Contributors: 25
Author Tokens Token Proportion Commits Commit Proportion
Fariya Fatima 4142 43.90% 1 1.11%
Prameela Rani Garnepudi 3464 36.71% 33 36.67%
Karun Eagalapati 642 6.80% 7 7.78%
Jahnavi Meher 390 4.13% 7 7.78%
Johannes Berg 148 1.57% 9 10.00%
Martin Fuzzey 141 1.49% 1 1.11%
Marek Vašut 98 1.04% 1 1.11%
Siva Rebbagondla 92 0.98% 5 5.56%
Amitkumar Karwar 74 0.78% 5 5.56%
Pavani Muthyala 62 0.66% 1 1.11%
Sara Sharon 43 0.46% 1 1.11%
Dan Carpenter 33 0.35% 3 3.33%
Aditya Pakki 31 0.33% 1 1.11%
Sanjay Kumar Konduri 12 0.13% 2 2.22%
Kees Cook 12 0.13% 1 1.11%
Sriram R 12 0.13% 1 1.11%
zhangyue 9 0.10% 1 1.11%
Andrzej Zaborowski 9 0.10% 2 2.22%
Lee Jones 6 0.06% 2 2.22%
Alexander Wetzel 5 0.05% 1 1.11%
Emmanuel Grumbach 4 0.04% 1 1.11%
Gustavo A. R. Silva 3 0.03% 1 1.11%
Arvind Yadav 1 0.01% 1 1.11%
Colin Ian King 1 0.01% 1 1.11%
Qiujun Huang 1 0.01% 1 1.11%
Total 9435 90


/*
 * Copyright (c) 2014 Redpine Signals Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <linux/etherdevice.h>
#include "rsi_debugfs.h"
#include "rsi_mgmt.h"
#include "rsi_sdio.h"
#include "rsi_common.h"
#include "rsi_ps.h"

static const struct ieee80211_channel rsi_2ghz_channels[] = {
	{ .band = NL80211_BAND_2GHZ, .center_freq = 2412,
	  .hw_value = 1 }, /* Channel 1 */
	{ .band = NL80211_BAND_2GHZ, .center_freq = 2417,
	  .hw_value = 2 }, /* Channel 2 */
	{ .band = NL80211_BAND_2GHZ, .center_freq = 2422,
	  .hw_value = 3 }, /* Channel 3 */
	{ .band = NL80211_BAND_2GHZ, .center_freq = 2427,
	  .hw_value = 4 }, /* Channel 4 */
	{ .band = NL80211_BAND_2GHZ, .center_freq = 2432,
	  .hw_value = 5 }, /* Channel 5 */
	{ .band = NL80211_BAND_2GHZ, .center_freq = 2437,
	  .hw_value = 6 }, /* Channel 6 */
	{ .band = NL80211_BAND_2GHZ, .center_freq = 2442,
	  .hw_value = 7 }, /* Channel 7 */
	{ .band = NL80211_BAND_2GHZ, .center_freq = 2447,
	  .hw_value = 8 }, /* Channel 8 */
	{ .band = NL80211_BAND_2GHZ, .center_freq = 2452,
	  .hw_value = 9 }, /* Channel 9 */
	{ .band = NL80211_BAND_2GHZ, .center_freq = 2457,
	  .hw_value = 10 }, /* Channel 10 */
	{ .band = NL80211_BAND_2GHZ, .center_freq = 2462,
	  .hw_value = 11 }, /* Channel 11 */
	{ .band = NL80211_BAND_2GHZ, .center_freq = 2467,
	  .hw_value = 12 }, /* Channel 12 */
	{ .band = NL80211_BAND_2GHZ, .center_freq = 2472,
	  .hw_value = 13 }, /* Channel 13 */
	{ .band = NL80211_BAND_2GHZ, .center_freq = 2484,
	  .hw_value = 14 }, /* Channel 14 */
};

static const struct ieee80211_channel rsi_5ghz_channels[] = {
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5180,
	  .hw_value = 36,  }, /* Channel 36 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5200,
	  .hw_value = 40, }, /* Channel 40 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5220,
	  .hw_value = 44, }, /* Channel 44 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5240,
	  .hw_value = 48, }, /* Channel 48 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5260,
	  .hw_value = 52, }, /* Channel 52 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5280,
	  .hw_value = 56, }, /* Channel 56 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5300,
	  .hw_value = 60, }, /* Channel 60 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5320,
	  .hw_value = 64, }, /* Channel 64 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5500,
	  .hw_value = 100, }, /* Channel 100 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5520,
	  .hw_value = 104, }, /* Channel 104 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5540,
	  .hw_value = 108, }, /* Channel 108 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5560,
	  .hw_value = 112, }, /* Channel 112 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5580,
	  .hw_value = 116, }, /* Channel 116 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5600,
	  .hw_value = 120, }, /* Channel 120 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5620,
	  .hw_value = 124, }, /* Channel 124 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5640,
	  .hw_value = 128, }, /* Channel 128 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5660,
	  .hw_value = 132, }, /* Channel 132 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5680,
	  .hw_value = 136, }, /* Channel 136 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5700,
	  .hw_value = 140, }, /* Channel 140 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5745,
	  .hw_value = 149, }, /* Channel 149 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5765,
	  .hw_value = 153, }, /* Channel 153 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5785,
	  .hw_value = 157, }, /* Channel 157 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5805,
	  .hw_value = 161, }, /* Channel 161 */
	{ .band = NL80211_BAND_5GHZ, .center_freq = 5825,
	  .hw_value = 165, }, /* Channel 165 */
};

struct ieee80211_rate rsi_rates[12] = {
	{ .bitrate = STD_RATE_01  * 5, .hw_value = RSI_RATE_1 },
	{ .bitrate = STD_RATE_02  * 5, .hw_value = RSI_RATE_2 },
	{ .bitrate = STD_RATE_5_5 * 5, .hw_value = RSI_RATE_5_5 },
	{ .bitrate = STD_RATE_11  * 5, .hw_value = RSI_RATE_11 },
	{ .bitrate = STD_RATE_06  * 5, .hw_value = RSI_RATE_6 },
	{ .bitrate = STD_RATE_09  * 5, .hw_value = RSI_RATE_9 },
	{ .bitrate = STD_RATE_12  * 5, .hw_value = RSI_RATE_12 },
	{ .bitrate = STD_RATE_18  * 5, .hw_value = RSI_RATE_18 },
	{ .bitrate = STD_RATE_24  * 5, .hw_value = RSI_RATE_24 },
	{ .bitrate = STD_RATE_36  * 5, .hw_value = RSI_RATE_36 },
	{ .bitrate = STD_RATE_48  * 5, .hw_value = RSI_RATE_48 },
	{ .bitrate = STD_RATE_54  * 5, .hw_value = RSI_RATE_54 },
};

const u16 rsi_mcsrates[8] = {
	RSI_RATE_MCS0, RSI_RATE_MCS1, RSI_RATE_MCS2, RSI_RATE_MCS3,
	RSI_RATE_MCS4, RSI_RATE_MCS5, RSI_RATE_MCS6, RSI_RATE_MCS7
};

static const u32 rsi_max_ap_stas[16] = {
	32,	/* 1 - Wi-Fi alone */
	0,	/* 2 */
	0,	/* 3 */
	0,	/* 4 - BT EDR alone */
	4,	/* 5 - STA + BT EDR */
	32,	/* 6 - AP + BT EDR */
	0,	/* 7 */
	0,	/* 8 - BT LE alone */
	4,	/* 9 - STA + BE LE */
	0,	/* 10 */
	0,	/* 11 */
	0,	/* 12 */
	1,	/* 13 - STA + BT Dual */
	4,	/* 14 - AP + BT Dual */
};

static const struct ieee80211_iface_limit rsi_iface_limits[] = {
	{
		.max = 1,
		.types = BIT(NL80211_IFTYPE_STATION),
	},
	{
		.max = 1,
		.types = BIT(NL80211_IFTYPE_AP) |
			BIT(NL80211_IFTYPE_P2P_CLIENT) |
			BIT(NL80211_IFTYPE_P2P_GO),
	},
	{
		.max = 1,
		.types = BIT(NL80211_IFTYPE_P2P_DEVICE),
	},
};

static const struct ieee80211_iface_combination rsi_iface_combinations[] = {
	{
		.num_different_channels = 1,
		.max_interfaces = 3,
		.limits = rsi_iface_limits,
		.n_limits = ARRAY_SIZE(rsi_iface_limits),
	},
};

/**
 * rsi_is_cipher_wep() -  This function determines if the cipher is WEP or not.
 * @common: Pointer to the driver private structure.
 *
 * Return: If cipher type is WEP, a value of 1 is returned, else 0.
 */

bool rsi_is_cipher_wep(struct rsi_common *common)
{
	if (((common->secinfo.gtk_cipher == WLAN_CIPHER_SUITE_WEP104) ||
	     (common->secinfo.gtk_cipher == WLAN_CIPHER_SUITE_WEP40)) &&
	    (!common->secinfo.ptk_cipher))
		return true;
	else
		return false;
}

