Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Emmanuel Grumbach | 1488 | 36.46% | 65 | 27.43% |
Johannes Berg | 712 | 17.45% | 71 | 29.96% |
Sara Sharon | 412 | 10.10% | 19 | 8.02% |
Golan Ben-Ami | 301 | 7.38% | 11 | 4.64% |
Haim Dreyfuss | 280 | 6.86% | 6 | 2.53% |
Mordechai Goodstein | 194 | 4.75% | 5 | 2.11% |
Benjamin Berg | 105 | 2.57% | 3 | 1.27% |
Yedidya Benshimol | 85 | 2.08% | 1 | 0.42% |
Yi Zhu | 74 | 1.81% | 2 | 0.84% |
Wey-Yi Guy | 72 | 1.76% | 5 | 2.11% |
Mukesh Sisodiya | 52 | 1.27% | 1 | 0.42% |
Lior Cohen | 44 | 1.08% | 1 | 0.42% |
Lilach Edelstein | 38 | 0.93% | 2 | 0.84% |
Stanislaw Gruszka | 29 | 0.71% | 1 | 0.42% |
Tomas Winkler | 28 | 0.69% | 6 | 2.53% |
Luciano Coelho | 26 | 0.64% | 7 | 2.95% |
Alon Giladi | 23 | 0.56% | 3 | 1.27% |
Christoph Hellwig | 16 | 0.39% | 1 | 0.42% |
Shahar S Matityahu | 15 | 0.37% | 4 | 1.69% |
Liad Kaufman | 15 | 0.37% | 3 | 1.27% |
Matti Gottlieb | 13 | 0.32% | 1 | 0.42% |
Mohamed Abbas | 10 | 0.25% | 2 | 0.84% |
Abhijeet Kolekar | 8 | 0.20% | 2 | 0.84% |
striebit | 7 | 0.17% | 1 | 0.42% |
Samuel Ortiz | 6 | 0.15% | 2 | 0.84% |
Alexander Bondar | 5 | 0.12% | 1 | 0.42% |
Gregory Greenman | 4 | 0.10% | 1 | 0.42% |
Miri Korenblit | 3 | 0.07% | 1 | 0.42% |
Rajat Jain | 3 | 0.07% | 1 | 0.42% |
Meenakshi Venkataraman | 2 | 0.05% | 1 | 0.42% |
Ron Rindjunsky | 2 | 0.05% | 1 | 0.42% |
Assaf Krauss | 2 | 0.05% | 1 | 0.42% |
Greg Kroah-Hartman | 2 | 0.05% | 1 | 0.42% |
Arik Nemtsov | 2 | 0.05% | 1 | 0.42% |
Ilan Peer | 1 | 0.02% | 1 | 0.42% |
Breno Leitão | 1 | 0.02% | 1 | 0.42% |
Ben M Cahill | 1 | 0.02% | 1 | 0.42% |
Total | 4081 | 237 |
/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ /* * Copyright (C) 2003-2015, 2018-2024 Intel Corporation * Copyright (C) 2013-2015 Intel Mobile Communications GmbH * Copyright (C) 2016-2017 Intel Deutschland GmbH */ #ifndef __iwl_trans_int_pcie_h__ #define __iwl_trans_int_pcie_h__ #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/skbuff.h> #include <linux/wait.h> #include <linux/pci.h> #include <linux/timer.h> #include <linux/cpu.h> #include "iwl-fh.h" #include "iwl-csr.h" #include "iwl-trans.h" #include "iwl-debug.h" #include "iwl-io.h" #include "iwl-op-mode.h" #include "iwl-drv.h" #include "iwl-context-info.h" /* * RX related structures and functions */ #define RX_NUM_QUEUES 1 #define RX_POST_REQ_ALLOC 2 #define RX_CLAIM_REQ_ALLOC 8 #define RX_PENDING_WATERMARK 16 #define FIRST_RX_QUEUE 512 struct iwl_host_cmd; /*This file includes the declaration that are internal to the * trans_pcie layer */ /** * struct iwl_rx_mem_buffer * @page_dma: bus address of rxb page * @page: driver's pointer to the rxb page * @list: list entry for the membuffer * @invalid: rxb is in driver ownership - not owned by HW * @vid: index of this rxb in the global table * @offset: indicates which offset of the page (in bytes) * this buffer uses (if multiple RBs fit into one page) */ struct iwl_rx_mem_buffer { dma_addr_t page_dma; struct page *page; struct list_head list; u32 offset; u16 vid; bool invalid; }; /* interrupt statistics */ struct isr_statistics { u32 hw; u32 sw; u32 err_code; u32 sch; u32 alive; u32 rfkill; u32 ctkill; u32 wakeup; u32 rx; u32 tx; u32 unhandled; }; /** * struct iwl_rx_transfer_desc - transfer descriptor * @addr: ptr to free buffer start address * @rbid: unique tag of the buffer * @reserved: reserved */ struct iwl_rx_transfer_desc { __le16 rbid; __le16 reserved[3]; __le64 addr; } __packed; #define IWL_RX_CD_FLAGS_FRAGMENTED BIT(0) /** * struct iwl_rx_completion_desc - completion descriptor * @reserved1: reserved * @rbid: unique tag of the received buffer * @flags: flags (0: fragmented, all others: reserved) * @reserved2: reserved */ struct iwl_rx_completion_desc { __le32 reserved1; __le16 rbid; u8 flags; u8 reserved2[25]; } __packed; /** * struct iwl_rx_completion_desc_bz - Bz completion descriptor * @rbid: unique tag of the received buffer * @flags: flags (0: fragmented, all others: reserved) * @reserved: reserved */ struct iwl_rx_completion_desc_bz { __le16 rbid; u8 flags; u8 reserved[1]; } __packed; /** * struct iwl_rxq - Rx queue * @id: queue index * @bd: driver's pointer to buffer of receive buffer descriptors (rbd). * Address size is 32 bit in pre-9000 devices and 64 bit in 9000 devices. * In AX210 devices it is a pointer to a list of iwl_rx_transfer_desc's * @bd_dma: bus address of buffer of receive buffer descriptors (rbd) * @used_bd: driver's pointer to buffer of used receive buffer descriptors (rbd) * @used_bd_dma: physical address of buffer of used receive buffer descriptors (rbd) * @read: Shared index to newest available Rx buffer * @write: Shared index to oldest written Rx packet * @write_actual: actual write pointer written to device, since we update in * blocks of 8 only * @free_count: Number of pre-allocated buffers in rx_free * @used_count: Number of RBDs handled to allocator to use for allocation * @write_actual: * @rx_free: list of RBDs with allocated RB ready for use * @rx_used: list of RBDs with no RB attached * @need_update: flag to indicate we need to update read/write index * @rb_stts: driver's pointer to receive buffer status * @rb_stts_dma: bus address of receive buffer status * @lock: per-queue lock * @queue: actual rx queue. Not used for multi-rx queue. * @next_rb_is_fragment: indicates that the previous RB that we handled set * the fragmented flag, so the next one is still another fragment * @napi: NAPI struct for this queue * @queue_size: size of this queue * * NOTE: rx_free and rx_used are used as a FIFO for iwl_rx_mem_buffers */ struct iwl_rxq { int id; void *bd; dma_addr_t bd_dma; void *used_bd; dma_addr_t used_bd_dma; u32 read; u32 write; u32 free_count; u32 used_count; u32 write_actual; u32 queue_size; struct list_head rx_free; struct list_head rx_used; bool need_update, next_rb_is_fragment; void *rb_stts; dma_addr_t rb_stts_dma; spinlock_t lock; struct napi_struct napi; struct iwl_rx_mem_buffer *queue[RX_QUEUE_SIZE]; }; /** * struct iwl_rb_allocator - Rx allocator * @req_pending: number of requests the allcator had not processed yet * @req_ready: number of requests honored and ready for claiming * @rbd_allocated: RBDs with pages allocated and ready to be handled to * the queue. This is a list of &struct iwl_rx_mem_buffer * @rbd_empty: RBDs with no page attached for allocator use. This is a list * of &struct iwl_rx_mem_buffer * @lock: protects the rbd_allocated and rbd_empty lists * @alloc_wq: work queue for background calls * @rx_alloc: work struct for background calls */ struct iwl_rb_allocator { atomic_t req_pending; atomic_t req_ready; struct list_head rbd_allocated; struct list_head rbd_empty; spinlock_t lock; struct workqueue_struct *alloc_wq; struct work_struct rx_alloc; }; /** * iwl_get_closed_rb_stts - get closed rb stts from different structs * @trans: transport pointer (for configuration) * @rxq: the rxq to get the rb stts from */ static inline u16 iwl_get_closed_rb_stts(struct iwl_trans *trans, struct iwl_rxq *rxq) { if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { __le16 *rb_stts = rxq->rb_stts; return le16_to_cpu(READ_ONCE(*rb_stts)); } else { struct iwl_rb_status *rb_stts = rxq->rb_stts; return le16_to_cpu(READ_ONCE(rb_stts->closed_rb_num)) & 0xFFF; } } #ifdef CONFIG_IWLWIFI_DEBUGFS /** * enum iwl_fw_mon_dbgfs_state - the different states of the monitor_data * debugfs file * * @IWL_FW_MON_DBGFS_STATE_CLOSED: the file is closed. * @IWL_FW_MON_DBGFS_STATE_OPEN: the file is open. * @IWL_FW_MON_DBGFS_STATE_DISABLED: the file is disabled, once this state is * set the file can no longer be used. */ enum iwl_fw_mon_dbgfs_state { IWL_FW_MON_DBGFS_STATE_CLOSED, IWL_FW_MON_DBGFS_STATE_OPEN, IWL_FW_MON_DBGFS_STATE_DISABLED, }; #endif /** * enum iwl_shared_irq_flags - level of sharing for irq * @IWL_SHARED_IRQ_NON_RX: interrupt vector serves non rx causes. * @IWL_SHARED_IRQ_FIRST_RSS: interrupt vector serves first RSS queue. */ enum iwl_shared_irq_flags { IWL_SHARED_IRQ_NON_RX = BIT(0), IWL_SHARED_IRQ_FIRST_RSS = BIT(1), }; /** * enum iwl_image_response_code - image response values * @IWL_IMAGE_RESP_DEF: the default value of the register * @IWL_IMAGE_RESP_SUCCESS: iml was read successfully * @IWL_IMAGE_RESP_FAIL: iml reading failed */ enum iwl_image_response_code { IWL_IMAGE_RESP_DEF = 0, IWL_IMAGE_RESP_SUCCESS = 1, IWL_IMAGE_RESP_FAIL = 2, }; #ifdef CONFIG_IWLWIFI_DEBUGFS /** * struct cont_rec: continuous recording data structure * @prev_wr_ptr: the last address that was read in monitor_data * debugfs file * @prev_wrap_cnt: the wrap count that was used during the last read in * monitor_data debugfs file * @state: the state of monitor_data debugfs file as described * in &iwl_fw_mon_dbgfs_state enum * @mutex: locked while reading from monitor_data debugfs file */ struct cont_rec { u32 prev_wr_ptr; u32 prev_wrap_cnt; u8 state; /* Used to sync monitor_data debugfs file with driver unload flow */ struct mutex mutex; }; #endif enum iwl_pcie_fw_reset_state { FW_RESET_IDLE, FW_RESET_REQUESTED, FW_RESET_OK, FW_RESET_ERROR, }; /** * enum iwl_pcie_imr_status - imr dma transfer state * @IMR_D2S_IDLE: default value of the dma transfer * @IMR_D2S_REQUESTED: dma transfer requested * @IMR_D2S_COMPLETED: dma transfer completed * @IMR_D2S_ERROR: dma transfer error */ enum iwl_pcie_imr_status { IMR_D2S_IDLE, IMR_D2S_REQUESTED, IMR_D2S_COMPLETED, IMR_D2S_ERROR, }; /** * struct iwl_pcie_txqs - TX queues data * * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes) * @page_offs: offset from skb->cb to mac header page pointer * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer * @queue_used: bit mask of used queues * @queue_stopped: bit mask of stopped queues * @txq: array of TXQ data structures representing the TXQs * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler * @queue_alloc_cmd_ver: queue allocation command version * @bc_pool: bytecount DMA allocations pool * @bc_tbl_size: bytecount table size * @tso_hdr_page: page allocated (per CPU) for A-MSDU headers when doing TSO * (and similar usage) * @cmd: command queue data * @cmd.fifo: FIFO number * @cmd.q_id: queue ID * @cmd.wdg_timeout: watchdog timeout * @tfd: TFD data * @tfd.max_tbs: max number of buffers per TFD * @tfd.size: TFD size * @tfd.addr_size: TFD/TB address size */ struct iwl_pcie_txqs { unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES]; struct dma_pool *bc_pool; size_t bc_tbl_size; bool bc_table_dword; u8 page_offs; u8 dev_cmd_offs; struct iwl_tso_hdr_page __percpu *tso_hdr_page; struct { u8 fifo; u8 q_id; unsigned int wdg_timeout; } cmd; struct { u8 max_tbs; u16 size; u8 addr_size; } tfd; struct iwl_dma_ptr scd_bc_tbls; u8 queue_alloc_cmd_ver; }; /** * struct iwl_trans_pcie - PCIe transport specific data * @rxq: all the RX queue data * @rx_pool: initial pool of iwl_rx_mem_buffer for all the queues * @global_table: table mapping received VID from hw to rxb * @rba: allocator for RX replenishing * @ctxt_info: context information for FW self init * @ctxt_info_gen3: context information for gen3 devices * @prph_info: prph info for self init * @prph_scratch: prph scratch for self init * @ctxt_info_dma_addr: dma addr of context information * @prph_info_dma_addr: dma addr of prph info * @prph_scratch_dma_addr: dma addr of prph scratch * @ctxt_info_dma_addr: dma addr of context information * @iml: image loader image virtual address * @iml_dma_addr: image loader image DMA address * @trans: pointer to the generic transport area * @scd_base_addr: scheduler sram base address in SRAM * @kw: keep warm address * @pnvm_data: holds info about pnvm payloads allocated in DRAM * @reduced_tables_data: holds info about power reduced tablse * payloads allocated in DRAM * @pci_dev: basic pci-network driver stuff * @hw_base: pci hardware address support * @ucode_write_complete: indicates that the ucode has been copied. * @ucode_write_waitq: wait queue for uCode load * @cmd_queue - command queue number * @rx_buf_size: Rx buffer size * @scd_set_active: should the transport configure the SCD for HCMD queue * @rx_page_order: page order for receive buffer size * @rx_buf_bytes: RX buffer (RB) size in bytes * @reg_lock: protect hw register access * @mutex: to protect stop_device / start_fw / start_hw * @fw_mon_data: fw continuous recording data * @cmd_hold_nic_awake: indicates NIC is held awake for APMG workaround * during commands in flight * @msix_entries: array of MSI-X entries * @msix_enabled: true if managed to enable MSI-X * @shared_vec_mask: the type of causes the shared vector handles * (see iwl_shared_irq_flags). * @alloc_vecs: the number of interrupt vectors allocated by the OS * @def_irq: default irq for non rx causes * @fh_init_mask: initial unmasked fh causes * @hw_init_mask: initial unmasked hw causes * @fh_mask: current unmasked fh causes * @hw_mask: current unmasked hw causes * @in_rescan: true if we have triggered a device rescan * @base_rb_stts: base virtual address of receive buffer status for all queues * @base_rb_stts_dma: base physical address of receive buffer status * @supported_dma_mask: DMA mask to validate the actual address against, * will be DMA_BIT_MASK(11) or DMA_BIT_MASK(12) depending on the device * @alloc_page_lock: spinlock for the page allocator * @alloc_page: allocated page to still use parts of * @alloc_page_used: how much of the allocated page was already used (bytes) * @imr_status: imr dma state machine * @imr_waitq: imr wait queue for dma completion * @rf_name: name/version of the CRF, if any * @use_ict: whether or not ICT (interrupt table) is used * @ict_index: current ICT read index * @ict_tbl: ICT table pointer * @ict_tbl_dma: ICT table DMA address * @inta_mask: interrupt (INT-A) mask * @irq_lock: lock to synchronize IRQ handling * @txq_memory: TXQ allocation array * @sx_waitq: waitqueue for Sx transitions * @sx_complete: completion for Sx transitions * @pcie_dbg_dumped_once: indicates PCIe regs were dumped already * @opmode_down: indicates opmode went away * @num_rx_bufs: number of RX buffers to allocate/use * @no_reclaim_cmds: special commands not using reclaim flow * (firmware workaround) * @n_no_reclaim_cmds: number of special commands not using reclaim flow * @affinity_mask: IRQ affinity mask for each RX queue * @debug_rfkill: RF-kill debugging state, -1 for unset, 0/1 for radio * enable/disable * @fw_reset_handshake: indicates FW reset handshake is needed * @fw_reset_state: state of FW reset handshake * @fw_reset_waitq: waitqueue for FW reset handshake * @is_down: indicates the NIC is down * @isr_stats: interrupt statistics * @napi_dev: (fake) netdev for NAPI registration * @txqs: transport tx queues data. */ struct iwl_trans_pcie { struct iwl_rxq *rxq; struct iwl_rx_mem_buffer *rx_pool; struct iwl_rx_mem_buffer **global_table; struct iwl_rb_allocator rba; union { struct iwl_context_info *ctxt_info; struct iwl_context_info_gen3 *ctxt_info_gen3; }; struct iwl_prph_info *prph_info; struct iwl_prph_scratch *prph_scratch; void *iml; dma_addr_t ctxt_info_dma_addr; dma_addr_t prph_info_dma_addr; dma_addr_t prph_scratch_dma_addr; dma_addr_t iml_dma_addr; struct iwl_trans *trans; struct net_device *napi_dev; /* INT ICT Table */ __le32 *ict_tbl; dma_addr_t ict_tbl_dma; int ict_index; bool use_ict; bool is_down, opmode_down; s8 debug_rfkill; struct isr_statistics isr_stats; spinlock_t irq_lock; struct mutex mutex; u32 inta_mask; u32 scd_base_addr; struct iwl_dma_ptr kw; /* pnvm data */ struct iwl_dram_regions pnvm_data; struct iwl_dram_regions reduced_tables_data; struct iwl_txq *txq_memory; /* PCI bus related data */ struct pci_dev *pci_dev; u8 __iomem *hw_base; bool ucode_write_complete; bool sx_complete; wait_queue_head_t ucode_write_waitq; wait_queue_head_t sx_waitq; u8 n_no_reclaim_cmds; u8 no_reclaim_cmds[MAX_NO_RECLAIM_CMDS]; u16 num_rx_bufs; enum iwl_amsdu_size rx_buf_size; bool scd_set_active; bool pcie_dbg_dumped_once; u32 rx_page_order; u32 rx_buf_bytes; u32 supported_dma_mask; /* allocator lock for the two values below */ spinlock_t alloc_page_lock; struct page *alloc_page; u32 alloc_page_used; /*protect hw register */ spinlock_t reg_lock; bool cmd_hold_nic_awake; #ifdef CONFIG_IWLWIFI_DEBUGFS struct cont_rec fw_mon_data; #endif struct msix_entry msix_entries[IWL_MAX_RX_HW_QUEUES]; bool msix_enabled; u8 shared_vec_mask; u32 alloc_vecs; u32 def_irq; u32 fh_init_mask; u32 hw_init_mask; u32 fh_mask; u32 hw_mask; cpumask_t affinity_mask[IWL_MAX_RX_HW_QUEUES]; u16 tx_cmd_queue_size; bool in_rescan; void *base_rb_stts; dma_addr_t base_rb_stts_dma; bool fw_reset_handshake; enum iwl_pcie_fw_reset_state fw_reset_state; wait_queue_head_t fw_reset_waitq; enum iwl_pcie_imr_status imr_status; wait_queue_head_t imr_waitq; char rf_name[32]; struct iwl_pcie_txqs txqs; }; static inline struct iwl_trans_pcie * IWL_TRANS_GET_PCIE_TRANS(struct iwl_trans *trans) { return (void *)trans->trans_specific; } static inline void iwl_pcie_clear_irq(struct iwl_trans *trans, int queue) { /* * Before sending the interrupt the HW disables it to prevent * a nested interrupt. This is done by writing 1 to the corresponding * bit in the mask register. After handling the interrupt, it should be * re-enabled by clearing this bit. This register is defined as * write 1 clear (W1C) register, meaning that it's being clear * by writing 1 to the bit. */ iwl_write32(trans, CSR_MSIX_AUTOMASK_ST_AD, BIT(queue)); } static inline struct iwl_trans * iwl_trans_pcie_get_trans(struct iwl_trans_pcie *trans_pcie) { return container_of((void *)trans_pcie, struct iwl_trans, trans_specific); } /* * Convention: trans API functions: iwl_trans_pcie_XXX * Other functions: iwl_pcie_XXX */ struct iwl_trans *iwl_trans_pcie_alloc(struct pci_dev *pdev, const struct pci_device_id *ent, const struct iwl_cfg_trans_params *cfg_trans); void iwl_trans_pcie_free(struct iwl_trans *trans); void iwl_trans_pcie_free_pnvm_dram_regions(struct iwl_dram_regions *dram_regions, struct device *dev); bool __iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans); #define _iwl_trans_pcie_grab_nic_access(trans) \ __cond_lock(nic_access_nobh, \ likely(__iwl_trans_pcie_grab_nic_access(trans))) /***************************************************** * RX ******************************************************/ int iwl_pcie_rx_init(struct iwl_trans *trans); int iwl_pcie_gen2_rx_init(struct iwl_trans *trans); irqreturn_t