Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Felix Fietkau | 7927 | 50.74% | 152 | 44.97% |
Sujith Manoharan | 2435 | 15.58% | 60 | 17.75% |
Luis R. Rodriguez | 2220 | 14.21% | 17 | 5.03% |
Toke Höiland-Jörgensen | 879 | 5.63% | 7 | 2.07% |
Vasanthakumar Thiagarajan | 638 | 4.08% | 18 | 5.33% |
Lorenzo Bianconi | 465 | 2.98% | 7 | 2.07% |
Jonas Jelonek | 351 | 2.25% | 2 | 0.59% |
Rajkumar Manoharan | 143 | 0.92% | 11 | 3.25% |
Mohammed Shafi Shajakhan | 78 | 0.50% | 4 | 1.18% |
Jouni Malinen | 78 | 0.50% | 7 | 2.07% |
Ben Greear | 76 | 0.49% | 10 | 2.96% |
Sven Eckelmann | 49 | 0.31% | 2 | 0.59% |
Janusz Dziedzic | 39 | 0.25% | 3 | 0.89% |
Benoit Papillault | 38 | 0.24% | 1 | 0.30% |
Björn Smedman | 26 | 0.17% | 1 | 0.30% |
Johannes Berg | 22 | 0.14% | 7 | 2.07% |
Joe Perches | 22 | 0.14% | 3 | 0.89% |
Oleksij Rempel | 20 | 0.13% | 2 | 0.59% |
Arnd Bergmann | 18 | 0.12% | 1 | 0.30% |
Sylvain Roger Rieunier | 17 | 0.11% | 1 | 0.30% |
Martin Blumenstingl | 13 | 0.08% | 1 | 0.30% |
Dmitry Antipov | 13 | 0.08% | 2 | 0.59% |
Vivek Natarajan | 10 | 0.06% | 1 | 0.30% |
Senthil Balasubramanian | 10 | 0.06% | 3 | 0.89% |
Sriram R | 6 | 0.04% | 1 | 0.30% |
Simon Wunderlich | 4 | 0.03% | 1 | 0.30% |
Michal Kazior | 4 | 0.03% | 2 | 0.59% |
John W. Linville | 4 | 0.03% | 1 | 0.30% |
David S. Miller | 3 | 0.02% | 1 | 0.30% |
Gabor Juhos | 3 | 0.02% | 2 | 0.59% |
Wenli Looi | 3 | 0.02% | 1 | 0.30% |
Nikolay Martynov | 2 | 0.01% | 1 | 0.30% |
Benjamin Berg | 2 | 0.01% | 1 | 0.30% |
Helmut Schaa | 2 | 0.01% | 1 | 0.30% |
Thomas Huehn | 2 | 0.01% | 1 | 0.30% |
Tobias Klausmann | 1 | 0.01% | 1 | 0.30% |
Peter Seiderer | 1 | 0.01% | 1 | 0.30% |
Total | 15624 | 338 |
/* * Copyright (c) 2008-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/dma-mapping.h> #include "ath9k.h" #include "ar9003_mac.h" #define BITS_PER_BYTE 8 #define OFDM_PLCP_BITS 22 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) #define L_STF 8 #define L_LTF 8 #define L_SIG 4 #define HT_SIG 8 #define HT_STF 4 #define HT_LTF(_ns) (4 * (_ns)) #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ #define TIME_SYMBOLS(t) ((t) >> 2) #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) /* Shifts in ar5008_phy.c and ar9003_phy.c are equal for all revisions */ #define ATH9K_PWRTBL_11NA_OFDM_SHIFT 0 #define ATH9K_PWRTBL_11NG_OFDM_SHIFT 4 #define ATH9K_PWRTBL_11NA_HT_SHIFT 8 #define ATH9K_PWRTBL_11NG_HT_SHIFT 12 static u16 bits_per_symbol[][2] = { /* 20MHz 40MHz */ { 26, 54 }, /* 0: BPSK */ { 52, 108 }, /* 1: QPSK 1/2 */ { 78, 162 }, /* 2: QPSK 3/4 */ { 104, 216 }, /* 3: 16-QAM 1/2 */ { 156, 324 }, /* 4: 16-QAM 3/4 */ { 208, 432 }, /* 5: 64-QAM 2/3 */ { 234, 486 }, /* 6: 64-QAM 3/4 */ { 260, 540 }, /* 7: 64-QAM 5/6 */ }; static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, struct sk_buff *skb); static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, int tx_flags, struct ath_txq *txq, struct ieee80211_sta *sta); static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, struct ath_txq *txq, struct list_head *bf_q, struct ieee80211_sta *sta, struct ath_tx_status *ts, int txok); static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, struct list_head *head, bool internal); static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, struct ath_tx_status *ts, int nframes, int nbad, int txok); static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, struct ath_buf *bf); static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, struct sk_buff *skb); static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, struct ath_tx_control *txctl); enum { MCS_HT20, MCS_HT20_SGI, MCS_HT40, MCS_HT40_SGI, }; /*********************/ /* Aggregation logic */ /*********************/ static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_sta *sta = info->status.status_driver_data[0]; if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_STATUS_EOSP)) { ieee80211_tx_status_skb(hw, skb); return; } if (sta) ieee80211_tx_status_noskb(hw, sta, info); dev_kfree_skb(skb); } void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) __releases(&txq->axq_lock) { struct ieee80211_hw *hw = sc->hw; struct sk_buff_head q; struct sk_buff *skb; __skb_queue_head_init(&q); skb_queue_splice_init(&txq->complete_q, &q); spin_unlock_bh(&txq->axq_lock); while ((skb = __skb_dequeue(&q))) ath_tx_status(hw, skb); } void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid) { struct ieee80211_txq *queue = container_of((void *)tid, struct ieee80211_txq, drv_priv); ieee80211_schedule_txq(sc->hw, queue); } void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue) { struct ath_softc *sc = hw->priv; struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv; struct ath_txq *txq = tid->txq; ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n", queue->sta ? queue->sta->addr : queue->vif->addr, tid->tidno); ath_txq_lock(sc, txq); ath_txq_schedule(sc, txq); ath_txq_unlock(sc, txq); } static struct ath_frame_info *get_frame_info(struct sk_buff *skb) { struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); BUILD_BUG_ON(sizeof(struct ath_frame_info) > sizeof(tx_info->status.status_driver_data)); return (struct ath_frame_info *) &tx_info->status.status_driver_data[0]; } static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) { if (!tid->an->sta) return; ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, seqno << IEEE80211_SEQ_SEQ_SHIFT); } static bool ath_merge_ratetbl(struct ieee80211_sta *sta, struct ath_buf *bf, struct ieee80211_tx_info *tx_info) { struct ieee80211_sta_rates *ratetbl; u8 i; if (!sta) return false; ratetbl = rcu_dereference(sta->rates); if (!ratetbl) return false; if (tx_info->control.rates[0].idx < 0 || tx_info->control.rates[0].count == 0) { i = 0; } else { bf->rates[0] = tx_info->control.rates[0]; i = 1; } for ( ; i < IEEE80211_TX_MAX_RATES; i++) { bf->rates[i].idx = ratetbl->rate[i].idx; bf->rates[i].flags = ratetbl->rate[i].flags; if (tx_info->control.use_rts) bf->rates[i].count = ratetbl->rate[i].count_rts; else if (tx_info->control.use_cts_prot) bf->rates[i].count = ratetbl->rate[i].count_cts; else bf->rates[i].count = ratetbl->rate[i].count; } return true; } static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ath_buf *bf) { struct ieee80211_tx_info *tx_info; tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); if (!ath_merge_ratetbl(sta, bf, tx_info)) ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, ARRAY_SIZE(bf->rates)); } static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq, struct sk_buff *skb) { struct ath_frame_info *fi = get_frame_info(skb); int q = fi->txq; if (q < 0) return; txq = sc->tx.txq_map[q]; if (WARN_ON(--txq->pending_frames < 0)) txq->pending_frames = 0; } static struct ath_atx_tid * ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) { u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK; return ATH_AN_2_TID(an, tidno); } static int ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf) { struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv); struct ath_softc *sc = tid->an->sc; struct ieee80211_hw *hw = sc->hw; struct ath_tx_control txctl = { .txq = tid->txq, .sta = tid->an->sta, }; struct sk_buff *skb; struct ath_frame_info *fi; int q, ret; skb = ieee80211_tx_dequeue(hw, txq); if (!skb) return -ENOENT; ret = ath_tx_prepare(hw, skb, &txctl); if (ret) { ieee80211_free_txskb(hw, skb); return ret; } q = skb_get_queue_mapping(skb); if (tid->txq == sc->tx.txq_map[q]) { fi = get_frame_info(skb); fi->txq = q; ++tid->txq->pending_frames; } *skbuf = skb; return 0; } static int ath_tid_dequeue(struct ath_atx_tid *tid, struct sk_buff **skb) { int ret = 0; *skb = __skb_dequeue(&tid->retry_q); if (!