Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Larry Finger | 12563 | 99.48% | 23 | 65.71% |
Sriram R | 26 | 0.21% | 1 | 2.86% |
Joe Perches | 12 | 0.10% | 1 | 2.86% |
Ping-Ke Shih | 9 | 0.07% | 2 | 5.71% |
Dmitry Antipov | 6 | 0.05% | 1 | 2.86% |
Jason Yan | 5 | 0.04% | 1 | 2.86% |
Christian Engelmayer | 3 | 0.02% | 1 | 2.86% |
Colin Ian King | 2 | 0.02% | 2 | 5.71% |
Arnd Bergmann | 1 | 0.01% | 1 | 2.86% |
Jes Sorensen | 1 | 0.01% | 1 | 2.86% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 2.86% |
Total | 12629 | 35 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2009-2012 Realtek Corporation.*/ #include "../wifi.h" #include "../efuse.h" #include "../base.h" #include "../regd.h" #include "../cam.h" #include "../ps.h" #include "../pci.h" #include "reg.h" #include "def.h" #include "phy.h" #include "../rtl8723com/phy_common.h" #include "dm.h" #include "../rtl8723com/dm_common.h" #include "fw.h" #include "../rtl8723com/fw_common.h" #include "led.h" #include "hw.h" #include "../pwrseqcmd.h" #include "pwrseq.h" #include "btc.h" #define LLT_CONFIG 5 static void _rtl8723e_set_bcn_ctrl_reg(struct ieee80211_hw *hw, u8 set_bits, u8 clear_bits) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpci->reg_bcn_ctrl_val |= set_bits; rtlpci->reg_bcn_ctrl_val &= ~clear_bits; rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val); } static void _rtl8723e_stop_tx_beacon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp1byte; tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6))); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64); tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); tmp1byte &= ~(BIT(0)); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); } static void _rtl8723e_resume_tx_beacon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp1byte; tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6)); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); tmp1byte |= BIT(1); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); } static void _rtl8723e_enable_bcn_sub_func(struct ieee80211_hw *hw) { _rtl8723e_set_bcn_ctrl_reg(hw, 0, BIT(1)); } static void _rtl8723e_disable_bcn_sub_func(struct ieee80211_hw *hw) { _rtl8723e_set_bcn_ctrl_reg(hw, BIT(1), 0); } void rtl8723e_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); switch (variable) { case HW_VAR_RCR: *((u32 *)(val)) = rtlpci->receive_config; break; case HW_VAR_RF_STATE: *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; break; case HW_VAR_FWLPS_RF_ON:{ enum rf_pwrstate rfstate; u32 val_rcr; rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rfstate)); if (rfstate == ERFOFF) { *((bool *)(val)) = true; } else { val_rcr = rtl_read_dword(rtlpriv, REG_RCR); val_rcr &= 0x00070000; if (val_rcr) *((bool *)(val)) = false; else *((bool *)(val)) = true; } break; } case HW_VAR_FW_PSMODE_STATUS: *((bool *)(val)) = ppsc->fw_current_inpsmode; break; case HW_VAR_CORRECT_TSF:{ u64 tsf; u32 *ptsf_low = (u32 *)&tsf; u32 *ptsf_high = ((u32 *)&tsf) + 1; *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4)); *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR); *((u64 *)(val)) = tsf; break; } case HAL_DEF_WOWLAN: break; default: rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD, "switch case %#x not processed\n", variable); break; } } void rtl8723e_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); u8 idx; switch (variable) { case HW_VAR_ETHER_ADDR:{ for (idx = 0; idx < ETH_ALEN; idx++) { rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]); } break; } case HW_VAR_BASIC_RATE:{ u16 b_rate_cfg = ((u16 *)val)[0]; u8 rate_index = 0; b_rate_cfg = b_rate_cfg & 0x15f; b_rate_cfg |= 0x01; rtl_write_byte(rtlpriv, REG_RRSR, b_rate_cfg & 0xff); rtl_write_byte(rtlpriv, REG_RRSR + 1, (b_rate_cfg >> 8) & 0xff); while (b_rate_cfg > 0x1) { b_rate_cfg = (b_rate_cfg >> 1); rate_index++; } rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, rate_index); break; } case HW_VAR_BSSID:{ for (idx = 0; idx < ETH_ALEN; idx++) { rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]); } break; } case HW_VAR_SIFS:{ rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]); rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]); rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]); rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]); if (!mac->ht_enable) rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e); else rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, *((u16 *)val)); break; } case HW_VAR_SLOT_TIME:{ u8 e_aci; rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD, "HW_VAR_SLOT_TIME %x\n", val[0]); rtl_write_byte(rtlpriv, REG_SLOT, val[0]); for (e_aci = 0; e_aci < AC_MAX; e_aci++) { rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM, (u8 *)(&e_aci)); } break; } case HW_VAR_ACK_PREAMBLE:{ u8 reg_tmp; u8 short_preamble = (bool)(*(u8 *)val); reg_tmp = (mac->cur_40_prime_sc) << 5; if (short_preamble) reg_tmp |= 0x80; rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp); break; } case HW_VAR_AMPDU_MIN_SPACE:{ u8 min_spacing_to_set; min_spacing_to_set = *((u8 *)val); if (min_spacing_to_set <= 7) { mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) | min_spacing_to_set); *val = min_spacing_to_set; rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", mac->min_space_cfg); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, mac->min_space_cfg); } break; } case HW_VAR_SHORTGI_DENSITY:{ u8 density_to_set; density_to_set = *((u8 *)val); mac->min_space_cfg |= (density_to_set << 3); rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_SHORTGI_DENSITY: %#x\n", mac->min_space_cfg); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, mac->min_space_cfg); break; } case HW_VAR_AMPDU_FACTOR:{ u8 regtoset_normal[4] = { 0x41, 0xa8, 0x72, 0xb9 }; u8 regtoset_bt[4] = {0x31, 0x74, 0x42, 0x97}; u8 factor_toset; u8 *p_regtoset = NULL; u8 index = 0; if ((rtlpriv->btcoexist.bt_coexistence) && (rtlpriv->btcoexist.bt_coexist_type == BT_CSR_BC4)) p_regtoset = regtoset_bt; else p_regtoset = regtoset_normal; factor_toset = *((u8 *)val); if (factor_toset <= 3) { factor_toset = (1 << (factor_toset + 2)); if (factor_toset > 0xf) factor_toset = 0xf; for (index = 0; index < 4; index++) { if ((p_regtoset[index] & 0xf0) > (factor_toset << 4)) p_regtoset[index] = (p_regtoset[index] & 0x0f) | (factor_toset << 4); if ((p_regtoset[index] & 0x0f) > factor_toset) p_regtoset[index] = (p_regtoset[index] & 0xf0) | (factor_toset); rtl_write_byte(rtlpriv, (REG_AGGLEN_LMT + index), p_regtoset[index]); } rtl_dbg(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_FACTOR: %#x\n", factor_toset); } break; } case HW_VAR_AC_PARAM:{ u8 e_aci = *((u8 *)val); rtl8723_dm_init_edca_turbo(hw); if (rtlpci->acm_method != EACMWAY2_SW) rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL, (u8 *)(&e_aci)); break; } case HW_VAR_ACM_CTRL:{ u8 e_aci = *((u8 *)val); union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&mac->ac[0].aifs); u8 acm = p_aci_aifsn->f.acm; u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL); acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1); if (acm) { switch (e_aci) { case AC0_BE: acm_ctrl |= ACMHW_BEQEN; break; case AC2_VI: acm_ctrl |= ACMHW_VIQEN; break; case AC3_VO: acm_ctrl |= ACMHW_VOQEN; break; default: rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", acm); break; } } else { switch (e_aci) { case AC0_BE: acm_ctrl &= (~ACMHW_BEQEN); break; case AC2_VI: acm_ctrl &= (~ACMHW_VIQEN); break; case AC3_VO: acm_ctrl &= (~ACMHW_VOQEN); break; default: rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD, "switch case %#x not processed\n", e_aci); break; } } rtl_dbg(rtlpriv, COMP_QOS, DBG_TRACE, "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", acm_ctrl); rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl); break; } case HW_VAR_RCR:{ rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]); rtlpci->receive_config = ((u32 *)(val))[0]; break; } case HW_VAR_RETRY_LIMIT:{ u8 retry_limit = ((u8 *)(val))[0]; rtl_write_word(rtlpriv, REG_RL, retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT); break; } case HW_VAR_DUAL_TSF_RST: rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1))); break; case HW_VAR_EFUSE_BYTES: rtlefuse->efuse_usedbytes = *((u16 *)val); break; case HW_VAR_EFUSE_USAGE: rtlefuse->efuse_usedpercentage = *((u8 *)val); break; case HW_VAR_IO_CMD: rtl8723e_phy_set_io_cmd(hw, (*(enum io_type *)val)); break; case HW_VAR_WPA_CONFIG: rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *)val)); break; case HW_VAR_SET_RPWM:{ u8 rpwm_val; rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM); udelay(1); if (rpwm_val & BIT(7)) { rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, (*(u8 *)val)); } else { rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, ((*(u8 *)val) | BIT(7))); } break; } case HW_VAR_H2C_FW_PWRMODE:{ u8 psmode = (*(u8 *)val); if (psmode != FW_PS_ACTIVE_MODE) rtl8723e_dm_rf_saving(hw, true); rtl8723e_set_fw_pwrmode_cmd(hw, (*(u8 *)val)); break; } case HW_VAR_FW_PSMODE_STATUS: ppsc->fw_current_inpsmode = *((bool *)val); break; case HW_VAR_H2C_FW_JOINBSSRPT:{ u8 mstatus = (*(u8 *)val); u8 tmp_regcr, tmp_reg422; bool b_recover = false; if (mstatus == RT_MEDIA_CONNECT) { rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL); tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1); rtl_write_byte(rtlpriv, REG_CR + 1, (tmp_regcr | BIT(0))); _rtl8723e_set_bcn_ctrl_reg(hw, 0, BIT(3)); _rtl8723e_set_bcn_ctrl_reg(hw, BIT(4), 0); tmp_reg422 = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); if (tmp_reg422 & BIT(6)) b_recover = true; rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422 & (~BIT(6))); rtl8723e_set_fw_rsvdpagepkt(hw, 0); _rtl8723e_set_bcn_ctrl_reg(hw, BIT(3), 0); _rtl8723e_set_bcn_ctrl_reg(hw, 0, BIT(4)); if (b_recover) { rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422); } rtl_write_byte(rtlpriv, REG_CR + 1, (tmp_regcr & ~(BIT(0)))); } rtl8723e_set_fw_joinbss_report_cmd(hw, (*(u8 *)val)); break; } case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:{ rtl8723e_set_p2p_ps_offload_cmd(hw, (*(u8 *)val)); break; } case HW_VAR_AID:{ u16 u2btmp; u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT); u2btmp &= 0xC000; rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp | mac->assoc_id)); break; } case HW_VAR_CORRECT_TSF:{ u8 btype_ibss = ((u8 *)(val))[0]; if (btype_ibss) _rtl8723e_stop_tx_beacon(hw); _rtl8723e_set_bcn_ctrl_reg(hw, 0, BIT(3)); rtl_write_dword(rtlpriv, REG_TSFTR, (u32)(mac->tsf & 0xffffffff)); rtl_write_dword(rtlpriv, REG_TSFTR + 4, (u32)((mac->tsf >> 32) & 0xffffffff)); _rtl8723e_set_bcn_ctrl_reg(hw, BIT(3), 0); if (btype_ibss) _rtl8723e_resume_tx_beacon(hw); break; } case HW_VAR_FW_LPS_ACTION:{ bool b_enter_fwlps = *((bool *)val); u8 rpwm_val, fw_pwrmode; bool fw_current_inps; if (b_enter_fwlps) { rpwm_val = 0x02; /* RF off */ fw_current_inps = true; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, (u8 *)(&ppsc->fwctrl_psmode)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, (u8 *)(&rpwm_val)); } else { rpwm_val = 0x0C; /* RF on */ fw_pwrmode = FW_PS_ACTIVE_MODE; fw_current_inps = false; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, (u8 *)(&rpwm_val)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, (u8 *)(&fw_pwrmode)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); } break; } default: rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD, "switch case %#x not processed\n", variable); break; } } static bool _rtl8723e_llt_write(struct ieee80211_hw *hw, u32 address, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); bool status = true; long count = 0; u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); rtl_write_dword(rtlpriv, REG_LLT_INIT, value); do { value = rtl_read_dword(rtlpriv, REG_LLT_INIT); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) break; if (count > POLLING_LLT_THRESHOLD) { pr_err("Failed to polling write LLT done at address %d!\n", address); status = false; break; } } while (++count); return status; } static bool _rtl8723e_llt_table_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); unsigned short i; u8 txpktbuf_bndy; u8 maxpage; bool status; u8 ubyte; #if LLT_CONFIG == 1 maxpage = 255; txpktbuf_bndy = 252; #elif LLT_CONFIG == 2 maxpage = 127; txpktbuf_bndy = 124; #elif LLT_CONFIG == 3 maxpage = 255; txpktbuf_bndy = 174; #elif LLT_CONFIG == 4 maxpage = 255; txpktbuf_bndy = 246; #elif LLT_CONFIG == 5 maxpage = 255; txpktbuf_bndy = 246; #endif rtl_write_byte(rtlpriv, REG_CR, 0x8B); #if LLT_CONFIG == 1 rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x1c); rtl_write_dword(rtlpriv, REG_RQPN, 0x80a71c1c); #elif LLT_CONFIG == 2 rtl_write_dword(rtlpriv, REG_RQPN, 0x845B1010); #elif LLT_CONFIG == 3 rtl_write_dword(rtlpriv, REG_RQPN, 0x84838484); #elif LLT_CONFIG == 4 rtl_write_dword(rtlpriv, REG_RQPN, 0x80bd1c1c); #elif LLT_CONFIG == 5 rtl_write_word(rtlpriv, REG_RQPN_NPQ, 0x0000); rtl_write_dword(rtlpriv, REG_RQPN, 0x80ac1c29); rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x03); #endif rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x27FF0000 | txpktbuf_bndy)); rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy); rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_PBP, 0x11); rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4); for (i = 0; i < (txpktbuf_bndy - 1); i++) { status = _rtl8723e_llt_write(hw, i, i + 1); if (!status) return status; } status = _rtl8723e_llt_write(hw, (txpktbuf_bndy - 1), 0xFF); if (!status) return status; for (i = txpktbuf_bndy; i < maxpage; i++) { status = _rtl8723e_llt_write(hw, i, (i + 1)); if (!status) return status; } status = _rtl8723e_llt_write(hw, maxpage, txpktbuf_bndy); if (!status) return status; rtl_write_byte(rtlpriv, REG_CR, 0xff); ubyte = rtl_read_byte(rtlpriv, REG_RQPN + 3); rtl_write_byte(rtlpriv, REG_RQPN + 3, ubyte | BIT(7)); return true; } static void _rtl8723e_gen_refresh_led_state(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); enum rtl_led_pin pin0 = rtlpriv->ledctl.sw_led0; if (rtlpriv->rtlhal.up_first_time) return; if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) rtl8723e_sw_led_on(hw, pin0); else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT) rtl8723e_sw_led_on(hw, pin0); else rtl8723e_sw_led_off(hw, pin0); } static bool _rtl8712e_init_mac(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); unsigned char bytetmp; unsigned short wordtmp; u16 retry = 0; u16 tmpu2b; bool