if (vif->type == NL80211_IFTYPE_AP && ar->num_peers > (ar->max_num_peers - 1)) { ath12k_warn(ab, "failed to create vdev due to insufficient peer entry resource in firmware\n"); goto unlock; } if (ar->num_created_vdevs > (TARGET_NUM_VDEVS - 1)) { ath12k_warn(ab, "failed to create vdev, reached max vdev limit %d\n", TARGET_NUM_VDEVS); goto unlock; } ret = ath12k_mac_vdev_create(ar, vif); if (ret) { ath12k_warn(ab, "failed to create vdev %pM ret %d", vif->addr, ret); goto unlock; } flush: /* If the vdev is created during channel assign and not during * add_interface(), Apply any parameters for the vdev which were received * after add_interface, corresponding to this vif. */ ath12k_mac_vif_cache_flush(ar, vif); unlock: mutex_unlock(&ar->conf_mutex); return arvif->ar; } static int ath12k_mac_op_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); int i; memset(arvif, 0, sizeof(*arvif)); arvif->vif = vif; INIT_LIST_HEAD(&arvif->list); INIT_DELAYED_WORK(&arvif->connection_loss_work, ath12k_mac_vif_sta_connection_loss_work); for (i = 0; i < ARRAY_SIZE(arvif->bitrate_mask.control); i++) { arvif->bitrate_mask.control[i].legacy = 0xffffffff; memset(arvif->bitrate_mask.control[i].ht_mcs, 0xff, sizeof(arvif->bitrate_mask.control[i].ht_mcs)); memset(arvif->bitrate_mask.control[i].vht_mcs, 0xff, sizeof(arvif->bitrate_mask.control[i].vht_mcs)); } /* Allocate Default Queue now and reassign during actual vdev create */ vif->cab_queue = ATH12K_HW_DEFAULT_QUEUE; for (i = 0; i < ARRAY_SIZE(vif->hw_queue); i++) vif->hw_queue[i] = ATH12K_HW_DEFAULT_QUEUE; vif->driver_flags |= IEEE80211_VIF_SUPPORTS_UAPSD; /* For single radio wiphy(i.e ah->num_radio is 1), create the vdev * during add_interface itself, for multi radio wiphy, defer the vdev * creation until channel_assign to determine the radio on which the * vdev needs to be created */ ath12k_mac_assign_vif_to_vdev(hw, vif, NULL); return 0; } static void ath12k_mac_vif_unref(struct ath12k_dp *dp, struct ieee80211_vif *vif) { struct ath12k_tx_desc_info *tx_desc_info; struct ath12k_skb_cb *skb_cb; struct sk_buff *skb; int i; for (i = 0; i < ATH12K_HW_MAX_QUEUES; i++) { spin_lock_bh(&dp->tx_desc_lock[i]); list_for_each_entry(tx_desc_info, &dp->tx_desc_used_list[i], list) { skb = tx_desc_info->skb; if (!skb) continue; skb_cb = ATH12K_SKB_CB(skb); if (skb_cb->vif == vif) skb_cb->vif = NULL; } spin_unlock_bh(&dp->tx_desc_lock[i]); } } static int ath12k_mac_vdev_delete(struct ath12k *ar, struct ieee80211_vif *vif) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_base *ab = ar->ab; unsigned long time_left; int ret; lockdep_assert_held(&ar->conf_mutex); reinit_completion(&ar->vdev_delete_done); ret = ath12k_wmi_vdev_delete(ar, arvif->vdev_id); if (ret) { ath12k_warn(ab, "failed to delete WMI vdev %d: %d\n", arvif->vdev_id, ret); goto err_vdev_del; } time_left = wait_for_completion_timeout(&ar->vdev_delete_done, ATH12K_VDEV_DELETE_TIMEOUT_HZ); if (time_left == 0) { ath12k_warn(ab, "Timeout in receiving vdev delete response\n"); goto err_vdev_del; } ab->free_vdev_map |= 1LL << arvif->vdev_id; ar->allocated_vdev_map &= ~(1LL << arvif->vdev_id); ar->num_created_vdevs--; if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) { ar->monitor_vdev_id = -1; ar->monitor_vdev_created = false; } else if (ar->monitor_vdev_created && !ar->monitor_started) { ret = ath12k_mac_monitor_vdev_delete(ar); } ath12k_dbg(ab, ATH12K_DBG_MAC, "vdev %pM deleted, vdev_id %d\n", vif->addr, arvif->vdev_id); err_vdev_del: spin_lock_bh(&ar->data_lock); list_del(&arvif->list); spin_unlock_bh(&ar->data_lock); ath12k_peer_cleanup(ar, arvif->vdev_id); ath12k_arvif_put_cache(arvif); idr_for_each(&ar->txmgmt_idr, ath12k_mac_vif_txmgmt_idr_remove, vif); ath12k_mac_vif_unref(&ab->dp, vif); ath12k_dp_tx_put_bank_profile(&ab->dp, arvif->bank_id); /* Recalc txpower for remaining vdev */ ath12k_mac_txpower_recalc(ar); /* TODO: recal traffic pause state based on the available vdevs */ arvif->is_created = false; arvif->ar = NULL; return ret; } static void ath12k_mac_op_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_base *ab; struct ath12k *ar; int ret; if (!arvif->is_created) { /* if we cached some config but never received assign chanctx, * free the allocated cache. */ ath12k_arvif_put_cache(arvif); return; } ar = arvif->ar; ab = ar->ab; cancel_delayed_work_sync(&arvif->connection_loss_work); mutex_lock(&ar->conf_mutex); ath12k_dbg(ab, ATH12K_DBG_MAC, "mac remove interface (vdev %d)\n", arvif->vdev_id); if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { ret = ath12k_peer_delete(ar, arvif->vdev_id, vif->addr); if (ret) ath12k_warn(ab, "failed to submit AP self-peer removal on vdev %d: %d\n", arvif->vdev_id, ret); } ath12k_mac_vdev_delete(ar, vif); mutex_unlock(&ar->conf_mutex); } /* FIXME: Has to be verified. */ #define SUPPORTED_FILTERS \ (FIF_ALLMULTI | \ FIF_CONTROL | \ FIF_PSPOLL | \ FIF_OTHER_BSS | \ FIF_BCN_PRBRESP_PROMISC | \ FIF_PROBE_REQ | \ FIF_FCSFAIL) static void ath12k_mac_configure_filter(struct ath12k *ar, unsigned int total_flags) { bool reset_flag; int ret; lockdep_assert_held(&ar->conf_mutex); ar->filter_flags = total_flags; /* For monitor mode */ reset_flag = !(ar->filter_flags & FIF_BCN_PRBRESP_PROMISC); ret = ath12k_dp_tx_htt_monitor_mode_ring_config(ar, reset_flag); if (ret) ath12k_warn(ar->ab, "fail to set monitor filter: %d\n", ret); ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "total_flags:0x%x, reset_flag:%d\n", total_flags, reset_flag); } static void ath12k_mac_op_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k *ar; ar = ath12k_ah_to_ar(ah, 0); mutex_lock(&ar->conf_mutex); *total_flags &= SUPPORTED_FILTERS; ath12k_mac_configure_filter(ar, *total_flags); mutex_unlock(&ar->conf_mutex); } static int ath12k_mac_op_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant) { struct ath12k_hw *ah = ath12k_hw_to_ah(hw); int antennas_rx = 0, antennas_tx = 0; struct ath12k *ar; int i; for_each_ar(ah, ar, i) { mutex_lock(&ar->conf_mutex); antennas_rx = max_t(u32, antennas_rx, ar->cfg_rx_chainmask); antennas_tx = max_t(u32, antennas_tx, ar->cfg_tx_chainmask); mutex_unlock(&ar->conf_mutex); } *tx_ant = antennas_tx; *rx_ant = antennas_rx; return 0; } static int ath12k_mac_op_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant) { struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k *ar; int ret = 0; int i; for_each_ar(ah, ar, i) { mutex_lock(&ar->conf_mutex); ret = __ath12k_set_antenna(ar, tx_ant, rx_ant); mutex_unlock(&ar->conf_mutex); if (ret) break; } return ret; } static int ath12k_mac_ampdu_action(struct ath12k_vif *arvif, struct ieee80211_ampdu_params *params) { struct ath12k *ar = arvif->ar; int ret = -EINVAL; lockdep_assert_held(&ar->conf_mutex); switch (params->action) { case IEEE80211_AMPDU_RX_START: ret = ath12k_dp_rx_ampdu_start(ar, params); break; case IEEE80211_AMPDU_RX_STOP: ret = ath12k_dp_rx_ampdu_stop(ar, params); break; case IEEE80211_AMPDU_TX_START: case IEEE80211_AMPDU_TX_STOP_CONT: case IEEE80211_AMPDU_TX_STOP_FLUSH: case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: case IEEE80211_AMPDU_TX_OPERATIONAL: /* Tx A-MPDU aggregation offloaded to hw/fw so deny mac80211 * Tx aggregation requests. */ ret = -EOPNOTSUPP; break; } return ret; } static int ath12k_mac_op_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) { struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k *ar; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); int ret = -EINVAL; ar = ath12k_get_ar_by_vif(hw, vif); if (!ar) return -EINVAL; ar = ath12k_ah_to_ar(ah, 0); mutex_lock(&ar->conf_mutex); ret = ath12k_mac_ampdu_action(arvif, params); mutex_unlock(&ar->conf_mutex); if (ret) ath12k_warn(ar->ab, "pdev idx %d unable to perform ampdu action %d ret %d\n", ar->pdev_idx, params->action, ret); return ret; } static int ath12k_mac_op_add_chanctx(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx) { struct ath12k *ar; struct ath12k_base *ab; ar = ath12k_get_ar_by_ctx(hw, ctx); if (!ar) return -EINVAL; ab = ar->ab; ath12k_dbg(ab, ATH12K_DBG_MAC, "mac chanctx add freq %u width %d ptr %p\n", ctx->def.chan->center_freq, ctx->def.width, ctx); mutex_lock(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); /* TODO: In case of multiple channel context, populate rx_channel from * Rx PPDU desc information. */ ar->rx_channel = ctx->def.chan; spin_unlock_bh(&ar->data_lock); mutex_unlock(&ar->conf_mutex); return 0; } static void ath12k_mac_op_remove_chanctx(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx) { struct