*skb) ret = ath_tid_pull(tid, skb); return ret; } static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) { struct ath_txq *txq = tid->txq; struct sk_buff *skb; struct ath_buf *bf; struct list_head bf_head; struct ath_tx_status ts; struct ath_frame_info *fi; bool sendbar = false; INIT_LIST_HEAD(&bf_head); memset(&ts, 0, sizeof(ts)); while ((skb = __skb_dequeue(&tid->retry_q))) { fi = get_frame_info(skb); bf = fi->bf; if (!bf) { ath_txq_skb_done(sc, txq, skb); ieee80211_free_txskb(sc->hw, skb); continue; } if (fi->baw_tracked) { ath_tx_update_baw(sc, tid, bf); sendbar = true; } list_add_tail(&bf->list, &bf_head); ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); } if (sendbar) { ath_txq_unlock(sc, txq); ath_send_bar(tid, tid->seq_start); ath_txq_lock(sc, txq); } } static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, struct ath_buf *bf) { struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); u16 seqno = bf->bf_state.seqno; int index, cindex; if (!fi->baw_tracked) return; index = ATH_BA_INDEX(tid->seq_start, seqno); cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); __clear_bit(cindex, tid->tx_buf); while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { INCR(tid->seq_start, IEEE80211_SEQ_MAX); INCR(tid->baw_head, ATH_TID_MAX_BUFS); if (tid->bar_index >= 0) tid->bar_index--; } } static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, struct ath_buf *bf) { struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); u16 seqno = bf->bf_state.seqno; int index, cindex; if (fi->baw_tracked) return; index = ATH_BA_INDEX(tid->seq_start, seqno); cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); __set_bit(cindex, tid->tx_buf); fi->baw_tracked = 1; if (index >= ((tid->baw_tail - tid->baw_head) & (ATH_TID_MAX_BUFS - 1))) { tid->baw_tail = cindex; INCR(tid->baw_tail, ATH_TID_MAX_BUFS); } } static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid) { struct sk_buff *skb; struct ath_buf *bf; struct list_head bf_head; struct ath_tx_status ts; struct ath_frame_info *fi; memset(&ts, 0, sizeof(ts)); INIT_LIST_HEAD(&bf_head); while (ath_tid_dequeue(tid, &skb) == 0) { fi = get_frame_info(skb); bf = fi->bf; if (!bf) { ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL); continue; } list_add_tail(&bf->list, &bf_head); ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); } } static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, struct sk_buff *skb, int count) { struct ath_frame_info *fi = get_frame_info(skb); struct ath_buf *bf = fi->bf; struct ieee80211_hdr *hdr; int prev = fi->retries; TX_STAT_INC(sc, txq->axq_qnum, a_retries); fi->retries += count; if (prev > 0) return; hdr = (struct ieee80211_hdr *)skb->data; hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, sizeof(*hdr), DMA_TO_DEVICE); } static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) { struct ath_buf *bf = NULL; spin_lock_bh(&sc->tx.txbuflock); if (unlikely(list_empty(&sc->tx.txbuf))) { spin_unlock_bh(&sc->tx.txbuflock); return NULL; } bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); list_del(&bf->list); spin_unlock_bh(&sc->tx.txbuflock); return bf; } static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) { spin_lock_bh(&sc->tx.txbuflock); list_add_tail(&bf->list, &sc->tx.txbuf); spin_unlock_bh(&sc->tx.txbuflock); } static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) { struct ath_buf *tbf; tbf = ath_tx_get_buffer(sc); if (WARN_ON(!tbf)) return NULL; ATH_TXBUF_RESET(tbf); tbf->bf_mpdu = bf->bf_mpdu; tbf->bf_buf_addr = bf->bf_buf_addr; memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); tbf->bf_state = bf->bf_state; tbf->bf_state.stale = false; return tbf; } static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, struct ath_tx_status *ts, int txok, int *nframes, int *nbad) { u16 seq_st = 0; u32 ba[WME_BA_BMP_SIZE >> 5]; int ba_index; int isaggr = 0; *nbad = 0; *nframes = 0; isaggr = bf_isaggr(bf); memset(ba, 0, WME_BA_BMP_SIZE >> 3); if (isaggr) { seq_st = ts->ts_seqnum; memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3); } while (bf) { ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); (*nframes)++; if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) (*nbad)++; bf = bf->bf_next; } } static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf, struct list_head *bf_q, struct ieee80211_sta *sta, struct ath_atx_tid *tid, struct ath_tx_status *ts, int txok) { struct ath_node *an = NULL; struct sk_buff *skb; struct ieee80211_tx_info *tx_info; struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; struct list_head bf_head; struct sk_buff_head bf_pending; u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; u32 ba[WME_BA_BMP_SIZE >> 5]; int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; bool rc_update = true, isba; struct ieee80211_tx_rate rates[4]; struct ath_frame_info *fi; int nframes; bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); int i, retries; int bar_index = -1; skb = bf->bf_mpdu; tx_info = IEEE80211_SKB_CB(skb); memcpy(rates, bf->rates, sizeof(rates)); retries = ts->ts_longretry + 1; for (i = 0; i < ts->ts_rateindex; i++) retries += rates[i].count; if (!sta) { INIT_LIST_HEAD(&bf_head); while (bf) { bf_next = bf->bf_next; if (!bf->bf_state.stale || bf_next != NULL) list_move_tail(&bf->list, &bf_head); ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0); bf = bf_next; } return; } an = (struct ath_node *)sta->drv_priv; seq_first = tid->seq_start; isba = ts->ts_flags & ATH9K_TX_BA; /* * The hardware occasionally sends a tx status for the wrong TID. * In this case, the BA status cannot be considered valid and all * subframes need to be retransmitted * * Only BlockAcks have a TID and therefore normal Acks cannot be * checked */ if (isba && tid->tidno != ts->tid) txok = false; isaggr = bf_isaggr(bf); memset(ba, 0, WME_BA_BMP_SIZE >> 3); if (isaggr && txok) { if (ts->ts_flags & ATH9K_TX_BA) { seq_st = ts->ts_seqnum; memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3); } else { /* * AR5416 can become deaf/mute when BA * issue happens. Chip needs to be reset. * But AP code may have sychronization issues * when perform internal reset in this routine. * Only enable reset in STA mode for now. */ if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) needreset = 1; } } __skb_queue_head_init(&bf_pending); ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); while (bf) { u16 seqno = bf->bf_state.seqno; txfail = txpending = sendbar = 0; bf_next = bf->bf_next; skb = bf->bf_mpdu; tx_info = IEEE80211_SKB_CB(skb); fi = get_frame_info(skb); if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) || !tid->active) { /* * Outside of the current BlockAck window, * maybe part of a previous session */ txfail = 1; } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { /* transmit completion, subframe is * acked by block ack */ acked_cnt++; } else if (!isaggr && txok) { /* transmit completion */ acked_cnt++; } else if (flush) { txpending = 1; } else if (fi->retries < ATH_MAX_SW_RETRIES) { if (txok || !an->sleeping) ath_tx_set_retry(sc, txq, bf->bf_mpdu, retries); txpending = 1; } else { txfail = 1; txfail_cnt++; bar_index = max_t(int, bar_index, ATH_BA_INDEX(seq_first, seqno)); } /* * Make sure the last desc is reclaimed if it * not a holding desc. */ INIT_LIST_HEAD(&bf_head); if (bf_next != NULL || !bf_last->bf_state.stale) list_move_tail(&bf->list, &bf_head); if (!txpending) { /* * complete the acked-ones/xretried ones; update * block-ack window */ ath_tx_update_baw(sc, tid, bf); if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { memcpy(tx_info->control.rates, rates, sizeof(rates)); ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); rc_update = false; if (bf == bf->bf_lastbf) ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts, sta); } ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts, !txfail); } else { if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) { tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP; ieee80211_sta_eosp(sta); } /* retry the un-acked ones */ if (bf->bf_next == NULL && bf_last->bf_state.stale) { struct ath_buf *tbf; tbf = ath_clone_txbuf(sc, bf_last); /* * Update tx baw and complete the * frame with failed status if we * run out of tx buf. */ if (!tbf) { ath_tx_update_baw(sc, tid, bf); ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0); bar_index = max_t(int, bar_index, ATH_BA_INDEX(seq_first, seqno)); break; } fi->bf = tbf; } /* * Put this buffer to the temporary pending * queue to retain ordering */ __skb_queue_tail(&bf_pending, skb); } bf = bf_next; } /* prepend un-acked frames to the beginning of the pending frame queue */ if (!skb_queue_empty(&bf_pending)) { if (an->sleeping) ieee80211_sta_set_buffered(sta, tid->tidno, true); skb_queue_splice_tail(&bf_pending, &tid->retry_q); if (!an->sleeping) { ath_tx_queue_tid(sc, tid); if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) tid->clear_ps_filter = true; } } if (bar_index >= 0) { u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); ath_txq_unlock(sc, txq); ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); ath_txq_lock(sc, txq); } if (needreset) ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); } static bool bf_is_ampdu_not_probing(struct ath_buf *bf) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); } static void ath_tx_count_airtime(struct ath_softc *sc, struct ieee80211_sta *sta, struct ath_buf *bf, struct ath_tx_status *ts, u8 tid) { u32 airtime = 0; int i; airtime += ts->duration * (ts->ts_longretry + 1); for(i = 0; i < ts->ts_rateindex; i++) { int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i); airtime += rate_dur * bf->rates[i].count; } ieee80211_sta_register_airtime(sta, tid, airtime, 0); } static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, struct ath_tx_status *ts, struct ath_buf *bf, struct list_head *bf_head) { struct ieee80211_hw *hw = sc->hw; struct ieee80211_tx_info *info; struct ieee80211_sta *sta; struct ieee80211_hdr *hdr; struct ath_atx_tid *tid = NULL; bool txok, flush; txok = !