mac_func_enable; rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00); bytetmp = rtl_read_byte(rtlpriv, REG_CR); if (bytetmp == 0xFF) mac_func_enable = true; else mac_func_enable = false; /* HW Power on sequence */ if (!rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK, RTL8723_NIC_ENABLE_FLOW)) return false; bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG+2); rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+2, bytetmp | BIT(4)); /* eMAC time out function enable, 0x369[7]=1 */ bytetmp = rtl_read_byte(rtlpriv, 0x369); rtl_write_byte(rtlpriv, 0x369, bytetmp | BIT(7)); /* ePHY reg 0x1e bit[4]=1 using MDIO interface, * we should do this before Enabling ASPM backdoor. */ do { rtl_write_word(rtlpriv, 0x358, 0x5e); udelay(100); rtl_write_word(rtlpriv, 0x356, 0xc280); rtl_write_word(rtlpriv, 0x354, 0xc290); rtl_write_word(rtlpriv, 0x358, 0x3e); udelay(100); rtl_write_word(rtlpriv, 0x358, 0x5e); udelay(100); tmpu2b = rtl_read_word(rtlpriv, 0x356); retry++; } while (tmpu2b != 0xc290 && retry < 100); if (retry >= 100) { rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "InitMAC(): ePHY configure fail!!!\n"); return false; } rtl_write_word(rtlpriv, REG_CR, 0x2ff); rtl_write_word(rtlpriv, REG_CR + 1, 0x06); if (!mac_func_enable) { if (!_rtl8723e_llt_table_init(hw)) return false; } rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff); rtl_write_byte(rtlpriv, REG_HISRE, 0xff); rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x27ff); wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL); wordtmp &= 0xf; wordtmp |= 0xF771; rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F); rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xFFFF); rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config); rtl_write_byte(rtlpriv, 0x4d0, 0x0); rtl_write_dword(rtlpriv, REG_BCNQ_DESA, ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_MGQ_DESA, (u64) rtlpci->tx_ring[MGNT_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_VOQ_DESA, (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_VIQ_DESA, (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_BEQ_DESA, (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_BKQ_DESA, (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_HQ_DESA, (u64) rtlpci->tx_ring[HIGH_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_RX_DESA, (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x74); rtl_write_dword(rtlpriv, REG_INT_MIG, 0); bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL); rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6)); do { retry++; bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL); } while ((retry < 200) && (bytetmp & BIT(7))); _rtl8723e_gen_refresh_led_state(hw); rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0); return true; } static void _rtl8723e_hw_configure(struct ieee80211_hw *hw) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); u8 reg_bw_opmode; u32 reg_prsr; reg_bw_opmode = BW_OPMODE_20MHZ; reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8); rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode); rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr); rtl_write_byte(rtlpriv, REG_SLOT, 0x09); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0); rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80); rtl_write_word(rtlpriv, REG_RL, 0x0707); rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802); rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF); rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000); rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504); rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000); rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504); if ((rtlpriv->btcoexist.bt_coexistence) && (rtlpriv->btcoexist.bt_coexist_type == BT_CSR_BC4)) rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x97427431); else rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841); rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2); rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff); rtlpci->reg_bcn_ctrl_val = 0x1f; rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); rtl_write_byte(rtlpriv, REG_PIFS, 0x1C); rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16); if ((rtlpriv->btcoexist.bt_coexistence) && (rtlpriv->btcoexist.bt_coexist_type == BT_CSR_BC4)) { rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020); rtl_write_word(rtlpriv, REG_PROT_MODE_CTRL, 0x0402); } else { rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020); rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020); } if ((rtlpriv->btcoexist.bt_coexistence) && (rtlpriv->btcoexist.bt_coexist_type == BT_CSR_BC4)) rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x03086666); else rtl_write_dword(rtlpriv, REG_FAST_EDCA_CTRL, 0x086666); rtl_write_byte(rtlpriv, REG_ACKTO, 0x40); rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010); rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010); rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010); rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010); rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff); rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff); rtl_write_dword(rtlpriv, 0x394, 0x1); } static void _rtl8723e_enable_aspm_back_door(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); rtl_write_byte(rtlpriv, 0x34b, 0x93); rtl_write_word(rtlpriv, 0x350, 0x870c); rtl_write_byte(rtlpriv, 0x352, 0x1); if (ppsc->support_backdoor) rtl_write_byte(rtlpriv, 0x349, 0x1b); else rtl_write_byte(rtlpriv, 0x349, 0x03); rtl_write_word(rtlpriv, 0x350, 0x2718); rtl_write_byte(rtlpriv, 0x352, 0x1); } void rtl8723e_enable_hw_security_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 sec_reg_value; rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", rtlpriv->sec.pairwise_enc_algorithm, rtlpriv->sec.group_enc_algorithm); if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "not open hw encryption\n"); return; } sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE; if (rtlpriv->sec.use_defaultkey) { sec_reg_value |= SCR_TXUSEDK; sec_reg_value |= SCR_RXUSEDK; } sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK); rtl_write_byte(rtlpriv, REG_CR + 1, 0x02); rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "The SECR-value %x\n", sec_reg_value); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); } int rtl8723e_hw_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); bool rtstatus; int err; u8 tmp_u1b; unsigned long flags; rtlpriv->rtlhal.being_init_adapter = true; /* As this function can take a very long time (up to 350 ms) * and can be called with irqs disabled, reenable the irqs * to let the other devices continue being serviced. * * It is safe doing so since our own interrupts will only be enabled * in a subsequent step. */ local_save_flags(flags); local_irq_enable(); rtlhal->fw_ready = false; rtlpriv->intf_ops->disable_aspm(hw); rtstatus = _rtl8712e_init_mac(hw); if (!rtstatus) { pr_err("Init MAC failed\n"); err = 1; goto exit; } err = rtl8723_download_fw(hw, false, FW_8723A_POLLING_TIMEOUT_COUNT); if (err) { rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "Failed to download FW. Init HW without FW now..