ath12k *ar; struct ath12k_base *ab; ar = ath12k_get_ar_by_ctx(hw, ctx); if (!ar) return; ab = ar->ab; ath12k_dbg(ab, ATH12K_DBG_MAC, "mac chanctx remove freq %u width %d ptr %p\n", ctx->def.chan->center_freq, ctx->def.width, ctx); mutex_lock(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); /* TODO: In case of there is one more channel context left, populate * rx_channel with the channel of that remaining channel context. */ ar->rx_channel = NULL; spin_unlock_bh(&ar->data_lock); mutex_unlock(&ar->conf_mutex); } static enum wmi_phy_mode ath12k_mac_check_down_grade_phy_mode(struct ath12k *ar, enum wmi_phy_mode mode, enum nl80211_band band, enum nl80211_iftype type) { struct ieee80211_sta_eht_cap *eht_cap = NULL; enum wmi_phy_mode down_mode; int n = ar->mac.sbands[band].n_iftype_data; int i; struct ieee80211_sband_iftype_data *data; if (mode < MODE_11BE_EHT20) return mode; data = ar->mac.iftype[band]; for (i = 0; i < n; i++) { if (data[i].types_mask & BIT(type)) { eht_cap = &data[i].eht_cap; break; } } if (eht_cap && eht_cap->has_eht) return mode; switch (mode) { case MODE_11BE_EHT20: down_mode = MODE_11AX_HE20; break; case MODE_11BE_EHT40: down_mode = MODE_11AX_HE40; break; case MODE_11BE_EHT80: down_mode = MODE_11AX_HE80; break; case MODE_11BE_EHT80_80: down_mode = MODE_11AX_HE80_80; break; case MODE_11BE_EHT160: case MODE_11BE_EHT160_160: case MODE_11BE_EHT320: down_mode = MODE_11AX_HE160; break; case MODE_11BE_EHT20_2G: down_mode = MODE_11AX_HE20_2G; break; case MODE_11BE_EHT40_2G: down_mode = MODE_11AX_HE40_2G; break; default: down_mode = mode; break; } ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac vdev start phymode %s downgrade to %s\n", ath12k_mac_phymode_str(mode), ath12k_mac_phymode_str(down_mode)); return down_mode; } static int ath12k_mac_vdev_start_restart(struct ath12k_vif *arvif, struct ieee80211_chanctx_conf *ctx, bool restart) { struct ath12k *ar = arvif->ar; struct ath12k_base *ab = ar->ab; struct wmi_vdev_start_req_arg arg = {}; const struct cfg80211_chan_def *chandef = &ctx->def; int he_support = arvif->vif->bss_conf.he_support; int ret; lockdep_assert_held(&ar->conf_mutex); reinit_completion(&ar->vdev_setup_done); arg.vdev_id = arvif->vdev_id; arg.dtim_period = arvif->dtim_period; arg.bcn_intval = arvif->beacon_interval; arg.punct_bitmap = ~arvif->punct_bitmap; arg.freq = chandef->chan->center_freq; arg.band_center_freq1 = chandef->center_freq1; arg.band_center_freq2 = chandef->center_freq2; arg.mode = ath12k_phymodes[chandef->chan->band][chandef->width]; arg.mode = ath12k_mac_check_down_grade_phy_mode(ar, arg.mode, chandef->chan->band, arvif->vif->type); arg.min_power = 0; arg.max_power = chandef->chan->max_power * 2; arg.max_reg_power = chandef->chan->max_reg_power * 2; arg.max_antenna_gain = chandef->chan->max_antenna_gain * 2; arg.pref_tx_streams = ar->num_tx_chains; arg.pref_rx_streams = ar->num_rx_chains; arg.mbssid_flags = WMI_VDEV_MBSSID_FLAGS_NON_MBSSID_AP; arg.mbssid_tx_vdev_id = 0; if (test_bit(WMI_TLV_SERVICE_MBSS_PARAM_IN_VDEV_START_SUPPORT, ar->ab->wmi_ab.svc_map)) { ret = ath12k_mac_setup_vdev_params_mbssid(arvif, &arg.mbssid_flags, &arg.mbssid_tx_vdev_id); if (ret) return ret; } if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { arg.ssid = arvif->u.ap.ssid; arg.ssid_len = arvif->u.ap.ssid_len; arg.hidden_ssid = arvif->u.ap.hidden_ssid; /* For now allow DFS for AP mode */ arg.chan_radar = !!(chandef->chan->flags & IEEE80211_CHAN_RADAR); arg.freq2_radar = ctx->radar_enabled; arg.passive = arg.chan_radar; spin_lock_bh(&ab->base_lock); arg.regdomain = ar->ab->dfs_region; spin_unlock_bh(&ab->base_lock); /* TODO: Notify if secondary 80Mhz also needs radar detection */ if (he_support) { ret = ath12k_set_he_mu_sounding_mode(ar, arvif); if (ret) { ath12k_warn(ar->ab, "failed to set he mode vdev %i\n", arg.vdev_id); return ret; } } } arg.passive |= !!(chandef->chan->flags & IEEE80211_CHAN_NO_IR); ath12k_dbg(ab, ATH12K_DBG_MAC, "mac vdev %d start center_freq %d phymode %s punct_bitmap 0x%x\n", arg.vdev_id, arg.freq, ath12k_mac_phymode_str(arg.mode), arg.punct_bitmap); ret = ath12k_wmi_vdev_start(ar, &arg, restart); if (ret) { ath12k_warn(ar->ab, "failed to %s WMI vdev %i\n", restart ? "restart" : "start", arg.vdev_id); return ret; } ret = ath12k_mac_vdev_setup_sync(ar); if (ret) { ath12k_warn(ab, "failed to synchronize setup for vdev %i %s: %d\n", arg.vdev_id, restart ? "restart" : "start", ret); return ret; } ar->num_started_vdevs++; ath12k_dbg(ab, ATH12K_DBG_MAC, "vdev %pM started, vdev_id %d\n", arvif->vif->addr, arvif->vdev_id); /* Enable CAC Flag in the driver by checking the channel DFS cac time, * i.e dfs_cac_ms value which will be valid only for radar channels * and state as NL80211_DFS_USABLE which indicates CAC needs to be * done before channel usage. This flags is used to drop rx packets. * during CAC. */ /* TODO: Set the flag for other interface types as required */ if (arvif->vdev_type == WMI_VDEV_TYPE_AP && chandef->chan->dfs_cac_ms && chandef->chan->dfs_state == NL80211_DFS_USABLE) { set_bit(ATH12K_CAC_RUNNING, &ar->dev_flags); ath12k_dbg(ab, ATH12K_DBG_MAC, "CAC Started in chan_freq %d for vdev %d\n", arg.freq, arg.vdev_id); } ret = ath12k_mac_set_txbf_conf(arvif); if (ret) ath12k_warn(ab, "failed to set txbf conf for vdev %d: %d\n", arvif->vdev_id, ret); return 0; } static int ath12k_mac_vdev_start(struct ath12k_vif *arvif, struct ieee80211_chanctx_conf *ctx) { return ath12k_mac_vdev_start_restart(arvif, ctx, false); } static int ath12k_mac_vdev_restart(struct ath12k_vif *arvif, struct ieee80211_chanctx_conf *ctx) { return ath12k_mac_vdev_start_restart(arvif, ctx, true); } struct ath12k_mac_change_chanctx_arg { struct ieee80211_chanctx_conf *ctx; struct ieee80211_vif_chanctx_switch *vifs; int n_vifs; int next_vif; struct ath12k *ar; }; static void ath12k_mac_change_chanctx_cnt_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_mac_change_chanctx_arg *arg = data; if (arvif->ar != arg->ar) return; if (rcu_access_pointer(vif->bss_conf.chanctx_conf) != arg->ctx) return; arg->n_vifs++; } static void ath12k_mac_change_chanctx_fill_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_mac_change_chanctx_arg *arg = data; struct ieee80211_chanctx_conf *ctx; if (arvif->ar != arg->ar) return; ctx = rcu_access_pointer(vif->bss_conf.chanctx_conf); if (ctx != arg->ctx) return; if (WARN_ON(arg->next_vif == arg->n_vifs)) return; arg->vifs[arg->next_vif].vif = vif; arg->vifs[arg->next_vif].old_ctx = ctx; arg->vifs[arg->next_vif].new_ctx = ctx; arg->next_vif++; } static u32 ath12k_mac_nlwidth_to_wmiwidth(enum nl80211_chan_width width) { switch (width) { case NL80211_CHAN_WIDTH_20: return WMI_CHAN_WIDTH_20; case NL80211_CHAN_WIDTH_40: return WMI_CHAN_WIDTH_40; case NL80211_CHAN_WIDTH_80: return WMI_CHAN_WIDTH_80; case NL80211_CHAN_WIDTH_160: return WMI_CHAN_WIDTH_160; case NL80211_CHAN_WIDTH_80P80: return WMI_CHAN_WIDTH_80P80; case NL80211_CHAN_WIDTH_5: return WMI_CHAN_WIDTH_5; case NL80211_CHAN_WIDTH_10: return WMI_CHAN_WIDTH_10; case NL80211_CHAN_WIDTH_320: return WMI_CHAN_WIDTH_320; default: WARN_ON(1); return WMI_CHAN_WIDTH_20; } } static int ath12k_mac_update_peer_puncturing_width(struct ath12k *ar, struct ath12k_vif *arvif, struct cfg80211_chan_def def) { u32 param_id, param_value; int ret; if (arvif->vdev_type != WMI_VDEV_TYPE_STA) return 0; param_id = WMI_PEER_CHWIDTH_PUNCTURE_20MHZ_BITMAP; param_value = ath12k_mac_nlwidth_to_wmiwidth(def.width) | u32_encode_bits((~def.punctured), WMI_PEER_PUNCTURE_BITMAP); ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "punctured bitmap %02x width %d vdev %d\n", def.punctured, def.width, arvif->vdev_id); ret = ath12k_wmi_set_peer_param(ar, arvif->bssid, arvif->vdev_id, param_id, param_value); return ret; } static void ath12k_mac_update_vif_chan(struct ath12k *ar, struct ieee80211_vif_chanctx_switch *vifs, int n_vifs) { struct ath12k_wmi_vdev_up_params params = {}; struct ath12k_base *ab = ar->ab; struct ieee80211_vif *vif; struct ath12k_vif *arvif; int ret; int i; bool monitor_vif = false; lockdep_assert_held(&ar->conf_mutex); for (i = 0; i < n_vifs; i++) { vif = vifs[i].vif; arvif = ath12k_vif_to_arvif(vif); if (vif->type == NL80211_IFTYPE_MONITOR) monitor_vif = true; ath12k_dbg(ab, ATH12K_DBG_MAC, "mac chanctx switch vdev_id %i freq %u->%u width %d->%d\n", arvif->vdev_id, vifs[i].old_ctx->def.chan->center_freq, vifs[i].new_ctx->def.chan->center_freq, vifs[i].old_ctx->def.width, vifs[i].new_ctx->def.width); if (WARN_ON(!arvif->is_started)) continue; arvif->punct_bitmap = vifs[i].new_ctx->def.punctured; /* Firmware expect vdev_restart only if vdev is up. * If vdev is down then it expect vdev_stop->vdev_start. */ if (arvif->is_up) { ret = ath12k_mac_vdev_restart(arvif, vifs[i].new_ctx); if (ret) { ath12k_warn(ab, "failed to restart vdev %d: %d\n", arvif->vdev_id, ret); continue; } } else { ret = ath12k_mac_vdev_stop(arvif); if (ret) { ath12k_warn(ab, "failed to stop vdev %d: %d\n", arvif->vdev_id, ret); continue; } ret = ath12k_mac_vdev_start(arvif, vifs[i].new_ctx); if (ret) ath12k_warn(ab, "failed to start vdev %d: %d\n", arvif->vdev_id, ret); continue; } ret = ath12k_mac_setup_bcn_tmpl(arvif); if (ret) ath12k_warn(ab, "failed to update bcn tmpl during csa: %d\n", ret); memset(¶ms, 0, sizeof(params)); params.vdev_id = arvif->vdev_id; params.aid = arvif->aid; params.bssid = arvif->bssid; if (vif->mbssid_tx_vif) { params.tx_bssid = ath12k_vif_to_arvif(vif->mbssid_tx_vif)->bssid; params.nontx_profile_idx = vif->bss_conf.bssid_index; params.nontx_profile_cnt = 1 << vif->bss_conf.bssid_indicator; } ret = ath12k_wmi_vdev_up(arvif->ar, ¶ms); if (ret) { ath12k_warn(ab, "failed to bring vdev up %d: %d\n", arvif->vdev_id, ret); continue; } ret = ath12k_mac_update_peer_puncturing_width(arvif->ar, arvif, vifs[i].new_ctx->def); if (ret) { ath12k_warn(ar->ab, "failed to update puncturing bitmap %02x and width %d: %d\n", vifs[i].new_ctx->def.punctured, vifs[i].new_ctx->def.width, ret); continue; } } /* Restart the internal monitor vdev on new channel */ if (!monitor_vif && ar->monitor_vdev_created) { if (!ath12k_mac_monitor_stop(ar)) ath12k_mac_monitor_start(ar); } } static void ath12k_mac_update_active_vif_chan(struct ath12k *ar, struct ieee80211_chanctx_conf *ctx) { struct ath12k_mac_change_chanctx_arg arg = { .ctx = ctx, .ar = ar }; struct ieee80211_hw *hw = ath12k_ar_to_hw(ar); lockdep_assert_held(&ar->conf_mutex); ieee80211_iterate_active_interfaces_atomic(hw, IEEE80211_IFACE_ITER_NORMAL, ath12k_mac_change_chanctx_cnt_iter, &arg); if (arg.n_vifs == 0) return; arg.vifs = kcalloc(arg.n_vifs, sizeof(arg.vifs[0]), GFP_KERNEL); if (!arg.vifs) return; ieee80211_iterate_active_interfaces_atomic(hw, IEEE80211_IFACE_ITER_NORMAL, ath12k_mac_change_chanctx_fill_iter, &arg); ath12k_mac_update_vif_chan(ar, arg.vifs, arg.n_vifs); kfree(arg.vifs); } static void ath12k_mac_op_change_chanctx(struct ieee80211_hw *hw, struct ieee80211_chanctx_conf *ctx, u32 changed) { struct ath12k *ar; struct ath12k_base *ab; ar = ath12k_get_ar_by_ctx(hw, ctx); if (!ar) return; ab = ar->ab; mutex_lock(&ar->conf_mutex); ath12k_dbg(ab, ATH12K_DBG_MAC, "mac chanctx change freq %u width %d ptr %p changed %x\n", ctx->def.chan->center_freq, ctx->def.width, ctx, changed); /* This shouldn't really happen because channel switching should use * switch_vif_chanctx(). */ if (WARN_ON(changed & IEEE80211_CHANCTX_CHANGE_CHANNEL)) goto unlock; if (changed & IEEE80211_CHANCTX_CHANGE_WIDTH || changed & IEEE80211_CHANCTX_CHANGE_RADAR || changed & IEEE80211_CHANCTX_CHANGE_PUNCTURING) ath12k_mac_update_active_vif_chan(ar, ctx); /* TODO: Recalc radar detection */ unlock: mutex_unlock(&ar->conf_mutex); } static int ath12k_start_vdev_delay(struct ath12k *ar, struct ath12k_vif *arvif) { struct ath12k_base *ab = ar->ab; struct ieee80211_vif *vif = arvif->vif; int ret; if (WARN_ON(arvif->is_started)) return -EBUSY; ret = ath12k_mac_vdev_start(arvif, &arvif->chanctx); if (ret) { ath12k_warn(ab, "failed to start vdev %i addr %pM on freq %d: %d\n", arvif->vdev_id, vif->addr, arvif->chanctx.def.chan->center_freq, ret); return ret; } if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) { ret = ath12k_monitor_vdev_up(ar, arvif->vdev_id); if (ret) { ath12k_warn(ab, "failed put monitor up: %d\n", ret); return ret; } } arvif->is_started = true; /* TODO: Setup ps and cts/rts protection */ return 0; } static int ath12k_mac_op_assign_vif_chanctx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *link_conf, struct ieee80211_chanctx_conf *ctx) { struct ath12k *ar; struct ath12k_base *ab; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); int ret; /* For multi radio wiphy, the vdev was not created during add_interface * create now since we have a channel ctx now to assign to a specific ar/fw */ ar = ath12k_mac_assign_vif_to_vdev(hw, vif, ctx); if (!ar) { WARN_ON(1); return -EINVAL; } ab = ar->ab; mutex_lock(&ar->conf_mutex); ath12k_dbg(ab, ATH12K_DBG_MAC, "mac chanctx assign ptr %p vdev_id %i\n", ctx, arvif->vdev_id); arvif->punct_bitmap = ctx->def.punctured; /* for some targets bss peer must be created before vdev_start */ if (ab->hw_params->vdev_start_delay && arvif->vdev_type != WMI_VDEV_TYPE_AP && arvif->vdev_type != WMI_VDEV_TYPE_MONITOR && !ath12k_peer_exist_by_vdev_id(ab, arvif->vdev_id)) { memcpy(&arvif->chanctx, ctx, sizeof(*ctx)); ret = 0; goto out; } if (WARN_ON(arvif->is_started)) { ret = -EBUSY; goto out; } if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) { ret = ath12k_mac_monitor_start(ar); if (ret) goto out; arvif->is_started = true; goto out; } ret = ath12k_mac_vdev_start(arvif, ctx); if (ret) { ath12k_warn(ab, "failed to start vdev %i addr %pM on freq %d: %d\n", arvif->vdev_id, vif->addr, ctx->def.chan->center_freq, ret); goto out; } if (arvif->vdev_type != WMI_VDEV_TYPE_MONITOR && ar->monitor_vdev_created) ath12k_mac_monitor_start(ar); arvif->is_started = true; /* TODO: Setup ps and cts/rts protection */ out: mutex_unlock(&ar->conf_mutex); return ret; } static void ath12k_mac_op_unassign_vif_chanctx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *link_conf, struct ieee80211_chanctx_conf *ctx) { struct ath12k *ar; struct ath12k_base *ab; struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); int ret; /* The vif is expected to be attached to an ar's VDEV. * We leave the vif/vdev in this function as is * and not delete the vdev symmetric to assign_vif_chanctx() * the VDEV will be deleted and unassigned either during * remove_interface() or when there is a change in channel * that moves the vif to a new ar */ if (!arvif->is_created) return; ar = arvif->ar; ab = ar->ab; mutex_lock(&ar->conf_mutex); ath12k_dbg(ab, ATH12K_DBG_MAC, "mac chanctx unassign ptr %p vdev_id %i\n", ctx, arvif->vdev_id); WARN_ON(!arvif->is_started); if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) { ret = ath12k_mac_monitor_stop(ar); if (ret) { mutex_unlock(&ar->conf_mutex); return; } arvif->is_started = false; } if (arvif->vdev_type != WMI_VDEV_TYPE_STA && arvif->vdev_type != WMI_VDEV_TYPE_MONITOR) { ath12k_bss_disassoc(ar, arvif); ret = ath12k_mac_vdev_stop(arvif); if (ret) ath12k_warn(ab, "failed to stop vdev %i: %d\n", arvif->vdev_id, ret); } arvif->is_started = false; if (arvif->vdev_type != WMI_VDEV_TYPE_MONITOR && ar->num_started_vdevs == 1 && ar->monitor_vdev_created) ath12k_mac_monitor_stop(ar); mutex_unlock(&ar->conf_mutex); } static int ath12k_mac_op_switch_vif_chanctx(struct ieee80211_hw *hw, struct ieee80211_vif_chanctx_switch *vifs, int n_vifs, enum ieee80211_chanctx_switch_mode mode) { struct ath12k *ar; ar = ath12k_get_ar_by_ctx(hw, vifs->old_ctx); if (!ar) return -EINVAL; mutex_lock(&ar->conf_mutex); /* Switching channels across radio is not allowed */ if (ar != ath12k_get_ar_by_ctx(hw, vifs->new_ctx)) { mutex_unlock(&ar->conf_mutex); return -EINVAL; } ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac chanctx switch n_vifs %d mode %d\n", n_vifs, mode); ath12k_mac_update_vif_chan(ar, vifs, n_vifs); mutex_unlock(&ar->conf_mutex); return 0; } static int ath12k_set_vdev_param_to_all_vifs(struct ath12k *ar, int param, u32 value) { struct ath12k_vif *arvif; int ret = 0; mutex_lock(&ar->conf_mutex); list_for_each_entry(arvif, &ar->arvifs, list) { ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "setting mac vdev %d param %d value %d\n", param, arvif->vdev_id, value); ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, value); if (ret) { ath12k_warn(ar->ab, "failed to set param %d for vdev %d: %d\n", param, arvif->vdev_id, ret); break; } } mutex_unlock(&ar->conf_mutex); return ret; } /* mac80211 stores device specific RTS/Fragmentation threshold value, * this is set interface specific to firmware from ath12k driver */ static int ath12k_mac_op_set_rts_threshold(struct ieee80211_hw *hw, u32 value) { struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k *ar; int param_id = WMI_VDEV_PARAM_RTS_THRESHOLD, ret = 0, i; /* Currently