(ts->ts_status & ATH9K_TXERR_MASK); flush = !!(ts->ts_status & ATH9K_TX_FLUSH); txq->axq_tx_inprogress = false; txq->axq_depth--; if (bf_is_ampdu_not_probing(bf)) txq->axq_ampdu_depth--; ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, ts->ts_rateindex); hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); if (sta) { struct ath_node *an = (struct ath_node *)sta->drv_priv; tid = ath_get_skb_tid(sc, an, bf->bf_mpdu); ath_tx_count_airtime(sc, sta, bf, ts, tid->tidno); if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) tid->clear_ps_filter = true; } if (!bf_isampdu(bf)) { if (!flush) { info = IEEE80211_SKB_CB(bf->bf_mpdu); memcpy(info->control.rates, bf->rates, sizeof(info->control.rates)); ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts, sta); } ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok); } else ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok); if (!flush) ath_txq_schedule(sc, txq); } static bool ath_lookup_legacy(struct ath_buf *bf) { struct sk_buff *skb; struct ieee80211_tx_info *tx_info; struct ieee80211_tx_rate *rates; int i; skb = bf->bf_mpdu; tx_info = IEEE80211_SKB_CB(skb); rates = tx_info->control.rates; for (i = 0; i < 4; i++) { if (!rates[i].count || rates[i].idx < 0) break; if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) return true; } return false; } static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, struct ath_atx_tid *tid) { struct sk_buff *skb; struct ieee80211_tx_info *tx_info; struct ieee80211_tx_rate *rates; u32 max_4ms_framelen, frmlen; u16 aggr_limit, bt_aggr_limit, legacy = 0; int q = tid->txq->mac80211_qnum; int i; skb = bf->bf_mpdu; tx_info = IEEE80211_SKB_CB(skb); rates = bf->rates; /* * Find the lowest frame length among the rate series that will have a * 4ms (or TXOP limited) transmit duration. */ max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; for (i = 0; i < 4; i++) { int modeidx; if (!rates[i].count) continue; if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { legacy = 1; break; } if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) modeidx = MCS_HT40; else modeidx = MCS_HT20; if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) modeidx++; frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; max_4ms_framelen = min(max_4ms_framelen, frmlen); } /* * limit aggregate size by the minimum rate if rate selected is * not a probe rate, if rate selected is a probe rate then * avoid aggregation of this packet. */ if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) return 0; aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); /* * Override the default aggregation limit for BTCOEX. */ bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); if (bt_aggr_limit) aggr_limit = bt_aggr_limit; if (tid->an->maxampdu) aggr_limit = min(aggr_limit, tid->an->maxampdu); return aggr_limit; } /* * Returns the number of delimiters to be added to * meet the minimum required mpdudensity. */ static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, struct ath_buf *bf, u16 frmlen, bool first_subfrm) { #define FIRST_DESC_NDELIMS 60 u32 nsymbits, nsymbols; u16 minlen; u8 flags, rix; int width, streams, half_gi, ndelim, mindelim; struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); /* Select standard number of delimiters based on frame length alone */ ndelim = ATH_AGGR_GET_NDELIM(frmlen); /* * If encryption enabled, hardware requires some more padding between * subframes. * TODO - this could be improved to be dependent on the rate. * The hardware can keep up at lower rates, but not higher rates */ if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) ndelim += ATH_AGGR_ENCRYPTDELIM; /* * Add delimiter when using RTS/CTS with aggregation * and non enterprise AR9003 card */ if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) ndelim = max(ndelim, FIRST_DESC_NDELIMS); /* * Convert desired mpdu density from microeconds to bytes based * on highest rate in rate series (i.e. first rate) to determine * required minimum length for subframe. Take into account * whether high rate is 20 or 40Mhz and half or full GI. * * If there is no mpdu density restriction, no further calculation * is needed. */ if (tid->an->mpdudensity == 0) return ndelim; rix = bf->rates[0].idx; flags = bf->rates[0].flags; width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; if (half_gi) nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); else nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); if (nsymbols == 0) nsymbols = 1; streams = HT_RC_2_STREAMS(rix); nsymbits = bits_per_symbol[rix % 8][width] * streams; minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; if (frmlen < minlen) { mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; ndelim = max(mindelim, ndelim); } return ndelim; } static int ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, struct ath_buf **buf) { struct ieee80211_tx_info *tx_info; struct ath_frame_info *fi; struct ath_buf *bf; struct sk_buff *skb, *first_skb = NULL; u16 seqno; int ret; while (1) { ret = ath_tid_dequeue(tid, &skb); if (ret < 0) return ret; fi = get_frame_info(skb); bf = fi->bf; if (!fi->bf) bf = ath_tx_setup_buffer(sc, txq, tid, skb); else bf->bf_state.stale = false; if (!bf) { ath_txq_skb_done(sc, txq, skb); ieee80211_free_txskb(sc->hw, skb); continue; } bf->bf_next = NULL; bf->bf_lastbf = bf; tx_info = IEEE80211_SKB_CB(skb); tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_STATUS_EOSP); /* * No aggregation session is running, but there may be frames * from a previous session or a failed attempt in the queue. * Send them out as normal data frames */ if (!tid->active) tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { bf->bf_state.bf_type = 0; break; } bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; seqno = bf->bf_state.seqno; /* do not step over block-ack window */ if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) { __skb_queue_tail(&tid->retry_q, skb); /* If there are other skbs in the retry q, they are * probably within the BAW, so loop immediately to get * one of them. Otherwise the queue can get stuck. */ if (!skb_queue_is_first(&tid->retry_q, skb) && !WARN_ON(skb == first_skb)) { if(!first_skb) /* infinite loop prevention */ first_skb = skb; continue; } return -EINPROGRESS; } if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { struct ath_tx_status ts = {}; struct list_head bf_head; INIT_LIST_HEAD(&bf_head); list_add(&bf->list, &bf_head); ath_tx_update_baw(sc, tid, bf); ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); continue; } if (bf_isampdu(bf)) ath_tx_addto_baw(sc, tid, bf); break; } *buf = bf; return 0; } static int ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, struct list_head *bf_q, struct ath_buf *bf_first) { #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) struct ath_buf *bf = bf_first, *bf_prev = NULL; int nframes = 0, ndelim, ret; u16 aggr_limit = 0, al = 0, bpad = 0, al_delta, h_baw = tid->baw_size / 2; struct ieee80211_tx_info *tx_info; struct ath_frame_info *fi; struct sk_buff *skb; bf = bf_first; aggr_limit = ath_lookup_rate(sc, bf, tid); while (bf) { skb = bf->bf_mpdu; fi = get_frame_info(skb); /* do not exceed aggregation limit */ al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; if (nframes) { if (aggr_limit < al + bpad + al_delta || ath_lookup_legacy(bf) || nframes >= h_baw) goto stop; tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || !(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) goto stop; } /* add padding for previous frame to aggregation length */ al += bpad + al_delta; /* * Get the delimiters needed to meet the MPDU * density for this node. */ ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, !nframes); bpad = PADBYTES(al_delta) + (ndelim << 2); nframes++; bf->bf_next = NULL; /* link buffers of this frame to the aggregate */ bf->bf_state.ndelim = ndelim; list_add_tail(&bf->list, bf_q); if (bf_prev) bf_prev->bf_next = bf; bf_prev = bf; ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); if (ret < 0) break; } goto finish; stop: __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); finish: bf = bf_first; bf->bf_lastbf = bf_prev; if (bf == bf_prev) { al = get_frame_info(bf->bf_mpdu)->framelen; bf->bf_state.bf_type = BUF_AMPDU; } else { TX_STAT_INC(sc, txq->axq_qnum, a_aggr); } return al; #undef PADBYTES } /* * rix - rate index * pktlen - total bytes (delims + data + fcs + pads + pad delims) * width - 0 for 20 MHz, 1 for 40 MHz * half_gi - to use 4us v/s 3.6 us for symbol time */ u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, int width, int half_gi, bool shortPreamble) { u32 nbits, nsymbits, duration, nsymbols; int streams; /* find number of symbols: PLCP + data */ streams = HT_RC_2_STREAMS(rix); nbits = (pktlen << 3) + OFDM_PLCP_BITS; nsymbits = bits_per_symbol[rix % 8][width] * streams; nsymbols = (nbits + nsymbits - 1) / nsymbits; if (!half_gi) duration = SYMBOL_TIME(nsymbols); else duration = SYMBOL_TIME_HALFGI(nsymbols); /* addup duration for legacy/ht training and signal fields */ duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); return duration; } static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) { int streams = HT_RC_2_STREAMS(mcs); int symbols, bits; int bytes = 0; usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; bits -= OFDM_PLCP_BITS; bytes = bits / 8; if (bytes > 65532) bytes = 65532; return bytes; } void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) { u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; int mcs; /* 4ms is the default (and maximum) duration */ if (!txop || txop > 4096) txop = 4096; cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; for (mcs = 0; mcs < 32; mcs++) { cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); } } static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf, u8 rateidx, bool is_40, bool is_cck, bool is_mcs) { u8 max_power; struct sk_buff *skb; struct ath_frame_info *fi; struct ieee80211_tx_info *info; struct ath_hw *ah = sc->sc_ah; bool is_2ghz, is_5ghz, use_stbc; if (sc->tx99_state || !ah->tpc_enabled) return MAX_RATE_POWER; skb = bf->bf_mpdu; fi = get_frame_info(skb); info = IEEE80211_SKB_CB(skb); is_2ghz = info->band == NL80211_BAND_2GHZ; is_5ghz = info->band == NL80211_BAND_5GHZ; use_stbc = is_mcs && rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC); if (is_mcs) rateidx += is_5ghz ? ATH9K_PWRTBL_11NA_HT_SHIFT : ATH9K_PWRTBL_11NG_HT_SHIFT; else if (is_2ghz && !is_cck) rateidx += ATH9K_PWRTBL_11NG_OFDM_SHIFT; else rateidx += ATH9K_PWRTBL_11NA_OFDM_SHIFT; if (!AR_SREV_9300_20_OR_LATER(ah)) { int txpower = fi->tx_power; if (is_40) { u8 power_ht40delta; struct ar5416_eeprom_def *eep = &ah->eeprom.def; u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah); if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) { struct modal_eep_header *pmodal; pmodal = &eep->modalHeader[is_2ghz]; power_ht40delta = pmodal->ht40PowerIncForPdadc; } else { power_ht40delta = 2; } txpower += power_ht40delta; } if (AR_SREV_9287(ah) || AR_SREV_9285(ah) || AR_SREV_9271(ah)) { txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB; } else if (AR_SREV_9280_20_OR_LATER(ah)) { s8 power_offset; power_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET); txpower -= 2 * power_offset; } if (OLC_FOR_AR9280_20_LATER(ah) && is_cck) txpower -= 2; txpower = max(txpower, 0); max_power = min_t(u8, ah->tx_power[rateidx], txpower); /* XXX: clamp minimum TX power at 1 for AR9160 since if * max_power is set to 0, frames are transmitted at max * TX power */ if (!max_power && !AR_SREV_9280_20_OR_LATER(ah)) max_power = 1; } else if (!bf->bf_state.bfs_paprd) { if (use_stbc) max_power = min_t(u8, ah->tx_power_stbc[rateidx], fi->tx_power); else max_power = min_t(u8, ah->tx_power[rateidx], fi->tx_power); } else { max_power = ah->paprd_training_power; } return max_power; } static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, struct ath_tx_info *info, int len, bool rts) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct sk_buff *skb; struct ieee80211_tx_info *tx_info; struct ieee80211_tx_rate *rates; const struct ieee80211_rate *rate; struct ieee80211_hdr *hdr; struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); u32 rts_thresh = sc->hw->wiphy->rts_threshold; int i; u8 rix = 0; skb = bf->bf_mpdu; tx_info = IEEE80211_SKB_CB(skb); rates = bf->rates; hdr = (struct ieee80211_hdr *)skb->data; /* set dur_update_en for l-sig computation except for PS-Poll frames */ info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); info->rtscts_rate = fi->rtscts_rate; for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { bool is_40, is_sgi, is_sp, is_cck; int phy; if (!rates[i].count || (rates[i].idx < 0)) break; rix = rates[i].idx; info->rates[i].Tries = rates[i].count; /* * Handle RTS threshold for unaggregated HT frames. */ if (bf_isampdu(bf) && !bf_isaggr(bf) && (rates[i].flags & IEEE80211_TX_RC_MCS) && unlikely(rts_thresh != (u32) -1)) { if (!rts_thresh || (len > rts_thresh)) rts = true; } if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; info->flags |= ATH9K_TXDESC_RTSENA; } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; info->flags |= ATH9K_TXDESC_CTSENA; } if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); if (rates[i].flags & IEEE80211_TX_RC_MCS) { /* MCS rates */ info->rates[i].Rate = rix | 0x80; info->rates[i].ChSel = ath_txchainmask_reduction(sc, ah->txchainmask, info->rates[i].Rate); info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, is_40, is_sgi, is_sp); if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; if (rix >= 8 && fi->dyn_smps) { info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; info->flags |= ATH9K_TXDESC_CTSENA; } info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, is_40, false, true); continue; } /* legacy rates */ rate = &common->sbands[tx_info->band].bitrates[rates[i].idx]; if ((tx_info->band == NL80211_BAND_2GHZ) && !(rate->flags & IEEE80211_RATE_ERP_G)) phy = WLAN_RC_PHY_CCK; else phy = WLAN_RC_PHY_OFDM; info->rates[i].Rate = rate->hw_value; if (rate->hw_value_short) { if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) info->rates[i].Rate |= rate->hw_value_short; } else { is_sp = false; } if (bf->bf_state.bfs_paprd) info->rates[i].ChSel = ah->txchainmask; else info->rates[i].ChSel = ath_txchainmask_reduction(sc, ah->txchainmask, info->rates[i].Rate); info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, phy, rate->bitrate * 100, len, rix, is_sp); is_cck = IS_CCK_RATE(info->rates[i].Rate); info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false, is_cck, false); } /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) info->flags &= ~ATH9K_TXDESC_RTSENA; /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ if (info->flags & ATH9K_TXDESC_RTSENA) info->flags &= ~ATH9K_TXDESC_CTSENA; } static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) { struct ieee80211_hdr *hdr; enum ath9k_pkt_type htype; __le16 fc; hdr = (struct ieee80211_hdr *)skb->data; fc = hdr->frame_control; if (ieee80211_is_beacon(fc)) htype = ATH9K_PKT_TYPE_BEACON; else if (ieee80211_is_probe_resp(fc)) htype = ATH9K_PKT_TYPE_PROBE_RESP; else if (ieee80211_is_atim(fc)) htype = ATH9K_PKT_TYPE_ATIM; else if (ieee80211_is_pspoll(fc)) htype = ATH9K_PKT_TYPE_PSPOLL; else htype = ATH9K_PKT_TYPE_NORMAL; return htype; } static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, struct ath_txq *txq, int len) { struct ath_hw *ah = sc->sc_ah; struct ath_buf *bf_first = NULL; struct ath_tx_info info; u32 rts_thresh = sc->hw->wiphy->rts_threshold; bool rts = false; memset(&info, 0, sizeof(info)); info.is_first = true; info.is_last = true; info.qcu = txq->axq_qnum; while (bf) { struct sk_buff *skb = bf->bf_mpdu; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ath_frame_info *fi = get_frame_info(skb); bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); info.type = get_hw_packet_type(skb); if (bf->bf_next) info.link = bf->bf_next->bf_daddr; else info.link = (sc->tx99_state) ? bf->bf_daddr : 0; if (!bf_first) { bf_first = bf; if (!sc->tx99_state) info.flags = ATH9K_TXDESC_INTREQ; if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) || txq == sc->tx.uapsdq) info.flags |= ATH9K_TXDESC_CLRDMASK; if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) info.flags |= ATH9K_TXDESC_NOACK; if (tx_info->flags & IEEE80211_TX_CTL_LDPC) info.flags |= ATH9K_TXDESC_LDPC; if (bf->bf_state.bfs_paprd) info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S; /* * mac80211 doesn't handle RTS threshold for HT because * the decision has to be taken based on AMPDU length * and aggregation is done entirely inside ath9k. * Set the RTS/CTS flag for the first subframe based * on the threshold. */ if (aggr && (bf == bf_first) && unlikely(rts_thresh != (u32) -1)) { /* * "len" is the size of the entire AMPDU. */ if (!rts_thresh || (len > rts_thresh)) rts = true; } if (!aggr) len = fi->framelen; ath_buf_set_rate(sc, bf, &info, len, rts); } info.buf_addr[0] = bf->bf_buf_addr; info.buf_len[0] = skb->len; info.pkt_len = fi->framelen; info.keyix = fi->keyix; info.keytype = fi->keytype; if (aggr) { if (bf == bf_first) info.aggr = AGGR_BUF_FIRST; else if (bf == bf_first->bf_lastbf) info.aggr = AGGR_BUF_LAST; else info.aggr = AGGR_BUF_MIDDLE; info.ndelim = bf->bf_state.ndelim; info.aggr_len = len; } if (bf == bf_first->bf_lastbf) bf_first = NULL; ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); bf = bf->bf_next; } } static void ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, struct list_head *bf_q, struct ath_buf *bf_first) { struct ath_buf *bf = bf_first, *bf_prev = NULL; int nframes = 0, ret; do { struct ieee80211_tx_info *tx_info; nframes++; list_add_tail(&bf->list, bf_q); if (bf_prev) bf_prev->bf_next = bf; bf_prev = bf; if (nframes >= 2) break; ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); if (ret < 0) break; tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); break; } ath_set_rates(tid->an->vif, tid->an->sta, bf); } while (1); } static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid) { struct ath_buf *bf = NULL; struct ieee80211_tx_info *tx_info; struct list_head bf_q; int aggr_len = 0, ret; bool aggr; INIT_LIST_HEAD(&bf_q); ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); if (ret < 0) return ret; tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU); if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) || (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) { __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); return -EBUSY; } ath_set_rates(tid->an->vif, tid->an->sta, bf); if (aggr) aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf); else ath_tx_form_burst(sc, txq, tid, &bf_q, bf); if (list_empty(&bf_q)) return -EAGAIN; if (tid->clear_ps_filter || tid->an->no_ps_filter) { tid->clear_ps_filter = false; tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; } ath_tx_fill_desc(sc, bf, txq, aggr_len); ath_tx_txqaddbuf(sc, txq, &bf_q, false); return 0; } int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid, u16 *ssn) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_atx_tid *txtid; struct ath_txq *txq; struct ath_node *an; u8 density; ath_dbg(common, XMIT, "%s called\n", __func__); an = (struct ath_node *)sta->drv_priv; txtid = ATH_AN_2_TID(an, tid); txq = txtid->txq; ath_txq_lock(sc, txq); /* update ampdu factor/density, they may have changed. This may happen * in HT IBSS when a beacon with HT-info is received after the station * has already been added. */ if (sta->deflink.ht_cap.ht_supported) { an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->deflink.ht_cap.ampdu_factor)) - 1; density = ath9k_parse_mpdudensity(sta->deflink.ht_cap.ampdu_density); an->mpdudensity = density; } txtid->active = true; *ssn = txtid->seq_start = txtid->seq_next; txtid->bar_index = -1; memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); txtid->baw_head = txtid->baw_tail = 0; ath_txq_unlock_complete(sc, txq); return 0; } void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_node *an = (struct ath_node *)sta->drv_priv; struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); struct ath_txq *txq = txtid->txq; ath_dbg(common, XMIT, "%s called\n", __func__); ath_txq_lock(sc, txq); txtid->active = false; ath_tx_flush_tid(sc, txtid); ath_txq_unlock_complete(sc, txq); } void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, struct ath_node *an) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_atx_tid *tid; int tidno; ath_dbg(common, XMIT, "%s called\n", __func__); for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { tid = ath_node_to_tid(an, tidno); if (!skb_queue_empty(&tid->retry_q)) ieee80211_sta_set_buffered(sta, tid->tidno, true); } } void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_atx_tid *tid; struct ath_txq *txq; int tidno; ath_dbg(common, XMIT, "%s called\n", __func__); for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { tid = ath_node_to_tid(an, tidno); txq = tid->txq; ath_txq_lock(sc, txq); tid->clear_ps_filter = true; if (!skb_queue_empty(&tid->retry_q)) { ath_tx_queue_tid(sc, tid); ath_txq_schedule(sc, txq); } ath_txq_unlock_complete(sc, txq); } } static void ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val) { struct ieee80211_hdr *hdr; __le16 mask, mask_val; mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA); if (val) mask_val = mask; else mask_val = 0; hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; if ((hdr->frame_control & mask) != mask_val) { hdr->frame_control = (hdr->frame_control & ~mask) | mask_val; dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, sizeof(*hdr), DMA_TO_DEVICE); } } void ath9k_release_buffered_frames(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u16 tids, int nframes, enum ieee80211_frame_release_type reason, bool more_data) { struct ath_softc *sc = hw->priv; struct ath_node *an = (struct ath_node *)sta->drv_priv; struct ath_txq *txq = sc->tx.uapsdq; struct ieee80211_tx_info *info; struct list_head bf_q; struct ath_buf *bf_tail = NULL, *bf = NULL; int i, ret; INIT_LIST_HEAD(&bf_q); for (i = 0; tids && nframes; i++, tids >>= 1) { struct ath_atx_tid *tid; if (!(tids & 1)) continue; tid = ATH_AN_2_TID(an, i); ath_txq_lock(sc, tid->txq); while (nframes > 0) { ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &bf); if (ret < 0) break; ath9k_set_moredata(sc, bf, true); list_add_tail(&bf->list, &bf_q); ath_set_rates(tid->an->vif, tid->an->sta, bf); if (bf_isampdu(bf)) bf->bf_state.bf_type &= ~BUF_AGGR; if (bf_tail) bf_tail->bf_next = bf; bf_tail = bf; nframes--; TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw); if (an->sta && skb_queue_empty(&tid->retry_q)) ieee80211_sta_set_buffered(an->sta, i, false); } ath_txq_unlock_complete(sc, tid->txq); } if (list_empty(&bf_q)) return; if (!more_data) ath9k_set_moredata(sc, bf_tail, false); info = IEEE80211_SKB_CB(bf_tail->bf_mpdu); info->flags |= IEEE80211_TX_STATUS_EOSP; bf = list_first_entry(&bf_q, struct ath_buf, list); ath_txq_lock(sc, txq); ath_tx_fill_desc(sc, bf, txq, 0); ath_tx_txqaddbuf(sc, txq, &bf_q, false); ath_txq_unlock(sc, txq); } /********************/ /* Queue Management */ /********************/ struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) { struct ath_hw *ah = sc->sc_ah; struct ath9k_tx_queue_info qi; static const int subtype_txq_to_hwq[] = { [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, }; int axq_qnum, i; memset(&qi, 0, sizeof(qi)); qi.tqi_subtype = subtype_txq_to_hwq[subtype]; qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; qi.tqi_physCompBuf = 0; /* * Enable interrupts only for EOL and DESC conditions. * We mark tx descriptors to receive a DESC interrupt * when a tx queue gets deep; otherwise waiting for the * EOL to reap descriptors. Note that this is done to * reduce interrupt load and this only defers reaping * descriptors, never transmitting frames. Aside from * reducing interrupts this also permits more concurrency. * The only potential downside is if the tx queue backs * up in which case the top half of the kernel may backup * due to a lack of tx descriptors. * * The UAPSD queue is an exception, since we take a desc- * based intr on the EOSP frames. */ if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; } else { if (qtype == ATH9K_TX_QUEUE_UAPSD) qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; else qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE; } axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); if (axq_qnum == -1) { /* * NB: don't print a message, this happens * normally on parts with too few tx queues */ return NULL; } if (!ATH_TXQ_SETUP(sc, axq_qnum)) { struct ath_txq *txq = &sc->tx.txq[axq_qnum]; txq->axq_qnum = axq_qnum; txq->mac80211_qnum = -1; txq->axq_link = NULL; __skb_queue_head_init(&txq->complete_q); INIT_LIST_HEAD(&txq->axq_q); spin_lock_init(&txq->axq_lock); txq->axq_depth = 0; txq->axq_ampdu_depth = 0; txq->axq_tx_inprogress = false; sc->tx.txqsetup |= 1<<axq_qnum; txq->txq_headidx = txq->txq_tailidx = 0; for (i = 0; i < ATH_TXFIFO_DEPTH; i++) INIT_LIST_HEAD(&txq->txq_fifo[i]); } return &sc->tx.txq[axq_qnum]; } int ath_txq_update(struct ath_softc *sc, int qnum, struct ath9k_tx_queue_info *qinfo) { struct ath_hw *ah = sc->sc_ah; int error = 0; struct ath9k_tx_queue_info qi; BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); ath9k_hw_get_txq_props(ah, qnum, &qi); qi.tqi_aifs = qinfo->tqi_aifs; qi.tqi_cwmin = qinfo->tqi_cwmin; qi.tqi_cwmax = qinfo->tqi_cwmax; qi.tqi_burstTime = qinfo->tqi_burstTime; qi.tqi_readyTime = qinfo->tqi_readyTime; if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { ath_err(ath9k_hw_common(sc->sc_ah), "Unable to update hardware queue %u!