/**
 * rsi_register_rates_channels() - This function registers channels and rates.
 * @adapter: Pointer to the adapter structure.
 * @band: Operating band to be set.
 *
 * Return: int - 0 on success, negative error on failure.
 */
static int rsi_register_rates_channels(struct rsi_hw *adapter, int band)
{
	struct ieee80211_supported_band *sbands = &adapter->sbands[band];
	void *channels = NULL;

	if (band == NL80211_BAND_2GHZ) {
		channels = kmemdup(rsi_2ghz_channels, sizeof(rsi_2ghz_channels),
				   GFP_KERNEL);
		if (!channels)
			return -ENOMEM;
		sbands->band = NL80211_BAND_2GHZ;
		sbands->n_channels = ARRAY_SIZE(rsi_2ghz_channels);
		sbands->bitrates = rsi_rates;
		sbands->n_bitrates = ARRAY_SIZE(rsi_rates);
	} else {
		channels = kmemdup(rsi_5ghz_channels, sizeof(rsi_5ghz_channels),
				   GFP_KERNEL);
		if (!channels)
			return -ENOMEM;
		sbands->band = NL80211_BAND_5GHZ;
		sbands->n_channels = ARRAY_SIZE(rsi_5ghz_channels);
		sbands->bitrates = &rsi_rates[4];
		sbands->n_bitrates = ARRAY_SIZE(rsi_rates) - 4;
	}

	sbands->channels = channels;

	memset(&sbands->ht_cap, 0, sizeof(struct ieee80211_sta_ht_cap));
	sbands->ht_cap.ht_supported = true;
	sbands->ht_cap.cap = (IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
			      IEEE80211_HT_CAP_SGI_20 |
			      IEEE80211_HT_CAP_SGI_40);
	sbands->ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_16K;
	sbands->ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_NONE;
	sbands->ht_cap.mcs.rx_mask[0] = 0xff;
	sbands->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
	/* sbands->ht_cap.mcs.rx_highest = 0x82; */
	return 0;
}

static int rsi_mac80211_hw_scan_start(struct ieee80211_hw *hw,
				      struct ieee80211_vif *vif,
				      struct ieee80211_scan_request *hw_req)
{
	struct cfg80211_scan_request *scan_req = &hw_req->req;
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;

	rsi_dbg(INFO_ZONE, "***** Hardware scan start *****\n");
	common->mac_ops_resumed = false;

	if (common->fsm_state != FSM_MAC_INIT_DONE)
		return -ENODEV;

	if ((common->wow_flags & RSI_WOW_ENABLED) ||
	    scan_req->n_channels == 0)
		return -EINVAL;

	/* Scan already in progress. So return */
	if (common->bgscan_en)
		return -EBUSY;

	/* If STA is not connected, return with special value 1, in order
	 * to start sw_scan in mac80211
	 */
	if (!vif->cfg.assoc)
		return 1;

	mutex_lock(&common->mutex);
	common->hwscan = scan_req;
	if (!rsi_send_bgscan_params(common, RSI_START_BGSCAN)) {
		if (!rsi_send_bgscan_probe_req(common, vif)) {
			rsi_dbg(INFO_ZONE, "Background scan started...\n");
			common->bgscan_en = true;
		}
	}
	mutex_unlock(&common->mutex);

	return 0;
}

static void rsi_mac80211_cancel_hw_scan(struct ieee80211_hw *hw,
					struct ieee80211_vif *vif)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	struct cfg80211_scan_info info;

	rsi_dbg(INFO_ZONE, "***** Hardware scan stop *****\n");
	mutex_lock(&common->mutex);

	if (common->bgscan_en) {
		if (!rsi_send_bgscan_params(common, RSI_STOP_BGSCAN))
			common->bgscan_en = false;
		info.aborted = false;
		ieee80211_scan_completed(adapter->hw, &info);
		rsi_dbg(INFO_ZONE, "Back ground scan cancelled\n");
	}
	common->hwscan = NULL;
	mutex_unlock(&common->mutex);
}

/**
 * rsi_mac80211_detach() - This function is used to de-initialize the
 *			   Mac80211 stack.
 * @adapter: Pointer to the adapter structure.
 *
 * Return: None.
 */
void rsi_mac80211_detach(struct rsi_hw *adapter)
{
	struct ieee80211_hw *hw = adapter->hw;
	enum nl80211_band band;

	if (hw) {
		ieee80211_stop_queues(hw);
		ieee80211_unregister_hw(hw);
		ieee80211_free_hw(hw);
		adapter->hw = NULL;
	}

	for (band = 0; band < NUM_NL80211_BANDS; band++) {
		struct ieee80211_supported_band *sband =
					&adapter->sbands[band];

		kfree(sband->channels);
	}

#ifdef CONFIG_RSI_DEBUGFS
	rsi_remove_dbgfs(adapter);
	kfree(adapter->dfsentry);
#endif
}
EXPORT_SYMBOL_GPL(rsi_mac80211_detach);

/**
 * rsi_indicate_tx_status() - This function indicates the transmit status.
 * @adapter: Pointer to the adapter structure.
 * @skb: Pointer to the socket buffer structure.
 * @status: Status
 *
 * Return: None.
 */
void rsi_indicate_tx_status(struct rsi_hw *adapter,
			    struct sk_buff *skb,
			    int status)
{
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	struct skb_info *tx_params;

	if (!adapter->hw) {
		rsi_dbg(ERR_ZONE, "##### No MAC #####\n");
		return;
	}

	if (!status)
		info->flags |= IEEE80211_TX_STAT_ACK;

	tx_params = (struct skb_info *)info->driver_data;
	skb_pull(skb, tx_params->internal_hdr_size);
	memset(info->driver_data, 0, IEEE80211_TX_INFO_DRIVER_DATA_SIZE);

	ieee80211_tx_status_irqsafe(adapter->hw, skb);
}

/**
 * rsi_mac80211_tx() - This is the handler that 802.11 module calls for each
 *		       transmitted frame.SKB contains the buffer starting
 *		       from the IEEE 802.11 header.
 * @hw: Pointer to the ieee80211_hw structure.
 * @control: Pointer to the ieee80211_tx_control structure
 * @skb: Pointer to the socket buffer structure.
 *
 * Return: None
 */
static void rsi_mac80211_tx(struct ieee80211_hw *hw,
			    struct ieee80211_tx_control *control,
			    struct sk_buff *skb)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	struct ieee80211_hdr *wlh = (struct ieee80211_hdr *)skb->data;

	if (ieee80211_is_auth(wlh->frame_control))
		common->mac_ops_resumed = false;

	rsi_core_xmit(common, skb);
}

/**
 * rsi_mac80211_start() - This is first handler that 802.11 module calls, since
 *			  the driver init is complete by then, just
 *			  returns success.
 * @hw: Pointer to the ieee80211_hw structure.
 *
 * Return: 0 as success.
 */
static int rsi_mac80211_start(struct ieee80211_hw *hw)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;

	rsi_dbg(ERR_ZONE, "===> Interface UP <===\n");
	mutex_lock(&common->mutex);
	if (common->hibernate_resume) {
		common->reinit_hw = true;
		adapter->host_intf_ops->reinit_device(adapter);
		wait_for_completion(&adapter->priv->wlan_init_completion);
	}
	common->iface_down = false;
	wiphy_rfkill_start_polling(hw->wiphy);
	rsi_send_rx_filter_frame(common, 0);
	mutex_unlock(&common->mutex);

	return 0;
}

/**
 * rsi_mac80211_stop() - This is the last handler that 802.11 module calls.
 * @hw: Pointer to the ieee80211_hw structure.
 * @suspend: true if the this was called from suspend flow.
 *
 * Return: None.
 */
static void rsi_mac80211_stop(struct ieee80211_hw *hw, bool suspend)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;

	rsi_dbg(ERR_ZONE, "===> Interface DOWN <===\n");
	mutex_lock(&common->mutex);
	common->iface_down = true;
	wiphy_rfkill_stop_polling(hw->wiphy);

	/* Block all rx frames */
	rsi_send_rx_filter_frame(common, 0xffff);

	mutex_unlock(&common->mutex);
}

static int rsi_map_intf_mode(enum nl80211_iftype vif_type)
{
	switch (vif_type) {
	case NL80211_IFTYPE_STATION:
		return RSI_OPMODE_STA;
	case NL80211_IFTYPE_AP:
		return RSI_OPMODE_AP;
	case NL80211_IFTYPE_P2P_DEVICE:
		return RSI_OPMODE_P2P_CLIENT;
	case NL80211_IFTYPE_P2P_CLIENT:
		return RSI_OPMODE_P2P_CLIENT;
	case NL80211_IFTYPE_P2P_GO:
		return RSI_OPMODE_P2P_GO;
	default:
		return RSI_OPMODE_UNSUPPORTED;
	}
}

/**
 * rsi_mac80211_add_interface() - This function is called when a netdevice
 *				  attached to the hardware is enabled.
 * @hw: Pointer to the ieee80211_hw structure.
 * @vif: Pointer to the ieee80211_vif structure.
 *
 * Return: ret: 0 on success, negative error code on failure.
 */
static int rsi_mac80211_add_interface(struct ieee80211_hw *hw,
				      struct ieee80211_vif *vif)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	struct vif_priv *vif_info = (struct vif_priv *)vif->drv_priv;
	enum opmode intf_mode;
	enum vap_status vap_status;
	int vap_idx = -1, i;

	vif->driver_flags |= IEEE80211_VIF_SUPPORTS_UAPSD;
	mutex_lock(&common->mutex);

	intf_mode = rsi_map_intf_mode(vif->type);
	if (intf_mode == RSI_OPMODE_UNSUPPORTED) {
		rsi_dbg(ERR_ZONE,
			"%s: Interface type %d not supported\n", __func__,
			vif->type);
		mutex_unlock(&common->mutex);
		return -EOPNOTSUPP;
	}
	if ((vif->type == NL80211_IFTYPE_P2P_DEVICE) ||
	    (vif->type == NL80211_IFTYPE_P2P_CLIENT) ||
	    (vif->type == NL80211_IFTYPE_P2P_GO))
		common->p2p_enabled = true;

