Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hannes Reinecke | 4242 | 76.65% | 6 | 9.09% |
Sagi Grimberg | 644 | 11.64% | 16 | 24.24% |
Christoph Hellwig | 237 | 4.28% | 15 | 22.73% |
Keith Busch | 97 | 1.75% | 6 | 9.09% |
James Smart | 72 | 1.30% | 1 | 1.52% |
Mark O'Donovan | 64 | 1.16% | 6 | 9.09% |
Andrew Lutomirski | 60 | 1.08% | 1 | 1.52% |
Shin'ichiro Kawasaki | 45 | 0.81% | 1 | 1.52% |
Johannes Thumshirn | 24 | 0.43% | 1 | 1.52% |
Christophe Jaillet | 9 | 0.16% | 1 | 1.52% |
Ming Lin | 8 | 0.14% | 1 | 1.52% |
Victor Gladkov | 7 | 0.13% | 1 | 1.52% |
Bart Van Assche | 6 | 0.11% | 1 | 1.52% |
Logan Gunthorpe | 5 | 0.09% | 2 | 3.03% |
Arnav Dawn | 3 | 0.05% | 1 | 1.52% |
Steve Wise | 3 | 0.05% | 1 | 1.52% |
Daniel Wagner | 3 | 0.05% | 1 | 1.52% |
Max Gurtovoy | 2 | 0.04% | 1 | 1.52% |
Tatsuya Sasaki | 1 | 0.02% | 1 | 1.52% |
Tom Rix | 1 | 0.02% | 1 | 1.52% |
Changcheng Deng | 1 | 0.02% | 1 | 1.52% |
Total | 5534 | 66 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020 Hannes Reinecke, SUSE Linux */ #include <linux/crc32.h> #include <linux/base64.h> #include <linux/prandom.h> #include <asm/unaligned.h> #include <crypto/hash.h> #include <crypto/dh.h> #include "nvme.h" #include "fabrics.h" #include <linux/nvme-auth.h> #define CHAP_BUF_SIZE 4096 static struct kmem_cache *nvme_chap_buf_cache; static mempool_t *nvme_chap_buf_pool; struct nvme_dhchap_queue_context { struct list_head entry; struct work_struct auth_work; struct nvme_ctrl *ctrl; struct crypto_shash *shash_tfm; struct crypto_kpp *dh_tfm; struct nvme_dhchap_key *transformed_key; void *buf; int qid; int error; u32 s1; u32 s2; bool bi_directional; u16 transaction; u8 status; u8 dhgroup_id; u8 hash_id; size_t hash_len; u8 c1[64]; u8 c2[64]; u8 response[64]; u8 *ctrl_key; u8 *host_key; u8 *sess_key; int ctrl_key_len; int host_key_len; int sess_key_len; }; static struct workqueue_struct *nvme_auth_wq; static inline int ctrl_max_dhchaps(struct nvme_ctrl *ctrl) { return ctrl->opts->nr_io_queues + ctrl->opts->nr_write_queues + ctrl->opts->nr_poll_queues + 1; } static int nvme_auth_submit(struct nvme_ctrl *ctrl, int qid, void *data, size_t data_len, bool auth_send) { struct nvme_command cmd = {}; nvme_submit_flags_t flags = NVME_SUBMIT_RETRY; struct request_queue *q = ctrl->fabrics_q; int ret; if (qid != 0) { flags |= NVME_SUBMIT_NOWAIT | NVME_SUBMIT_RESERVED; q = ctrl->connect_q; } cmd.auth_common.opcode = nvme_fabrics_command; cmd.auth_common.secp = NVME_AUTH_DHCHAP_PROTOCOL_IDENTIFIER; cmd.auth_common.spsp0 = 0x01; cmd.auth_common.spsp1 = 0x01; if (auth_send) { cmd.auth_send.fctype = nvme_fabrics_type_auth_send; cmd.auth_send.tl = cpu_to_le32(data_len); } else { cmd.auth_receive.fctype = nvme_fabrics_type_auth_receive; cmd.auth_receive.al = cpu_to_le32(data_len); } ret = __nvme_submit_sync_cmd(q, &cmd, NULL, data, data_len, qid == 0 ? NVME_QID_ANY : qid, flags); if (ret > 0) dev_warn(ctrl->device, "qid %d auth_send failed with status %d\n", qid, ret); else if (ret < 0) dev_err(ctrl->device, "qid %d auth_send failed with error %d\n", qid, ret); return ret; } static int nvme_auth_receive_validate(struct nvme_ctrl *ctrl, int qid, struct nvmf_auth_dhchap_failure_data *data, u16 transaction, u8 expected_msg) { dev_dbg(ctrl->device, "%s: qid %d auth_type %d auth_id %x\n", __func__, qid, data->auth_type, data->auth_id); if (data->auth_type == NVME_AUTH_COMMON_MESSAGES && data->auth_id == NVME_AUTH_DHCHAP_MESSAGE_FAILURE1) { return data->rescode_exp; } if (data->auth_type != NVME_AUTH_DHCHAP_MESSAGES || data->auth_id != expected_msg) { dev_warn(ctrl->device, "qid %d invalid message %02x/%02x\n", qid, data->auth_type, data->auth_id); return NVME_AUTH_DHCHAP_FAILURE_INCORRECT_MESSAGE; } if (le16_to_cpu(data->t_id) != transaction) { dev_warn(ctrl->device, "qid %d invalid transaction ID %d\n", qid, le16_to_cpu(data->t_id)); return NVME_AUTH_DHCHAP_FAILURE_INCORRECT_MESSAGE; } return 0; } static int nvme_auth_set_dhchap_negotiate_data(struct nvme_ctrl *ctrl, struct nvme_dhchap_queue_context *chap) { struct nvmf_auth_dhchap_negotiate_data *data = chap->buf; size_t size = sizeof(*data) + sizeof(union nvmf_auth_protocol); if (size > CHAP_BUF_SIZE) { chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD; return -EINVAL; } memset((u8 *)chap->buf, 0, size); data->auth_type = NVME_AUTH_COMMON_MESSAGES; data->auth_id = NVME_AUTH_DHCHAP_MESSAGE_NEGOTIATE; data->t_id = cpu_to_le16(chap->transaction); data->sc_c = 0; /* No secure channel concatenation */ data->napd = 1; data->auth_protocol[0].dhchap.authid = NVME_AUTH_DHCHAP_AUTH_ID; data->auth_protocol[0].dhchap.halen = 3; data->auth_protocol[0].dhchap.dhlen = 6; data->auth_protocol[0].dhchap.idlist[0] = NVME_AUTH_HASH_SHA256; data->auth_protocol[0].dhchap.idlist[1] = NVME_AUTH_HASH_SHA384; data->auth_protocol[0].dhchap.idlist[2] = NVME_AUTH_HASH_SHA512; data->auth_protocol[0].dhchap.idlist[30] = NVME_AUTH_DHGROUP_NULL; data->auth_protocol[0].dhchap.idlist[31] = NVME_AUTH_DHGROUP_2048; data->auth_protocol[0].dhchap.idlist[32] = NVME_AUTH_DHGROUP_3072; data->auth_protocol[0].dhchap.idlist[33] = NVME_AUTH_DHGROUP_4096; data->auth_protocol[0].dhchap.idlist[34] = NVME_AUTH_DHGROUP_6144; data->auth_protocol[0].dhchap.idlist[35] = NVME_AUTH_DHGROUP_8192; return size; } static int nvme_auth_process_dhchap_challenge(struct nvme_ctrl *ctrl, struct nvme_dhchap_queue_context *chap) { struct nvmf_auth_dhchap_challenge_data *data = chap->buf; u16 dhvlen = le16_to_cpu(data->dhvlen); size_t size = sizeof(*data) + data->hl + dhvlen; const char *gid_name = nvme_auth_dhgroup_name(data->dhgid); const char *hmac_name, *kpp_name; if (size > CHAP_BUF_SIZE) { chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD; return -EINVAL; } hmac_name = nvme_auth_hmac_name(data->hashid); if (!hmac_name) { dev_warn(ctrl->device, "qid %d: invalid HASH ID %d\n", chap->qid, data->hashid); chap->status = NVME_AUTH_DHCHAP_FAILURE_HASH_UNUSABLE; return -EPROTO; } if (chap->hash_id == data->hashid && chap->shash_tfm && !strcmp(crypto_shash_alg_name(chap->shash_tfm), hmac_name) && crypto_shash_digestsize(chap->shash_tfm) == data->hl) { dev_dbg(ctrl->device, "qid %d: reuse existing hash %s\n", chap->qid, hmac_name); goto select_kpp; } /* Reset if hash cannot be reused */ if (chap->shash_tfm) { crypto_free_shash(chap->shash_tfm); chap->hash_id = 0; chap->hash_len = 0; } chap->shash_tfm = crypto_alloc_shash(hmac_name, 0, CRYPTO_ALG_ALLOCATES_MEMORY); if (IS_ERR(chap->shash_tfm)) { dev_warn(ctrl->device, "qid %d: failed to allocate hash %s, error %ld\n", chap->qid, hmac_name, PTR_ERR(chap->shash_tfm)); chap->shash_tfm = NULL; chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED; return -ENOMEM; } if (crypto_shash_digestsize(chap->shash_tfm) != data->hl) { dev_warn(ctrl->device, "qid %d: invalid hash length %d\n", chap->qid, data->hl); crypto_free_shash(chap->shash_tfm); chap->shash_tfm = NULL; chap->status = NVME_AUTH_DHCHAP_FAILURE_HASH_UNUSABLE; return -EPROTO; } chap->hash_id = data->hashid; chap->hash_len = data->hl; dev_dbg(ctrl->device, "qid %d: selected hash %s\n", chap->qid, hmac_name); select_kpp: kpp_name = nvme_auth_dhgroup_kpp(data->dhgid); if (!kpp_name) { dev_warn(ctrl->device, "qid %d: invalid DH group id %d\n", chap->qid, data->dhgid); chap->status = NVME_AUTH_DHCHAP_FAILURE_DHGROUP_UNUSABLE; /* Leave previous dh_tfm intact */ return -EPROTO; } if (chap->dhgroup_id == data->dhgid && (data->dhgid == NVME_AUTH_DHGROUP_NULL || chap->dh_tfm)) { dev_dbg(ctrl->device, "qid %d: reuse existing DH group %s\n", chap->qid, gid_name); goto skip_kpp; } /* Reset dh_tfm if it can't be reused */ if (chap->dh_tfm) { crypto_free_kpp(chap->dh_tfm); chap->dh_tfm = NULL; } if (data->dhgid != NVME_AUTH_DHGROUP_NULL) { if (dhvlen == 0) { dev_warn(ctrl->device, "qid %d: empty DH value\n", chap->qid); chap->status = NVME_AUTH_DHCHAP_FAILURE_DHGROUP_UNUSABLE; return -EPROTO; } chap->dh_tfm = crypto_alloc_kpp(kpp_name, 0, 0); if (IS_ERR(chap->dh_tfm)) { int ret = PTR_ERR(chap->dh_tfm); dev_warn(ctrl->device, "qid %d: error %d initializing DH group %s\n", chap->qid, ret, gid_name); chap->status = NVME_AUTH_DHCHAP_FAILURE_DHGROUP_UNUSABLE; chap->dh_tfm = NULL; return ret; } dev_dbg(ctrl->device, "qid %d: selected DH group %s\n", chap->qid, gid_name); } else if (dhvlen != 0) { dev_warn(ctrl->device, "qid %d: invalid DH value for NULL DH\n", chap->qid); chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD; return -EPROTO; } chap->dhgroup_id = data->dhgid; skip_kpp: chap->s1 = le32_to_cpu(data->seqnum); memcpy(chap->c1, data->cval, chap->hash_len); if (dhvlen) { chap->ctrl_key = kmalloc(dhvlen, GFP_KERNEL); if (!chap->ctrl_key) { chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED; return -ENOMEM; } chap->ctrl_key_len = dhvlen; memcpy(chap->ctrl_key, data->cval + chap->hash_len, dhvlen); dev_dbg(ctrl->device, "ctrl public key %*ph\n", (int)chap->ctrl_key_len, chap->ctrl_key); } return 0; } static int nvme_auth_set_dhchap_reply_data(struct nvme_ctrl *ctrl, struct nvme_dhchap_queue_context *chap) { struct nvmf_auth_dhchap_reply_data *data = chap->buf; size_t size = sizeof(*data); size += 2 * chap->hash_len; if (chap->host_key_len) size += chap->host_key_len; if (size > CHAP_BUF_SIZE) { chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD; return -EINVAL; } memset(chap->buf, 0, size); data->auth_type = NVME_AUTH_DHCHAP_MESSAGES; data->auth_id = NVME_AUTH_DHCHAP_MESSAGE_REPLY; data->t_id = cpu_to_le16(chap->transaction); data->hl = chap->hash_len; data->dhvlen = cpu_to_le16(chap->host_key_len); memcpy(data->rval, chap->response, chap->hash_len); if (ctrl->ctrl_key) { chap->bi_directional = true; get_random_bytes(chap->c2, chap->hash_len); data->cvalid = 1; memcpy(data->rval + chap->hash_len, chap->c2, chap->hash_len); dev_dbg(ctrl->device, "%s: qid %d ctrl challenge %*ph\n", __func__, chap->qid, (int)chap->hash_len, chap->c2); } else { memset(chap->c2, 0, chap->hash_len); } chap->s2 = nvme_auth_get_seqnum(); data->seqnum = cpu_to_le32(chap->s2); if (chap->host_key_len) { dev_dbg(ctrl->device, "%s: qid %d host public key %*ph\n", __func__, chap->qid, chap->host_key_len, chap->host_key); memcpy(data->rval + 2 * chap->hash_len, chap->host_key, chap->host_key_len); } return size; } static int nvme_auth_process_dhchap_success1(struct