we set the rts threshold value to all the vifs across * all radios of the single wiphy. * TODO Once support for vif specific RTS threshold in mac80211 is * available, ath12k can make use of it. */ for_each_ar(ah, ar, i) { ret = ath12k_set_vdev_param_to_all_vifs(ar, param_id, value); if (ret) { ath12k_warn(ar->ab, "failed to set RTS config for all vdevs of pdev %d", ar->pdev->pdev_id); break; } } return ret; } static int ath12k_mac_op_set_frag_threshold(struct ieee80211_hw *hw, u32 value) { /* Even though there's a WMI vdev param for fragmentation threshold no * known firmware actually implements it. Moreover it is not possible to * rely frame fragmentation to mac80211 because firmware clears the * "more fragments" bit in frame control making it impossible for remote * devices to reassemble frames. * * Hence implement a dummy callback just to say fragmentation isn't * supported. This effectively prevents mac80211 from doing frame * fragmentation in software. */ return -EOPNOTSUPP; } static int ath12k_mac_flush(struct ath12k *ar) { long time_left; int ret = 0; time_left = wait_event_timeout(ar->dp.tx_empty_waitq, (atomic_read(&ar->dp.num_tx_pending) == 0), ATH12K_FLUSH_TIMEOUT); if (time_left == 0) { ath12k_warn(ar->ab, "failed to flush transmit queue, data pkts pending %d\n", atomic_read(&ar->dp.num_tx_pending)); ret = -ETIMEDOUT; } time_left = wait_event_timeout(ar->txmgmt_empty_waitq, (atomic_read(&ar->num_pending_mgmt_tx) == 0), ATH12K_FLUSH_TIMEOUT); if (time_left == 0) { ath12k_warn(ar->ab, "failed to flush mgmt transmit queue, mgmt pkts pending %d\n", atomic_read(&ar->num_pending_mgmt_tx)); ret = -ETIMEDOUT; } return ret; } int ath12k_mac_wait_tx_complete(struct ath12k *ar) { ath12k_mac_drain_tx(ar); return ath12k_mac_flush(ar); } static void ath12k_mac_op_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 queues, bool drop) { struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k *ar; int i; if (drop) return; /* vif can be NULL when flush() is considered for hw */ if (!vif) { for_each_ar(ah, ar, i) ath12k_mac_flush(ar); return; } ar = ath12k_get_ar_by_vif(hw, vif); if (!ar) return; ath12k_mac_flush(ar); } static int ath12k_mac_bitrate_mask_num_ht_rates(struct ath12k *ar, enum nl80211_band band, const struct cfg80211_bitrate_mask *mask) { int num_rates = 0; int i; for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) num_rates += hweight16(mask->control[band].ht_mcs[i]); return num_rates; } static bool ath12k_mac_has_single_legacy_rate(struct ath12k *ar, enum nl80211_band band, const struct cfg80211_bitrate_mask *mask) { int num_rates = 0; num_rates = hweight32(mask->control[band].legacy); if (ath12k_mac_bitrate_mask_num_ht_rates(ar, band, mask)) return false; if (ath12k_mac_bitrate_mask_num_vht_rates(ar, band, mask)) return false; return num_rates == 1; } static bool ath12k_mac_bitrate_mask_get_single_nss(struct ath12k *ar, enum nl80211_band band, const struct cfg80211_bitrate_mask *mask, int *nss) { struct ieee80211_supported_band *sband = &ar->mac.sbands[band]; u16 vht_mcs_map = le16_to_cpu(sband->vht_cap.vht_mcs.tx_mcs_map); u8 ht_nss_mask = 0; u8 vht_nss_mask = 0; int i; /* No need to consider legacy here. Basic rates are always present * in bitrate mask */ for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) { if (mask->control[band].ht_mcs[i] == 0) continue; else if (mask->control[band].ht_mcs[i] == sband->ht_cap.mcs.rx_mask[i]) ht_nss_mask |= BIT(i); else return false; } for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) { if (mask->control[band].vht_mcs[i] == 0) continue; else if (mask->control[band].vht_mcs[i] == ath12k_mac_get_max_vht_mcs_map(vht_mcs_map, i)) vht_nss_mask |= BIT(i); else return false; } if (ht_nss_mask != vht_nss_mask) return false; if (ht_nss_mask == 0) return false; if (BIT(fls(ht_nss_mask)) - 1 != ht_nss_mask) return false; *nss = fls(ht_nss_mask); return true; } static int ath12k_mac_get_single_legacy_rate(struct ath12k *ar, enum nl80211_band band, const struct cfg80211_bitrate_mask *mask, u32 *rate, u8 *nss) { int rate_idx; u16 bitrate; u8 preamble; u8 hw_rate; if (hweight32(mask->control[band].legacy) != 1) return -EINVAL; rate_idx = ffs(mask->control[band].legacy) - 1; if (band == NL80211_BAND_5GHZ || band == NL80211_BAND_6GHZ) rate_idx += ATH12K_MAC_FIRST_OFDM_RATE_IDX; hw_rate = ath12k_legacy_rates[rate_idx].hw_value; bitrate = ath12k_legacy_rates[rate_idx].bitrate; if (ath12k_mac_bitrate_is_cck(bitrate)) preamble = WMI_RATE_PREAMBLE_CCK; else preamble = WMI_RATE_PREAMBLE_OFDM; *nss = 1; *rate = ATH12K_HW_RATE_CODE(hw_rate, 0, preamble); return 0; } static int ath12k_mac_set_fixed_rate_params(struct ath12k_vif *arvif, u32 rate, u8 nss, u8 sgi, u8 ldpc) { struct ath12k *ar = arvif->ar; u32 vdev_param; int ret; lockdep_assert_held(&ar->conf_mutex); ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac set fixed rate params vdev %i rate 0x%02x nss %u sgi %u\n", arvif->vdev_id, rate, nss, sgi); vdev_param = WMI_VDEV_PARAM_FIXED_RATE; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, rate); if (ret) { ath12k_warn(ar->ab, "failed to set fixed rate param 0x%02x: %d\n", rate, ret); return ret; } vdev_param = WMI_VDEV_PARAM_NSS; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, nss); if (ret) { ath12k_warn(ar->ab, "failed to set nss param %d: %d\n", nss, ret); return ret; } vdev_param = WMI_VDEV_PARAM_SGI; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, sgi); if (ret) { ath12k_warn(ar->ab, "failed to set sgi param %d: %d\n", sgi, ret); return ret; } vdev_param = WMI_VDEV_PARAM_LDPC; ret = ath12k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, ldpc); if (ret) { ath12k_warn(ar->ab, "failed to set ldpc param %d: %d\n", ldpc, ret); return ret; } return 0; } static bool ath12k_mac_vht_mcs_range_present(struct ath12k *ar, enum nl80211_band band, const struct cfg80211_bitrate_mask *mask) { int i; u16 vht_mcs; for (i = 0; i < NL80211_VHT_NSS_MAX; i++) { vht_mcs = mask->control[band].vht_mcs[i]; switch (vht_mcs) { case 0: case BIT(8) - 1: case BIT(9) - 1: case BIT(10) - 1: break; default: return false; } } return true; } static void ath12k_mac_set_bitrate_mask_iter(void *data, struct ieee80211_sta *sta) { struct ath12k_vif *arvif = data; struct ath12k_sta *arsta = ath12k_sta_to_arsta(sta); struct ath12k *ar = arvif->ar; if (arsta->arvif != arvif) return; spin_lock_bh(&ar->data_lock); arsta->changed |= IEEE80211_RC_SUPP_RATES_CHANGED; spin_unlock_bh(&ar->data_lock); ieee80211_queue_work(ath12k_ar_to_hw(ar), &arsta->update_wk); } static void ath12k_mac_disable_peer_fixed_rate(void *data, struct ieee80211_sta *sta) { struct ath12k_sta *arsta = ath12k_sta_to_arsta(sta); struct ath12k_vif *arvif = data; struct ath12k *ar = arvif->ar; int ret; if (arsta->arvif != arvif) return; ret = ath12k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, WMI_PEER_PARAM_FIXED_RATE, WMI_FIXED_RATE_NONE); if (ret) ath12k_warn(ar->ab, "failed to disable peer fixed rate for STA %pM ret %d\n", sta->addr, ret); } static int ath12k_mac_op_set_bitrate_mask(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const struct cfg80211_bitrate_mask *mask) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct cfg80211_chan_def def; struct ath12k *ar = arvif->ar; enum nl80211_band band; const u8 *ht_mcs_mask; const u16 *vht_mcs_mask; u32 rate; u8 nss; u8 sgi; u8 ldpc; int single_nss; int ret; int num_rates; if (ath12k_mac_vif_chan(vif, &def)) return -EPERM; band = def.chan->band; ht_mcs_mask = mask->control[band].ht_mcs; vht_mcs_mask = mask->control[band].vht_mcs; ldpc = !!