\n", qnum); error = -EIO; } else { ath9k_hw_resettxqueue(ah, qnum); } return error; } int ath_cabq_update(struct ath_softc *sc) { struct ath9k_tx_queue_info qi; struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon; int qnum = sc->beacon.cabq->axq_qnum; ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) * ATH_CABQ_READY_TIME) / 100; ath_txq_update(sc, qnum, &qi); return 0; } static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, struct list_head *list) { struct ath_buf *bf, *lastbf; struct list_head bf_head; struct ath_tx_status ts; memset(&ts, 0, sizeof(ts)); ts.ts_status = ATH9K_TX_FLUSH; INIT_LIST_HEAD(&bf_head); while (!list_empty(list)) { bf = list_first_entry(list, struct ath_buf, list); if (bf->bf_state.stale) { list_del(&bf->list); ath_tx_return_buffer(sc, bf); continue; } lastbf = bf->bf_lastbf; list_cut_position(&bf_head, list, &lastbf->list); ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); } } /* * Drain a given TX queue (could be Beacon or Data) * * This assumes output has been stopped and * we do not need to block ath_tx_tasklet. */ void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) { rcu_read_lock(); ath_txq_lock(sc, txq); if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { int idx = txq->txq_tailidx; while (!list_empty(&txq->txq_fifo[idx])) { ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); INCR(idx, ATH_TXFIFO_DEPTH); } txq->txq_tailidx = idx; } txq->axq_link = NULL; txq->axq_tx_inprogress = false; ath_drain_txq_list(sc, txq, &txq->axq_q); ath_txq_unlock_complete(sc, txq); rcu_read_unlock(); } bool ath_drain_all_txq(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_txq *txq; int i; u32 npend = 0; if (test_bit(ATH_OP_INVALID, &common->op_flags)) return true; ath9k_hw_abort_tx_dma(ah); /* Check if any queue remains active */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (!ATH_TXQ_SETUP(sc, i)) continue; if (!sc->tx.txq[i].axq_depth) continue; if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) npend |= BIT(i); } if (npend) { RESET_STAT_INC(sc, RESET_TX_DMA_ERROR); ath_dbg(common, RESET, "Failed to stop TX DMA, queues=0x%03x!\n", npend); } for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (!ATH_TXQ_SETUP(sc, i)) continue; txq = &sc->tx.txq[i]; ath_draintxq(sc, txq); } return !npend; } void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) { ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); sc->tx.txqsetup &= ~(1<<txq->axq_qnum); } /* For each acq entry, for each tid, try to schedule packets * for transmit until ampdu_depth has reached min Q depth. */ void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) { struct ieee80211_hw *hw = sc->hw; struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ieee80211_txq *queue; struct ath_atx_tid *tid; int ret; if (txq->mac80211_qnum < 0) return; if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) return; ieee80211_txq_schedule_start(hw, txq->mac80211_qnum); spin_lock_bh(&sc->chan_lock); rcu_read_lock(); if (sc->cur_chan->stopped) goto out; while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) { bool force; tid = (struct ath_atx_tid *)queue->drv_priv; ret = ath_tx_sched_aggr(sc, txq, tid); ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret); force = !skb_queue_empty(&tid->retry_q); ieee80211_return_txq(hw, queue, force); } out: rcu_read_unlock(); spin_unlock_bh(&sc->chan_lock); ieee80211_txq_schedule_end(hw, txq->mac80211_qnum); } void ath_txq_schedule_all(struct ath_softc *sc) { struct ath_txq *txq; int i; for (i = 0; i < IEEE80211_NUM_ACS; i++) { txq = sc->tx.txq_map[i]; spin_lock_bh(&txq->axq_lock); ath_txq_schedule(sc, txq); spin_unlock_bh(&txq->axq_lock); } } /***********/ /* TX, DMA */ /***********/ /* * Insert a chain of ath_buf (descriptors) on a txq and * assume the descriptors are already chained together by caller. */ static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, struct list_head *head, bool internal) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ath_buf *bf, *bf_last; bool puttxbuf = false; bool edma; /* * Insert the frame on the outbound list and * pass it on to the hardware. */ if (list_empty(head)) return; edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); bf = list_first_entry(head, struct ath_buf, list); bf_last = list_entry(head->prev, struct ath_buf, list); ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth); if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); puttxbuf = true; } else { list_splice_tail_init(head, &txq->axq_q); if (txq->axq_link) { ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", txq->axq_qnum, txq->axq_link, ito64(bf->bf_daddr), bf->bf_desc); } else if (!edma) puttxbuf = true; txq->axq_link = bf_last->bf_desc; } if (puttxbuf) { TX_STAT_INC(sc, txq->axq_qnum, puttxbuf); ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); } if (!edma || sc->tx99_state) { TX_STAT_INC(sc, txq->axq_qnum, txstart); ath9k_hw_txstart(ah, txq->axq_qnum); } if (!internal) { while (bf) { txq->axq_depth++; if (bf_is_ampdu_not_probing(bf)) txq->axq_ampdu_depth++; bf_last = bf->bf_lastbf; bf = bf_last->bf_next; bf_last->bf_next = NULL; } } } static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, struct sk_buff *skb) { struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ath_frame_info *fi = get_frame_info(skb); struct list_head bf_head; struct ath_buf *bf = fi->bf; INIT_LIST_HEAD(&bf_head); list_add_tail(&bf->list, &bf_head); bf->bf_state.bf_type = 0; if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { bf->bf_state.bf_type = BUF_AMPDU; ath_tx_addto_baw(sc, tid, bf); } bf->bf_next = NULL; bf->bf_lastbf = bf; ath_tx_fill_desc(sc, bf, txq, fi->framelen); ath_tx_txqaddbuf(sc, txq, &bf_head, false); TX_STAT_INC(sc, txq->axq_qnum, queued); } static void setup_frame_info(struct ieee80211_hw *hw, struct ieee80211_sta *sta, struct sk_buff *skb, int framelen) { struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; const struct ieee80211_rate *rate; struct ath_frame_info *fi = get_frame_info(skb); struct ath_node *an = NULL; enum ath9k_key_type keytype; bool short_preamble = false; u8 txpower; /* * We check if Short Preamble is needed for the CTS rate by * checking the BSS's global flag. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. */ if (tx_info->control.vif && tx_info->control.vif->bss_conf.use_short_preamble) short_preamble = true; rate = ieee80211_get_rts_cts_rate(hw, tx_info); keytype = ath9k_cmn_get_hw_crypto_keytype(skb); if (sta) an = (struct ath_node *) sta->drv_priv; if (tx_info->control.vif) { struct ieee80211_vif *vif = tx_info->control.vif; if (vif->bss_conf.txpower == INT_MIN) goto nonvifpower; txpower = 2 * vif->bss_conf.txpower; } else { struct ath_softc *sc; nonvifpower: sc = hw->priv; txpower = sc->cur_chan->cur_txpower; } memset(fi, 0, sizeof(*fi)); fi->txq = -1; if (hw_key) fi->keyix = hw_key->hw_key_idx; else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) fi->keyix = an->ps_key; else fi->keyix = ATH9K_TXKEYIX_INVALID; fi->dyn_smps = sta && sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC; fi->keytype = keytype; fi->framelen = framelen; fi->tx_power = txpower; if (!rate) return; fi->rtscts_rate = rate->hw_value; if (short_preamble) fi->rtscts_rate |= rate->hw_value_short; } u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) { struct ath_hw *ah = sc->sc_ah; struct ath9k_channel *curchan = ah->curchan; if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) && (chainmask == 0x7) && (rate < 0x90)) return 0x3; else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && IS_CCK_RATE(rate)) return 0x2; else return chainmask; } /* * Assign a descriptor (and sequence number if necessary, * and map buffer for DMA. Frees skb on error */ static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, struct