	/* Get free vap index */
	for (i = 0; i < RSI_MAX_VIFS; i++) {
		if (!adapter->vifs[i] ||
		    !memcmp(vif->addr, adapter->vifs[i]->addr, ETH_ALEN)) {
			vap_idx = i;
			break;
		}
	}
	if (vap_idx < 0) {
		rsi_dbg(ERR_ZONE, "Reject: Max VAPs reached\n");
		mutex_unlock(&common->mutex);
		return -EOPNOTSUPP;
	}
	vif_info->vap_id = vap_idx;
	adapter->vifs[vap_idx] = vif;
	adapter->sc_nvifs++;
	vap_status = VAP_ADD;

	if (rsi_set_vap_capabilities(common, intf_mode, vif->addr,
				     vif_info->vap_id, vap_status)) {
		rsi_dbg(ERR_ZONE, "Failed to set VAP capabilities\n");
		mutex_unlock(&common->mutex);
		return -EINVAL;
	}

	if ((vif->type == NL80211_IFTYPE_AP) ||
	    (vif->type == NL80211_IFTYPE_P2P_GO)) {
		rsi_send_rx_filter_frame(common, DISALLOW_BEACONS);
		for (i = 0; i < common->max_stations; i++)
			common->stations[i].sta = NULL;
	}

	mutex_unlock(&common->mutex);

	return 0;
}

/**
 * rsi_mac80211_remove_interface() - This function notifies driver that an
 *				     interface is going down.
 * @hw: Pointer to the ieee80211_hw structure.
 * @vif: Pointer to the ieee80211_vif structure.
 *
 * Return: None.
 */
static void rsi_mac80211_remove_interface(struct ieee80211_hw *hw,
					  struct ieee80211_vif *vif)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	enum opmode opmode;
	int i;

	rsi_dbg(INFO_ZONE, "Remove Interface Called\n");

	mutex_lock(&common->mutex);

	if (adapter->sc_nvifs <= 0) {
		mutex_unlock(&common->mutex);
		return;
	}

	opmode = rsi_map_intf_mode(vif->type);
	if (opmode == RSI_OPMODE_UNSUPPORTED) {
		rsi_dbg(ERR_ZONE, "Opmode error : %d\n", opmode);
		mutex_unlock(&common->mutex);
		return;
	}
	for (i = 0; i < RSI_MAX_VIFS; i++) {
		if (!adapter->vifs[i])
			continue;
		if (vif == adapter->vifs[i]) {
			rsi_set_vap_capabilities(common, opmode, vif->addr,
						 i, VAP_DELETE);
			adapter->sc_nvifs--;
			adapter->vifs[i] = NULL;
		}
	}
	mutex_unlock(&common->mutex);
}

/**
 * rsi_channel_change() - This function is a performs the checks
 *			  required for changing a channel and sets
 *			  the channel accordingly.
 * @hw: Pointer to the ieee80211_hw structure.
 *
 * Return: 0 on success, negative error code on failure.
 */
static int rsi_channel_change(struct ieee80211_hw *hw)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	int status = -EOPNOTSUPP;
	struct ieee80211_channel *curchan = hw->conf.chandef.chan;
	u16 channel = curchan->hw_value;
	struct ieee80211_vif *vif;
	bool assoc = false;
	int i;

	rsi_dbg(INFO_ZONE,
		"%s: Set channel: %d MHz type: %d channel_no %d\n",
		__func__, curchan->center_freq,
		curchan->flags, channel);

	for (i = 0; i < RSI_MAX_VIFS; i++) {
		vif = adapter->vifs[i];
		if (!vif)
			continue;
		if (vif->type == NL80211_IFTYPE_STATION) {
			if (vif->cfg.assoc) {
				assoc = true;
				break;
			}
		}
	}
	if (assoc) {
		if (!common->hw_data_qs_blocked &&
		    (rsi_get_connected_channel(vif) != channel)) {
			rsi_dbg(INFO_ZONE, "blk data q %d\n", channel);
			if (!rsi_send_block_unblock_frame(common, true))
				common->hw_data_qs_blocked = true;
		}
	}

	status = rsi_band_check(common, curchan);
	if (!status)
		status = rsi_set_channel(adapter->priv, curchan);

	if (assoc) {
		if (common->hw_data_qs_blocked &&
		    (rsi_get_connected_channel(vif) == channel)) {
			rsi_dbg(INFO_ZONE, "unblk data q %d\n", channel);
			if (!rsi_send_block_unblock_frame(common, false))
				common->hw_data_qs_blocked = false;
		}
	}

	return status;
}

/**
 * rsi_config_power() - This function configures tx power to device
 * @hw: Pointer to the ieee80211_hw structure.
 *
 * Return: 0 on success, negative error code on failure.
 */
static int rsi_config_power(struct ieee80211_hw *hw)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	struct ieee80211_conf *conf = &hw->conf;

	if (adapter->sc_nvifs <= 0) {
		rsi_dbg(ERR_ZONE, "%s: No virtual interface found\n", __func__);
		return -EINVAL;
	}

	rsi_dbg(INFO_ZONE,
		"%s: Set tx power: %d dBM\n", __func__, conf->power_level);

	if (conf->power_level == common->tx_power)
		return 0;

	common->tx_power = conf->power_level;

	return rsi_send_radio_params_update(common);
}

/**
 * rsi_mac80211_config() - This function is a handler for configuration
 *			   requests. The stack calls this function to
 *			   change hardware configuration, e.g., channel.
 * @hw: Pointer to the ieee80211_hw structure.
 * @changed: Changed flags set.
 *
 * Return: 0 on success, negative error code on failure.
 */
static int rsi_mac80211_config(struct ieee80211_hw *hw,
			       u32 changed)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	struct ieee80211_conf *conf = &hw->conf;
	int status = -EOPNOTSUPP;

	mutex_lock(&common->mutex);

	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
		status = rsi_channel_change(hw);

	/* tx power */
	if (changed & IEEE80211_CONF_CHANGE_POWER) {
		rsi_dbg(INFO_ZONE, "%s: Configuring Power\n", __func__);
		status = rsi_config_power(hw);
	}

	/* Power save parameters */
	if ((changed & IEEE80211_CONF_CHANGE_PS) &&
	    !common->mac_ops_resumed) {
		struct ieee80211_vif *vif, *sta_vif = NULL;
		unsigned long flags;
		int i, set_ps = 1;

		for (i = 0; i < RSI_MAX_VIFS; i++) {
			vif = adapter->vifs[i];
			if (!vif)
				continue;
			/* Don't go to power save if AP vap exists */
			if ((vif->type == NL80211_IFTYPE_AP) ||
			    (vif->type == NL80211_IFTYPE_P2P_GO)) {
				set_ps = 0;
				break;
			}
			if ((vif->type == NL80211_IFTYPE_STATION ||
			     vif->type == NL80211_IFTYPE_P2P_CLIENT) &&
			    (!sta_vif || vif->cfg.assoc))
				sta_vif = vif;
		}
		if (set_ps && sta_vif) {
			spin_lock_irqsave(&adapter->ps_lock, flags);
			if (conf->flags & IEEE80211_CONF_PS)
				rsi_enable_ps(adapter, sta_vif);
			else
				rsi_disable_ps(adapter, sta_vif);
			spin_unlock_irqrestore(&adapter->ps_lock, flags);
		}
	}

	/* RTS threshold */
	if (changed & WIPHY_PARAM_RTS_THRESHOLD) {
		rsi_dbg(INFO_ZONE, "RTS threshold\n");
		if ((common->rts_threshold) <= IEEE80211_MAX_RTS_THRESHOLD) {
			rsi_dbg(INFO_ZONE,
				"%s: Sending vap updates....\n", __func__);
			status = rsi_send_vap_dynamic_update(common);
		}
	}
	mutex_unlock(&common->mutex);

	return status;
}

/**
 * rsi_get_connected_channel() - This function is used to get the current
 *				 connected channel number.
 * @vif: Pointer to the ieee80211_vif structure.
 *
 * Return: Current connected AP's channel number is returned.
 */
u16 rsi_get_connected_channel(struct ieee80211_vif *vif)
{
	struct ieee80211_bss_conf *bss;
	struct ieee80211_channel *channel;

	if (!vif)
		return 0;

	bss = &vif->bss_conf;
	channel = bss->chanreq.oper.chan;

	if (!channel)
		return 0;

	return channel->hw_value;
}

static void rsi_switch_channel(struct rsi_hw *adapter,
			       struct ieee80211_vif *vif)
{
	struct rsi_common *common = adapter->priv;
	struct ieee80211_channel *channel;

	if (common->iface_down)
		return;
	if (!vif)
		return;

	channel = vif->bss_conf.chanreq.oper.chan;

	if (!channel)
		return;

	rsi_band_check(common, channel);
	rsi_set_channel(common, channel);
	rsi_dbg(INFO_ZONE, "Switched to channel - %d\n", channel->hw_value);
}