(ar->ht_cap_info & WMI_HT_CAP_LDPC); sgi = mask->control[band].gi; if (sgi == NL80211_TXRATE_FORCE_LGI) { ret = -EINVAL; goto out; } /* mac80211 doesn't support sending a fixed HT/VHT MCS alone, rather it * requires passing at least one of used basic rates along with them. * Fixed rate setting across different preambles(legacy, HT, VHT) is * not supported by the FW. Hence use of FIXED_RATE vdev param is not * suitable for setting single HT/VHT rates. * But, there could be a single basic rate passed from userspace which * can be done through the FIXED_RATE param. */ if (ath12k_mac_has_single_legacy_rate(ar, band, mask)) { ret = ath12k_mac_get_single_legacy_rate(ar, band, mask, &rate, &nss); if (ret) { ath12k_warn(ar->ab, "failed to get single legacy rate for vdev %i: %d\n", arvif->vdev_id, ret); goto out; } ieee80211_iterate_stations_atomic(hw, ath12k_mac_disable_peer_fixed_rate, arvif); } else if (ath12k_mac_bitrate_mask_get_single_nss(ar, band, mask, &single_nss)) { rate = WMI_FIXED_RATE_NONE; nss = single_nss; } else { rate = WMI_FIXED_RATE_NONE; nss = min_t(u32, ar->num_tx_chains, max(ath12k_mac_max_ht_nss(ht_mcs_mask), ath12k_mac_max_vht_nss(vht_mcs_mask))); /* If multiple rates across different preambles are given * we can reconfigure this info with all peers using PEER_ASSOC * command with the below exception cases. * - Single VHT Rate : peer_assoc command accommodates only MCS * range values i.e 0-7, 0-8, 0-9 for VHT. Though mac80211 * mandates passing basic rates along with HT/VHT rates, FW * doesn't allow switching from VHT to Legacy. Hence instead of * setting legacy and VHT rates using RATEMASK_CMD vdev cmd, * we could set this VHT rate as peer fixed rate param, which * will override FIXED rate and FW rate control algorithm. * If single VHT rate is passed along with HT rates, we select * the VHT rate as fixed rate for vht peers. * - Multiple VHT Rates : When Multiple VHT rates are given,this * can be set using RATEMASK CMD which uses FW rate-ctl alg. * TODO: Setting multiple VHT MCS and replacing peer_assoc with * RATEMASK_CMDID can cover all use cases of setting rates * across multiple preambles and rates within same type. * But requires more validation of the command at this point. */ num_rates = ath12k_mac_bitrate_mask_num_vht_rates(ar, band, mask); if (!ath12k_mac_vht_mcs_range_present(ar, band, mask) && num_rates > 1) { /* TODO: Handle multiple VHT MCS values setting using * RATEMASK CMD */ ath12k_warn(ar->ab, "Setting more than one MCS Value in bitrate mask not supported\n"); ret = -EINVAL; goto out; } ieee80211_iterate_stations_atomic(hw, ath12k_mac_disable_peer_fixed_rate, arvif); mutex_lock(&ar->conf_mutex); arvif->bitrate_mask = *mask; ieee80211_iterate_stations_atomic(hw, ath12k_mac_set_bitrate_mask_iter, arvif); mutex_unlock(&ar->conf_mutex); } mutex_lock(&ar->conf_mutex); ret = ath12k_mac_set_fixed_rate_params(arvif, rate, nss, sgi, ldpc); if (ret) { ath12k_warn(ar->ab, "failed to set fixed rate params on vdev %i: %d\n", arvif->vdev_id, ret); } mutex_unlock(&ar->conf_mutex); out: return ret; } static void ath12k_mac_op_reconfig_complete(struct ieee80211_hw *hw, enum ieee80211_reconfig_type reconfig_type) { struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k *ar; struct ath12k_base *ab; struct ath12k_vif *arvif; int recovery_count, i; if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART) return; guard(mutex)(&ah->hw_mutex); if (ah->state != ATH12K_HW_STATE_RESTARTED) return; ah->state = ATH12K_HW_STATE_ON; ieee80211_wake_queues(hw); for_each_ar(ah, ar, i) { mutex_lock(&ar->conf_mutex); ab = ar->ab; ath12k_warn(ar->ab, "pdev %d successfully recovered\n", ar->pdev->pdev_id); if (ab->is_reset) { recovery_count = atomic_inc_return(&ab->recovery_count); ath12k_dbg(ab, ATH12K_DBG_BOOT, "recovery count %d\n", recovery_count); /* When there are multiple radios in an SOC, * the recovery has to be done for each radio */ if (recovery_count == ab->num_radios) { atomic_dec(&ab->reset_count); complete(&ab->reset_complete); ab->is_reset = false; atomic_set(&ab->fail_cont_count, 0); ath12k_dbg(ab, ATH12K_DBG_BOOT, "reset success\n"); } } list_for_each_entry(arvif, &ar->arvifs, list) { ath12k_dbg(ab, ATH12K_DBG_BOOT, "reconfig cipher %d up %d vdev type %d\n", arvif->key_cipher, arvif->is_up, arvif->vdev_type); /* After trigger disconnect, then upper layer will * trigger connect again, then the PN number of * upper layer will be reset to keep up with AP * side, hence PN number mismatch will not happen. */ if (arvif->is_up && arvif->vdev_type == WMI_VDEV_TYPE_STA && arvif->vdev_subtype == WMI_VDEV_SUBTYPE_NONE) { ieee80211_hw_restart_disconnect(arvif->vif); ath12k_dbg(ab, ATH12K_DBG_BOOT, "restart disconnect\n"); } } mutex_unlock(&ar->conf_mutex); } } static void ath12k_mac_update_bss_chan_survey(struct ath12k *ar, struct ieee80211_channel *channel) { int ret; enum wmi_bss_chan_info_req_type type = WMI_BSS_SURVEY_REQ_TYPE_READ; lockdep_assert_held(&ar->conf_mutex); if (!test_bit(WMI_TLV_SERVICE_BSS_CHANNEL_INFO_64, ar->ab->wmi_ab.svc_map) || ar->rx_channel != channel) return; if (ar->scan.state != ATH12K_SCAN_IDLE) { ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "ignoring bss chan info req while scanning..\n"); return; } reinit_completion(&ar->bss_survey_done); ret = ath12k_wmi_pdev_bss_chan_info_request(ar, type); if (ret) { ath12k_warn(ar->ab, "failed to send pdev bss chan info request\n"); return; } ret = wait_for_completion_timeout(&ar->bss_survey_done, 3 * HZ); if (ret == 0) ath12k_warn(ar->ab, "bss channel survey timed out\n"); } static int ath12k_mac_op_get_survey(struct ieee80211_hw *hw, int idx, struct survey_info *survey) { struct ath12k *ar; struct ieee80211_supported_band *sband; struct survey_info *ar_survey; if (idx >= ATH12K_NUM_CHANS) return -ENOENT; sband = hw->wiphy->bands[NL80211_BAND_2GHZ]; if (sband && idx >= sband->n_channels) { idx -= sband->n_channels; sband = NULL; } if (!sband) sband = hw->wiphy->bands[NL80211_BAND_5GHZ]; if (sband && idx >= sband->n_channels) { idx -= sband->n_channels; sband = NULL; } if (!sband) sband = hw->wiphy->bands[NL80211_BAND_6GHZ]; if (!sband || idx >= sband->n_channels) return -ENOENT; ar = ath12k_mac_get_ar_by_chan(hw, &sband->channels[idx]); if (!ar) { if (sband->channels[idx].flags & IEEE80211_CHAN_DISABLED) { memset(survey, 0, sizeof(*survey)); return 0; } return -ENOENT; } ar_survey = &ar->survey[idx]; mutex_lock(&ar->conf_mutex); ath12k_mac_update_bss_chan_survey(ar, &sband->channels[idx]); spin_lock_bh(&ar->data_lock); memcpy(survey, ar_survey, sizeof(*survey)); spin_unlock_bh(&ar->data_lock); survey->channel = &sband->channels[idx]; if (ar->rx_channel == survey->channel) survey->filled |= SURVEY_INFO_IN_USE; mutex_unlock(&ar->conf_mutex); return 0; } static void ath12k_mac_op_sta_statistics(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct station_info *sinfo) { struct ath12k_sta *arsta = ath12k_sta_to_arsta(sta); sinfo->rx_duration = arsta->rx_duration; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); sinfo->tx_duration = arsta->tx_duration; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); if (!arsta->txrate.legacy && !arsta->txrate.nss) return; if (arsta->txrate.legacy) { sinfo->txrate.legacy = arsta->txrate.legacy; } else { sinfo->txrate.mcs = arsta->txrate.mcs; sinfo->txrate.nss = arsta->txrate.nss; sinfo->txrate.bw = arsta->txrate.bw; sinfo->txrate.he_gi = arsta->txrate.he_gi; sinfo->txrate.he_dcm = arsta->txrate.he_dcm; sinfo->txrate.he_ru_alloc = arsta->txrate.he_ru_alloc; } sinfo->txrate.flags = arsta->txrate.flags; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); /* TODO: Use real NF instead of default one. */ sinfo->signal = arsta->rssi_comb + ATH12K_DEFAULT_NOISE_FLOOR; sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); } static int ath12k_mac_op_cancel_remain_on_channel(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k *ar; ar = ath12k_ah_to_ar(ah, 0); mutex_lock(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); ar->scan.roc_notify = false; spin_unlock_bh(&ar->data_lock); ath12k_scan_abort(ar); mutex_unlock(&ar->conf_mutex); cancel_delayed_work_sync(&ar->scan.timeout); return 0; } static int ath12k_mac_op_remain_on_channel(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_channel *chan, int duration, enum ieee80211_roc_type type) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k_wmi_scan_req_arg arg; struct ath12k *ar, *prev_ar; u32 scan_time_msec; bool create = true; int ret; if (ah->num_radio == 1) { WARN_ON(!arvif->is_created); ar = ath12k_ah_to_ar(ah, 0); goto scan; } ar = ath12k_mac_select_scan_device(hw, vif, chan->center_freq); if (!ar) return -EINVAL; /* If the vif is already assigned to a specific vdev of an ar, * check whether its already started, vdev which is started * are not allowed to switch to a new radio. * If the vdev is not started, but was earlier created on a * different ar, delete that vdev and create a new one. We don't * delete at the scan stop as an optimization to avoid redundant * delete-create vdev's for the same ar, in case the request is * always on the same band for the vif */ if (arvif->is_created) { if (WARN_ON(!arvif->ar)) return -EINVAL; if (ar != arvif->ar && arvif->is_started) return -EBUSY; if (ar != arvif->ar) { /* backup the previously used ar ptr, since the vdev delete * would assign the arvif->ar to NULL after the