Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christoph Hellwig | 2739 | 54.23% | 46 | 33.09% |
Hannes Reinecke | 666 | 13.19% | 18 | 12.95% |
Sagi Grimberg | 360 | 7.13% | 9 | 6.47% |
Thomas Song | 300 | 5.94% | 1 | 0.72% |
Keith Busch | 240 | 4.75% | 18 | 12.95% |
Minwoo Im | 215 | 4.26% | 1 | 0.72% |
Anton Eidelman | 152 | 3.01% | 7 | 5.04% |
John Meneghini | 72 | 1.43% | 2 | 1.44% |
Daniel Wagner | 62 | 1.23% | 5 | 3.60% |
Prabhath Sajeepa | 30 | 0.59% | 1 | 0.72% |
Martin Wilck | 25 | 0.49% | 3 | 2.16% |
Caleb Sander | 23 | 0.46% | 1 | 0.72% |
Luis R. Rodriguez | 19 | 0.38% | 1 | 0.72% |
Sunad Bhandary | 15 | 0.30% | 1 | 0.72% |
Victor Gladkov | 15 | 0.30% | 1 | 0.72% |
Baegjae Sung | 13 | 0.26% | 1 | 0.72% |
Jens Axboe | 12 | 0.24% | 2 | 1.44% |
Nilay Shroff | 9 | 0.18% | 2 | 1.44% |
Kanchan Joshi | 9 | 0.18% | 2 | 1.44% |
Sungup Moon | 9 | 0.18% | 1 | 0.72% |
Matias Björling | 8 | 0.16% | 1 | 0.72% |
Marta Rybczynska | 8 | 0.16% | 1 | 0.72% |
Hou Tao | 7 | 0.14% | 1 | 0.72% |
Jianchao Wang | 6 | 0.12% | 1 | 0.72% |
Len Baker | 6 | 0.12% | 1 | 0.72% |
Alan Adamson | 6 | 0.12% | 1 | 0.72% |
Nick Bowler | 5 | 0.10% | 1 | 0.72% |
Logan Gunthorpe | 4 | 0.08% | 1 | 0.72% |
Susobhan Dey | 4 | 0.08% | 1 | 0.72% |
Mikhail Skorzhinskii | 3 | 0.06% | 1 | 0.72% |
Matthew Wilcox | 3 | 0.06% | 1 | 0.72% |
Joel Granados | 2 | 0.04% | 1 | 0.72% |
Weiwen Hu | 1 | 0.02% | 1 | 0.72% |
Guenter Roeck | 1 | 0.02% | 1 | 0.72% |
Guoqing Jiang | 1 | 0.02% | 1 | 0.72% |
Johannes Thumshirn | 1 | 0.02% | 1 | 0.72% |
Total | 5051 | 139 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2017-2018 Christoph Hellwig. */ #include <linux/backing-dev.h> #include <linux/moduleparam.h> #include <linux/vmalloc.h> #include <trace/events/block.h> #include "nvme.h" bool multipath = true; module_param(multipath, bool, 0444); MODULE_PARM_DESC(multipath, "turn on native support for multiple controllers per subsystem"); static const char *nvme_iopolicy_names[] = { [NVME_IOPOLICY_NUMA] = "numa", [NVME_IOPOLICY_RR] = "round-robin", [NVME_IOPOLICY_QD] = "queue-depth", }; static int iopolicy = NVME_IOPOLICY_NUMA; static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp) { if (!val) return -EINVAL; if (!strncmp(val, "numa", 4)) iopolicy = NVME_IOPOLICY_NUMA; else if (!strncmp(val, "round-robin", 11)) iopolicy = NVME_IOPOLICY_RR; else if (!strncmp(val, "queue-depth", 11)) iopolicy = NVME_IOPOLICY_QD; else return -EINVAL; return 0; } static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp) { return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]); } module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy, &iopolicy, 0644); MODULE_PARM_DESC(iopolicy, "Default multipath I/O policy; 'numa' (default), 'round-robin' or 'queue-depth'"); void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys) { subsys->iopolicy = iopolicy; } void nvme_mpath_unfreeze(struct nvme_subsystem *subsys) { struct nvme_ns_head *h; lockdep_assert_held(&subsys->lock); list_for_each_entry(h, &subsys->nsheads, entry) if (h->disk) blk_mq_unfreeze_queue(h->disk->queue); } void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys) { struct nvme_ns_head *h; lockdep_assert_held(&subsys->lock); list_for_each_entry(h, &subsys->nsheads, entry) if (h->disk) blk_mq_freeze_queue_wait(h->disk->queue); } void nvme_mpath_start_freeze(struct nvme_subsystem *subsys) { struct nvme_ns_head *h; lockdep_assert_held(&subsys->lock); list_for_each_entry(h, &subsys->nsheads, entry) if (h->disk) blk_freeze_queue_start(h->disk->queue); } void nvme_failover_req(struct request *req) { struct nvme_ns *ns = req->q->queuedata; u16 status = nvme_req(req)->status & NVME_SCT_SC_MASK; unsigned long flags; struct bio *bio; nvme_mpath_clear_current_path(ns); /* * If we got back an ANA error, we know the controller is alive but not * ready to serve this namespace. Kick of a re-read of the ANA * information page, and just try any other available path for now. */ if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) { set_bit(NVME_NS_ANA_PENDING, &ns->flags); queue_work(nvme_wq, &ns->ctrl->ana_work); } spin_lock_irqsave(&ns->head->requeue_lock, flags); for (bio = req->bio; bio; bio = bio->bi_next) { bio_set_dev(bio, ns->head->disk->part0); if (bio->bi_opf & REQ_POLLED) { bio->bi_opf &= ~REQ_POLLED; bio->bi_cookie = BLK_QC_T_NONE; } /* * The alternate request queue that we may end up submitting * the bio to may be frozen temporarily, in this case REQ_NOWAIT * will fail the I/O immediately with EAGAIN to the issuer. * We are not in the issuer context which cannot block. Clear * the flag to avoid spurious EAGAIN I/O failures. */ bio->bi_opf &= ~REQ_NOWAIT; } blk_steal_bios(&ns->head->requeue_list, req); spin_unlock_irqrestore(&ns->head->requeue_lock, flags); nvme_req(req)->status = 0; nvme_end_req(req); kblockd_schedule_work(&ns->head->requeue_work); } void nvme_mpath_start_request(struct request *rq) { struct nvme_ns *ns = rq->q->queuedata; struct gendisk *disk = ns->head->disk; if (READ_ONCE(ns->head->subsys->iopolicy) == NVME_IOPOLICY_QD) { atomic_inc(&ns->ctrl->nr_active); nvme_req(rq)->flags |= NVME_MPATH_CNT_ACTIVE; } if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq)) return; nvme_req(rq)->flags |= NVME_MPATH_IO_STATS; nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq), jiffies); } EXPORT_SYMBOL_GPL(nvme_mpath_start_request); void nvme_mpath_end_request(struct request *rq) { struct nvme_ns *ns = rq->q->queuedata; if (nvme_req(rq)->flags & NVME_MPATH_CNT_ACTIVE) atomic_dec_if_positive(&ns->ctrl->nr_active); if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS)) return; bdev_end_io_acct(ns->head->disk->part0, req_op(rq), blk_rq_bytes(rq) >> SECTOR_SHIFT, nvme_req(rq)->start_time); } void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; int srcu_idx; srcu_idx = srcu_read_lock(&ctrl->srcu); list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { if (!ns->head->disk) continue; kblockd_schedule_work(&ns->head->requeue_work); if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE) disk_uevent(ns->head->disk, KOBJ_CHANGE); } srcu_read_unlock(&ctrl->srcu, srcu_idx); } static const char *nvme_ana_state_names[] = { [0] = "invalid state", [NVME_ANA_OPTIMIZED] = "optimized", [NVME_ANA_NONOPTIMIZED] = "non-optimized", [NVME_ANA_INACCESSIBLE] = "inaccessible", [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss", [NVME_ANA_CHANGE] = "change", }; bool nvme_mpath_clear_current_path(struct nvme_ns *ns) { struct nvme_ns_head *head = ns->head; bool changed = false; int node; if (!head) goto out; for_each_node(node) { if (ns == rcu_access_pointer(head->current_path[node])) { rcu_assign_pointer(head->current_path[node], NULL); changed = true; } } out: return changed; } void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl) { struct nvme_ns *ns; int srcu_idx; srcu_idx = srcu_read_lock(&ctrl->srcu); list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { nvme_mpath_clear_current_path(ns); kblockd_schedule_work(&ns->head->requeue_work); } srcu_read_unlock(&ctrl->srcu, srcu_idx); } void nvme_mpath_revalidate_paths(struct nvme_ns *ns) { struct nvme_ns_head *head = ns->head; sector_t capacity = get_capacity(head->disk); int node; int srcu_idx; srcu_idx = srcu_read_lock(&head->srcu); list_for_each_entry_rcu(ns, &head->list, siblings) { if (capacity != get_capacity(ns->disk)) clear_bit(NVME_NS_READY, &ns->flags); } srcu_read_unlock(&head->srcu, srcu_idx); for_each_node(node) rcu_assign_pointer(head->current_path[node], NULL); kblockd_schedule_work(&head->requeue_work); } static bool nvme_path_is_disabled(struct nvme_ns *ns) { enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl); /* * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should * still be able to complete assuming that the controller is connected. * Otherwise it will fail immediately and return to the requeue list. */ if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING) return true; if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) || !test_bit(NVME_NS_READY, &ns->flags)) return true; return false; } static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node) { int found_distance = INT_MAX, fallback_distance = INT_MAX, distance; struct nvme_ns *found = NULL, *fallback = NULL, *ns; list_for_each_entry_rcu(ns, &head->list, siblings) { if (nvme_path_is_disabled(ns)) continue; if (ns->ctrl->numa_node != NUMA_NO_NODE && READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA) distance = node_distance(node, ns->ctrl->numa_node); else distance = LOCAL_DISTANCE; switch (ns->ana_state) { case NVME_ANA_OPTIMIZED: if (distance < found_distance) { found_distance = distance; found = ns; } break; case NVME_ANA_NONOPTIMIZED: if (distance < fallback_distance) { fallback_distance = distance; fallback = ns; } break; default: break; } } if (!found) found = fallback; if (found) rcu_assign_pointer(head->current_path[node], found); return found; } static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head, struct nvme_ns *ns) { ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns, siblings); if (ns) return ns; return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings); } static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head) { struct nvme_ns *ns, *found = NULL; int node = numa_node_id(); struct nvme_ns *old = srcu_dereference(head->current_path[node], &head->srcu); if (unlikely(!old)) return __nvme_find_path(head, node); if (list_is_singular(&head->list)) { if (nvme_path_is_disabled(old)) return NULL; return old; } for (ns = nvme_next_ns(head, old); ns && ns != old; ns = nvme_next_ns(head, ns)) { if (nvme_path_is_disabled(ns)) continue; if (ns->ana_state == NVME_ANA_OPTIMIZED) { found = ns; goto out; } if (ns->ana_state == NVME_ANA_NONOPTIMIZED) found = ns; } /* * The loop above skips the current path for round-robin semantics. * Fall back to the current path if either: * - no other optimized path found and current is optimized, * - no other usable path found and current is usable. */ if (!nvme_path_is_disabled(old) && (old->ana_state == NVME_ANA_OPTIMIZED || (!found && old->ana_state == NVME_ANA_NONOPTIMIZED))) return old; if (!found) return NULL; out: rcu_assign_pointer(head->current_path[node], found); return found; } static struct nvme_ns *nvme_queue_depth_path(struct nvme_ns_head *head) { struct nvme_ns *best_opt = NULL, *best_nonopt = NULL, *ns; unsigned int min_depth_opt = UINT_MAX, min_depth_nonopt = UINT_MAX; unsigned int depth; list_for_each_entry_rcu(ns, &head->list, siblings) { if (nvme_path_is_disabled(ns)) continue; depth = atomic_read(&ns->ctrl->nr_active); switch (ns->ana_state) { case NVME_ANA_OPTIMIZED: if (depth < min_depth_opt) { min_depth_opt = depth; best_opt = ns; } break; case NVME_ANA_NONOPTIMIZED: if (depth < min_depth_nonopt) { min_depth_nonopt = depth; best_nonopt = ns; } break; default: break; } if (min_depth_opt == 0) return