iwl_pcie_msix_isr(int irq, void *data); irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id); irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id); irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id); int iwl_pcie_rx_stop(struct iwl_trans *trans); void iwl_pcie_rx_free(struct iwl_trans *trans); void iwl_pcie_free_rbs_pool(struct iwl_trans *trans); void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq); void iwl_pcie_rx_napi_sync(struct iwl_trans *trans); void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, struct iwl_rxq *rxq); /***************************************************** * ICT - interrupt handling ******************************************************/ irqreturn_t iwl_pcie_isr(int irq, void *data); int iwl_pcie_alloc_ict(struct iwl_trans *trans); void iwl_pcie_free_ict(struct iwl_trans *trans); void iwl_pcie_reset_ict(struct iwl_trans *trans); void iwl_pcie_disable_ict(struct iwl_trans *trans); /***************************************************** * TX / HCMD ******************************************************/ /* We need 2 entries for the TX command and header, and another one might * be needed for potential data in the SKB's head. The remaining ones can * be used for frags. */ #define IWL_TRANS_PCIE_MAX_FRAGS(trans_pcie) ((trans_pcie)->txqs.tfd.max_tbs - 3) struct iwl_tso_hdr_page { struct page *page; u8 *pos; }; /* * Note that we put this struct *last* in the page. By doing that, we ensure * that no TB referencing this page can trigger the 32-bit boundary hardware * bug. */ struct iwl_tso_page_info { dma_addr_t dma_addr; struct page *next; refcount_t use_count; }; #define IWL_TSO_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(struct iwl_tso_page_info)) #define IWL_TSO_PAGE_INFO(addr) \ ((struct iwl_tso_page_info *)(((unsigned long)addr & PAGE_MASK) + \ IWL_TSO_PAGE_DATA_SIZE)) int iwl_pcie_tx_init(struct iwl_trans *trans); void iwl_pcie_tx_start(struct iwl_trans *trans, u32 scd_base_addr); int iwl_pcie_tx_stop(struct iwl_trans *trans); void iwl_pcie_tx_free(struct iwl_trans *trans); bool iwl_trans_pcie_txq_enable(struct iwl_trans *trans, int queue, u16 ssn, const struct iwl_trans_txq_scd_cfg *cfg, unsigned int wdg_timeout); void iwl_trans_pcie_txq_disable(struct iwl_trans *trans, int queue, bool configure_scd); void iwl_trans_pcie_txq_set_shared_mode(struct iwl_trans *trans, u32 txq_id, bool shared_mode); int iwl_trans_pcie_tx(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_device_tx_cmd *dev_cmd, int txq_id); void iwl_pcie_txq_check_wrptrs(struct iwl_trans *trans); void iwl_pcie_hcmd_complete(struct iwl_trans *trans, struct iwl_rx_cmd_buffer *rxb); void iwl_trans_pcie_tx_reset(struct iwl_trans *trans); int iwl_pcie_txq_alloc(struct iwl_trans *trans, struct iwl_txq *txq, int slots_num, bool cmd_queue); dma_addr_t iwl_pcie_get_sgt_tb_phys(struct sg_table *sgt, unsigned int offset, unsigned int len); struct sg_table *iwl_pcie_prep_tso(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_cmd_meta *cmd_meta, u8 **hdr, unsigned int hdr_room); void iwl_pcie_free_tso_pages(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_cmd_meta *cmd_meta); static inline dma_addr_t iwl_pcie_get_tso_page_phys(void *addr) { dma_addr_t res; res = IWL_TSO_PAGE_INFO(addr)->dma_addr; res += (unsigned long)addr & ~PAGE_MASK; return res; } static inline dma_addr_t iwl_txq_get_first_tb_dma(struct iwl_txq *txq, int idx) { return txq->first_tb_dma + sizeof(struct iwl_pcie_first_tb_buf) * idx; } static inline u16 iwl_txq_get_cmd_index(const struct iwl_txq *q, u32 index) { return index & (q->n_window - 1); } static inline void *iwl_txq_get_tfd(struct iwl_trans *trans, struct iwl_txq *txq, int idx) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (trans->trans_cfg->gen2) idx = iwl_txq_get_cmd_index(txq, idx); return (u8 *)txq->tfds + trans_pcie->txqs.tfd.size * idx; } /* * We need this inline in case dma_addr_t is only 32-bits - since the * hardware is always 64-bit, the issue can still occur in that case, * so use u64 for 'phys' here to force the addition in 64-bit. */ static inline bool iwl_txq_crosses_4g_boundary(u64 phys, u16 len) { return upper_32_bits(phys) != upper_32_bits(phys + len); } int iwl_txq_space(struct iwl_trans *trans, const struct iwl_txq *q); static inline void iwl_txq_stop(struct iwl_trans *trans, struct iwl_txq *txq) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (!test_and_set_bit(txq->id, trans_pcie->txqs.queue_stopped)) { iwl_op_mode_queue_full(trans->op_mode, txq->id); IWL_DEBUG_TX_QUEUES(trans, "Stop hwq %d\n", txq->id); } else { IWL_DEBUG_TX_QUEUES(trans, "hwq %d already stopped\n", txq->id); } } /** * iwl_txq_inc_wrap - increment queue index, wrap back to beginning * @trans: the transport (for configuration data) * @index: current index */ static inline int iwl_txq_inc_wrap(struct iwl_trans *trans, int index) { return ++index & (trans->trans_cfg->base_params->max_tfd_queue_size - 1); } /** * iwl_txq_dec_wrap - decrement queue index, wrap back to end * @trans: the transport (for configuration data) * @index: current index */ static inline int iwl_txq_dec_wrap(struct iwl_trans *trans, int index) { return --index & (trans->trans_cfg->base_params->max_tfd_queue_size - 1); } void iwl_txq_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq); static inline void iwl_trans_pcie_wake_queue(struct iwl_trans *trans, struct iwl_txq *txq) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); if (test_and_clear_bit(txq->id, trans_pcie->txqs.queue_stopped)) { IWL_DEBUG_TX_QUEUES(trans, "Wake hwq %d\n", txq->id); iwl_op_mode_queue_not_full(trans->op_mode, txq->id); } } int iwl_txq_gen2_set_tb(struct iwl_trans *trans, struct iwl_tfh_tfd *tfd, dma_addr_t addr, u16 len); static inline void iwl_txq_set_tfd_invalid_gen2(struct iwl_trans *trans, struct iwl_tfh_tfd *tfd) { tfd->num_tbs = 0; iwl_txq_gen2_set_tb(trans, tfd, trans->invalid_tx_cmd.dma, trans->invalid_tx_cmd.size); } void iwl_txq_gen2_tfd_unmap(struct iwl_trans *trans, struct iwl_cmd_meta *meta, struct iwl_tfh_tfd *tfd); int iwl_txq_dyn_alloc(struct iwl_trans *trans, u32 flags, u32 sta_mask, u8 tid, int size, unsigned int timeout); int iwl_txq_gen2_tx(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_device_tx_cmd *dev_cmd, int txq_id); void iwl_txq_dyn_free(struct iwl_trans *trans, int queue); void iwl_txq_gen2_tx_free(struct iwl_trans *trans); int iwl_txq_init(struct iwl_trans *trans, struct iwl_txq *txq, int slots_num, bool cmd_queue); int iwl_txq_gen2_init(struct iwl_trans *trans, int txq_id, int queue_size); static inline u16 iwl_txq_gen1_tfd_tb_get_len(struct iwl_trans *trans, void *_tfd, u8 idx) { struct iwl_tfd *tfd; struct iwl_tfd_tb *tb; if (trans->trans_cfg->gen2) { struct iwl_tfh_tfd *tfh_tfd = _tfd; struct iwl_tfh_tb *tfh_tb = &tfh_tfd->tbs[idx]; return le16_to_cpu(tfh_tb->tb_len); } tfd = (struct iwl_tfd *)_tfd; tb = &tfd->tbs[idx]; return le16_to_cpu(tb->hi_n_len) >> 4; } void iwl_pcie_reclaim(struct iwl_trans *trans, int txq_id, int ssn, struct sk_buff_head *skbs, bool is_flush); void iwl_pcie_set_q_ptrs(struct iwl_trans *trans, int txq_id, int ptr); void iwl_pcie_freeze_txq_timer(struct iwl_trans *trans, unsigned long txqs, bool freeze); int iwl_trans_pcie_wait_txq_empty(struct iwl_trans *trans, int txq_idx); int iwl_trans_pcie_wait_txqs_empty(struct iwl_trans *trans, u32 txq_bm); /***************************************************** * Error handling ******************************************************/ void iwl_pcie_dump_csr(struct iwl_trans *trans); /***************************************************** * Helpers ******************************************************/ static inline void _iwl_disable_interrupts(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); clear_bit(STATUS_INT_ENABLED, &trans->status); if (!trans_pcie->msix_enabled) { /* disable interrupts from uCode/NIC to host */ iwl_write32(trans, CSR_INT_MASK, 0x00000000); /* acknowledge/clear/reset any interrupts still pending * from uCode or flow handler (Rx/Tx DMA) */ iwl_write32(trans, CSR_INT, 0xffffffff); iwl_write32(trans, CSR_FH_INT_STATUS, 0xffffffff); } else { /* disable all the interrupt we might use */ iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, trans_pcie->fh_init_mask); iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, trans_pcie->hw_init_mask); } IWL_DEBUG_ISR(trans, "Disabled interrupts\n"); } static inline int iwl_pcie_get_num_sections(const struct fw_img *fw, int start) { int i = 0; while (start < fw->num_sec && fw->sec[start].offset != CPU1_CPU2_SEPARATOR_SECTION && fw->sec[start].offset != PAGING_SEPARATOR_SECTION) { start++; i++; } return i; } static inline void iwl_pcie_ctxt_info_free_fw_img(struct iwl_trans *trans) { struct iwl_self_init_dram *dram = &trans->init_dram; int i; if (!dram->fw) { WARN_ON(dram->fw_cnt); return; } for (i = 0; i < dram->fw_cnt; i++) dma_free_coherent(trans->dev, dram->fw[i].size, dram->fw[i].block, dram->fw[i].physical); kfree(dram->fw); dram->fw_cnt = 0; dram->fw = NULL; } static inline void iwl_disable_interrupts(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); spin_lock_bh(&trans_pcie->irq_lock); _iwl_disable_interrupts(trans); spin_unlock_bh(&trans_pcie->irq_lock); } static