call */ prev_ar = arvif->ar; mutex_lock(&prev_ar->conf_mutex); ret = ath12k_mac_vdev_delete(prev_ar, vif); mutex_unlock(&prev_ar->conf_mutex); if (ret) { ath12k_warn(prev_ar->ab, "unable to delete scan vdev for roc: %d\n", ret); return ret; } } else { create = false; } } if (create) { mutex_lock(&ar->conf_mutex); ret = ath12k_mac_vdev_create(ar, vif); mutex_unlock(&ar->conf_mutex); if (ret) { ath12k_warn(ar->ab, "unable to create scan vdev for roc: %d\n", ret); return -EINVAL; } } scan: mutex_lock(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); switch (ar->scan.state) { case ATH12K_SCAN_IDLE: reinit_completion(&ar->scan.started); reinit_completion(&ar->scan.completed); reinit_completion(&ar->scan.on_channel); ar->scan.state = ATH12K_SCAN_STARTING; ar->scan.is_roc = true; ar->scan.vdev_id = arvif->vdev_id; ar->scan.roc_freq = chan->center_freq; ar->scan.roc_notify = true; ret = 0; break; case ATH12K_SCAN_STARTING: case ATH12K_SCAN_RUNNING: case ATH12K_SCAN_ABORTING: ret = -EBUSY; break; } spin_unlock_bh(&ar->data_lock); if (ret) goto exit; scan_time_msec = hw->wiphy->max_remain_on_channel_duration * 2; memset(&arg, 0, sizeof(arg)); ath12k_wmi_start_scan_init(ar, &arg); arg.num_chan = 1; arg.chan_list = kcalloc(arg.num_chan, sizeof(*arg.chan_list), GFP_KERNEL); if (!arg.chan_list) { ret = -ENOMEM; goto exit; } arg.vdev_id = arvif->vdev_id; arg.scan_id = ATH12K_SCAN_ID; arg.chan_list[0] = chan->center_freq; arg.dwell_time_active = scan_time_msec; arg.dwell_time_passive = scan_time_msec; arg.max_scan_time = scan_time_msec; arg.scan_f_passive = 1; arg.burst_duration = duration; ret = ath12k_start_scan(ar, &arg); if (ret) { ath12k_warn(ar->ab, "failed to start roc scan: %d\n", ret); spin_lock_bh(&ar->data_lock); ar->scan.state = ATH12K_SCAN_IDLE; spin_unlock_bh(&ar->data_lock); goto free_chan_list; } ret = wait_for_completion_timeout(&ar->scan.on_channel, 3 * HZ); if (ret == 0) { ath12k_warn(ar->ab, "failed to switch to channel for roc scan\n"); ret = ath12k_scan_stop(ar); if (ret) ath12k_warn(ar->ab, "failed to stop scan: %d\n", ret); ret = -ETIMEDOUT; goto free_chan_list; } ieee80211_queue_delayed_work(hw, &ar->scan.timeout, msecs_to_jiffies(duration)); ret = 0; free_chan_list: kfree(arg.chan_list); exit: mutex_unlock(&ar->conf_mutex); return ret; } static void ath12k_mac_op_set_rekey_data(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct cfg80211_gtk_rekey_data *data) { struct ath12k_vif *arvif = ath12k_vif_to_arvif(vif); struct ath12k_rekey_data *rekey_data = &arvif->rekey_data; struct ath12k_hw *ah = ath12k_hw_to_ah(hw); struct ath12k *ar = ath12k_ah_to_ar(ah, 0); ath12k_dbg(ar->ab, ATH12K_DBG_MAC, "mac set rekey data vdev %d\n", arvif->vdev_id); mutex_lock(&ar->conf_mutex); memcpy(rekey_data->kck, data->kck, NL80211_KCK_LEN); memcpy(rekey_data->kek, data->kek, NL80211_KEK_LEN); /* The supplicant works on big-endian, the firmware expects it on * little endian. */ rekey_data->replay_ctr = get_unaligned_be64(data->replay_ctr); arvif->rekey_data.enable_offload = true; ath12k_dbg_dump(ar->ab, ATH12K_DBG_MAC, "kck", NULL, rekey_data->kck, NL80211_KCK_LEN); ath12k_dbg_dump(ar->ab, ATH12K_DBG_MAC, "kek", NULL, rekey_data->kck, NL80211_KEK_LEN); ath12k_dbg_dump(ar->ab, ATH12K_DBG_MAC, "replay ctr", NULL, &rekey_data->replay_ctr, sizeof(rekey_data->replay_ctr)); mutex_unlock(&ar->conf_mutex); } static const struct ieee80211_ops ath12k_ops = { .tx = ath12k_mac_op_tx, .wake_tx_queue = ieee80211_handle_wake_tx_queue, .start = ath12k_mac_op_start, .stop = ath12k_mac_op_stop, .reconfig_complete = ath12k_mac_op_reconfig_complete, .add_interface = ath12k_mac_op_add_interface, .remove_interface = ath12k_mac_op_remove_interface, .update_vif_offload = ath12k_mac_op_update_vif_offload, .config = ath12k_mac_op_config, .bss_info_changed = ath12k_mac_op_bss_info_changed, .configure_filter = ath12k_mac_op_configure_filter, .hw_scan = ath12k_mac_op_hw_scan, .cancel_hw_scan = ath12k_mac_op_cancel_hw_scan, .set_key = ath12k_mac_op_set_key, .set_rekey_data = ath12k_mac_op_set_rekey_data, .sta_state = ath12k_mac_op_sta_state, .sta_set_txpwr = ath12k_mac_op_sta_set_txpwr, .sta_rc_update = ath12k_mac_op_sta_rc_update, .conf_tx = ath12k_mac_op_conf_tx, .set_antenna = ath12k_mac_op_set_antenna, .get_antenna = ath12k_mac_op_get_antenna, .ampdu_action = ath12k_mac_op_ampdu_action, .add_chanctx = ath12k_mac_op_add_chanctx, .remove_chanctx = ath12k_mac_op_remove_chanctx, .change_chanctx = ath12k_mac_op_change_chanctx, .assign_vif_chanctx = ath12k_mac_op_assign_vif_chanctx, .unassign_vif_chanctx = ath12k_mac_op_unassign_vif_chanctx, .switch_vif_chanctx = ath12k_mac_op_switch_vif_chanctx, .set_rts_threshold = ath12k_mac_op_set_rts_threshold, .set_frag_threshold = ath12k_mac_op_set_frag_threshold, .set_bitrate_mask = ath12k_mac_op_set_bitrate_mask, .get_survey = ath12k_mac_op_get_survey, .flush = ath12k_mac_op_flush, .sta_statistics = ath12k_mac_op_sta_statistics, .remain_on_channel = ath12k_mac_op_remain_on_channel, .cancel_remain_on_channel = ath12k_mac_op_cancel_remain_on_channel, #ifdef CONFIG_PM .suspend = ath12k_wow_op_suspend, .resume = ath12k_wow_op_resume, .set_wakeup = ath12k_wow_op_set_wakeup, #endif }; static void ath12k_mac_update_ch_list(struct ath12k *ar, struct ieee80211_supported_band *band, u32 freq_low, u32 freq_high) { int i; if (!(freq_low && freq_high)) return; for (i = 0; i < band->n_channels; i++) { if (band->channels[i].center_freq < freq_low || band->channels[i].center_freq > freq_high) band->channels[i].flags |= IEEE80211_CHAN_DISABLED; } ar->freq_low = freq_low; ar->freq_high = freq_high; } static u32 ath12k_get_phy_id(struct ath12k *ar, u32 band) { struct ath12k_pdev *pdev = ar->pdev; struct ath12k_pdev_cap *pdev_cap = &pdev->cap; if (band == WMI_HOST_WLAN_2G_CAP) return pdev_cap->band[NL80211_BAND_2GHZ].phy_id; if (band == WMI_HOST_WLAN_5G_CAP) return pdev_cap->band[NL80211_BAND_5GHZ].phy_id; ath12k_warn(ar->ab, "unsupported phy cap:%d\n", band); return 0; } static int ath12k_mac_setup_channels_rates(struct ath12k *ar, u32 supported_bands, struct ieee80211_supported_band *bands[]) { struct ieee80211_supported_band *band; struct ath12k_wmi_hal_reg_capabilities_ext_arg *reg_cap; struct ath12k_hw *ah = ar->ah; void *channels; u32 phy_id; BUILD_BUG_ON((ARRAY_SIZE(ath12k_2ghz_channels) + ARRAY_SIZE(ath12k_5ghz_channels) + ARRAY_SIZE(ath12k_6ghz_channels)) != ATH12K_NUM_CHANS); reg_cap = &ar->ab->hal_reg_cap[ar->pdev_idx]; if (supported_bands & WMI_HOST_WLAN_2G_CAP) { channels = kmemdup(ath12k_2ghz_channels, sizeof(ath12k_2ghz_channels), GFP_KERNEL); if (!channels) return -ENOMEM; band = &ar->mac.sbands[NL80211_BAND_2GHZ]; band->band = NL80211_BAND_2GHZ; band->n_channels = ARRAY_SIZE(ath12k_2ghz_channels); band->channels = channels; band->n_bitrates = ath12k_g_rates_size; band->bitrates = ath12k_g_rates; bands[NL80211_BAND_2GHZ] = band; if (ar->ab->hw_params->single_pdev_only) { phy_id = ath12k_get_phy_id(ar, WMI_HOST_WLAN_2G_CAP); reg_cap = &ar->ab->hal_reg_cap[phy_id]; } ath12k_mac_update_ch_list(ar, band, reg_cap->low_2ghz_chan, reg_cap->high_2ghz_chan); } if (supported_bands & WMI_HOST_WLAN_5G_CAP) { if (reg_cap->high_5ghz_chan >= ATH12K_MIN_6G_FREQ) { channels = kmemdup(ath12k_6ghz_channels, sizeof(ath12k_6ghz_channels), GFP_KERNEL); if (!channels) { kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); return -ENOMEM; } ar->supports_6ghz = true; band = &ar->mac.sbands[NL80211_BAND_6GHZ]; band->band = NL80211_BAND_6GHZ; band->n_channels = ARRAY_SIZE(ath12k_6ghz_channels); band->channels = channels; band->n_bitrates = ath12k_a_rates_size; band->bitrates = ath12k_a_rates; bands[NL80211_BAND_6GHZ] = band; ath12k_mac_update_ch_list(ar, band, reg_cap->low_5ghz_chan, reg_cap->high_5ghz_chan); ah->use_6ghz_regd = true; } if (reg_cap->low_5ghz_chan < ATH12K_MIN_6G_FREQ) { channels = kmemdup(ath12k_5ghz_channels, sizeof(ath12k_5ghz_channels), GFP_KERNEL); if (!channels) { kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); kfree(ar->mac.sbands[NL80211_BAND_6GHZ].channels); return -ENOMEM; } band = &ar->mac.sbands[NL80211_BAND_5GHZ]; band->band = NL80211_BAND_5GHZ; band->n_channels = ARRAY_SIZE(ath12k_5ghz_channels); band->channels = channels; band->n_bitrates = ath12k_a_rates_size; band->bitrates = ath12k_a_rates; bands[NL80211_BAND_5GHZ] = band; if (ar->ab->hw_params->single_pdev_only) { phy_id = ath12k_get_phy_id(ar, WMI_HOST_WLAN_5G_CAP); reg_cap = &ar->ab->hal_reg_cap[phy_id]; } ath12k_mac_update_ch_list(ar, band, reg_cap->low_5ghz_chan, reg_cap->high_5ghz_chan); } } return 0; } static u16 ath12k_mac_get_ifmodes(struct ath12k_hw *ah) { struct ath12k *ar; int i; u16 interface_modes = U16_MAX; for_each_ar(ah, ar, i) interface_modes &= ar->ab->hw_params->interface_modes; return interface_modes == U16_MAX ? 