nvme_ctrl *ctrl, struct nvme_dhchap_queue_context *chap) { struct nvmf_auth_dhchap_success1_data *data = chap->buf; size_t size = sizeof(*data) + chap->hash_len; if (size > CHAP_BUF_SIZE) { chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD; return -EINVAL; } if (data->hl != chap->hash_len) { dev_warn(ctrl->device, "qid %d: invalid hash length %u\n", chap->qid, data->hl); chap->status = NVME_AUTH_DHCHAP_FAILURE_HASH_UNUSABLE; return -EPROTO; } /* Just print out information for the admin queue */ if (chap->qid == 0) dev_info(ctrl->device, "qid 0: authenticated with hash %s dhgroup %s\n", nvme_auth_hmac_name(chap->hash_id), nvme_auth_dhgroup_name(chap->dhgroup_id)); if (!data->rvalid) return 0; /* Validate controller response */ if (memcmp(chap->response, data->rval, data->hl)) { dev_dbg(ctrl->device, "%s: qid %d ctrl response %*ph\n", __func__, chap->qid, (int)chap->hash_len, data->rval); dev_dbg(ctrl->device, "%s: qid %d host response %*ph\n", __func__, chap->qid, (int)chap->hash_len, chap->response); dev_warn(ctrl->device, "qid %d: controller authentication failed\n", chap->qid); chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED; return -ECONNREFUSED; } /* Just print out information for the admin queue */ if (chap->qid == 0) dev_info(ctrl->device, "qid 0: controller authenticated\n"); return 0; } static int nvme_auth_set_dhchap_success2_data(struct nvme_ctrl *ctrl, struct nvme_dhchap_queue_context *chap) { struct nvmf_auth_dhchap_success2_data *data = chap->buf; size_t size = sizeof(*data); memset(chap->buf, 0, size); data->auth_type = NVME_AUTH_DHCHAP_MESSAGES; data->auth_id = NVME_AUTH_DHCHAP_MESSAGE_SUCCESS2; data->t_id = cpu_to_le16(chap->transaction); return size; } static int nvme_auth_set_dhchap_failure2_data(struct nvme_ctrl *ctrl, struct nvme_dhchap_queue_context *chap) { struct nvmf_auth_dhchap_failure_data *data = chap->buf; size_t size = sizeof(*data); memset(chap->buf, 0, size); data->auth_type = NVME_AUTH_COMMON_MESSAGES; data->auth_id = NVME_AUTH_DHCHAP_MESSAGE_FAILURE2; data->t_id = cpu_to_le16(chap->transaction); data->rescode = NVME_AUTH_DHCHAP_FAILURE_REASON_FAILED; data->rescode_exp = chap->status; return size; } static int nvme_auth_dhchap_setup_host_response(struct nvme_ctrl *ctrl, struct nvme_dhchap_queue_context *chap) { SHASH_DESC_ON_STACK(shash, chap->shash_tfm); u8 buf[4], *challenge = chap->c1; int ret; dev_dbg(ctrl->device, "%s: qid %d host response seq %u transaction %d\n", __func__, chap->qid, chap->s1, chap->transaction); if (!chap->transformed_key) { chap->transformed_key = nvme_auth_transform_key(ctrl->host_key, ctrl->opts->host->nqn); if (IS_ERR(chap->transformed_key)) { ret = PTR_ERR(chap->transformed_key); chap->transformed_key = NULL; return ret; } } else { dev_dbg(ctrl->device, "%s: qid %d re-using host response\n", __func__, chap->qid); } ret = crypto_shash_setkey(chap->shash_tfm, chap->transformed_key->key, chap->transformed_key->len); if (ret) { dev_warn(ctrl->device, "qid %d: failed to set key, error %d\n", chap->qid, ret); goto out; } if (chap->dh_tfm) { challenge = kmalloc(chap->hash_len, GFP_KERNEL); if (!challenge) { ret = -ENOMEM; goto out; } ret = nvme_auth_augmented_challenge(chap->hash_id, chap->sess_key, chap->sess_key_len, chap->c1, challenge, chap->hash_len); if (ret) goto out; } shash->tfm = chap->shash_tfm; ret = crypto_shash_init(shash); if (ret) goto out; ret = crypto_shash_update(shash, challenge, chap->hash_len); if (ret) goto out; put_unaligned_le32(chap->s1, buf); ret = crypto_shash_update(shash, buf, 4); if (ret) goto out; put_unaligned_le16(chap->transaction, buf); ret = crypto_shash_update(shash, buf, 2); if (ret) goto out; memset(buf, 0, sizeof(buf)); ret = crypto_shash_update(shash, buf, 1); if (ret) goto out; ret = crypto_shash_update(shash, "HostHost", 8); if (ret) goto out; ret = crypto_shash_update(shash, ctrl->opts->host->nqn, strlen(ctrl->opts->host->nqn)); if (ret) goto out; ret = crypto_shash_update(shash, buf, 1); if (ret) goto out; ret = crypto_shash_update(shash, ctrl->opts->subsysnqn, strlen(ctrl->opts->subsysnqn)); if (ret) goto out; ret = crypto_shash_final(shash, chap->response); out: if (challenge != chap->c1) kfree(challenge); return ret; } static int nvme_auth_dhchap_setup_ctrl_response(struct nvme_ctrl *ctrl, struct nvme_dhchap_queue_context *chap) { SHASH_DESC_ON_STACK(shash, chap->shash_tfm); struct nvme_dhchap_key *transformed_key; u8 buf[4], *challenge = chap->c2; int ret; transformed_key = nvme_auth_transform_key(ctrl->ctrl_key, ctrl->opts->subsysnqn); if (IS_ERR(transformed_key)) { ret = PTR_ERR(transformed_key); return ret; } ret = crypto_shash_setkey(chap->shash_tfm, transformed_key->key, transformed_key->len); if (ret) { dev_warn(ctrl->device, "qid %d: failed to set key, error %d\n", chap->qid, ret); goto out; } if (chap->dh_tfm) { challenge = kmalloc(chap->hash_len, GFP_KERNEL); if (!challenge) { ret = -ENOMEM; goto out; } ret = nvme_auth_augmented_challenge(chap->hash_id, chap->sess_key, chap->sess_key_len, chap->c2, challenge, chap->hash_len); if (ret) goto out; } dev_dbg(ctrl->device, "%s: qid %d ctrl response seq %u transaction %d\n", __func__, chap->qid, chap->s2, chap->transaction); dev_dbg(ctrl->device, "%s: qid %d challenge %*ph\n", __func__, chap->qid, (int)chap->hash_len, challenge); dev_dbg(ctrl->device, "%s: qid %d subsysnqn %s\n", __func__, chap->qid, ctrl->opts->subsysnqn); dev_dbg(ctrl->device, "%s: qid %d hostnqn %s\n", __func__, chap->qid, ctrl->opts->host->nqn); shash->tfm = chap->shash_tfm; ret = crypto_shash_init(shash); if (ret) goto out; ret = crypto_shash_update(shash, challenge, chap->hash_len); if (ret) goto out; put_unaligned_le32(chap->s2, buf); ret = crypto_shash_update(shash, buf, 4); if (ret) goto out; put_unaligned_le16(chap->transaction, buf); ret = crypto_shash_update(shash, buf, 2); if (ret) goto out; memset(buf, 0, 4); ret = crypto_shash_update(shash, buf, 1); if (ret) goto out; ret = crypto_shash_update(shash, "Controller", 10); if (ret) goto out; ret = crypto_shash_update(shash, ctrl->opts->subsysnqn, strlen(ctrl->opts->subsysnqn)); if (ret) goto out; ret = crypto_shash_update(shash, buf, 1); if (ret) goto out; ret = crypto_shash_update(shash, ctrl->opts->host->nqn, strlen(ctrl->opts->host->nqn)); if (ret) goto out; ret = crypto_shash_final(shash, chap->response); out: if (challenge != chap->c2) kfree(challenge); nvme_auth_free_key(transformed_key); return ret; } static int nvme_auth_dhchap_exponential(struct nvme_ctrl *ctrl, struct nvme_dhchap_queue_context *chap) { int ret; if (chap->host_key && chap->host_key_len) { dev_dbg(ctrl->device, "qid %d: reusing host key\n", chap->qid); goto gen_sesskey; } ret = nvme_auth_gen_privkey(chap->dh_tfm, chap->dhgroup_id); if (ret < 0) { chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD; return ret; } chap->host_key_len = crypto_kpp_maxsize(chap->dh_tfm); chap->host_key = kzalloc(chap->host_key_len, GFP_KERNEL); if (!chap->host_key) { chap->host_key_len = 0; chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED; return -ENOMEM; } ret = nvme_auth_gen_pubkey(chap->dh_tfm, chap->host_key, chap->host_key_len); if (ret) { dev_dbg(ctrl->device, "failed to generate public key, error %d\n", ret); chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD; return ret; } gen_sesskey: chap->sess_key_len = chap->host_key_len; chap->sess_key = kmalloc(chap->sess_key_len, GFP_KERNEL); if (!chap->sess_key) { chap->sess_key_len = 0; chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED; return -ENOMEM; } ret = nvme_auth_gen_shared_secret(chap->dh_tfm, chap->ctrl_key, chap->ctrl_key_len, chap->sess_key, chap->sess_key_len); if (ret) { dev_dbg(ctrl->device, "failed to generate shared secret, error %d\n", ret); chap->status = NVME_AUTH_DHCHAP_FAILURE_INCORRECT_PAYLOAD; return ret; } dev_dbg(ctrl->device, "shared secret %*ph\n", (int)chap->sess_key_len, chap->sess_key); return 0; } static void nvme_auth_reset_dhchap(struct nvme_dhchap_queue_context *chap) { nvme_auth_free_key(chap->transformed_key); chap->transformed_key = NULL; kfree_sensitive(chap->host_key); chap->host_key = NULL; chap->host_key_len = 0; kfree_sensitive(chap->ctrl_key); chap->ctrl_key = NULL; chap->ctrl_key_len = 0; kfree_sensitive(chap->sess_key); chap->sess_key = NULL; chap->sess_key_len = 0; chap->status = 0; chap->error = 0; chap->s1 = 0; chap->s2 = 0; chap->bi_directional = false; chap->transaction = 0; memset(chap->c1, 0, sizeof(chap->c1)); memset(chap->c2, 0, sizeof(chap->c2)); mempool_free(chap->buf, nvme_chap_buf_pool); chap->buf = NULL; } static void nvme_auth_free_dhchap(struct nvme_dhchap_queue_context *chap) { nvme_auth_reset_dhchap(chap); if (chap->shash_tfm) crypto_free_shash(chap->shash_tfm); if (chap->dh_tfm) crypto_free_kpp(chap->dh_tfm); } static void nvme_queue_auth_work(struct work_struct *work) { struct nvme_dhchap_queue_context *chap = container_of(work, struct nvme_dhchap_queue_context, auth_work); struct nvme_ctrl *ctrl = chap->ctrl; size_t tl; int ret = 0; /* * Allocate a large enough buffer for the entire negotiation: * 4k is enough to ffdhe8192. */ chap->buf = mempool_alloc(nvme_chap_buf_pool, GFP_KERNEL); if (!chap->buf) { chap->error = -ENOMEM; return; } chap->transaction = ctrl->transaction++; /* DH-HMAC-CHAP Step 1: send negotiate */ dev_dbg(ctrl->device, "%s: qid %d send negotiate\n", __func__, chap->qid); ret = nvme_auth_set_dhchap_negotiate_data(ctrl, chap); if (ret < 0) { chap->error = ret; return; } tl = ret; ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, tl, true); if (ret) { chap->error = ret; return; } /* DH-HMAC-CHAP Step 2: receive challenge */ dev_dbg(ctrl->device, "%s: qid %d receive challenge\n", __func__, chap->qid); memset(chap->buf, 0, CHAP_BUF_SIZE); ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, CHAP_BUF_SIZE, false); if (ret) { dev_warn(ctrl->device, "qid %d failed to receive challenge, %s %d\n", chap->qid, ret < 0 ? "error" : "nvme status", ret); chap->error = ret; return; } ret = nvme_auth_receive_validate(ctrl, chap->qid, chap->buf, chap->transaction, NVME_AUTH_DHCHAP_MESSAGE_CHALLENGE); if (ret) { chap->status = ret; chap->error = -EKEYREJECTED; return; } ret = nvme_auth_process_dhchap_challenge(ctrl, chap); if (ret) { /* Invalid challenge parameters */ chap->error = ret; goto fail2; } if (chap->ctrl_key_len) { dev_dbg(ctrl->device, "%s: qid %d DH exponential\n", __func__, chap->qid); ret = nvme_auth_dhchap_exponential(ctrl, chap); if (ret) { chap->error = ret; goto fail2; } } dev_dbg(ctrl->device, "%s: qid %d host response\n", __func__, chap->qid); mutex_lock(&ctrl->dhchap_auth_mutex); ret = nvme_auth_dhchap_setup_host_response(ctrl, chap); mutex_unlock(&ctrl->dhchap_auth_mutex); if (ret) { chap->error = ret; goto fail2; } /* DH-HMAC-CHAP Step 3: send reply */ dev_dbg(ctrl->device, "%s: qid %d send reply\n", __func__, chap->qid); ret = nvme_auth_set_dhchap_reply_data(ctrl, chap); if (ret < 0) { chap->error = ret; goto fail2; } tl = ret; ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, tl, true); if (ret) { chap->error = ret; goto fail2; } /* DH-HMAC-CHAP Step 4: receive success1 */ dev_dbg(ctrl->device, "%s: qid %d receive success1\n", __func__, chap->qid); memset(chap->buf, 0, CHAP_BUF_SIZE); ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, CHAP_BUF_SIZE, false); if (ret) { dev_warn(ctrl->device, "qid %d failed to receive success1, %s %d\n", chap->qid, ret < 0 ? "error" : "nvme status", ret); chap->error = ret; return; } ret = nvme_auth_receive_validate(ctrl, chap->qid, chap->buf, chap->transaction, NVME_AUTH_DHCHAP_MESSAGE_SUCCESS1); if (ret) { chap->status = ret; chap->error = -EKEYREJECTED; return; } mutex_lock(&ctrl->dhchap_auth_mutex); if (ctrl->ctrl_key) { dev_dbg(ctrl->device, "%s: qid %d controller response\n", __func__, chap->qid); ret = nvme_auth_dhchap_setup_ctrl_response(ctrl, chap); if (ret) { mutex_unlock(&ctrl->dhchap_auth_mutex); chap->error = ret; goto fail2; } } mutex_unlock(&ctrl->dhchap_auth_mutex); ret = nvme_auth_process_dhchap_success1(ctrl, chap); if (ret) { /* Controller authentication failed */ chap->error = -EKEYREJECTED; goto fail2; } if (chap->bi_directional) { /* DH-HMAC-CHAP Step 5: send success2 */ dev_dbg(ctrl->device, "%s: qid %d send success2\n", __func__, chap->qid); tl = nvme_auth_set_dhchap_success2_data(ctrl, chap); ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, tl, true); if (ret) chap->error = ret; } if (!ret) { chap->error = 0; return; } fail2: if (chap->status == 0) chap->status = NVME_AUTH_DHCHAP_FAILURE_FAILED; dev_dbg(ctrl->device, "%s: qid %d send failure2, status %x\n", __func__, chap->qid, chap->status); tl = nvme_auth_set_dhchap_failure2_data(ctrl, chap); ret = nvme_auth_submit(ctrl, chap->qid, chap->buf, tl, true); /* * only update error if send failure2 failed and no other * error had been set during authentication. */ if (ret && !chap->error) chap->error = ret; } int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid) { struct nvme_dhchap_queue_context *chap; if (!ctrl->host_key) { dev_warn(ctrl->device, "qid %d: no key\n", qid); return -ENOKEY; } if (ctrl->opts->dhchap_ctrl_secret && !ctrl->ctrl_key) { dev_warn(ctrl->device, "qid %d: invalid ctrl key\n", qid); return -ENOKEY; } chap = &ctrl->dhchap_ctxs[qid]; cancel_work_sync(&chap->auth_work); queue_work(nvme_auth_wq, &chap->auth_work); return 0; } EXPORT_SYMBOL_GPL(nvme_auth_negotiate); int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid) { struct nvme_dhchap_queue_context *chap; int ret; chap = &ctrl->dhchap_ctxs[qid]; flush_work(&chap->auth_work); ret = chap->error; /* clear sensitive info */ nvme_auth_reset_dhchap(chap); return ret; } EXPORT_SYMBOL_GPL(nvme_auth_wait); static