/**
 * rsi_mac80211_bss_info_changed() - This function is a handler for config
 *				     requests related to BSS parameters that
 *				     may vary during BSS's lifespan.
 * @hw: Pointer to the ieee80211_hw structure.
 * @vif: Pointer to the ieee80211_vif structure.
 * @bss_conf: Pointer to the ieee80211_bss_conf structure.
 * @changed: Changed flags set.
 *
 * Return: None.
 */
static void rsi_mac80211_bss_info_changed(struct ieee80211_hw *hw,
					  struct ieee80211_vif *vif,
					  struct ieee80211_bss_conf *bss_conf,
					  u64 changed)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	struct ieee80211_bss_conf *bss = &vif->bss_conf;
	struct ieee80211_conf *conf = &hw->conf;
	u16 rx_filter_word = 0;

	mutex_lock(&common->mutex);
	if (changed & BSS_CHANGED_ASSOC) {
		rsi_dbg(INFO_ZONE, "%s: Changed Association status: %d\n",
			__func__, vif->cfg.assoc);
		if (vif->cfg.assoc) {
			/* Send the RX filter frame */
			rx_filter_word = (ALLOW_DATA_ASSOC_PEER |
					  ALLOW_CTRL_ASSOC_PEER |
					  ALLOW_MGMT_ASSOC_PEER);
			rsi_send_rx_filter_frame(common, rx_filter_word);
		}
		rsi_inform_bss_status(common,
				      RSI_OPMODE_STA,
				      vif->cfg.assoc,
				      bss_conf->bssid,
				      bss_conf->qos,
				      vif->cfg.aid,
				      NULL, 0,
				      bss_conf->assoc_capability, vif);
		adapter->ps_info.dtim_interval_duration = bss->dtim_period;
		adapter->ps_info.listen_interval = conf->listen_interval;

		/* If U-APSD is updated, send ps parameters to firmware */
		if (vif->cfg.assoc) {
			if (common->uapsd_bitmap) {
				rsi_dbg(INFO_ZONE, "Configuring UAPSD\n");
				rsi_conf_uapsd(adapter, vif);
			}
		} else {
			common->uapsd_bitmap = 0;
		}
	}

	if (changed & BSS_CHANGED_CQM) {
		common->cqm_info.last_cqm_event_rssi = 0;
		common->cqm_info.rssi_thold = bss_conf->cqm_rssi_thold;
		common->cqm_info.rssi_hyst = bss_conf->cqm_rssi_hyst;
		rsi_dbg(INFO_ZONE, "RSSI threshold & hysteresis are: %d %d\n",
			common->cqm_info.rssi_thold,
			common->cqm_info.rssi_hyst);
	}

	if (changed & BSS_CHANGED_BEACON_INT) {
		rsi_dbg(INFO_ZONE, "%s: Changed Beacon interval: %d\n",
			__func__, bss_conf->beacon_int);
		if (common->beacon_interval != bss->beacon_int) {
			common->beacon_interval = bss->beacon_int;
			if (vif->type == NL80211_IFTYPE_AP) {
				struct vif_priv *vif_info = (struct vif_priv *)vif->drv_priv;

				rsi_set_vap_capabilities(common, RSI_OPMODE_AP,
							 vif->addr, vif_info->vap_id,
							 VAP_UPDATE);
			}
		}
		adapter->ps_info.listen_interval =
			bss->beacon_int * adapter->ps_info.num_bcns_per_lis_int;
	}

	if ((changed & BSS_CHANGED_BEACON_ENABLED) &&
	    ((vif->type == NL80211_IFTYPE_AP) ||
	     (vif->type == NL80211_IFTYPE_P2P_GO))) {
		if (bss->enable_beacon) {
			rsi_dbg(INFO_ZONE, "===> BEACON ENABLED <===\n");
			common->beacon_enabled = 1;
		} else {
			rsi_dbg(INFO_ZONE, "===> BEACON DISABLED <===\n");
			common->beacon_enabled = 0;
		}
	}

	mutex_unlock(&common->mutex);
}

/**
 * rsi_mac80211_conf_filter() - This function configure the device's RX filter.
 * @hw: Pointer to the ieee80211_hw structure.
 * @changed_flags: Changed flags set.
 * @total_flags: Total initial flags set.
 * @multicast: Multicast.
 *
 * Return: None.
 */
static void rsi_mac80211_conf_filter(struct ieee80211_hw *hw,
				     u32 changed_flags,
				     u32 *total_flags,
				     u64 multicast)
{
	/* Not doing much here as of now */
	*total_flags &= RSI_SUPP_FILTERS;
}

/**
 * rsi_mac80211_conf_tx() - This function configures TX queue parameters
 *			    (EDCF (aifs, cw_min, cw_max), bursting)
 *			    for a hardware TX queue.
 * @hw: Pointer to the ieee80211_hw structure
 * @vif: Pointer to the ieee80211_vif structure.
 * @link_id: the link ID if MLO is used, otherwise 0
 * @queue: Queue number.
 * @params: Pointer to ieee80211_tx_queue_params structure.
 *
 * Return: 0 on success, negative error code on failure.
 */
static int rsi_mac80211_conf_tx(struct ieee80211_hw *hw,
				struct ieee80211_vif *vif,
				unsigned int link_id, u16 queue,
				const struct ieee80211_tx_queue_params *params)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	u8 idx = 0;

	if (queue >= IEEE80211_NUM_ACS)
		return 0;

	rsi_dbg(INFO_ZONE,
		"%s: Conf queue %d, aifs: %d, cwmin: %d cwmax: %d, txop: %d\n",
		__func__, queue, params->aifs,
		params->cw_min, params->cw_max, params->txop);

	mutex_lock(&common->mutex);
	/* Map into the way the f/w expects */
	switch (queue) {
	case IEEE80211_AC_VO:
		idx = VO_Q;
		break;
	case IEEE80211_AC_VI:
		idx = VI_Q;
		break;
	case IEEE80211_AC_BE:
		idx = BE_Q;
		break;
	case IEEE80211_AC_BK:
		idx = BK_Q;
		break;
	default:
		idx = BE_Q;
		break;
	}

	memcpy(&common->edca_params[idx],
	       params,
	       sizeof(struct ieee80211_tx_queue_params));

	if (params->uapsd)
		common->uapsd_bitmap |= idx;
	else
		common->uapsd_bitmap &= (~idx);

	mutex_unlock(&common->mutex);

	return 0;
}

/**
 * rsi_hal_key_config() - This function loads the keys into the firmware.
 * @hw: Pointer to the ieee80211_hw structure.
 * @vif: Pointer to the ieee80211_vif structure.
 * @key: Pointer to the ieee80211_key_conf structure.
 * @sta: Pointer to the ieee80211_sta structure.
 *
 * Return: status: 0 on success, negative error codes on failure.
 */
static int rsi_hal_key_config(struct ieee80211_hw *hw,
			      struct ieee80211_vif *vif,
			      struct ieee80211_key_conf *key,
			      struct ieee80211_sta *sta)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_sta *rsta = NULL;
	int status;
	u8 key_type;
	s16 sta_id = 0;

	if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
		key_type = RSI_PAIRWISE_KEY;
	else
		key_type = RSI_GROUP_KEY;

	rsi_dbg(ERR_ZONE, "%s: Cipher 0x%x key_type: %d key_len: %d\n",
		__func__, key->cipher, key_type, key->keylen);

	if ((vif->type == NL80211_IFTYPE_AP) ||
	    (vif->type == NL80211_IFTYPE_P2P_GO)) {
		if (sta) {
			rsta = rsi_find_sta(adapter->priv, sta->addr);
			if (rsta)
				sta_id = rsta->sta_id;
		}
		adapter->priv->key = key;
	} else {
		if ((key->cipher == WLAN_CIPHER_SUITE_WEP104) ||
		    (key->cipher == WLAN_CIPHER_SUITE_WEP40)) {
			status = rsi_hal_load_key(adapter->priv,
						  key->key,
						  key->keylen,
						  RSI_PAIRWISE_KEY,
						  key->keyidx,
						  key->cipher,
						  sta_id,
						  vif);
			if (status)
				return status;
		}
	}

	status = rsi_hal_load_key(adapter->priv,
				  key->key,
				  key->keylen,
				  key_type,
				  key->keyidx,
				  key->cipher,
				  sta_id,
				  vif);
	if (status)
		return status;

	if (vif->type == NL80211_IFTYPE_STATION &&
	    (key->cipher == WLAN_CIPHER_SUITE_WEP104 ||
	     key->cipher == WLAN_CIPHER_SUITE_WEP40)) {
		if (!rsi_send_block_unblock_frame(adapter->priv, false))
			adapter->priv->hw_data_qs_blocked = false;
	}

	return 0;
}

/**
 * rsi_mac80211_set_key() - This function sets type of key to be loaded.
 * @hw: Pointer to the ieee80211_hw structure.
 * @cmd: enum set_key_cmd.
 * @vif: Pointer to the ieee80211_vif structure.
 * @sta: Pointer to the ieee80211_sta structure.
 * @key: Pointer to the ieee80211_key_conf structure.
 *
 * Return: status: 0 on success, negative error code on failure.
 */
static int rsi_mac80211_set_key(struct ieee80211_hw *hw,
				enum set_key_cmd cmd,
				struct ieee80211_vif *vif,
				struct ieee80211_sta *sta,
				struct ieee80211_key_conf *key)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	struct security_info *secinfo = &common->secinfo;
	int status;