ath_txq *txq, struct ath_atx_tid *tid, struct sk_buff *skb) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_frame_info *fi = get_frame_info(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ath_buf *bf; int fragno; u16 seqno; bf = ath_tx_get_buffer(sc); if (!bf) { ath_dbg(common, XMIT, "TX buffers are full\n"); return NULL; } ATH_TXBUF_RESET(bf); if (tid && ieee80211_is_data_present(hdr->frame_control)) { fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; seqno = tid->seq_next; hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); if (fragno) hdr->seq_ctrl |= cpu_to_le16(fragno); if (!ieee80211_has_morefrags(hdr->frame_control)) INCR(tid->seq_next, IEEE80211_SEQ_MAX); bf->bf_state.seqno = seqno; } bf->bf_mpdu = skb; bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, skb->len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { bf->bf_mpdu = NULL; bf->bf_buf_addr = 0; ath_err(ath9k_hw_common(sc->sc_ah), "dma_mapping_error() on TX\n"); ath_tx_return_buffer(sc, bf); return NULL; } fi->bf = bf; return bf; } void ath_assign_seq(struct ath_common *common, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_vif *vif = info->control.vif; struct ath_vif *avp; if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) return; if (!vif) return; avp = (struct ath_vif *)vif->drv_priv; if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) avp->seq_no += 0x10; hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); hdr->seq_ctrl |= cpu_to_le16(avp->seq_no); } static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, struct ath_tx_control *txctl) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_sta *sta = txctl->sta; struct ieee80211_vif *vif = info->control.vif; struct ath_vif *avp; struct ath_softc *sc = hw->priv; int frmlen = skb->len + FCS_LEN; int padpos, padsize; /* NOTE: sta can be NULL according to net/mac80211.h */ if (sta) txctl->an = (struct ath_node *)sta->drv_priv; else if (vif && ieee80211_is_data(hdr->frame_control)) { avp = (void *)vif->drv_priv; txctl->an = &avp->mcast_node; } if (info->control.hw_key) frmlen += info->control.hw_key->icv_len; ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb); if ((vif && vif->type != NL80211_IFTYPE_AP && vif->type != NL80211_IFTYPE_AP_VLAN) || !ieee80211_is_data(hdr->frame_control)) info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; /* Add the padding after the header if this is not already done */ padpos = ieee80211_hdrlen(hdr->frame_control); padsize = padpos & 3; if (padsize && skb->len > padpos) { if (skb_headroom(skb) < padsize) return -ENOMEM; skb_push(skb, padsize); memmove(skb->data, skb->data + padsize, padpos); } setup_frame_info(hw, sta, skb, frmlen); return 0; } /* Upon failure caller should free skb */ int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, struct ath_tx_control *txctl) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_sta *sta = txctl->sta; struct ieee80211_vif *vif = info->control.vif; struct ath_frame_info *fi = get_frame_info(skb); struct ath_softc *sc = hw->priv; struct ath_txq *txq = txctl->txq; struct ath_atx_tid *tid = NULL; struct ath_node *an = NULL; struct ath_buf *bf; bool ps_resp; int q, ret; ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE); ret = ath_tx_prepare(hw, skb, txctl); if (ret) return ret; /* * At this point, the vif, hw_key and sta pointers in the tx control * info are no longer valid (overwritten by the ath_frame_info data. */ q = skb_get_queue_mapping(skb); if (ps_resp) txq = sc->tx.uapsdq; if (txctl->sta) { an = (struct ath_node *) sta->drv_priv; tid = ath_get_skb_tid(sc, an, skb); } ath_txq_lock(sc, txq); if (txq == sc->tx.txq_map[q]) { fi->txq = q; ++txq->pending_frames; } bf = ath_tx_setup_buffer(sc, txq, tid, skb); if (!bf) { ath_txq_skb_done(sc, txq, skb); if (txctl->paprd) dev_kfree_skb_any(skb); else ieee80211_free_txskb(sc->hw, skb); goto out; } bf->bf_state.bfs_paprd = txctl->paprd; if (txctl->paprd) bf->bf_state.bfs_paprd_timestamp = jiffies; ath_set_rates(vif, sta, bf); ath_tx_send_normal(sc, txq, tid, skb); out: ath_txq_unlock(sc, txq); return 0; } void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct sk_buff *skb) { struct ath_softc *sc = hw->priv; struct ath_tx_control txctl = { .txq = sc->beacon.cabq }; struct ath_tx_info info = {}; struct ath_buf *bf_tail = NULL; struct ath_buf *bf; LIST_HEAD(bf_q); int duration = 0; int max_duration; max_duration = sc->cur_chan->beacon.beacon_interval * 1000 * sc->cur_chan->beacon.dtim_period / ATH_BCBUF; do { struct ath_frame_info *fi = get_frame_info(skb); if (ath_tx_prepare(hw, skb, &txctl)) break; bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb); if (!bf) break; bf->bf_lastbf = bf; ath_set_rates(vif, NULL, bf); ath_buf_set_rate(sc, bf, &info, fi->framelen, false); duration += info.rates[0].PktDuration; if (bf_tail) bf_tail->bf_next = bf; list_add_tail(&bf->list, &bf_q); bf_tail = bf; skb = NULL; if (duration > max_duration) break; skb = ieee80211_get_buffered_bc(hw, vif); } while(skb); if (skb) ieee80211_free_txskb(hw, skb); if (list_empty(&bf_q)) return; bf = list_last_entry(&bf_q, struct ath_buf, list); ath9k_set_moredata(sc, bf, false); bf = list_first_entry(&bf_q, struct ath_buf, list); ath_txq_lock(sc, txctl.txq); ath_tx_fill_desc(sc, bf, txctl.txq, 0); ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false); TX_STAT_INC(sc, txctl.txq->axq_qnum, queued); ath_txq_unlock(sc, txctl.txq); } /*****************/ /* TX Completion */ /*****************/ static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, int tx_flags, struct ath_txq *txq, struct ieee80211_sta *sta) { struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; int padpos, padsize; unsigned long flags; ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); if (sc->sc_ah->caldata) set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags); if (!(tx_flags & ATH_TX_ERROR)) { if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; else tx_info->flags |= IEEE80211_TX_STAT_ACK; } if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) { padpos = ieee80211_hdrlen(hdr->frame_control); padsize = padpos & 3; if (padsize && skb->len>padpos+padsize) { /* * Remove MAC header padding before giving the frame back to * mac80211. */ memmove(skb->data + padsize, skb->data, padpos); skb_pull(skb, padsize); } } spin_lock_irqsave(&sc->sc_pm_lock, flags); if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; ath_dbg(common, PS, "Going back to sleep after having received TX status (0x%lx)\n", sc->ps_flags & (PS_WAIT_FOR_BEACON | PS_WAIT_FOR_CAB | PS_WAIT_FOR_PSPOLL_DATA | PS_WAIT_FOR_TX_ACK)); } spin_unlock_irqrestore(&sc->sc_pm_lock, flags); ath_txq_skb_done(sc, txq, skb); tx_info->status.status_driver_data[0] = sta; __skb_queue_tail(&txq->complete_q, skb); } static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, struct ath_txq *txq, struct list_head *bf_q, struct ieee80211_sta *sta, struct ath_tx_status *ts, int txok) { struct sk_buff *skb = bf->bf_mpdu; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); unsigned long flags; int tx_flags = 0; if (!txok) tx_flags |= ATH_TX_ERROR; if (ts->ts_status & ATH9K_TXERR_FILT) tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); bf->bf_buf_addr = 0; if (sc->tx99_state) goto skip_tx_complete; if (bf->bf_state.bfs_paprd) { if (time_after(jiffies, bf->bf_state.bfs_paprd_timestamp + msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) dev_kfree_skb_any(skb); else complete(&sc->paprd_complete); } else { ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); ath_tx_complete(sc, skb, tx_flags, txq, sta); } skip_tx_complete: /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't * accidentally reference it later. */ bf->bf_mpdu = NULL; /* * Return the list of ath_buf of this mpdu to free queue */ spin_lock_irqsave(&sc->tx.txbuflock, flags); list_splice_tail_init(bf_q, &sc->tx.txbuf); spin_unlock_irqrestore(&sc->tx.txbuflock, flags); } static void ath_clear_tx_status(struct ieee80211_tx_info *tx_info) { void *ptr = &tx_info->status; memset(ptr + sizeof(tx_info->status.rates), 0, sizeof(tx_info->status) - sizeof(tx_info->status.rates) - sizeof(tx_info->status.status_driver_data)); } static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, struct ath_tx_status *ts, int nframes, int nbad, int txok) { struct sk_buff *skb = bf->bf_mpdu; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); struct ieee80211_hw *hw = sc->hw; struct ath_hw *ah = sc->sc_ah; u8 i, tx_rateindex; ath_clear_tx_status(tx_info); if (txok) tx_info->status.ack_signal = ts->ts_rssi; tx_rateindex = ts->ts_rateindex; WARN_ON(tx_rateindex >= hw->max_rates); if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { tx_info->flags |= IEEE80211_TX_STAT_AMPDU; BUG_ON(nbad > nframes); } tx_info->status.ampdu_len = nframes; tx_info->status.ampdu_ack_len = nframes - nbad; tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; for (i = tx_rateindex + 1; i < hw->max_rates; i++) { tx_info->status.rates[i].count = 0; tx_info->status.rates[i].idx = -1; } if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { /* * If an underrun error is seen assume it as an excessive * retry only if max frame trigger level has been reached * (2 KB for single stream, and 4 KB for dual stream). * Adjust the long retry as if the frame was tried * hw->max_rate_tries times to affect how rate control updates * PER for the failed rate. * In case of congestion on the bus penalizing this type of * underruns should help hardware actually transmit new frames * successfully by eventually preferring slower rates. * This itself should also alleviate congestion on the bus. */ if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN)) && ieee80211_is_data(hdr->frame_control) && ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) tx_info->status.rates[tx_rateindex].count = hw->max_rate_tries; } } static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) { struct ath_hw *ah = sc->sc_ah; struct ath_common *common = ath9k_hw_common(ah); struct ath_buf *bf, *lastbf, *bf_held = NULL; struct list_head bf_head; struct ath_desc *ds; struct ath_tx_status ts; int status; ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), txq->axq_link); ath_txq_lock(sc, txq); for (;;) { if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) break; if (list_empty(&txq->axq_q)) { txq->axq_link = NULL; ath_txq_schedule(sc, txq); break; } bf = list_first_entry(&txq->axq_q, struct ath_buf, list); /* * There is a race condition that a BH gets scheduled * after sw writes TxE and before hw re-load the last * descriptor to get the newly chained one. * Software must keep the last DONE descriptor as a * holding descriptor - software does so by marking * it with the STALE flag. */ bf_held = NULL; if (bf->bf_state.stale) { bf_held = bf; if (list_is_last(&bf_held->list, &txq->axq_q)) break; bf = list_entry(bf_held->list.next, struct ath_buf, list); } lastbf = bf->bf_lastbf; ds = lastbf->bf_desc; memset(&ts, 0, sizeof(ts)); status = ath9k_hw_txprocdesc(ah, ds, &ts); if (status == -EINPROGRESS) break; TX_STAT_INC(sc, txq->axq_qnum, txprocdesc); /* * Remove ath_buf's of the same transmit unit from txq, * however leave the last descriptor back as the holding * descriptor for hw. */ lastbf->bf_state.stale = true; INIT_LIST_HEAD(&bf_head); if (!list_is_singular(&lastbf->list)) list_cut_position(&bf_head, &txq->axq_q, lastbf->list.prev); if (bf_held) { list_del(&bf_held->list); ath_tx_return_buffer(sc, bf_held); } ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); } ath_txq_unlock_complete(sc, txq); } void ath_tx_tasklet(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; int i; rcu_read_lock(); for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) ath_tx_processq(sc, &sc->tx.txq[i]); } rcu_read_unlock(); } void ath_tx_edma_tasklet(struct ath_softc *sc) { struct ath_tx_status ts; struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_hw *ah = sc->sc_ah; struct ath_txq *txq; struct ath_buf *bf, *lastbf; struct list_head bf_head; struct list_head *fifo_list; int status; rcu_read_lock(); for (;;) { if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) break; status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); if (status == -EINPROGRESS) break; if (status == -EIO) { ath_dbg(common, XMIT, "Error processing tx status\n"); break; } /* Process beacon completions separately */ if (ts.qid == sc->beacon.beaconq) { sc->beacon.tx_processed = true; sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); if (ath9k_is_chanctx_enabled()) { ath_chanctx_event(sc, NULL, ATH_CHANCTX_EVENT_BEACON_SENT); } ath9k_csa_update(sc); continue; } txq = &sc->tx.txq[ts.qid]; ath_txq_lock(sc, txq); TX_STAT_INC(sc, txq->axq_qnum, txprocdesc); fifo_list = &txq->txq_fifo[txq->txq_tailidx]; if (list_empty(fifo_list)) { ath_txq_unlock(sc, txq); break; } bf = list_first_entry(fifo_list, struct ath_buf, list); if (bf->bf_state.stale) { list_del(&bf->list); ath_tx_return_buffer(sc, bf); bf = list_first_entry(fifo_list, struct ath_buf, list); } lastbf = bf->bf_lastbf; INIT_LIST_HEAD(&bf_head); if (list_is_last(&lastbf->list, fifo_list)) { list_splice_tail_init(fifo_list, &bf_head); INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); if (!list_empty(&txq->axq_q)) { struct list_head bf_q; INIT_LIST_HEAD(&bf_q); txq->axq_link = NULL; list_splice_tail_init(&txq->axq_q, &bf_q); ath_tx_txqaddbuf(sc, txq, &bf_q, true); } } else { lastbf->bf_state.stale = true; if (bf != lastbf) list_cut_position(&bf_head, fifo_list, lastbf->list.prev); } ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); ath_txq_unlock_complete(sc, txq); } rcu_read_unlock(); } /*****************/ /* Init, Cleanup */ /*****************/ static int ath_txstatus_setup(struct ath_softc *sc, int size) { struct ath_descdma *dd = &sc->txsdma; u8 txs_len = sc->sc_ah->caps.txs_len; dd->dd_desc_len = size * txs_len; dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, &dd->dd_desc_paddr, GFP_KERNEL); if (!dd->dd_desc) return -ENOMEM; return 0; } static int ath_tx_edma_init(struct ath_softc *sc) { int err; err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); if (!err) ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, sc->txsdma.dd_desc_paddr, ATH_TXSTATUS_RING_SIZE); return err; } int ath_tx_init(struct ath_softc *sc, int nbufs) { struct ath_common *common = ath9k_hw_common(sc->sc_ah); int error = 0; spin_lock_init(&sc->tx.txbuflock); error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, "tx", nbufs, 1, 1); if (error != 0) { ath_err(common, "Failed to allocate tx descriptors: %d\n", error); return error; } error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, "beacon", ATH_BCBUF, 1, 1); if (error != 0) { ath_err(common, "Failed to allocate beacon descriptors: %d\n", error); return error; } if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) error = ath_tx_edma_init(sc); return error; } void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) { struct ath_atx_tid *tid; int tidno, acno; for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { tid = ath_node_to_tid(an, tidno); tid->an = an; tid->tidno = tidno; tid->seq_start = tid->seq_next = 0; tid->baw_size = WME_MAX_BA; tid->baw_head = tid->baw_tail = 0; tid->active = false; tid->clear_ps_filter = true; __skb_queue_head_init(&tid->retry_q); INIT_LIST_HEAD(&tid->list); acno = TID_TO_WME_AC(tidno); tid->txq = sc->tx.txq_map[acno]; if (!an->sta) break; /* just one multicast ath_atx_tid */ } } void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) { struct ath_atx_tid *tid; struct ath_txq *txq; int tidno; rcu_read_lock(); for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { tid = ath_node_to_tid(an, tidno); txq = tid->txq; ath_txq_lock(sc, txq); if (!list_empty(&tid->list)) list_del_init(&tid->list); ath_tid_drain(sc, txq, tid); tid->active = false; ath_txq_unlock(sc, txq); if (!an->sta) break; /* just one multicast ath_atx_tid */ } rcu_read_unlock(); } #ifdef CONFIG_ATH9K_TX99 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb, struct ath_tx_control *txctl) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ath_frame_info *fi = get_frame_info(skb); struct ath_common *common = ath9k_hw_common(sc->sc_ah); struct ath_buf *bf; int padpos, padsize; padpos = ieee80211_hdrlen(hdr->frame_control); padsize = padpos & 3; if (padsize && skb->len > padpos) { if (skb_headroom(skb) < padsize) { ath_dbg(common, XMIT, "tx99 padding failed\n"); return -EINVAL; } skb_push(skb, padsize); memmove(skb->data, skb->data + padsize, padpos); } fi->keyix = ATH9K_TXKEYIX_INVALID; fi->framelen = skb->len + FCS_LEN; fi->keytype = ATH9K_KEY_TYPE_CLEAR; bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb); if (!bf) { ath_dbg(common, XMIT, "tx99 buffer setup failed\n"); return -EINVAL; } ath_set_rates(sc->tx99_vif, NULL, bf); ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr); ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum); ath_tx_send_normal(sc, txctl->txq, NULL, skb); return 0; } #endif /* CONFIG_ATH9K_TX99 */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1