best_opt; } return best_opt ? best_opt : best_nonopt; } static inline bool nvme_path_is_optimized(struct nvme_ns *ns) { return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE && ns->ana_state == NVME_ANA_OPTIMIZED; } static struct nvme_ns *nvme_numa_path(struct nvme_ns_head *head) { int node = numa_node_id(); struct nvme_ns *ns; ns = srcu_dereference(head->current_path[node], &head->srcu); if (unlikely(!ns)) return __nvme_find_path(head, node); if (unlikely(!nvme_path_is_optimized(ns))) return __nvme_find_path(head, node); return ns; } inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head) { switch (READ_ONCE(head->subsys->iopolicy)) { case NVME_IOPOLICY_QD: return nvme_queue_depth_path(head); case NVME_IOPOLICY_RR: return nvme_round_robin_path(head); default: return nvme_numa_path(head); } } static bool nvme_available_path(struct nvme_ns_head *head) { struct nvme_ns *ns; list_for_each_entry_rcu(ns, &head->list, siblings) { if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags)) continue; switch (nvme_ctrl_state(ns->ctrl)) { case NVME_CTRL_LIVE: case NVME_CTRL_RESETTING: case NVME_CTRL_CONNECTING: /* fallthru */ return true; default: break; } } return false; } static void nvme_ns_head_submit_bio(struct bio *bio) { struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data; struct device *dev = disk_to_dev(head->disk); struct nvme_ns *ns; int srcu_idx; /* * The namespace might be going away and the bio might be moved to a * different queue via blk_steal_bios(), so we need to use the bio_split * pool from the original queue to allocate the bvecs from. */ bio = bio_split_to_limits(bio); if (!bio) return; srcu_idx = srcu_read_lock(&head->srcu); ns = nvme_find_path(head); if (likely(ns)) { bio_set_dev(bio, ns->disk->part0); bio->bi_opf |= REQ_NVME_MPATH; trace_block_bio_remap(bio, disk_devt(ns->head->disk), bio->bi_iter.bi_sector); submit_bio_noacct(bio); } else if (nvme_available_path(head)) { dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n"); spin_lock_irq(&head->requeue_lock); bio_list_add(&head->requeue_list, bio); spin_unlock_irq(&head->requeue_lock); } else { dev_warn_ratelimited(dev, "no available path - failing I/O\n"); bio_io_error(bio); } srcu_read_unlock(&head->srcu, srcu_idx); } static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode) { if (!nvme_tryget_ns_head(disk->private_data)) return -ENXIO; return 0; } static void nvme_ns_head_release(struct gendisk *disk) { nvme_put_ns_head(disk->private_data); } static int nvme_ns_head_get_unique_id(struct gendisk *disk, u8 id[16], enum blk_unique_id type) { struct nvme_ns_head *head = disk->private_data; struct nvme_ns *ns; int srcu_idx, ret = -EWOULDBLOCK; srcu_idx = srcu_read_lock(&head->srcu); ns = nvme_find_path(head); if (ns) ret = nvme_ns_get_unique_id(ns, id, type); srcu_read_unlock(&head->srcu, srcu_idx); return ret; } #ifdef CONFIG_BLK_DEV_ZONED static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data) { struct nvme_ns_head *head = disk->private_data; struct nvme_ns *ns; int srcu_idx, ret = -EWOULDBLOCK; srcu_idx = srcu_read_lock(&head->srcu); ns = nvme_find_path(head); if (ns) ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data); srcu_read_unlock(&head->srcu, srcu_idx); return ret; } #else #define nvme_ns_head_report_zones NULL #endif /* CONFIG_BLK_DEV_ZONED */ const struct block_device_operations nvme_ns_head_ops = { .owner = THIS_MODULE, .submit_bio = nvme_ns_head_submit_bio, .open = nvme_ns_head_open, .release = nvme_ns_head_release, .ioctl = nvme_ns_head_ioctl, .compat_ioctl = blkdev_compat_ptr_ioctl, .getgeo = nvme_getgeo, .get_unique_id = nvme_ns_head_get_unique_id, .report_zones = nvme_ns_head_report_zones, .pr_ops = &nvme_pr_ops, }; static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev) { return container_of(cdev, struct nvme_ns_head, cdev); } static int nvme_ns_head_chr_open(struct inode *inode, struct file *file) { if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev))) return -ENXIO; return 0; } static int nvme_ns_head_chr_release(struct inode *inode, struct file *file) { nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev)); return 0; } static const struct file_operations nvme_ns_head_chr_fops = { .owner = THIS_MODULE, .open = nvme_ns_head_chr_open, .release = nvme_ns_head_chr_release, .unlocked_ioctl = nvme_ns_head_chr_ioctl, .compat_ioctl = compat_ptr_ioctl, .uring_cmd = nvme_ns_head_chr_uring_cmd, .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, }; static int nvme_add_ns_head_cdev(struct nvme_ns_head *head) { int ret; head->cdev_device.parent = &head->subsys->dev; ret = dev_set_name(&head->cdev_device, "ng%dn%d", head->subsys->instance, head->instance); if (ret) return ret; ret = nvme_cdev_add(&head->cdev, &head->cdev_device, &nvme_ns_head_chr_fops, THIS_MODULE); return ret; } static void nvme_requeue_work(struct work_struct *work) { struct nvme_ns_head *head = container_of(work, struct nvme_ns_head, requeue_work); struct bio *bio, *next; spin_lock_irq(&head->requeue_lock); next = bio_list_get(&head->requeue_list); spin_unlock_irq(&head->requeue_lock); while ((bio = next) != NULL) { next = bio->bi_next; bio->bi_next = NULL; submit_bio_noacct(bio); } } int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head) { struct queue_limits lim; mutex_init(&head->lock); bio_list_init(&head->requeue_list); spin_lock_init(&head->requeue_lock); INIT_WORK(&head->requeue_work, nvme_requeue_work); /* * Add a multipath node if the subsystems supports multiple controllers. * We also do this for private namespaces as the namespace sharing flag * could change after a rescan. */ if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !nvme_is_unique_nsid(ctrl, head) || !multipath) return 0; blk_set_stacking_limits(&lim); lim.dma_alignment = 3; lim.features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL; if (head->ids.csi == NVME_CSI_ZNS) lim.features |= BLK_FEAT_ZONED; else lim.max_zone_append_sectors = 0; head->disk = blk_alloc_disk(&lim, ctrl->numa_node); if (IS_ERR(head->disk)) return PTR_ERR(head->disk); head->disk->fops = &nvme_ns_head_ops; head->disk->private_data = head; sprintf(head->disk->disk_name, "nvme%dn%d", ctrl->subsys->instance, head->instance); return 0; } static void nvme_mpath_set_live(struct nvme_ns *ns) { struct nvme_ns_head *head = ns->head; int rc; if (!head->disk) return; /* * test_and_set_bit() is used because it is protecting against two nvme * paths simultaneously calling device_add_disk() on the same namespace * head. */ if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { rc = device_add_disk(&head->subsys->dev, head->disk, nvme_ns_attr_groups); if (rc) { clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags); return; } nvme_add_ns_head_cdev(head); } mutex_lock(&head->lock); if (nvme_path_is_optimized(ns)) { int node, srcu_idx; srcu_idx = srcu_read_lock(&head->srcu); for_each_online_node(node) __nvme_find_path(head, node); srcu_read_unlock(&head->srcu, srcu_idx); } mutex_unlock(&head->lock); synchronize_srcu(&head->srcu); kblockd_schedule_work(&head->requeue_work); } static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data, int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *, void *)) { void *base = ctrl->ana_log_buf; size_t offset = sizeof(struct