	mutex_lock(&common->mutex);
	switch (cmd) {
	case SET_KEY:
		status = rsi_hal_key_config(hw, vif, key, sta);
		if (status) {
			mutex_unlock(&common->mutex);
			return status;
		}

		if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
			secinfo->ptk_cipher = key->cipher;
		else
			secinfo->gtk_cipher = key->cipher;

		key->hw_key_idx = key->keyidx;
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;

		rsi_dbg(ERR_ZONE, "%s: RSI set_key\n", __func__);
		break;

	case DISABLE_KEY:
		rsi_dbg(ERR_ZONE, "%s: RSI del key\n", __func__);
		memset(key, 0, sizeof(struct ieee80211_key_conf));
		status = rsi_hal_key_config(hw, vif, key, sta);
		break;

	default:
		status = -EOPNOTSUPP;
		break;
	}

	mutex_unlock(&common->mutex);
	return status;
}

/**
 * rsi_mac80211_ampdu_action() - This function selects the AMPDU action for
 *				 the corresponding mlme_action flag and
 *				 informs the f/w regarding this.
 * @hw: Pointer to the ieee80211_hw structure.
 * @vif: Pointer to the ieee80211_vif structure.
 * @params: Pointer to A-MPDU action parameters
 *
 * Return: status: 0 on success, negative error code on failure.
 */
static int rsi_mac80211_ampdu_action(struct ieee80211_hw *hw,
				     struct ieee80211_vif *vif,
				     struct ieee80211_ampdu_params *params)
{
	int status = -EOPNOTSUPP;
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	struct rsi_sta *rsta = NULL;
	u16 seq_no = 0, seq_start = 0;
	u8 ii = 0;
	struct ieee80211_sta *sta = params->sta;
	u8 sta_id = 0;
	enum ieee80211_ampdu_mlme_action action = params->action;
	u16 tid = params->tid;
	u16 *ssn = &params->ssn;
	u8 buf_size = params->buf_size;

	for (ii = 0; ii < RSI_MAX_VIFS; ii++) {
		if (vif == adapter->vifs[ii])
			break;
	}

	if (ii >= RSI_MAX_VIFS)
		return status;

	mutex_lock(&common->mutex);

	if (ssn != NULL)
		seq_no = *ssn;

	if ((vif->type == NL80211_IFTYPE_AP) ||
	    (vif->type == NL80211_IFTYPE_P2P_GO)) {
		rsta = rsi_find_sta(common, sta->addr);
		if (!rsta) {
			rsi_dbg(ERR_ZONE, "No station mapped\n");
			status = 0;
			goto unlock;
		}
		sta_id = rsta->sta_id;
	}

	rsi_dbg(INFO_ZONE,
		"%s: AMPDU action tid=%d ssn=0x%x, buf_size=%d sta_id=%d\n",
		__func__, tid, seq_no, buf_size, sta_id);

	switch (action) {
	case IEEE80211_AMPDU_RX_START:
		status = rsi_send_aggregation_params_frame(common,
							   tid,
							   seq_no,
							   buf_size,
							   STA_RX_ADDBA_DONE,
							   sta_id);
		break;

	case IEEE80211_AMPDU_RX_STOP:
		status = rsi_send_aggregation_params_frame(common,
							   tid,
							   0,
							   buf_size,
							   STA_RX_DELBA,
							   sta_id);
		break;

	case IEEE80211_AMPDU_TX_START:
		if ((vif->type == NL80211_IFTYPE_STATION) ||
		    (vif->type == NL80211_IFTYPE_P2P_CLIENT))
			common->vif_info[ii].seq_start = seq_no;
		else if ((vif->type == NL80211_IFTYPE_AP) ||
			 (vif->type == NL80211_IFTYPE_P2P_GO))
			rsta->seq_start[tid] = seq_no;
		status = IEEE80211_AMPDU_TX_START_IMMEDIATE;
		break;

	case IEEE80211_AMPDU_TX_STOP_CONT:
	case IEEE80211_AMPDU_TX_STOP_FLUSH:
	case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
		status = rsi_send_aggregation_params_frame(common,
							   tid,
							   seq_no,
							   buf_size,
							   STA_TX_DELBA,
							   sta_id);
		if (!status)
			ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
		break;

	case IEEE80211_AMPDU_TX_OPERATIONAL:
		if ((vif->type == NL80211_IFTYPE_STATION) ||
		    (vif->type == NL80211_IFTYPE_P2P_CLIENT))
			seq_start = common->vif_info[ii].seq_start;
		else if ((vif->type == NL80211_IFTYPE_AP) ||
			 (vif->type == NL80211_IFTYPE_P2P_GO))
			seq_start = rsta->seq_start[tid];
		status = rsi_send_aggregation_params_frame(common,
							   tid,
							   seq_start,
							   buf_size,
							   STA_TX_ADDBA_DONE,
							   sta_id);
		break;

	default:
		rsi_dbg(ERR_ZONE, "%s: Unknown AMPDU action\n", __func__);
		break;
	}

unlock:
	mutex_unlock(&common->mutex);
	return status;
}

/**
 * rsi_mac80211_set_rts_threshold() - This function sets rts threshold value.
 * @hw: Pointer to the ieee80211_hw structure.
 * @value: Rts threshold value.
 *
 * Return: 0 on success.
 */
static int rsi_mac80211_set_rts_threshold(struct ieee80211_hw *hw,
					  u32 value)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;

	mutex_lock(&common->mutex);
	common->rts_threshold = value;
	mutex_unlock(&common->mutex);

	return 0;
}

/**
 * rsi_mac80211_set_rate_mask() - This function sets bitrate_mask to be used.
 * @hw: Pointer to the ieee80211_hw structure
 * @vif: Pointer to the ieee80211_vif structure.
 * @mask: Pointer to the cfg80211_bitrate_mask structure.
 *
 * Return: 0 on success.
 */
static int rsi_mac80211_set_rate_mask(struct ieee80211_hw *hw,
				      struct ieee80211_vif *vif,
				      const struct cfg80211_bitrate_mask *mask)
{
	const unsigned int mcs_offset = ARRAY_SIZE(rsi_rates);
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	int i;

	mutex_lock(&common->mutex);

	for (i = 0; i < ARRAY_SIZE(common->rate_config); i++) {
		struct rsi_rate_config *cfg = &common->rate_config[i];
		u32 bm;

		bm = mask->control[i].legacy | (mask->control[i].ht_mcs[0] << mcs_offset);
		if (hweight32(bm) == 1) { /* single rate */
			int rate_index = ffs(bm) - 1;

			if (rate_index < mcs_offset)
				cfg->fixed_hw_rate = rsi_rates[rate_index].hw_value;
			else
				cfg->fixed_hw_rate = rsi_mcsrates[rate_index - mcs_offset];
			cfg->fixed_enabled = true;
		} else {
			cfg->configured_mask = bm;
			cfg->fixed_enabled = false;
		}
	}

	mutex_unlock(&common->mutex);

	return 0;
}

/**
 * rsi_perform_cqm() - This function performs cqm.
 * @common: Pointer to the driver private structure.
 * @bssid: pointer to the bssid.
 * @rssi: RSSI value.
 * @vif: Pointer to the ieee80211_vif structure.
 */
static void rsi_perform_cqm(struct rsi_common *common,
			    u8 *bssid,
			    s8 rssi,
			    struct ieee80211_vif *vif)
{
	s8 last_event = common->cqm_info.last_cqm_event_rssi;
	int thold = common->cqm_info.rssi_thold;
	u32 hyst = common->cqm_info.rssi_hyst;
	enum nl80211_cqm_rssi_threshold_event event;

	if (rssi < thold && (last_event == 0 || rssi < (last_event - hyst)))
		event = NL80211_CQM_RSSI_THRESHOLD_EVENT_LOW;
	else if (rssi > thold &&
		 (last_event == 0 || rssi > (last_event + hyst)))
		event = NL80211_CQM_RSSI_THRESHOLD_EVENT_HIGH;
	else
		return;

	common->cqm_info.last_cqm_event_rssi = rssi;
	rsi_dbg(INFO_ZONE, "CQM: Notifying event: %d\n", event);
	ieee80211_cqm_rssi_notify(vif, event, rssi, GFP_KERNEL);

	return;
}

/**
 * rsi_fill_rx_status() - This function fills rx status in
 *			  ieee80211_rx_status structure.
 * @hw: Pointer to the ieee80211_hw structure.
 * @skb: Pointer to the socket buffer structure.
 * @common: Pointer to the driver private structure.
 * @rxs: Pointer to the ieee80211_rx_status structure.
 *
 * Return: None.
 */
static void rsi_fill_rx_status(struct ieee80211_hw *hw,
			       struct sk_buff *skb,
			       struct rsi_common *common,
			       struct ieee80211_rx_status *rxs)
{
	struct rsi_hw *adapter = common->priv;
	struct ieee80211_vif *vif;
	struct ieee80211_bss_conf *bss = NULL;
	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
	struct skb_info *rx_params = (struct skb_info *)info->driver_data;
	struct ieee80211_hdr *hdr;
	char rssi = rx_params->rssi;
	u8 hdrlen = 0;
	u8 channel = rx_params->channel;
	s32 freq;
	int i;