\n"); err = 1; goto exit; } rtlhal->fw_ready = true; rtlhal->last_hmeboxnum = 0; rtl8723e_phy_mac_config(hw); /* because last function modify RCR, so we update * rcr var here, or TP will unstable for receive_config * is wrong, RX RCR_ACRC32 will cause TP unstable & Rx * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252 */ rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR); rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV); rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); rtl8723e_phy_bb_config(hw); rtlphy->rf_mode = RF_OP_BY_SW_3WIRE; rtl8723e_phy_rf_config(hw); if (IS_VENDOR_UMC_A_CUT(rtlhal->version)) { rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255); rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00); } else if (IS_81XXC_VENDOR_UMC_B_CUT(rtlhal->version)) { rtl_set_rfreg(hw, RF90_PATH_A, 0x0C, MASKDWORD, 0x894AE); rtl_set_rfreg(hw, RF90_PATH_A, 0x0A, MASKDWORD, 0x1AF31); rtl_set_rfreg(hw, RF90_PATH_A, RF_IPA, MASKDWORD, 0x8F425); rtl_set_rfreg(hw, RF90_PATH_A, RF_SYN_G2, MASKDWORD, 0x4F200); rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK1, MASKDWORD, 0x44053); rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK2, MASKDWORD, 0x80201); } rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0, RF_CHNLBW, RFREG_OFFSET_MASK); rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1, RF_CHNLBW, RFREG_OFFSET_MASK); rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1); rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1); rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1); _rtl8723e_hw_configure(hw); rtl_cam_reset_all_entry(hw); rtl8723e_enable_hw_security_config(hw); ppsc->rfpwr_state = ERFON; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr); _rtl8723e_enable_aspm_back_door(hw); rtlpriv->intf_ops->enable_aspm(hw); rtl8723e_bt_hw_init(hw); if (ppsc->rfpwr_state == ERFON) { rtl8723e_phy_set_rfpath_switch(hw, 1); if (rtlphy->iqk_initialized) { rtl8723e_phy_iq_calibrate(hw, true); } else { rtl8723e_phy_iq_calibrate(hw, false); rtlphy->iqk_initialized = true; } rtl8723e_dm_check_txpower_tracking(hw); rtl8723e_phy_lc_calibrate(hw); } tmp_u1b = efuse_read_1byte(hw, 0x1FA); if (!(tmp_u1b & BIT(0))) { rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05); rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path A\n"); } if (!(tmp_u1b & BIT(4))) { tmp_u1b = rtl_read_byte(rtlpriv, 0x16); tmp_u1b &= 0x0F; rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80); udelay(10); rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90); rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "under 1.5V\n"); } rtl8723e_dm_init(hw); exit: local_irq_restore(flags); rtlpriv->rtlhal.being_init_adapter = false; return err; } static enum version_8723e _rtl8723e_read_chip_version(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); enum version_8723e version = 0x0000; u32 value32; value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG); if (value32 & TRP_VAUX_EN) { version = (enum version_8723e)(version | ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0)); /* RTL8723 with BT function. */ version = (enum version_8723e)(version | ((value32 & BT_FUNC) ? CHIP_8723 : 0)); } else { /* Normal mass production chip. */ version = (enum version_8723e) NORMAL_CHIP; version = (enum version_8723e)(version | ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0)); /* RTL8723 with BT function. */ version = (enum version_8723e)(version | ((value32 & BT_FUNC) ? CHIP_8723 : 0)); if (IS_CHIP_VENDOR_UMC(version)) version = (enum version_8723e)(version | ((value32 & CHIP_VER_RTL_MASK)));/* IC version (CUT) */ if (IS_8723_SERIES(version)) { value32 = rtl_read_dword(rtlpriv, REG_GPIO_OUTSTS); /* ROM code version. */ version = (enum version_8723e)(version | ((value32 & RF_RL_ID)>>20)); } } if (IS_8723_SERIES(version)) { value32 = rtl_read_dword(rtlpriv, REG_MULTI_FUNC_CTRL); rtlphy->polarity_ctl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT); } switch (version) { case VERSION_TEST_UMC_CHIP_8723: rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Chip Version ID: VERSION_TEST_UMC_CHIP_8723.\n"); break; case VERSION_NORMAL_UMC_CHIP_8723_1T1R_A_CUT: rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Chip Version ID: VERSION_NORMAL_UMC_CHIP_8723_1T1R_A_CUT.\n"); break; case VERSION_NORMAL_UMC_CHIP_8723_1T1R_B_CUT: rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Chip Version ID: VERSION_NORMAL_UMC_CHIP_8723_1T1R_B_CUT.\n"); break; default: pr_err("Chip Version ID: Unknown. Bug?\n"); break; } if (IS_8723_SERIES(version)) rtlphy->rf_type = RF_1T1R; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Chip RF Type: %s\n", (rtlphy->rf_type == RF_2T2R) ? "RF_2T2R" : "RF_1T1R"); return version; } static int _rtl8723e_set_media_status(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 bt_msr = rtl_read_byte(rtlpriv, MSR) & 0xfc; enum led_ctl_mode ledaction = LED_CTL_NO_LINK; u8 mode = MSR_NOLINK; rtl_write_dword(rtlpriv, REG_BCN_CTRL, 0); rtl_dbg(rtlpriv, COMP_BEACON, DBG_LOUD, "clear 0x550 when set HW_VAR_MEDIA_STATUS\n"); switch (type) { case NL80211_IFTYPE_UNSPECIFIED: mode = MSR_NOLINK; rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to NO LINK!\n"); break; case NL80211_IFTYPE_ADHOC: mode = MSR_ADHOC; rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to Ad Hoc!\n"); break; case NL80211_IFTYPE_STATION: mode = MSR_INFRA; ledaction = LED_CTL_LINK; rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to STA!\n"); break; case NL80211_IFTYPE_AP: mode = MSR_AP; ledaction = LED_CTL_LINK; rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to AP!\n"); break; default: pr_err("Network type %d not support!\n", type); return 1; } /* MSR_INFRA == Link in infrastructure network; * MSR_ADHOC == Link in ad hoc network; * Therefore, check link state is necessary. * * MSR_AP == AP mode; link state is not cared here. */ if (mode != MSR_AP && rtlpriv->mac80211.link_state < MAC80211_LINKED) { mode = MSR_NOLINK; ledaction = LED_CTL_NO_LINK; } if (mode == MSR_NOLINK || mode == MSR_INFRA) { _rtl8723e_stop_tx_beacon(hw); _rtl8723e_enable_bcn_sub_func(hw); } else if (mode == MSR_ADHOC || mode == MSR_AP) { _rtl8723e_resume_tx_beacon(hw); _rtl8723e_disable_bcn_sub_func(hw); } else { rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n", mode); } rtl_write_byte(rtlpriv, MSR, bt_msr | mode); rtlpriv->cfg->ops->led_control(hw, ledaction); if (mode == MSR_AP) rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00); else rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66); return 0; } void rtl8723e_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u32 reg_rcr = rtlpci->receive_config; if (rtlpriv->psc.rfpwr_state != ERFON) return; if (check_bssid) { reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); _rtl8723e_set_bcn_ctrl_reg(hw, 0, BIT(4)); } else if (!check_bssid) { reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN)); _rtl8723e_set_bcn_ctrl_reg(hw, BIT(4), 0); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); } } int rtl8723e_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (_rtl8723e_set_media_status(hw, type)) return -EOPNOTSUPP; if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { if (type != NL80211_IFTYPE_AP) rtl8723e_set_check_bssid(hw, true); } else { rtl8723e_set_check_bssid(hw, false); } return 0; } /* don't set REG_EDCA_BE_PARAM here * because mac80211 will send pkt when scan */ void rtl8723e_set_qos(struct ieee80211_hw *hw, int aci) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl8723_dm_init_edca_turbo(hw); switch (aci) { case AC1_BK: rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f); break; case AC0_BE: break; case AC2_VI: rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322); break; case AC3_VO: rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222); break; default: WARN_ONCE(true, "rtl8723ae: invalid aci: %d !