0 : interface_modes; } static bool ath12k_mac_is_iface_mode_enable(struct ath12k_hw *ah, enum nl80211_iftype type) { struct ath12k *ar; int i; u16 interface_modes, mode; bool is_enable = true; mode = BIT(type); for_each_ar(ah, ar, i) { interface_modes = ar->ab->hw_params->interface_modes; if (!(interface_modes & mode)) { is_enable = false; break; } } return is_enable; } static int ath12k_mac_setup_iface_combinations(struct ath12k_hw *ah) { struct wiphy *wiphy = ah->hw->wiphy; struct ieee80211_iface_combination *combinations; struct ieee80211_iface_limit *limits; int n_limits, max_interfaces; bool ap, mesh, p2p; ap = ath12k_mac_is_iface_mode_enable(ah, NL80211_IFTYPE_AP); p2p = ath12k_mac_is_iface_mode_enable(ah, NL80211_IFTYPE_P2P_DEVICE); mesh = IS_ENABLED(CONFIG_MAC80211_MESH) && ath12k_mac_is_iface_mode_enable(ah, NL80211_IFTYPE_MESH_POINT); combinations = kzalloc(sizeof(*combinations), GFP_KERNEL); if (!combinations) return -ENOMEM; if ((ap || mesh) && !p2p) { n_limits = 2; max_interfaces = 16; } else if (p2p) { n_limits = 3; if (ap || mesh) max_interfaces = 16; else max_interfaces = 3; } else { n_limits = 1; max_interfaces = 1; } limits = kcalloc(n_limits, sizeof(*limits), GFP_KERNEL); if (!limits) { kfree(combinations); return -ENOMEM; } limits[0].max = 1; limits[0].types |= BIT(NL80211_IFTYPE_STATION); if (ap || mesh || p2p) limits[1].max = max_interfaces; if (ap) limits[1].types |= BIT(NL80211_IFTYPE_AP); if (mesh) limits[1].types |= BIT(NL80211_IFTYPE_MESH_POINT); if (p2p) { limits[1].types |= BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO); limits[2].max = 1; limits[2].types |= BIT(NL80211_IFTYPE_P2P_DEVICE); } combinations[0].limits = limits; combinations[0].n_limits = n_limits; combinations[0].max_interfaces = max_interfaces; combinations[0].num_different_channels = 1; combinations[0].beacon_int_infra_match = true; combinations[0].beacon_int_min_gcd = 100; combinations[0].radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | BIT(NL80211_CHAN_WIDTH_20) | BIT(NL80211_CHAN_WIDTH_40) | BIT(NL80211_CHAN_WIDTH_80); wiphy->iface_combinations = combinations; wiphy->n_iface_combinations = 1; return 0; } static const u8 ath12k_if_types_ext_capa[] = { [0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING, [2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT, [7] = WLAN_EXT_CAPA8_OPMODE_NOTIF, }; static const u8 ath12k_if_types_ext_capa_sta[] = { [0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING, [2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT, [7] = WLAN_EXT_CAPA8_OPMODE_NOTIF, [9] = WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT, }; static const u8 ath12k_if_types_ext_capa_ap[] = { [0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING, [2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT, [7] = WLAN_EXT_CAPA8_OPMODE_NOTIF, [9] = WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT, [10] = WLAN_EXT_CAPA11_EMA_SUPPORT, }; static const struct wiphy_iftype_ext_capab ath12k_iftypes_ext_capa[] = { { .extended_capabilities = ath12k_if_types_ext_capa, .extended_capabilities_mask = ath12k_if_types_ext_capa, .extended_capabilities_len = sizeof(ath12k_if_types_ext_capa), }, { .iftype = NL80211_IFTYPE_STATION, .extended_capabilities = ath12k_if_types_ext_capa_sta, .extended_capabilities_mask = ath12k_if_types_ext_capa_sta, .extended_capabilities_len = sizeof(ath12k_if_types_ext_capa_sta), }, { .iftype = NL80211_IFTYPE_AP, .extended_capabilities = ath12k_if_types_ext_capa_ap, .extended_capabilities_mask = ath12k_if_types_ext_capa_ap, .extended_capabilities_len = sizeof(ath12k_if_types_ext_capa_ap), }, }; static void ath12k_mac_cleanup_unregister(struct ath12k *ar) { idr_for_each(&ar->txmgmt_idr, ath12k_mac_tx_mgmt_pending_free, ar); idr_destroy(&ar->txmgmt_idr); kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels); kfree(ar->mac.sbands[NL80211_BAND_6GHZ].channels); } static void ath12k_mac_hw_unregister(struct ath12k_hw *ah) { struct ieee80211_hw *hw = ah->hw; struct wiphy *wiphy = hw->wiphy; struct ath12k *ar; int i; for_each_ar(ah, ar, i) { cancel_work_sync(&ar->regd_update_work); ath12k_debugfs_unregister(ar); } ieee80211_unregister_hw(hw); for_each_ar(ah, ar, i) ath12k_mac_cleanup_unregister(ar); kfree(wiphy->iface_combinations[0].limits); kfree(wiphy->iface_combinations); SET_IEEE80211_DEV(hw, NULL); } static int ath12k_mac_setup_register(struct ath12k *ar, u32 *ht_cap, struct ieee80211_supported_band *bands[]) { struct ath12k_pdev_cap *cap = &ar->pdev->cap; int ret; init_waitqueue_head(&ar->txmgmt_empty_waitq); idr_init(&ar->txmgmt_idr); spin_lock_init(&ar->txmgmt_idr_lock); ath12k_pdev_caps_update(ar); ret = ath12k_mac_setup_channels_rates(ar, cap->supported_bands, bands); if (ret) return ret; ath12k_mac_setup_ht_vht_cap(ar, cap, ht_cap); ath12k_mac_setup_sband_iftype_data(ar, cap); ar->max_num_stations = ath12k_core_get_max_station_per_radio(ar->ab); ar->max_num_peers = ath12k_core_get_max_peers_per_radio(ar->ab); return 0; } static int ath12k_mac_hw_register(struct ath12k_hw *ah) { struct ieee80211_hw *hw = ah->hw; struct wiphy *wiphy = hw->wiphy; struct ath12k *ar = ath12k_ah_to_ar(ah, 0); struct ath12k_base *ab = ar->ab; struct ath12k_pdev *pdev; struct ath12k_pdev_cap *cap; static const u32 cipher_suites[] = { WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, WLAN_CIPHER_SUITE_AES_CMAC, WLAN_CIPHER_SUITE_BIP_CMAC_256, WLAN_CIPHER_SUITE_BIP_GMAC_128, WLAN_CIPHER_SUITE_BIP_GMAC_256, WLAN_CIPHER_SUITE_GCMP, WLAN_CIPHER_SUITE_GCMP_256, WLAN_CIPHER_SUITE_CCMP_256, }; int ret, i, j; u32 ht_cap = U32_MAX, antennas_rx = 0, antennas_tx = 0; bool is_6ghz = false, is_raw_mode = false, is_monitor_disable = false; u8 *mac_addr = NULL; u8 mbssid_max_interfaces = 0; wiphy->max_ap_assoc_sta = 0; for_each_ar(ah, ar, i) { u32 ht_cap_info = 0; pdev = ar->pdev; if (ar->ab->pdevs_macaddr_valid) { ether_addr_copy(ar->mac_addr, pdev->mac_addr); } else { ether_addr_copy(ar->mac_addr, ar->ab->mac_addr); ar->mac_addr[4] += ar->pdev_idx; } ret = ath12k_mac_setup_register(ar, &ht_cap_info, hw->wiphy->bands); if (ret) goto err_cleanup_unregister; ht_cap &= ht_cap_info; wiphy->max_ap_assoc_sta += ar->max_num_stations; /* Advertise the max antenna support of all radios, driver can handle * per pdev specific antenna setting based on pdev cap when antenna * changes are made */ cap = &pdev->cap; antennas_rx = max_t(u32, antennas_rx, cap->rx_chain_mask); antennas_tx = max_t(u32, antennas_tx, cap->tx_chain_mask); if (ar->supports_6ghz) is_6ghz = true; if (test_bit(ATH12K_FLAG_RAW_MODE, &ar->ab->dev_flags)) is_raw_mode = true; if (!ar->ab->hw_params->supports_monitor) is_monitor_disable = true; if (i == 0) mac_addr = ar->mac_addr; else mac_addr = ab->mac_addr; mbssid_max_interfaces += TARGET_NUM_VDEVS; } wiphy->available_antennas_rx = antennas_rx; wiphy->available_antennas_tx = antennas_tx; SET_IEEE80211_PERM_ADDR(hw, mac_addr); SET_IEEE80211_DEV(hw, ab->dev); ret = ath12k_mac_setup_iface_combinations(ah); if (ret) { ath12k_err(ab, "failed to setup interface combinations: %d\n", ret); goto err_complete_cleanup_unregister; } wiphy->interface_modes = ath12k_mac_get_ifmodes(ah); if (ah->num_radio == 1 && wiphy->bands[NL80211_BAND_2GHZ] && wiphy->bands[NL80211_BAND_5GHZ] && wiphy->bands[NL80211_BAND_6GHZ]) ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS); ieee80211_hw_set(hw, SIGNAL_DBM); ieee80211_hw_set(hw, SUPPORTS_PS); ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS); ieee80211_hw_set(hw, MFP_CAPABLE); ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); ieee80211_hw_set(hw, HAS_RATE_CONTROL); ieee80211_hw_set(hw, AP_LINK_PS); ieee80211_hw_set(hw, SPECTRUM_MGMT); ieee80211_hw_set(hw, CONNECTION_MONITOR); ieee80211_hw_set(hw, SUPPORTS_PER_STA_GTK); ieee80211_hw_set(hw, CHANCTX_STA_CSA); ieee80211_hw_set(hw, QUEUE_CONTROL); ieee80211_hw_set(hw, SUPPORTS_TX_FRAG); ieee80211_hw_set(hw, REPORTS_LOW_ACK); if ((ht_cap & WMI_HT_CAP_ENABLED) || ar->supports_6ghz) { ieee80211_hw_set(hw, AMPDU_AGGREGATION); ieee80211_hw_set(hw, TX_AMPDU_SETUP_IN_HW); ieee80211_hw_set(hw, SUPPORTS_REORDERING_BUFFER); ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU); ieee80211_hw_set(hw, USES_RSS); } wiphy->features |= NL80211_FEATURE_STATIC_SMPS; wiphy->flags |= WIPHY_FLAG_IBSS_RSN; /* TODO: Check if HT capability advertised from firmware is different * for each band for a dual band capable radio. It will be tricky to * handle it when the ht capability different for each band. */ if (ht_cap & WMI_HT_CAP_DYNAMIC_SMPS || (ar->supports_6ghz && ab->hw_params->supports_dynamic_smps_6ghz)) wiphy->features |= NL80211_FEATURE_DYNAMIC_SMPS; wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID; wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN; hw->max_listen_interval = ATH12K_MAX_HW_LISTEN_INTERVAL; wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL; wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH; wiphy->max_remain_on_channel_duration = 5000; wiphy->flags |= WIPHY_FLAG_AP_UAPSD; wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE | NL80211_FEATURE_AP_SCAN; /* MLO is not yet supported so disable Wireless Extensions for now * to make sure ath12k users don't use it. This flag can be removed * once WIPHY_FLAG_SUPPORTS_MLO is enabled. */ wiphy->flags |= WIPHY_FLAG_DISABLE_WEXT; hw->queues = ATH12K_HW_MAX_QUEUES; wiphy->tx_queue_len = ATH12K_QUEUE_LEN; hw->offchannel_tx_hw_queue = ATH12K_HW_MAX_QUEUES - 1; hw->max_rx_aggregation_subframes = IEEE80211_MAX_AMPDU_BUF_EHT; hw->vif_data_size = sizeof(struct ath12k_vif); hw->sta_data_size = sizeof(struct ath12k_sta); hw->extra_tx_headroom = ab->hw_params->iova_mask; wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_STA_TX_PWR); wiphy->cipher_suites = cipher_suites; wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites); wiphy->iftype_ext_capab = ath12k_iftypes_ext_capa; wiphy->num_iftype_ext_capab = ARRAY_SIZE(ath12k_iftypes_ext_capa); wiphy->mbssid_max_interfaces = mbssid_max_interfaces; wiphy->ema_max_profile_periodicity = TARGET_EMA_MAX_PROFILE_PERIOD; if (is_6ghz) { wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_FILS_DISCOVERY); wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP); } wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_PUNCT); ath12k_reg_init(hw); if (!is_raw_mode) { hw->netdev_features = NETIF_F_HW_CSUM; ieee80211_hw_set(hw, SW_CRYPTO_CONTROL); ieee80211_hw_set(hw, SUPPORT_FAST_XMIT); } if (test_bit(WMI_TLV_SERVICE_NLO, ar->wmi->wmi_ab->svc_map)) { wiphy->max_sched_scan_ssids = WMI_PNO_MAX_SUPP_NETWORKS; wiphy->max_match_sets = WMI_PNO_MAX_SUPP_NETWORKS; wiphy->max_sched_scan_ie_len = WMI_PNO_MAX_IE_LENGTH; wiphy->max_sched_scan_plans = WMI_PNO_MAX_SCHED_SCAN_PLANS; wiphy->max_sched_scan_plan_interval = WMI_PNO_MAX_SCHED_SCAN_PLAN_INT; wiphy->max_sched_scan_plan_iterations = WMI_PNO_MAX_SCHED_SCAN_PLAN_ITRNS; wiphy->features |= NL80211_FEATURE_ND_RANDOM_MAC_ADDR; } ret = ath12k_wow_init(ar); if (ret) { ath12k_warn(ar->ab, "failed to init wow: %d\n", ret); goto err_free_if_combs; } ret = ieee80211_register_hw(hw); if (ret) { ath12k_err(ab, "ieee80211 registration failed: %d\n", ret); goto err_free_if_combs; } if (is_monitor_disable) /* There's a race between calling ieee80211_register_hw() * and here where the monitor mode is enabled for a little * while. But that time is so short and in practise it make * a difference in real life. */ wiphy->interface_modes &= ~BIT(NL80211_IFTYPE_MONITOR); for_each_ar(ah, ar, i) { /* Apply the regd received during initialization */ ret = ath12k_regd_update(ar, true); if (ret) { ath12k_err(ar->ab, "ath12k regd update failed: %d\n", ret); goto err_unregister_hw; } ath12k_debugfs_register(ar); } return 0; err_unregister_hw: for_each_ar(ah, ar, i) ath12k_debugfs_unregister(ar); ieee80211_unregister_hw(hw); err_free_if_combs: kfree(wiphy->iface_combinations[0].limits); kfree(wiphy->iface_combinations); err_complete_cleanup_unregister: i = ah->num_radio; err_cleanup_unregister: for (j = 0; j < i; j++) { ar = ath12k_ah_to_ar(ah, j); ath12k_mac_cleanup_unregister(ar); } SET_IEEE80211_DEV(hw, NULL); return ret; } static void ath12k_mac_setup(struct ath12k *ar) { struct ath12k_base *ab = ar->ab; struct ath12k_pdev *pdev = ar->pdev; u8 pdev_idx = ar->pdev_idx; ar->lmac_id = ath12k_hw_get_mac_from_pdev_id(ab->hw_params, pdev_idx); ar->wmi = &ab->wmi_ab.wmi[pdev_idx]; /* FIXME: wmi[0] is already initialized during attach, * Should we do this again? */ ath12k_wmi_pdev_attach(ab, pdev_idx); ar->cfg_tx_chainmask = pdev->cap.tx_chain_mask; ar->cfg_rx_chainmask = pdev->cap.rx_chain_mask; ar->num_tx_chains = hweight32(pdev->cap.tx_chain_mask); ar->num_rx_chains = hweight32(pdev->cap.rx_chain_mask); spin_lock_init(&ar->data_lock); INIT_LIST_HEAD(&ar->arvifs); INIT_LIST_HEAD(&ar->ppdu_stats_info); mutex_init(&ar->conf_mutex); init_completion(&ar->vdev_setup_done); init_completion(&ar->vdev_delete_done); init_completion(&ar->peer_assoc_done); init_completion(&ar->peer_delete_done); init_completion(&ar->install_key_done); init_completion(&ar->bss_survey_done); init_completion(&ar->scan.started); init_completion(&ar->scan.completed); init_completion(&ar->scan.on_channel); INIT_DELAYED_WORK(&ar->scan.timeout, ath12k_scan_timeout_work); INIT_WORK(&ar->regd_update_work, ath12k_regd_update_work); INIT_WORK(&ar->wmi_mgmt_tx_work, ath12k_mgmt_over_wmi_tx_work); skb_queue_head_init(&ar->wmi_mgmt_tx_queue); } int ath12k_mac_register(struct ath12k_base *ab) { struct ath12k_hw *ah; int i; int ret; if (test_bit(ATH12K_FLAG_REGISTERED, &ab->dev_flags)) return 0; /* Initialize channel counters frequency value in hertz */ ab->cc_freq_hz = 320000; ab->free_vdev_map = (1LL << (ab->num_radios * TARGET_NUM_VDEVS)) - 1; for (i = 0; i < ab->num_hw; i++) { ah = ab->ah[i]; ret = ath12k_mac_hw_register(ah); if (ret) goto err; } return 0; err: for (i = i - 1; i >= 0; i--) { ah = ab->ah[i]; if (!ah) continue; ath12k_mac_hw_unregister(ah); } return ret; } void ath12k_mac_unregister(struct ath12k_base *ab) { struct ath12k_hw *ah; int i; for (i = ab->num_hw - 1; i >= 0; i--) { ah = ab->ah[i]; if (!ah) continue; ath12k_mac_hw_unregister(ah); } } static void ath12k_mac_hw_destroy(struct ath12k_hw *ah) { ieee80211_free_hw(ah->hw); } static struct ath12k_hw *ath12k_mac_hw_allocate(struct ath12k_base *ab, struct ath12k_pdev_map *pdev_map, u8 num_pdev_map) { struct ieee80211_hw *hw; struct ath12k *ar; struct ath12k_pdev *pdev; struct ath12k_hw *ah; int i; u8 pdev_idx; hw = ieee80211_alloc_hw(struct_size(ah, radio, num_pdev_map), &ath12k_ops); if (!hw) return NULL; ah = ath12k_hw_to_ah(hw); ah->hw = hw; ah->num_radio = num_pdev_map; mutex_init(&ah->hw_mutex); for (i = 0; i < num_pdev_map; i++) { ab = pdev_map[i].ab; pdev_idx = pdev_map[i].pdev_idx; pdev = &ab->pdevs[pdev_idx]; ar = ath12k_ah_to_ar(ah, i); ar->ah = ah; ar->ab = ab; ar->hw_link_id = pdev->hw_link_id; ar->pdev = pdev; ar->pdev_idx = pdev_idx; pdev->ar = ar; ath12k_mac_setup(ar); } return ah; } void ath12k_mac_destroy(struct ath12k_base *ab) { struct ath12k_pdev *pdev; int i; for (i = 0; i < ab->num_radios; i++) { pdev = &ab->pdevs[i]; if (!pdev->ar) continue; pdev->ar = NULL; } for (i = 0; i < ab->num_hw; i++) { if (!ab->ah[i]) continue; ath12k_mac_hw_destroy(ab->ah[i]); ab->ah[i] = NULL; } } int ath12k_mac_allocate(struct ath12k_base *ab) { struct ath12k_hw *ah; struct ath12k_pdev_map pdev_map[MAX_RADIOS]; int ret, i, j; u8 radio_per_hw; if (test_bit(ATH12K_FLAG_REGISTERED, &ab->dev_flags)) return 0; ab->num_hw = ab->num_radios; radio_per_hw = 1; for (i = 0; i < ab->num_hw; i++) { for (j = 0; j < radio_per_hw; j++) { pdev_map[j].ab = ab; pdev_map[j].pdev_idx = (i * radio_per_hw) + j; } ah = ath12k_mac_hw_allocate(ab, pdev_map, radio_per_hw); if (!ah) { ath12k_warn(ab, "failed to allocate mac80211 hw device for hw_idx %d\n", i); ret = -ENOMEM; goto err; } ab->ah[i] = ah; } ath12k_dp_pdev_pre_alloc(ab); return 0; err: for (i = i - 1; i >= 0; i--) { if (!ab->ah[i]) continue; ath12k_mac_hw_destroy(ab->ah[i]); ab->ah[i] = NULL; } return ret; } int ath12k_mac_vif_set_keepalive(struct ath12k_vif *arvif, enum wmi_sta_keepalive_method method, u32 interval) { struct wmi_sta_keepalive_arg arg = {}; struct ath12k *ar = arvif->ar; int ret; lockdep_assert_held(&ar->conf_mutex); if (arvif->vdev_type != WMI_VDEV_TYPE_STA) return 0; if (!test_bit(WMI_TLV_SERVICE_STA_KEEP_ALIVE, ar->ab->wmi_ab.svc_map)) return 0; arg.vdev_id = arvif->vdev_id; arg.enabled = 1; arg.method = method; arg.interval = interval; ret = ath12k_wmi_sta_keepalive(ar, &arg); if (ret) { ath12k_warn(ar->ab, "failed to set keepalive on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1