	hdr = ((struct ieee80211_hdr *)(skb->data));
	hdrlen = ieee80211_hdrlen(hdr->frame_control);

	memset(info, 0, sizeof(struct ieee80211_tx_info));

	rxs->signal = -(rssi);

	rxs->band = common->band;

	freq = ieee80211_channel_to_frequency(channel, rxs->band);

	if (freq)
		rxs->freq = freq;

	if (ieee80211_has_protected(hdr->frame_control)) {
		if (rsi_is_cipher_wep(common)) {
			memmove(skb->data + 4, skb->data, hdrlen);
			skb_pull(skb, 4);
		} else {
			memmove(skb->data + 8, skb->data, hdrlen);
			skb_pull(skb, 8);
			rxs->flag |= RX_FLAG_MMIC_STRIPPED;
		}
		rxs->flag |= RX_FLAG_DECRYPTED;
		rxs->flag |= RX_FLAG_IV_STRIPPED;
	}

	for (i = 0; i < RSI_MAX_VIFS; i++) {
		vif = adapter->vifs[i];
		if (!vif)
			continue;
		if (vif->type == NL80211_IFTYPE_STATION) {
			bss = &vif->bss_conf;
			break;
		}
	}
	if (!bss)
		return;
	/* CQM only for connected AP beacons, the RSSI is a weighted avg */
	if (vif->cfg.assoc && !(memcmp(bss->bssid, hdr->addr2, ETH_ALEN))) {
		if (ieee80211_is_beacon(hdr->frame_control))
			rsi_perform_cqm(common, hdr->addr2, rxs->signal, vif);
	}

	return;
}

/**
 * rsi_indicate_pkt_to_os() - This function sends received packet to mac80211.
 * @common: Pointer to the driver private structure.
 * @skb: Pointer to the socket buffer structure.
 *
 * Return: None.
 */
void rsi_indicate_pkt_to_os(struct rsi_common *common,
			    struct sk_buff *skb)
{
	struct rsi_hw *adapter = common->priv;
	struct ieee80211_hw *hw = adapter->hw;
	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);

	if ((common->iface_down) || (!adapter->sc_nvifs)) {
		dev_kfree_skb(skb);
		return;
	}

	/* filling in the ieee80211_rx_status flags */
	rsi_fill_rx_status(hw, skb, common, rx_status);

	ieee80211_rx_irqsafe(hw, skb);
}

/**
 * rsi_mac80211_sta_add() - This function notifies driver about a peer getting
 *			    connected.
 * @hw: pointer to the ieee80211_hw structure.
 * @vif: Pointer to the ieee80211_vif structure.
 * @sta: Pointer to the ieee80211_sta structure.
 *
 * Return: 0 on success, negative error codes on failure.
 */
static int rsi_mac80211_sta_add(struct ieee80211_hw *hw,
				struct ieee80211_vif *vif,
				struct ieee80211_sta *sta)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	bool sta_exist = false;
	struct rsi_sta *rsta;
	int status = 0;

	rsi_dbg(INFO_ZONE, "Station Add: %pM\n", sta->addr);

	mutex_lock(&common->mutex);

	if ((vif->type == NL80211_IFTYPE_AP) ||
	    (vif->type == NL80211_IFTYPE_P2P_GO)) {
		u8 cnt;
		int sta_idx = -1;
		int free_index = -1;

		/* Check if max stations reached */
		if (common->num_stations >= common->max_stations) {
			rsi_dbg(ERR_ZONE, "Reject: Max Stations exists\n");
			status = -EOPNOTSUPP;
			goto unlock;
		}
		for (cnt = 0; cnt < common->max_stations; cnt++) {
			rsta = &common->stations[cnt];

			if (!rsta->sta) {
				if (free_index < 0)
					free_index = cnt;
				continue;
			}
			if (!memcmp(rsta->sta->addr, sta->addr, ETH_ALEN)) {
				rsi_dbg(INFO_ZONE, "Station exists\n");
				sta_idx = cnt;
				sta_exist = true;
				break;
			}
		}
		if (!sta_exist) {
			if (free_index >= 0)
				sta_idx = free_index;
		}
		if (sta_idx < 0) {
			rsi_dbg(ERR_ZONE,
				"%s: Some problem reaching here...\n",
				__func__);
			status = -EINVAL;
			goto unlock;
		}
		rsta = &common->stations[sta_idx];
		rsta->sta = sta;
		rsta->sta_id = sta_idx;
		for (cnt = 0; cnt < IEEE80211_NUM_TIDS; cnt++)
			rsta->start_tx_aggr[cnt] = false;
		for (cnt = 0; cnt < IEEE80211_NUM_TIDS; cnt++)
			rsta->seq_start[cnt] = 0;
		if (!sta_exist) {
			rsi_dbg(INFO_ZONE, "New Station\n");

			/* Send peer notify to device */
			rsi_dbg(INFO_ZONE, "Indicate bss status to device\n");
			rsi_inform_bss_status(common, RSI_OPMODE_AP, 1,
					      sta->addr, sta->wme, sta->aid,
					      sta, sta_idx, 0, vif);

			if (common->key) {
				struct ieee80211_key_conf *key = common->key;

				if ((key->cipher == WLAN_CIPHER_SUITE_WEP104) ||
				    (key->cipher == WLAN_CIPHER_SUITE_WEP40))
					rsi_hal_load_key(adapter->priv,
							 key->key,
							 key->keylen,
							 RSI_PAIRWISE_KEY,
							 key->keyidx,
							 key->cipher,
							 sta_idx,
							 vif);
			}

			common->num_stations++;
		}
	}

	if ((vif->type == NL80211_IFTYPE_STATION) ||
	    (vif->type == NL80211_IFTYPE_P2P_CLIENT)) {
		common->bitrate_mask[common->band] = sta->deflink.supp_rates[common->band];
		common->vif_info[0].is_ht = sta->deflink.ht_cap.ht_supported;
		if (sta->deflink.ht_cap.ht_supported) {
			common->bitrate_mask[NL80211_BAND_2GHZ] =
					sta->deflink.supp_rates[NL80211_BAND_2GHZ];
			if ((sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ||
			    (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40))
				common->vif_info[0].sgi = true;
			ieee80211_start_tx_ba_session(sta, 0, 0);
		}
	}

unlock:
	mutex_unlock(&common->mutex);

	return status;
}

/**
 * rsi_mac80211_sta_remove() - This function notifies driver about a peer
 *			       getting disconnected.
 * @hw: Pointer to the ieee80211_hw structure.
 * @vif: Pointer to the ieee80211_vif structure.
 * @sta: Pointer to the ieee80211_sta structure.
 *
 * Return: 0 on success, negative error codes on failure.
 */
static int rsi_mac80211_sta_remove(struct ieee80211_hw *hw,
				   struct ieee80211_vif *vif,
				   struct ieee80211_sta *sta)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	struct ieee80211_bss_conf *bss = &vif->bss_conf;
	struct rsi_sta *rsta;

	rsi_dbg(INFO_ZONE, "Station Remove: %pM\n", sta->addr);

	mutex_lock(&common->mutex);

	if ((vif->type == NL80211_IFTYPE_AP) ||
	    (vif->type == NL80211_IFTYPE_P2P_GO)) {
		u8 sta_idx, cnt;

		/* Send peer notify to device */
		rsi_dbg(INFO_ZONE, "Indicate bss status to device\n");
		for (sta_idx = 0; sta_idx < common->max_stations; sta_idx++) {
			rsta = &common->stations[sta_idx];

			if (!rsta->sta)
				continue;
			if (!memcmp(rsta->sta->addr, sta->addr, ETH_ALEN)) {
				rsi_inform_bss_status(common, RSI_OPMODE_AP, 0,
						      sta->addr, sta->wme,
						      sta->aid, sta, sta_idx,
						      0, vif);
				rsta->sta = NULL;
				rsta->sta_id = -1;
				for (cnt = 0; cnt < IEEE80211_NUM_TIDS; cnt++)
					rsta->start_tx_aggr[cnt] = false;
				if (common->num_stations > 0)
					common->num_stations--;
				break;
			}
		}
		if (sta_idx >= common->max_stations)
			rsi_dbg(ERR_ZONE, "%s: No station found\n", __func__);
	}

	if ((vif->type == NL80211_IFTYPE_STATION) ||
	    (vif->type == NL80211_IFTYPE_P2P_CLIENT)) {
		/* Resetting all the fields to default values */
		memcpy((u8 *)bss->bssid, (u8 *)sta->addr, ETH_ALEN);
		bss->qos = sta->wme;
		common->bitrate_mask[NL80211_BAND_2GHZ] = 0;
		common->bitrate_mask[NL80211_BAND_5GHZ] = 0;
		common->vif_info[0].is_ht = false;
		common->vif_info[0].sgi = false;
		common->vif_info[0].seq_start = 0;
		common->secinfo.ptk_cipher = 0;
		common->secinfo.gtk_cipher = 0;
		if (!common->iface_down)
			rsi_send_rx_filter_frame(common, 0);
	}
	mutex_unlock(&common->mutex);
	