inline void _iwl_enable_interrupts(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); IWL_DEBUG_ISR(trans, "Enabling interrupts\n"); set_bit(STATUS_INT_ENABLED, &trans->status); if (!trans_pcie->msix_enabled) { trans_pcie->inta_mask = CSR_INI_SET_MASK; iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); } else { /* * fh/hw_mask keeps all the unmasked causes. * Unlike msi, in msix cause is enabled when it is unset. */ trans_pcie->hw_mask = trans_pcie->hw_init_mask; trans_pcie->fh_mask = trans_pcie->fh_init_mask; iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~trans_pcie->fh_mask); iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~trans_pcie->hw_mask); } } static inline void iwl_enable_interrupts(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); spin_lock_bh(&trans_pcie->irq_lock); _iwl_enable_interrupts(trans); spin_unlock_bh(&trans_pcie->irq_lock); } static inline void iwl_enable_hw_int_msk_msix(struct iwl_trans *trans, u32 msk) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, ~msk); trans_pcie->hw_mask = msk; } static inline void iwl_enable_fh_int_msk_msix(struct iwl_trans *trans, u32 msk) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~msk); trans_pcie->fh_mask = msk; } static inline void iwl_enable_fw_load_int(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); IWL_DEBUG_ISR(trans, "Enabling FW load interrupt\n"); if (!trans_pcie->msix_enabled) { trans_pcie->inta_mask = CSR_INT_BIT_FH_TX; iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); } else { iwl_write32(trans, CSR_MSIX_HW_INT_MASK_AD, trans_pcie->hw_init_mask); iwl_enable_fh_int_msk_msix(trans, MSIX_FH_INT_CAUSES_D2S_CH0_NUM); } } static inline void iwl_enable_fw_load_int_ctx_info(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); IWL_DEBUG_ISR(trans, "Enabling ALIVE interrupt only\n"); if (!trans_pcie->msix_enabled) { /* * When we'll receive the ALIVE interrupt, the ISR will call * iwl_enable_fw_load_int_ctx_info again to set the ALIVE * interrupt (which is not really needed anymore) but also the * RX interrupt which will allow us to receive the ALIVE * notification (which is Rx) and continue the flow. */ trans_pcie->inta_mask = CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX; iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); } else { iwl_enable_hw_int_msk_msix(trans, MSIX_HW_INT_CAUSES_REG_ALIVE); /* * Leave all the FH causes enabled to get the ALIVE * notification. */ iwl_enable_fh_int_msk_msix(trans, trans_pcie->fh_init_mask); } } static inline const char *queue_name(struct device *dev, struct iwl_trans_pcie *trans_p, int i) { if (trans_p->shared_vec_mask) { int vec = trans_p->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0; if (i == 0) return DRV_NAME ":shared_IRQ"; return devm_kasprintf(dev, GFP_KERNEL, DRV_NAME ":queue_%d", i + vec); } if (i == 0) return DRV_NAME ":default_queue"; if (i == trans_p->alloc_vecs - 1) return DRV_NAME ":exception"; return devm_kasprintf(dev, GFP_KERNEL, DRV_NAME ":queue_%d", i); } static inline void iwl_enable_rfkill_int(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); IWL_DEBUG_ISR(trans, "Enabling rfkill interrupt\n"); if (!trans_pcie->msix_enabled) { trans_pcie->inta_mask = CSR_INT_BIT_RF_KILL; iwl_write32(trans, CSR_INT_MASK, trans_pcie->inta_mask); } else { iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, trans_pcie->fh_init_mask); iwl_enable_hw_int_msk_msix(trans, MSIX_HW_INT_CAUSES_REG_RF_KILL); } if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_9000) { /* * On 9000-series devices this bit isn't enabled by default, so * when we power down the device we need set the bit to allow it * to wake up the PCI-E bus for RF-kill interrupts. */ iwl_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN); } } void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans, bool from_irq); static inline bool iwl_is_rfkill_set(struct iwl_trans *trans) { struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); lockdep_assert_held(&trans_pcie->mutex); if (trans_pcie->debug_rfkill == 1) return true; return !