\n", aci); break; } } void rtl8723e_enable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_dword(rtlpriv, 0x3a8, rtlpci->irq_mask[0] & 0xFFFFFFFF); rtl_write_dword(rtlpriv, 0x3ac, rtlpci->irq_mask[1] & 0xFFFFFFFF); rtlpci->irq_enabled = true; } void rtl8723e_disable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_dword(rtlpriv, 0x3a8, IMR8190_DISABLED); rtl_write_dword(rtlpriv, 0x3ac, IMR8190_DISABLED); rtlpci->irq_enabled = false; /*synchronize_irq(rtlpci->pdev->irq);*/ } static void _rtl8723e_poweroff_adapter(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 u1b_tmp; /* Combo (PCIe + USB) Card and PCIe-MF Card */ /* 1. Run LPS WL RFOFF flow */ rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK, RTL8723_NIC_LPS_ENTER_FLOW); /* 2. 0x1F[7:0] = 0 */ /* turn off RF */ rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00); if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) && rtlhal->fw_ready) { rtl8723ae_firmware_selfreset(hw); } /* Reset MCU. Suggested by Filen. */ u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN+1); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN+1, (u1b_tmp & (~BIT(2)))); /* g. MCUFWDL 0x80[1:0]=0 */ /* reset MCU ready status */ rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00); /* HW card disable configuration. */ rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK, RTL8723_NIC_DISABLE_FLOW); /* Reset MCU IO Wrapper */ u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1); rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, (u1b_tmp & (~BIT(0)))); u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1); rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, u1b_tmp | BIT(0)); /* 7. RSV_CTRL 0x1C[7:0] = 0x0E */ /* lock ISO/CLK/Power control register */ rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e); } void rtl8723e_card_disable(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); enum nl80211_iftype opmode; mac->link_state = MAC80211_NOLINK; opmode = NL80211_IFTYPE_UNSPECIFIED; _rtl8723e_set_media_status(hw, opmode); if (rtlpriv->rtlhal.driver_is_goingto_unload || ppsc->rfoff_reason > RF_CHANGE_BY_PS) rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); _rtl8723e_poweroff_adapter(hw); /* after power off we should do iqk again */ rtlpriv->phy.iqk_initialized = false; } void rtl8723e_interrupt_recognized(struct ieee80211_hw *hw, struct rtl_int *intvec) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); intvec->inta = rtl_read_dword(rtlpriv, 0x3a0) & rtlpci->irq_mask[0]; rtl_write_dword(rtlpriv, 0x3a0, intvec->inta); } void rtl8723e_set_beacon_related_registers(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 bcn_interval, atim_window; bcn_interval = mac->beacon_interval; atim_window = 2; /*FIX MERGE */ rtl8723e_disable_interrupt(hw); rtl_write_word(rtlpriv, REG_ATIMWND, atim_window); rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f); rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18); rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18); rtl_write_byte(rtlpriv, 0x606, 0x30); rtl8723e_enable_interrupt(hw); } void rtl8723e_set_beacon_interval(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 bcn_interval = mac->beacon_interval; rtl_dbg(rtlpriv, COMP_BEACON, DBG_DMESG, "beacon_interval:%d\n", bcn_interval); rtl8723e_disable_interrupt(hw); rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); rtl8723e_enable_interrupt(hw); } void rtl8723e_update_interrupt_mask(struct ieee80211_hw *hw, u32 add_msr, u32 rm_msr) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_dbg(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n", add_msr, rm_msr); if (add_msr) rtlpci->irq_mask[0] |= add_msr; if (rm_msr) rtlpci->irq_mask[0] &= (~rm_msr); rtl8723e_disable_interrupt(hw); rtl8723e_enable_interrupt(hw); } static u8 _rtl8723e_get_chnl_group(u8 chnl) { u8 group; if (chnl < 3) group = 0; else if (chnl < 9) group = 1; else group = 2; return group; } static void _rtl8723e_read_txpower_info_from_hwpg(struct ieee80211_hw *hw, bool autoload_fail, u8 *hwinfo) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 rf_path, index, tempval; u16 i; for (rf_path = 0; rf_path < 1; rf_path++) { for (i = 0; i < 3; i++) { if (!autoload_fail) { rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] = hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i]; rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] = hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 + i]; } else { rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] = EEPROM_DEFAULT_TXPOWERLEVEL; rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] = EEPROM_DEFAULT_TXPOWERLEVEL; } } } for (i = 0; i < 3; i++) { if (!autoload_fail) tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i]; else tempval = EEPROM_DEFAULT_HT40_2SDIFF; rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_A][i] = (tempval & 0xf); rtlefuse->eprom_chnl_txpwr_ht40_2sdf[RF90_PATH_B][i] = ((tempval & 0xf0) >> 4); } for (rf_path = 0; rf_path < 2; rf_path++) for (i = 0; i < 3; i++) RTPRINT(rtlpriv, FINIT, INIT_EEPROM, "RF(%d) EEPROM CCK Area(%d) = 0x%x\n", rf_path, i, rtlefuse->eeprom_chnlarea_txpwr_cck [rf_path][i]); for (rf_path = 0; rf_path < 2; rf_path++) for (i = 0; i < 3; i++) RTPRINT(rtlpriv, FINIT, INIT_EEPROM, "RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n", rf_path, i, rtlefuse->eeprom_chnlarea_txpwr_ht40_1s [rf_path][i]); for (rf_path = 0; rf_path < 2; rf_path++) for (i = 0; i < 3; i++) RTPRINT(rtlpriv, FINIT, INIT_EEPROM, "RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n", rf_path, i, rtlefuse->eprom_chnl_txpwr_ht40_2sdf [rf_path][i]); for (rf_path = 0; rf_path < 2; rf_path++) { for (i = 0; i < 14; i++) { index = _rtl8723e_get_chnl_group((u8)i); rtlefuse->txpwrlevel_cck[rf_path][i] = rtlefuse->eeprom_chnlarea_txpwr_cck [rf_path][index]; rtlefuse->txpwrlevel_ht40_1s[rf_path][i] = rtlefuse->eeprom_chnlarea_txpwr_ht40_1s [rf_path][index]; if ((rtlefuse->eeprom_chnlarea_txpwr_ht40_1s [rf_path][index] - rtlefuse->eprom_chnl_txpwr_ht40_2sdf [rf_path][index]) > 0) { rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = rtlefuse->eeprom_chnlarea_txpwr_ht40_1s [rf_path][index] - rtlefuse->eprom_chnl_txpwr_ht40_2sdf [rf_path][index]; } else { rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0; } } for (i = 0; i < 14; i++) { RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n", rf_path, i, rtlefuse->txpwrlevel_cck[rf_path][i], rtlefuse->txpwrlevel_ht40_1s[rf_path][i], rtlefuse->txpwrlevel_ht40_2s[rf_path][i]); } } for (i = 0; i < 3; i++) { if (!autoload_fail) { rtlefuse->eeprom_pwrlimit_ht40[i] = hwinfo[EEPROM_TXPWR_GROUP + i]; rtlefuse->eeprom_pwrlimit_ht20[i] = hwinfo[EEPROM_TXPWR_GROUP + 3 + i]; } else { rtlefuse->eeprom_pwrlimit_ht40[i] = 0; rtlefuse->eeprom_pwrlimit_ht20[i] = 0; } } for (rf_path = 0; rf_path < 2; rf_path++) { for (i = 0; i < 14; i++) { index = _rtl8723e_get_chnl_group((u8)i); if (rf_path == RF90_PATH_A) { rtlefuse->pwrgroup_ht20[rf_path][i] = (rtlefuse->eeprom_pwrlimit_ht20[index] & 0xf); rtlefuse->pwrgroup_ht40[rf_path][i] = (rtlefuse->eeprom_pwrlimit_ht40[index] & 0xf); } else if (rf_path == RF90_PATH_B) { rtlefuse->pwrgroup_ht20[rf_path][i] = ((rtlefuse->eeprom_pwrlimit_ht20[index] & 0xf0) >> 4); rtlefuse->pwrgroup_ht40[rf_path][i] = ((rtlefuse->eeprom_pwrlimit_ht40[index] & 0xf0) >> 4); } RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-%d pwrgroup_ht20[%d] = 0x%x\n", rf_path, i, rtlefuse->pwrgroup_ht20[rf_path][i]); RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-%d pwrgroup_ht40[%d] = 0x%x\n", rf_path, i, rtlefuse->pwrgroup_ht40[rf_path][i]); } } for (i = 0; i < 14; i++) { index = _rtl8723e_get_chnl_group((u8)i); if (!autoload_fail) tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index]; else tempval = EEPROM_DEFAULT_HT20_DIFF; rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF); rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] = ((tempval >> 4) & 0xF); if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3)) rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0; if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3)) rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0; index = _rtl8723e_get_chnl_group((u8)i); if (!autoload_fail) tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index]; else tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF; rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF); rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] = ((tempval >> 4) & 0xF); } rtlefuse->legacy_ht_txpowerdiff = rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7]; for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]); for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]); for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]); for (i = 0; i < 14; i++) RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF-B Legacy to HT40 Diff[%d] = 0x%x\n", i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]); if (!autoload_fail) rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7); else rtlefuse->eeprom_regulatory = 0; RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory); if (!autoload_fail) rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A]; else rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI; RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n", rtlefuse->eeprom_tssi[RF90_PATH_A], rtlefuse->eeprom_tssi[RF90_PATH_B]); if (!autoload_fail) tempval = hwinfo[EEPROM_THERMAL_METER]; else tempval = EEPROM_DEFAULT_THERMALMETER; rtlefuse->eeprom_thermalmeter = (tempval & 0x1f); if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail) rtlefuse->apk_thermalmeterignore = true; rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter; RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); } static void _rtl8723e_read_adapter_info(struct ieee80211_hw *hw, bool b_pseudo_test) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); int params[] = {RTL8190_EEPROM_ID, EEPROM_VID, EEPROM_DID, EEPROM_SVID, EEPROM_SMID, EEPROM_MAC_ADDR, EEPROM_CHANNELPLAN, EEPROM_VERSION, EEPROM_CUSTOMER_ID, COUNTRY_CODE_WORLD_WIDE_13}; u8 *hwinfo; if (b_pseudo_test) { /* need add */ return; } hwinfo = kzalloc(HWSET_MAX_SIZE, GFP_KERNEL); if (!hwinfo) return; if (rtl_get_hwinfo(hw, rtlpriv, HWSET_MAX_SIZE, hwinfo, params)) goto exit; _rtl8723e_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag, hwinfo); rtl8723e_read_bt_coexist_info_from_hwpg(hw, rtlefuse->autoload_failflag, hwinfo); if (rtlhal->oem_id != RT_CID_DEFAULT) goto exit; switch (rtlefuse->eeprom_oemid) { case EEPROM_CID_DEFAULT: switch (rtlefuse->eeprom_did) { case 0x8176: switch (rtlefuse->eeprom_svid) { case 0x10EC: switch (rtlefuse->eeprom_smid) { case 0x6151 ... 0x6152: case 0x6154 ... 0x6155: case 0x6177 ... 0x6180: case 0x7151 ... 0x7152: case 0x7154 ... 0x7155: case 0x7177 ... 0x7180: case 0x8151 ... 0x8152: case 0x8154 ... 0x8155: case 0x8181 ... 0x8182: case 0x8184 ... 0x8185: case 0x9151 ... 0x9152: case 0x9154 ... 0x9155: case 0x9181 ... 0x9182: case 0x9184 ... 0x9185: rtlhal->oem_id = RT_CID_TOSHIBA; break; case 0x6191 ... 0x6193: case 0x7191 ... 0x7193: case 0x8191 ... 0x8193: case 0x9191 ... 0x9193: rtlhal->oem_id = RT_CID_819X_SAMSUNG; break; case 0x8197: case 0x9196: rtlhal->oem_id = RT_CID_819X_CLEVO; break; case 0x8203: rtlhal->oem_id = RT_CID_819X_PRONETS; break; case 0x8195: case 0x9195: case 0x7194: case 0x8200 ... 0x8202: case 0x9200: rtlhal->oem_id = RT_CID_819X_LENOVO; break; } break; case 0x1025: rtlhal->oem_id = RT_CID_819X_ACER; break; case 0x1028: switch (rtlefuse->eeprom_smid) { case 0x8194: case 0x8198: case 0x9197 ... 0x9198: rtlhal->oem_id = RT_CID_819X_DELL; break; } break; case 0x103C: switch (rtlefuse->eeprom_smid) { case 0x1629: rtlhal->oem_id = RT_CID_819X_HP; } break; case 0x1A32: switch (rtlefuse->eeprom_smid) { case 0x2315: rtlhal->oem_id = RT_CID_819X_QMI; break; } break; case 0x1043: switch (rtlefuse->eeprom_smid) { case 0x84B5: rtlhal->oem_id = RT_CID_819X_EDIMAX_ASUS; } break; } break; case 0x8178: switch (rtlefuse->eeprom_svid) { case 0x10ec: switch (rtlefuse->eeprom_smid) { case 0x6181 ... 0x6182: case 0x6184 ... 0x6185: case 0x7181 ... 0x7182: case 0x7184 ... 0x7185: case 0x8181 ... 0x8182: case 0x8184 ... 0x8185: case 0x9181 ... 0x9182: case 0x9184 ... 0x9185: rtlhal->oem_id = RT_CID_TOSHIBA; break; case 0x8186: rtlhal->oem_id = RT_CID_819X_PRONETS; break; } break; case 0x1025: rtlhal->oem_id = RT_CID_819X_ACER; break; case 0x1043: switch (rtlefuse->eeprom_smid) { case 0x8486: rtlhal->oem_id = RT_CID_819X_EDIMAX_ASUS; } break; } break; } break; case EEPROM_CID_TOSHIBA: rtlhal->oem_id = RT_CID_TOSHIBA; break; case EEPROM_CID_CCX: rtlhal->oem_id = RT_CID_CCX; break; case EEPROM_CID_QMI: rtlhal->oem_id = RT_CID_819X_QMI; break; case EEPROM_CID_WHQL: break; default: rtlhal->oem_id = RT_CID_DEFAULT; break; } exit: kfree(hwinfo); } static void _rtl8723e_hal_customized_behavior(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); rtlpriv->ledctl.led_opendrain = true; switch (rtlhal->oem_id) { case RT_CID_819X_HP: rtlpriv->ledctl.led_opendrain = true; break; case RT_CID_819X_LENOVO: case RT_CID_DEFAULT: case RT_CID_TOSHIBA: case RT_CID_CCX: case RT_CID_819X_ACER: case RT_CID_WHQL: default: break; } rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "RT Customized ID: 0x%02X\n", rtlhal->oem_id); } void rtl8723e_read_eeprom_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 tmp_u1b; u32 value32; value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST]); value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0); rtl_write_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST], value32); rtlhal->version = _rtl8723e_read_chip_version(hw); if (get_rf_type(rtlphy) == RF_1T1R) rtlpriv->dm.rfpath_rxenable[0] = true; else rtlpriv->dm.rfpath_rxenable[0] = rtlpriv->dm.rfpath_rxenable[1] = true; rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n", rtlhal->version); tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR); if (tmp_u1b & BIT(4)) { rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); rtlefuse->epromtype = EEPROM_93C46; } else { rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); rtlefuse->epromtype = EEPROM_BOOT_EFUSE; } if (tmp_u1b & BIT(5)) { rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); rtlefuse->autoload_failflag = false; _rtl8723e_read_adapter_info(hw, false); } else { rtlefuse->autoload_failflag = true; _rtl8723e_read_adapter_info(hw, false); pr_err("Autoload ERR!!