	return 0;
}

/**
 * rsi_mac80211_set_antenna() - This function is used to configure
 *				tx and rx antennas.
 * @hw: Pointer to the ieee80211_hw structure.
 * @tx_ant: Bitmap for tx antenna
 * @rx_ant: Bitmap for rx antenna
 *
 * Return: 0 on success, Negative error code on failure.
 */
static int rsi_mac80211_set_antenna(struct ieee80211_hw *hw,
				    u32 tx_ant, u32 rx_ant)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	u8 antenna = 0;

	if (tx_ant > 1 || rx_ant > 1) {
		rsi_dbg(ERR_ZONE,
			"Invalid antenna selection (tx: %d, rx:%d)\n",
			tx_ant, rx_ant);
		rsi_dbg(ERR_ZONE,
			"Use 0 for int_ant, 1 for ext_ant\n");
		return -EINVAL; 
	}

	rsi_dbg(INFO_ZONE, "%s: Antenna map Tx %x Rx %d\n",
			__func__, tx_ant, rx_ant);

	mutex_lock(&common->mutex);

	antenna = tx_ant ? ANTENNA_SEL_UFL : ANTENNA_SEL_INT;
	if (common->ant_in_use != antenna)
		if (rsi_set_antenna(common, antenna))
			goto fail_set_antenna;

	rsi_dbg(INFO_ZONE, "(%s) Antenna path configured successfully\n",
		tx_ant ? "UFL" : "INT");

	common->ant_in_use = antenna;
	
	mutex_unlock(&common->mutex);
	
	return 0;

fail_set_antenna:
	rsi_dbg(ERR_ZONE, "%s: Failed.\n", __func__);
	mutex_unlock(&common->mutex);
	return -EINVAL;
}

/**
 * rsi_mac80211_get_antenna() - This function is used to configure 
 * 				tx and rx antennas.
 *
 * @hw: Pointer to the ieee80211_hw structure.
 * @tx_ant: Bitmap for tx antenna
 * @rx_ant: Bitmap for rx antenna
 * 
 * Return: 0 on success, negative error codes on failure.
 */
static int rsi_mac80211_get_antenna(struct ieee80211_hw *hw,
				    u32 *tx_ant, u32 *rx_ant)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;

	mutex_lock(&common->mutex);

	*tx_ant = (common->ant_in_use == ANTENNA_SEL_UFL) ? 1 : 0;
	*rx_ant = 0;

	mutex_unlock(&common->mutex);
	
	return 0;	
}

static int rsi_map_region_code(enum nl80211_dfs_regions region_code)
{
	switch (region_code) {
	case NL80211_DFS_FCC:
		return RSI_REGION_FCC;
	case NL80211_DFS_ETSI:
		return RSI_REGION_ETSI;
	case NL80211_DFS_JP:
		return RSI_REGION_TELEC;
	case NL80211_DFS_UNSET:
		return RSI_REGION_WORLD;
	}
	return RSI_REGION_WORLD;
}

static void rsi_reg_notify(struct wiphy *wiphy,
			   struct regulatory_request *request)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *ch;
	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
	struct rsi_hw * adapter = hw->priv; 
	struct rsi_common *common = adapter->priv;
	int i;
	
	mutex_lock(&common->mutex);

	rsi_dbg(INFO_ZONE, "country = %s dfs_region = %d\n",
		request->alpha2, request->dfs_region);

	if (common->num_supp_bands > 1) {
		sband = wiphy->bands[NL80211_BAND_5GHZ];

		for (i = 0; i < sband->n_channels; i++) {
			ch = &sband->channels[i];
			if (ch->flags & IEEE80211_CHAN_DISABLED)
				continue;

			if (ch->flags & IEEE80211_CHAN_RADAR)
				ch->flags |= IEEE80211_CHAN_NO_IR;
		}
	}
	adapter->dfs_region = rsi_map_region_code(request->dfs_region);
	rsi_dbg(INFO_ZONE, "RSI region code = %d\n", adapter->dfs_region);
	
	adapter->country[0] = request->alpha2[0];
	adapter->country[1] = request->alpha2[1];

	mutex_unlock(&common->mutex);
}

static void rsi_mac80211_rfkill_poll(struct ieee80211_hw *hw)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;

	mutex_lock(&common->mutex);
	if (common->fsm_state != FSM_MAC_INIT_DONE)
		wiphy_rfkill_set_hw_state(hw->wiphy, true);
	else
		wiphy_rfkill_set_hw_state(hw->wiphy, false);
	mutex_unlock(&common->mutex);
}

static void rsi_resume_conn_channel(struct rsi_common *common)
{
	struct rsi_hw *adapter = common->priv;
	struct ieee80211_vif *vif;
	int cnt;

	for (cnt = 0; cnt < RSI_MAX_VIFS; cnt++) {
		vif = adapter->vifs[cnt];
		if (!vif)
			continue;

		if ((vif->type == NL80211_IFTYPE_AP) ||
		    (vif->type == NL80211_IFTYPE_P2P_GO)) {
			rsi_switch_channel(adapter, vif);
			break;
		}
		if (((vif->type == NL80211_IFTYPE_STATION) ||
		     (vif->type == NL80211_IFTYPE_P2P_CLIENT)) &&
		    vif->cfg.assoc) {
			rsi_switch_channel(adapter, vif);
			break;
		}
	}
}

void rsi_roc_timeout(struct timer_list *t)
{
	struct rsi_common *common = from_timer(common, t, roc_timer);

	rsi_dbg(INFO_ZONE, "Remain on channel expired\n");

	mutex_lock(&common->mutex);
	ieee80211_remain_on_channel_expired(common->priv->hw);

	if (timer_pending(&common->roc_timer))
		del_timer(&common->roc_timer);

	rsi_resume_conn_channel(common);
	mutex_unlock(&common->mutex);
}

static int rsi_mac80211_roc(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
			    struct ieee80211_channel *chan, int duration,
			    enum ieee80211_roc_type type)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;
	int status = 0;

	rsi_dbg(INFO_ZONE, "***** Remain on channel *****\n");

	mutex_lock(&common->mutex);
	rsi_dbg(INFO_ZONE, "%s: channel: %d duration: %dms\n",
		__func__, chan->hw_value, duration);

	if (timer_pending(&common->roc_timer)) {
		rsi_dbg(INFO_ZONE, "Stop on-going ROC\n");
		del_timer(&common->roc_timer);
	}
	common->roc_timer.expires = msecs_to_jiffies(duration) + jiffies;
	add_timer(&common->roc_timer);

	/* Configure band */
	if (rsi_band_check(common, chan)) {
		rsi_dbg(ERR_ZONE, "Failed to set band\n");
		status = -EINVAL;
		goto out;
	}

	/* Configure channel */
	if (rsi_set_channel(common, chan)) {
		rsi_dbg(ERR_ZONE, "Failed to set the channel\n");
		status = -EINVAL;
		goto out;
	}

	common->roc_vif = vif;
	ieee80211_ready_on_channel(hw);
	rsi_dbg(INFO_ZONE, "%s: Ready on channel :%d\n",
		__func__, chan->hw_value);

out:
	mutex_unlock(&common->mutex);

	return status;
}

static int rsi_mac80211_cancel_roc(struct ieee80211_hw *hw,
				   struct ieee80211_vif *vif)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;

	rsi_dbg(INFO_ZONE, "Cancel remain on channel\n");

	mutex_lock(&common->mutex);
	if (!timer_pending(&common->roc_timer)) {
		mutex_unlock(&common->mutex);
		return 0;
	}

	del_timer(&common->roc_timer);

	rsi_resume_conn_channel(common);
	mutex_unlock(&common->mutex);

	return 0;
}

#ifdef CONFIG_PM
static const struct wiphy_wowlan_support rsi_wowlan_support = {
	.flags = WIPHY_WOWLAN_ANY |
		 WIPHY_WOWLAN_MAGIC_PKT |
		 WIPHY_WOWLAN_DISCONNECT |
		 WIPHY_WOWLAN_GTK_REKEY_FAILURE  |
		 WIPHY_WOWLAN_SUPPORTS_GTK_REKEY |
		 WIPHY_WOWLAN_EAP_IDENTITY_REQ   |
		 WIPHY_WOWLAN_4WAY_HANDSHAKE,
};

static u16 rsi_wow_map_triggers(struct rsi_common *common,
				struct cfg80211_wowlan *wowlan)
{
	u16 wow_triggers = 0;

	rsi_dbg(INFO_ZONE, "Mapping wowlan triggers\n");

	if (wowlan->any)
		wow_triggers |= RSI_WOW_ANY;
	if (wowlan->magic_pkt)
		wow_triggers |= RSI_WOW_MAGIC_PKT;
	if (wowlan->disconnect)
		wow_triggers |= RSI_WOW_DISCONNECT;
	if (wowlan->gtk_rekey_failure || wowlan->eap_identity_req ||
	    wowlan->four_way_handshake)
		wow_triggers |= RSI_WOW_GTK_REKEY;

	return wow_triggers;
}

int rsi_config_wowlan(struct rsi_hw *adapter, struct cfg80211_wowlan *wowlan)
{
	struct rsi_common *common = adapter->priv;
	struct ieee80211_vif *vif = adapter->vifs[0];
	u16 triggers = 0;
	u16 rx_filter_word = 0;

	rsi_dbg(INFO_ZONE, "Config WoWLAN to device\n");

	if (!vif)
		return -EINVAL;

	if (WARN_ON(!wowlan)) {
		rsi_dbg(ERR_ZONE, "WoW triggers not enabled\n");
		return -EINVAL;
	}

	common->wow_flags |= RSI_WOW_ENABLED;
	triggers = rsi_wow_map_triggers(common, wowlan);
	if (!triggers) {
		rsi_dbg(ERR_ZONE, "%s:No valid WoW triggers\n", __func__);
		return -EINVAL;
	}
	if (!vif->cfg.assoc) {
		rsi_dbg(ERR_ZONE,
			"Cannot configure WoWLAN (Station not connected)\n");
		common->wow_flags |= RSI_WOW_NO_CONNECTION;
		return 0;
	}
	rsi_dbg(INFO_ZONE, "TRIGGERS %x\n", triggers);

	if (common->coex_mode > 1)
		rsi_disable_ps(adapter, adapter->vifs[0]);

	rsi_send_wowlan_request(common, triggers, 1);