(iwl_read32(trans, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW); } static inline void __iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) { u32 v; #ifdef CONFIG_IWLWIFI_DEBUG WARN_ON_ONCE(value & ~mask); #endif v = iwl_read32(trans, reg); v &= ~mask; v |= value; iwl_write32(trans, reg, v); } static inline void __iwl_trans_pcie_clear_bit(struct iwl_trans *trans, u32 reg, u32 mask) { __iwl_trans_pcie_set_bits_mask(trans, reg, mask, 0); } static inline void __iwl_trans_pcie_set_bit(struct iwl_trans *trans, u32 reg, u32 mask) { __iwl_trans_pcie_set_bits_mask(trans, reg, mask, mask); } static inline bool iwl_pcie_dbg_on(struct iwl_trans *trans) { return (trans->dbg.dest_tlv || iwl_trans_dbg_ini_valid(trans)); } void iwl_trans_pcie_rf_kill(struct iwl_trans *trans, bool state, bool from_irq); void iwl_trans_pcie_dump_regs(struct iwl_trans *trans); #ifdef CONFIG_IWLWIFI_DEBUGFS void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans); void iwl_trans_pcie_debugfs_cleanup(struct iwl_trans *trans); #else static inline void iwl_trans_pcie_dbgfs_register(struct iwl_trans *trans) { } #endif void iwl_pcie_rx_allocator_work(struct work_struct *data); /* common trans ops for all generations transports */ void iwl_trans_pcie_configure(struct iwl_trans *trans, const struct iwl_trans_config *trans_cfg); int iwl_trans_pcie_start_hw(struct iwl_trans *trans); void iwl_trans_pcie_op_mode_leave(struct iwl_trans *trans); void iwl_trans_pcie_write8(struct iwl_trans *trans, u32 ofs, u8 val); void iwl_trans_pcie_write32(struct iwl_trans *trans, u32 ofs, u32 val); u32 iwl_trans_pcie_read32(struct iwl_trans *trans, u32 ofs); u32 iwl_trans_pcie_read_prph(struct iwl_trans *trans, u32 reg); void iwl_trans_pcie_write_prph(struct iwl_trans *trans, u32 addr, u32 val); int iwl_trans_pcie_read_mem(struct iwl_trans *trans, u32 addr, void *buf, int dwords); int iwl_trans_pcie_write_mem(struct iwl_trans *trans, u32 addr, const void *buf, int dwords); int iwl_trans_pcie_sw_reset(struct iwl_trans *trans, bool retake_ownership); struct iwl_trans_dump_data * iwl_trans_pcie_dump_data(struct iwl_trans *trans, u32 dump_mask, const struct iwl_dump_sanitize_ops *sanitize_ops, void *sanitize_ctx); int iwl_trans_pcie_d3_resume(struct iwl_trans *trans, enum iwl_d3_status *status, bool test, bool reset); int iwl_trans_pcie_d3_suspend(struct iwl_trans *trans, bool test, bool reset); void iwl_trans_pci_interrupts(struct iwl_trans *trans, bool enable); void iwl_trans_pcie_sync_nmi(struct iwl_trans *trans); void iwl_trans_pcie_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value); int iwl_trans_pcie_read_config32(struct iwl_trans *trans, u32 ofs, u32 *val); bool iwl_trans_pcie_grab_nic_access(struct iwl_trans *trans); void iwl_trans_pcie_release_nic_access(struct iwl_trans *trans); /* transport gen 1 exported functions */ void iwl_trans_pcie_fw_alive(struct iwl_trans *trans, u32 scd_addr); int iwl_trans_pcie_start_fw(struct iwl_trans *trans, const struct fw_img *fw, bool run_in_rfkill); void iwl_trans_pcie_stop_device(struct iwl_trans *trans); /* common functions that are used by gen2 transport */ int iwl_pcie_gen2_apm_init(struct iwl_trans *trans); void iwl_pcie_apm_config(struct iwl_trans *trans); int iwl_pcie_prepare_card_hw(struct iwl_trans *trans); void iwl_pcie_synchronize_irqs(struct iwl_trans *trans); bool iwl_pcie_check_hw_rf_kill(struct iwl_trans *trans); void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans *trans, bool was_in_rfkill); void iwl_pcie_apm_stop_master(struct iwl_trans *trans); void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie *trans_pcie); int iwl_pcie_alloc_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr, size_t size); void iwl_pcie_free_dma_ptr(struct iwl_trans *trans, struct iwl_dma_ptr *ptr); void iwl_pcie_apply_destination(struct iwl_trans *trans); /* common functions that are used by gen3 transport */ void iwl_pcie_alloc_fw_monitor(struct iwl_trans *trans, u8 max_power); /* transport gen 2 exported functions */ int iwl_trans_pcie_gen2_start_fw(struct iwl_trans *trans, const struct fw_img *fw, bool run_in_rfkill); void iwl_trans_pcie_gen2_fw_alive(struct iwl_trans *trans); int iwl_trans_pcie_gen2_send_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); void iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans); void _iwl_trans_pcie_gen2_stop_device(struct iwl_trans *trans); void iwl_pcie_d3_complete_suspend(struct iwl_trans *trans, bool test, bool reset); int iwl_pcie_gen2_enqueue_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); int iwl_pcie_enqueue_hcmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); void iwl_trans_pcie_copy_imr_fh(struct iwl_trans *trans, u32 dst_addr, u64 src_addr, u32 byte_cnt); int iwl_trans_pcie_copy_imr(struct iwl_trans *trans, u32 dst_addr, u64 src_addr, u32 byte_cnt); int iwl_trans_pcie_rxq_dma_data(struct iwl_trans *trans, int queue, struct iwl_trans_rxq_dma_data *data); #endif /* __iwl_trans_int_pcie_h__ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1