nvme_ana_rsp_hdr); int error, i; lockdep_assert_held(&ctrl->ana_lock); for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) { struct nvme_ana_group_desc *desc = base + offset; u32 nr_nsids; size_t nsid_buf_size; if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc))) return -EINVAL; nr_nsids = le32_to_cpu(desc->nnsids); nsid_buf_size = flex_array_size(desc, nsids, nr_nsids); if (WARN_ON_ONCE(desc->grpid == 0)) return -EINVAL; if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax)) return -EINVAL; if (WARN_ON_ONCE(desc->state == 0)) return -EINVAL; if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE)) return -EINVAL; offset += sizeof(*desc); if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size)) return -EINVAL; error = cb(ctrl, desc, data); if (error) return error; offset += nsid_buf_size; } return 0; } static inline bool nvme_state_is_live(enum nvme_ana_state state) { return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED; } static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc, struct nvme_ns *ns) { ns->ana_grpid = le32_to_cpu(desc->grpid); ns->ana_state = desc->state; clear_bit(NVME_NS_ANA_PENDING, &ns->flags); /* * nvme_mpath_set_live() will trigger I/O to the multipath path device * and in turn to this path device. However we cannot accept this I/O * if the controller is not live. This may deadlock if called from * nvme_mpath_init_identify() and the ctrl will never complete * initialization, preventing I/O from completing. For this case we * will reprocess the ANA log page in nvme_mpath_update() once the * controller is ready. */ if (nvme_state_is_live(ns->ana_state) && nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE) nvme_mpath_set_live(ns); } static int nvme_update_ana_state(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *desc, void *data) { u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0; unsigned *nr_change_groups = data; struct nvme_ns *ns; int srcu_idx; dev_dbg(ctrl->device, "ANA group %d: %s.\n", le32_to_cpu(desc->grpid), nvme_ana_state_names[desc->state]); if (desc->state == NVME_ANA_CHANGE) (*nr_change_groups)++; if (!nr_nsids) return 0; srcu_idx = srcu_read_lock(&ctrl->srcu); list_for_each_entry_rcu(ns, &ctrl->namespaces, list) { unsigned nsid; again: nsid = le32_to_cpu(desc->nsids[n]); if (ns->head->ns_id < nsid) continue; if (ns->head->ns_id == nsid) nvme_update_ns_ana_state(desc, ns); if (++n == nr_nsids) break; if (ns->head->ns_id > nsid) goto again; } srcu_read_unlock(&ctrl->srcu, srcu_idx); return 0; } static int nvme_read_ana_log(struct nvme_ctrl *ctrl) { u32 nr_change_groups = 0; int error; mutex_lock(&ctrl->ana_lock); error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM, ctrl->ana_log_buf, ctrl->ana_log_size, 0); if (error) { dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error); goto out_unlock; } error = nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state); if (error) goto out_unlock; /* * In theory we should have an ANATT timer per group as they might enter * the change state at different times. But that is a lot of overhead * just to protect against a target that keeps entering new changes * states while never finishing previous ones. But we'll still * eventually time out once all groups are in change state, so this * isn't a big deal. * * We also double the ANATT value to provide some slack for transports * or AEN processing overhead. */ if (nr_change_groups) mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies); else del_timer_sync(&ctrl->anatt_timer); out_unlock: mutex_unlock(&ctrl->ana_lock); return error; } static void nvme_ana_work(struct