	/**
	 * Increase the beacon_miss threshold & keep-alive timers in
	 * vap_update frame
	 */
	rsi_send_vap_dynamic_update(common);

	rx_filter_word = (ALLOW_DATA_ASSOC_PEER | DISALLOW_BEACONS);
	rsi_send_rx_filter_frame(common, rx_filter_word);

	return 0;
}
EXPORT_SYMBOL(rsi_config_wowlan);

static int rsi_mac80211_suspend(struct ieee80211_hw *hw,
				struct cfg80211_wowlan *wowlan)
{
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;

	rsi_dbg(INFO_ZONE, "%s: mac80211 suspend\n", __func__);
	mutex_lock(&common->mutex);
	if (rsi_config_wowlan(adapter, wowlan)) {
		rsi_dbg(ERR_ZONE, "Failed to configure WoWLAN\n");
		mutex_unlock(&common->mutex);
		return 1;
	}
	mutex_unlock(&common->mutex);

	return 0;
}

static int rsi_mac80211_resume(struct ieee80211_hw *hw)
{
	u16 rx_filter_word = 0;
	struct rsi_hw *adapter = hw->priv;
	struct rsi_common *common = adapter->priv;

	common->wow_flags = 0;

	rsi_dbg(INFO_ZONE, "%s: mac80211 resume\n", __func__);

	if (common->hibernate_resume) {
		common->mac_ops_resumed = true;
		/* Device need a complete restart of all MAC operations.
		 * returning 1 will serve this purpose.
		 */
		return 1;
	}

	mutex_lock(&common->mutex);
	rsi_send_wowlan_request(common, 0, 0);

	rx_filter_word = (ALLOW_DATA_ASSOC_PEER | ALLOW_CTRL_ASSOC_PEER |
			  ALLOW_MGMT_ASSOC_PEER);
	rsi_send_rx_filter_frame(common, rx_filter_word);
	mutex_unlock(&common->mutex);

	return 0;
}

#endif

static const struct ieee80211_ops mac80211_ops = {
	.add_chanctx = ieee80211_emulate_add_chanctx,
	.remove_chanctx = ieee80211_emulate_remove_chanctx,
	.change_chanctx = ieee80211_emulate_change_chanctx,
	.switch_vif_chanctx = ieee80211_emulate_switch_vif_chanctx,
	.tx = rsi_mac80211_tx,
	.wake_tx_queue = ieee80211_handle_wake_tx_queue,
	.start = rsi_mac80211_start,
	.stop = rsi_mac80211_stop,
	.add_interface = rsi_mac80211_add_interface,
	.remove_interface = rsi_mac80211_remove_interface,
	.config = rsi_mac80211_config,
	.bss_info_changed = rsi_mac80211_bss_info_changed,
	.conf_tx = rsi_mac80211_conf_tx,
	.configure_filter = rsi_mac80211_conf_filter,
	.set_key = rsi_mac80211_set_key,
	.set_rts_threshold = rsi_mac80211_set_rts_threshold,
	.set_bitrate_mask = rsi_mac80211_set_rate_mask,
	.ampdu_action = rsi_mac80211_ampdu_action,
	.sta_add = rsi_mac80211_sta_add,
	.sta_remove = rsi_mac80211_sta_remove,
	.set_antenna = rsi_mac80211_set_antenna,
	.get_antenna = rsi_mac80211_get_antenna,
	.rfkill_poll = rsi_mac80211_rfkill_poll,
	.remain_on_channel = rsi_mac80211_roc,
	.cancel_remain_on_channel = rsi_mac80211_cancel_roc,
#ifdef CONFIG_PM
	.suspend = rsi_mac80211_suspend,
	.resume  = rsi_mac80211_resume,
#endif
	.hw_scan = rsi_mac80211_hw_scan_start,
	.cancel_hw_scan = rsi_mac80211_cancel_hw_scan,
};

/**
 * rsi_mac80211_attach() - This function is used to initialize Mac80211 stack.
 * @common: Pointer to the driver private structure.
 *
 * Return: 0 on success, negative error codes on failure.
 */
int rsi_mac80211_attach(struct rsi_common *common)
{
	int status = 0;
	struct ieee80211_hw *hw = NULL;
	struct wiphy *wiphy = NULL;
	struct rsi_hw *adapter = common->priv;
	u8 addr_mask[ETH_ALEN] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x3};

	rsi_dbg(INIT_ZONE, "%s: Performing mac80211 attach\n", __func__);

	hw = ieee80211_alloc_hw(sizeof(struct rsi_hw), &mac80211_ops);
	if (!hw) {
		rsi_dbg(ERR_ZONE, "%s: ieee80211 hw alloc failed\n", __func__);
		return -ENOMEM;
	}

	wiphy = hw->wiphy;

	SET_IEEE80211_DEV(hw, adapter->device);

	hw->priv = adapter;
	adapter->hw = hw;

	ieee80211_hw_set(hw, SIGNAL_DBM);
	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
	ieee80211_hw_set(hw, SUPPORTS_PS);
	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);

	hw->queues = MAX_HW_QUEUES;
	hw->extra_tx_headroom = RSI_NEEDED_HEADROOM;

	hw->max_rates = 1;
	hw->max_rate_tries = MAX_RETRIES;
	hw->uapsd_queues = RSI_IEEE80211_UAPSD_QUEUES;
	hw->uapsd_max_sp_len = IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL;

	hw->max_tx_aggregation_subframes = RSI_MAX_TX_AGGR_FRMS;
	hw->max_rx_aggregation_subframes = RSI_MAX_RX_AGGR_FRMS;
	hw->rate_control_algorithm = "AARF";

	SET_IEEE80211_PERM_ADDR(hw, common->mac_addr);
	ether_addr_copy(hw->wiphy->addr_mask, addr_mask);

	wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
				 BIT(NL80211_IFTYPE_AP) |
				 BIT(NL80211_IFTYPE_P2P_DEVICE) |
				 BIT(NL80211_IFTYPE_P2P_CLIENT) |
				 BIT(NL80211_IFTYPE_P2P_GO);

	wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
	wiphy->retry_short = RETRY_SHORT;
	wiphy->retry_long  = RETRY_LONG;
	wiphy->frag_threshold = IEEE80211_MAX_FRAG_THRESHOLD;
	wiphy->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
	wiphy->flags = 0;

	wiphy->available_antennas_rx = 1;
	wiphy->available_antennas_tx = 1;

	status = rsi_register_rates_channels(adapter, NL80211_BAND_2GHZ);
	if (status)
		return status;
	wiphy->bands[NL80211_BAND_2GHZ] =
		&adapter->sbands[NL80211_BAND_2GHZ];
	if (common->num_supp_bands > 1) {
		status = rsi_register_rates_channels(adapter,
						     NL80211_BAND_5GHZ);
		if (status)
			return status;
		wiphy->bands[NL80211_BAND_5GHZ] =
			&adapter->sbands[NL80211_BAND_5GHZ];
	}

	/* AP Parameters */
	wiphy->max_ap_assoc_sta = rsi_max_ap_stas[common->oper_mode - 1];
	common->max_stations = wiphy->max_ap_assoc_sta;
	rsi_dbg(ERR_ZONE, "Max Stations Allowed = %d\n", common->max_stations);
	hw->sta_data_size = sizeof(struct rsi_sta);

	wiphy->max_scan_ssids = RSI_MAX_SCAN_SSIDS;
	wiphy->max_scan_ie_len = RSI_MAX_SCAN_IE_LEN;
	wiphy->flags = WIPHY_FLAG_REPORTS_OBSS;
	wiphy->flags |= WIPHY_FLAG_AP_UAPSD;
	wiphy->features |= NL80211_FEATURE_INACTIVITY_TIMER;
	wiphy->reg_notifier = rsi_reg_notify;

#ifdef CONFIG_PM
	wiphy->wowlan = &rsi_wowlan_support;
#endif

	wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);

	/* Wi-Fi direct parameters */
	wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
	wiphy->flags |= WIPHY_FLAG_OFFCHAN_TX;
	wiphy->max_remain_on_channel_duration = 10000;
	hw->max_listen_interval = 10;
	wiphy->iface_combinations = rsi_iface_combinations;
	wiphy->n_iface_combinations = ARRAY_SIZE(rsi_iface_combinations);

	if (common->coex_mode > 1)
		wiphy->flags |= WIPHY_FLAG_PS_ON_BY_DEFAULT;

	status = ieee80211_register_hw(hw);
	if (status)
		return status;

	return rsi_init_dbgfs(adapter);
}