void nvme_ctrl_auth_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, dhchap_auth_work); int ret, q; /* * If the ctrl is no connected, bail as reconnect will handle * authentication. */ if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) return; /* Authenticate admin queue first */ ret = nvme_auth_negotiate(ctrl, 0); if (ret) { dev_warn(ctrl->device, "qid 0: error %d setting up authentication\n", ret); return; } ret = nvme_auth_wait(ctrl, 0); if (ret) { dev_warn(ctrl->device, "qid 0: authentication failed\n"); return; } for (q = 1; q < ctrl->queue_count; q++) { ret = nvme_auth_negotiate(ctrl, q); if (ret) { dev_warn(ctrl->device, "qid %d: error %d setting up authentication\n", q, ret); break; } } /* * Failure is a soft-state; credentials remain valid until * the controller terminates the connection. */ for (q = 1; q < ctrl->queue_count; q++) { ret = nvme_auth_wait(ctrl, q); if (ret) dev_warn(ctrl->device, "qid %d: authentication failed\n", q); } } int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl) { struct nvme_dhchap_queue_context *chap; int i, ret; mutex_init(&ctrl->dhchap_auth_mutex); INIT_WORK(&ctrl->dhchap_auth_work, nvme_ctrl_auth_work); if (!ctrl->opts) return 0; ret = nvme_auth_generate_key(ctrl->opts->dhchap_secret, &ctrl->host_key); if (ret) return ret; ret = nvme_auth_generate_key(ctrl->opts->dhchap_ctrl_secret, &ctrl->ctrl_key); if (ret) goto err_free_dhchap_secret; if (!ctrl->opts->dhchap_secret && !ctrl->opts->dhchap_ctrl_secret) return 0; ctrl->dhchap_ctxs = kvcalloc(ctrl_max_dhchaps(ctrl), sizeof(*chap), GFP_KERNEL); if (!ctrl->dhchap_ctxs) { ret = -ENOMEM; goto err_free_dhchap_ctrl_secret; } for (i = 0; i < ctrl_max_dhchaps(ctrl); i++) { chap = &ctrl->dhchap_ctxs[i]; chap->qid = i; chap->ctrl = ctrl; INIT_WORK(&chap->auth_work, nvme_queue_auth_work); } return 0; err_free_dhchap_ctrl_secret: nvme_auth_free_key(ctrl->ctrl_key); ctrl->ctrl_key = NULL; err_free_dhchap_secret: nvme_auth_free_key(ctrl->host_key); ctrl->host_key = NULL; return ret; } EXPORT_SYMBOL_GPL(nvme_auth_init_ctrl); void nvme_auth_stop(struct nvme_ctrl *ctrl) { cancel_work_sync(&ctrl->dhchap_auth_work); } EXPORT_SYMBOL_GPL(nvme_auth_stop); void nvme_auth_free(struct nvme_ctrl *ctrl) { int i; if (ctrl->dhchap_ctxs) { for (i = 0; i < ctrl_max_dhchaps(ctrl); i++) nvme_auth_free_dhchap(&ctrl->dhchap_ctxs[i]); kfree(ctrl->dhchap_ctxs); } if (ctrl->host_key) { nvme_auth_free_key(ctrl->host_key); ctrl->host_key = NULL; } if (ctrl->ctrl_key) { nvme_auth_free_key(ctrl->ctrl_key); ctrl->ctrl_key = NULL; } } EXPORT_SYMBOL_GPL(nvme_auth_free); int __init nvme_init_auth(void) { nvme_auth_wq = alloc_workqueue("nvme-auth-wq", WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0); if (!nvme_auth_wq) return -ENOMEM; nvme_chap_buf_cache = kmem_cache_create("nvme-chap-buf-cache", CHAP_BUF_SIZE, 0, SLAB_HWCACHE_ALIGN, NULL); if (!nvme_chap_buf_cache) goto err_destroy_workqueue; nvme_chap_buf_pool = mempool_create(16, mempool_alloc_slab, mempool_free_slab, nvme_chap_buf_cache); if (!nvme_chap_buf_pool) goto err_destroy_chap_buf_cache; return 0; err_destroy_chap_buf_cache: kmem_cache_destroy(nvme_chap_buf_cache); err_destroy_workqueue: destroy_workqueue(nvme_auth_wq); return -ENOMEM; } void __exit nvme_exit_auth(void) { mempool_destroy(nvme_chap_buf_pool); kmem_cache_destroy(nvme_chap_buf_cache); destroy_workqueue(nvme_auth_wq); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1