\n"); } _rtl8723e_hal_customized_behavior(hw); } static void rtl8723e_update_hal_rate_table(struct ieee80211_hw *hw, struct ieee80211_sta *sta) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u32 ratr_value; u8 ratr_index = 0; u8 b_nmode = mac->ht_enable; u16 shortgi_rate; u32 tmp_ratr_value; u8 curtxbw_40mhz = mac->bw_40; u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; enum wireless_mode wirelessmode = mac->mode; u32 ratr_mask; if (rtlhal->current_bandtype == BAND_ON_5G) ratr_value = sta->deflink.supp_rates[1] << 4; else ratr_value = sta->deflink.supp_rates[0]; if (mac->opmode == NL80211_IFTYPE_ADHOC) ratr_value = 0xfff; ratr_value |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 | sta->deflink.ht_cap.mcs.rx_mask[0] << 12); switch (wirelessmode) { case WIRELESS_MODE_B: if (ratr_value & 0x0000000c) ratr_value &= 0x0000000d; else ratr_value &= 0x0000000f; break; case WIRELESS_MODE_G: ratr_value &= 0x00000FF5; break; case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: b_nmode = 1; if (get_rf_type(rtlphy) == RF_1T2R || get_rf_type(rtlphy) == RF_1T1R) ratr_mask = 0x000ff005; else ratr_mask = 0x0f0ff005; ratr_value &= ratr_mask; break; default: if (rtlphy->rf_type == RF_1T2R) ratr_value &= 0x000ff0ff; else ratr_value &= 0x0f0ff0ff; break; } if ((rtlpriv->btcoexist.bt_coexistence) && (rtlpriv->btcoexist.bt_coexist_type == BT_CSR_BC4) && (rtlpriv->btcoexist.bt_cur_state) && (rtlpriv->btcoexist.bt_ant_isolation) && ((rtlpriv->btcoexist.bt_service == BT_SCO) || (rtlpriv->btcoexist.bt_service == BT_BUSY))) ratr_value &= 0x0fffcfc0; else ratr_value &= 0x0FFFFFFF; if (b_nmode && ((curtxbw_40mhz && curshortgi_40mhz) || (!curtxbw_40mhz && curshortgi_20mhz))) { ratr_value |= 0x10000000; tmp_ratr_value = (ratr_value >> 12); for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { if ((1 << shortgi_rate) & tmp_ratr_value) break; } shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | (shortgi_rate << 4) | (shortgi_rate); } rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value); rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n", rtl_read_dword(rtlpriv, REG_ARFR0)); } static void rtl8723e_update_hal_rate_mask(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi_level, bool update_bw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_sta_info *sta_entry = NULL; u32 ratr_bitmap; u8 ratr_index; u8 curtxbw_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ? 1 : 0; u8 curshortgi_40mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; u8 curshortgi_20mhz = (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; enum wireless_mode wirelessmode = 0; bool shortgi = false; u8 rate_mask[5]; u8 macid = 0; /*u8 mimo_ps = IEEE80211_SMPS_OFF;*/ sta_entry = (struct rtl_sta_info *)sta->drv_priv; wirelessmode = sta_entry->wireless_mode; if (mac->opmode == NL80211_IFTYPE_STATION) curtxbw_40mhz = mac->bw_40; else if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC) macid = sta->aid + 1; if (rtlhal->current_bandtype == BAND_ON_5G) ratr_bitmap = sta->deflink.supp_rates[1] << 4; else ratr_bitmap = sta->deflink.supp_rates[0]; if (mac->opmode == NL80211_IFTYPE_ADHOC) ratr_bitmap = 0xfff; ratr_bitmap |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20 | sta->deflink.ht_cap.mcs.rx_mask[0] << 12); switch (wirelessmode) { case WIRELESS_MODE_B: ratr_index = RATR_INX_WIRELESS_B; if (ratr_bitmap & 0x0000000c) ratr_bitmap &= 0x0000000d; else ratr_bitmap &= 0x0000000f; break; case WIRELESS_MODE_G: ratr_index = RATR_INX_WIRELESS_GB; if (rssi_level == 1) ratr_bitmap &= 0x00000f00; else if (rssi_level == 2) ratr_bitmap &= 0x00000ff0; else ratr_bitmap &= 0x00000ff5; break; case WIRELESS_MODE_A: ratr_index = RATR_INX_WIRELESS_G; ratr_bitmap &= 0x00000ff0; break; case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: ratr_index = RATR_INX_WIRELESS_NGB; if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) { if (curtxbw_40mhz) { if (rssi_level == 1) ratr_bitmap &= 0x000f0000; else if (rssi_level == 2) ratr_bitmap &= 0x000ff000; else ratr_bitmap &= 0x000ff015; } else { if (rssi_level == 1) ratr_bitmap &= 0x000f0000; else if (rssi_level == 2) ratr_bitmap &= 0x000ff000; else ratr_bitmap &= 0x000ff005; } } else { if (curtxbw_40mhz) { if (rssi_level == 1) ratr_bitmap &= 0x0f0f0000; else if (rssi_level == 2) ratr_bitmap &= 0x0f0ff000; else ratr_bitmap &= 0x0f0ff015; } else { if (rssi_level == 1) ratr_bitmap &= 0x0f0f0000; else if (rssi_level == 2) ratr_bitmap &= 0x0f0ff000; else ratr_bitmap &= 0x0f0ff005; } } if ((curtxbw_40mhz && curshortgi_40mhz) || (!curtxbw_40mhz && curshortgi_20mhz)) { if (macid == 0) shortgi = true; else if (macid == 1) shortgi = false; } break; default: ratr_index = RATR_INX_WIRELESS_NGB; if (rtlphy->rf_type == RF_1T2R) ratr_bitmap &= 0x000ff0ff; else ratr_bitmap &= 0x0f0ff0ff; break; } sta_entry->ratr_index = ratr_index; rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "ratr_bitmap :%x\n", ratr_bitmap); *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28); rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80; rtl_dbg(rtlpriv, COMP_RATR, DBG_DMESG, "Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x\n", ratr_index, ratr_bitmap, rate_mask[0], rate_mask[1], rate_mask[2], rate_mask[3], rate_mask[4]); rtl8723e_fill_h2c_cmd(hw, H2C_RA_MASK, 5, rate_mask); } void rtl8723e_update_hal_rate_tbl(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi_level, bool update_bw) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (rtlpriv->dm.useramask) rtl8723e_update_hal_rate_mask(hw, sta, rssi_level, update_bw); else rtl8723e_update_hal_rate_table(hw, sta); } void rtl8723e_update_channel_access_setting(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 sifs_timer; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, &mac->slot_time); if (!mac->ht_enable) sifs_timer = 0x0a0a; else sifs_timer = 0x1010; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); } bool rtl8723e_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); enum rf_pwrstate e_rfpowerstate_toset; u8 u1tmp; bool b_actuallyset = false; if (rtlpriv->rtlhal.being_init_adapter) return false; if (ppsc->swrf_processing) return false; spin_lock(&rtlpriv->locks.rf_ps_lock); if (ppsc->rfchange_inprogress) { spin_unlock(&rtlpriv->locks.rf_ps_lock); return false; } else { ppsc->rfchange_inprogress = true; spin_unlock(&rtlpriv->locks.rf_ps_lock); } rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL_2, rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL_2)&~(BIT(1))); u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL_2); if (rtlphy->polarity_ctl) e_rfpowerstate_toset = (u1tmp & BIT(1)) ? ERFOFF : ERFON; else e_rfpowerstate_toset = (u1tmp & BIT(1)) ? ERFON : ERFOFF; if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) { rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG, "GPIOChangeRF - HW Radio ON, RF ON\n"); e_rfpowerstate_toset = ERFON; ppsc->hwradiooff = false; b_actuallyset = true; } else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) { rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG, "GPIOChangeRF - HW Radio OFF, RF OFF\n"); e_rfpowerstate_toset = ERFOFF; ppsc->hwradiooff = true; b_actuallyset = true; } if (b_actuallyset) { spin_lock(&rtlpriv->locks.rf_ps_lock); ppsc->rfchange_inprogress = false; spin_unlock(&rtlpriv->locks.rf_ps_lock); } else { if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); spin_lock(&rtlpriv->locks.rf_ps_lock); ppsc->rfchange_inprogress = false; spin_unlock(&rtlpriv->locks.rf_ps_lock); } *valid = 1; return !ppsc->hwradiooff; } void rtl8723e_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr, bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); u8 *macaddr = p_macaddr; u32 entry_id = 0; bool is_pairwise = false; static u8 cam_const_addr[4][6] = { {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} }; static u8 cam_const_broad[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; if (clear_all) { u8 idx = 0; u8 cam_offset = 0; u8 clear_number = 5; rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); for (idx = 0; idx < clear_number; idx++) { rtl_cam_mark_invalid(hw, cam_offset + idx); rtl_cam_empty_entry(hw, cam_offset + idx); if (idx < 5) { memset(rtlpriv->sec.key_buf[idx], 0, MAX_KEY_LEN); rtlpriv->sec.key_len[idx] = 0; } } } else { switch (enc_algo) { case WEP40_ENCRYPTION: enc_algo = CAM_WEP40; break; case WEP104_ENCRYPTION: enc_algo = CAM_WEP104; break; case TKIP_ENCRYPTION: enc_algo = CAM_TKIP; break; case AESCCMP_ENCRYPTION: enc_algo = CAM_AES; break; default: rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD, "switch case %#x not processed\n", enc_algo); enc_algo = CAM_TKIP; break; } if (is_wepkey || rtlpriv->sec.use_defaultkey) { macaddr = cam_const_addr[key_index]; entry_id = key_index; } else { if (is_group) { macaddr = cam_const_broad; entry_id = key_index; } else { if (mac->opmode == NL80211_IFTYPE_AP) { entry_id = rtl_cam_get_free_entry(hw, p_macaddr); if (entry_id >= TOTAL_CAM_ENTRY) { pr_err("Can not find free hw security cam entry\n"); return; } } else { entry_id = CAM_PAIRWISE_KEY_POSITION; } key_index = PAIRWISE_KEYIDX; is_pairwise = true; } } if (rtlpriv->sec.key_len[key_index] == 0) { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "delete one entry, entry_id is %d\n", entry_id); if (mac->opmode == NL80211_IFTYPE_AP) rtl_cam_del_entry(hw, p_macaddr); rtl_cam_delete_one_entry(hw, p_macaddr, entry_id); } else { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "add one entry\n"); if (is_pairwise) { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "set Pairwise key\n"); rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[key_index]); } else { rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "set group key\n"); if (mac->opmode == NL80211_IFTYPE_ADHOC) { rtl_cam_add_one_entry(hw, rtlefuse->dev_addr, PAIRWISE_KEYIDX, CAM_PAIRWISE_KEY_POSITION, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf [entry_id]); } rtl_cam_add_one_entry(hw, macaddr, key_index, entry_id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[entry_id]); } } } } static void rtl8723e_bt_var_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpriv->btcoexist.bt_coexistence = rtlpriv->btcoexist.eeprom_bt_coexist; rtlpriv->btcoexist.bt_ant_num = rtlpriv->btcoexist.eeprom_bt_ant_num; rtlpriv->btcoexist.bt_coexist_type = rtlpriv->btcoexist.eeprom_bt_type; rtlpriv->btcoexist.bt_ant_isolation = rtlpriv->btcoexist.eeprom_bt_ant_isol; rtlpriv->btcoexist.bt_radio_shared_type = rtlpriv->btcoexist.eeprom_bt_radio_shared; rtl_dbg(rtlpriv, COMP_BT_COEXIST, DBG_TRACE, "BT Coexistence = 0x%x\n", rtlpriv->btcoexist.bt_coexistence); if (rtlpriv->btcoexist.bt_coexistence) { rtlpriv->btcoexist.bt_busy_traffic = false; rtlpriv->btcoexist.bt_traffic_mode_set = false; rtlpriv->btcoexist.bt_non_traffic_mode_set = false; rtlpriv->btcoexist.cstate = 0; rtlpriv->btcoexist.previous_state = 0; if (rtlpriv->btcoexist.bt_ant_num == ANT_X2) { rtl_dbg(rtlpriv, COMP_BT_COEXIST, DBG_TRACE, "BlueTooth BT_Ant_Num = Antx2\n"); } else if (rtlpriv->btcoexist.bt_ant_num == ANT_X1) { rtl_dbg(rtlpriv, COMP_BT_COEXIST, DBG_TRACE, "BlueTooth BT_Ant_Num = Antx1\n"); } switch (rtlpriv->btcoexist.bt_coexist_type) { case BT_2WIRE: rtl_dbg(rtlpriv, COMP_BT_COEXIST, DBG_TRACE, "BlueTooth BT_CoexistType = BT_2Wire\n"); break; case BT_ISSC_3WIRE: rtl_dbg(rtlpriv, COMP_BT_COEXIST, DBG_TRACE, "BlueTooth BT_CoexistType = BT_ISSC_3Wire\n"); break; case BT_ACCEL: rtl_dbg(rtlpriv, COMP_BT_COEXIST, DBG_TRACE, "BlueTooth BT_CoexistType = BT_ACCEL\n"); break; case BT_CSR_BC4: rtl_dbg(rtlpriv, COMP_BT_COEXIST, DBG_TRACE, "BlueTooth BT_CoexistType = BT_CSR_BC4\n"); break; case BT_CSR_BC8: rtl_dbg(rtlpriv, COMP_BT_COEXIST, DBG_TRACE, "BlueTooth BT_CoexistType = BT_CSR_BC8\n"); break; case BT_RTL8756: rtl_dbg(rtlpriv, COMP_BT_COEXIST, DBG_TRACE, "BlueTooth BT_CoexistType = BT_RTL8756\n"); break; default: rtl_dbg(rtlpriv, COMP_BT_COEXIST, DBG_TRACE, "BlueTooth BT_CoexistType = Unknown\n"); break; } rtl_dbg(rtlpriv, COMP_BT_COEXIST, DBG_TRACE, "BlueTooth BT_Ant_isolation = %d\n", rtlpriv->btcoexist.bt_ant_isolation); rtl_dbg(rtlpriv, COMP_BT_COEXIST, DBG_TRACE, "BT_RadioSharedType = 0x%x\n", rtlpriv->btcoexist.bt_radio_shared_type); rtlpriv->btcoexist.bt_active_zero_cnt = 0; rtlpriv->btcoexist.cur_bt_disabled = false; rtlpriv->btcoexist.pre_bt_disabled = false; } } void rtl8723e_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw, bool auto_load_fail, u8 *hwinfo) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 value; u32 tmpu_32; if (!auto_load_fail) { tmpu_32 = rtl_read_dword(rtlpriv, REG_MULTI_FUNC_CTRL); if (tmpu_32 & BIT(18)) rtlpriv->btcoexist.eeprom_bt_coexist = 1; else rtlpriv->btcoexist.eeprom_bt_coexist = 0; value = hwinfo[RF_OPTION4]; rtlpriv->btcoexist.eeprom_bt_type = BT_RTL8723A; rtlpriv->btcoexist.eeprom_bt_ant_num = (value & 0x1); rtlpriv->btcoexist.eeprom_bt_ant_isol = ((value & 0x10) >> 4); rtlpriv->btcoexist.eeprom_bt_radio_shared = ((value & 0x20) >> 5); } else { rtlpriv->btcoexist.eeprom_bt_coexist = 0; rtlpriv->btcoexist.eeprom_bt_type = BT_RTL8723A; rtlpriv->btcoexist.eeprom_bt_ant_num = ANT_X2; rtlpriv->btcoexist.eeprom_bt_ant_isol = 0; rtlpriv->btcoexist.eeprom_bt_radio_shared = BT_RADIO_SHARED; } rtl8723e_bt_var_init(hw); } void rtl8723e_bt_reg_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); /* 0:Low, 1:High, 2:From Efuse. */ rtlpriv->btcoexist.reg_bt_iso = 2; /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */ rtlpriv->btcoexist.reg_bt_sco = 3; /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */ rtlpriv->btcoexist.reg_bt_sco = 0; } void rtl8723e_bt_hw_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (rtlpriv->cfg->ops->get_btc_status()) rtlpriv->btcoexist.btc_ops->btc_init_hw_config(rtlpriv); } void rtl8723e_suspend(struct ieee80211_hw *hw) { } void rtl8723e_resume(struct ieee80211_hw *hw) { }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1