work_struct *work) { struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work); if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) return; nvme_read_ana_log(ctrl); } void nvme_mpath_update(struct nvme_ctrl *ctrl) { u32 nr_change_groups = 0; if (!ctrl->ana_log_buf) return; mutex_lock(&ctrl->ana_lock); nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state); mutex_unlock(&ctrl->ana_lock); } static void nvme_anatt_timeout(struct timer_list *t) { struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer); dev_info(ctrl->device, "ANATT timeout, resetting controller.\n"); nvme_reset_ctrl(ctrl); } void nvme_mpath_stop(struct nvme_ctrl *ctrl) { if (!nvme_ctrl_use_ana(ctrl)) return; del_timer_sync(&ctrl->anatt_timer); cancel_work_sync(&ctrl->ana_work); } #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \ struct device_attribute subsys_attr_##_name = \ __ATTR(_name, _mode, _show, _store) static ssize_t nvme_subsys_iopolicy_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_subsystem *subsys = container_of(dev, struct nvme_subsystem, dev); return sysfs_emit(buf, "%s\n", nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]); } static void nvme_subsys_iopolicy_update(struct nvme_subsystem *subsys, int iopolicy) { struct nvme_ctrl *ctrl; int old_iopolicy = READ_ONCE(subsys->iopolicy); if (old_iopolicy == iopolicy) return; WRITE_ONCE(subsys->iopolicy, iopolicy); /* iopolicy changes clear the mpath by design */ mutex_lock(&nvme_subsystems_lock); list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) nvme_mpath_clear_ctrl_paths(ctrl); mutex_unlock(&nvme_subsystems_lock); pr_notice("subsysnqn %s iopolicy changed from %s to %s\n", subsys->subnqn, nvme_iopolicy_names[old_iopolicy], nvme_iopolicy_names[iopolicy]); } static ssize_t nvme_subsys_iopolicy_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct nvme_subsystem *subsys = container_of(dev, struct nvme_subsystem, dev); int i; for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) { if (sysfs_streq(buf, nvme_iopolicy_names[i])) { nvme_subsys_iopolicy_update(subsys, i); return count; } } return -EINVAL; } SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR, nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store); static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr, char *buf) { return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid); } DEVICE_ATTR_RO(ana_grpid); static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvme_ns *ns = nvme_get_ns_from_dev(dev); return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]); } DEVICE_ATTR_RO(ana_state); static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *desc, void *data) { struct nvme_ana_group_desc *dst = data; if (desc->grpid != dst->grpid) return 0; *dst = *desc; return -ENXIO; /* just break out of the loop */ } void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid) { if (nvme_ctrl_use_ana(ns->ctrl)) { struct nvme_ana_group_desc desc = { .grpid = anagrpid, .state = 0, }; mutex_lock(&ns->ctrl->ana_lock); ns->ana_grpid = le32_to_cpu(anagrpid); nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc); mutex_unlock(&ns->ctrl->ana_lock); if (desc.state) { /* found the group desc: update */ nvme_update_ns_ana_state(&desc, ns); } else { /* group desc not found: trigger a re-read */ set_bit(NVME_NS_ANA_PENDING, &ns->flags); queue_work(nvme_wq, &ns->ctrl->ana_work); } } else { ns->ana_state = NVME_ANA_OPTIMIZED; nvme_mpath_set_live(ns); } #ifdef CONFIG_BLK_DEV_ZONED if (blk_queue_is_zoned(ns->queue) && ns->head->disk) ns->head->disk->nr_zones = ns->disk->nr_zones; #endif } void nvme_mpath_shutdown_disk(struct nvme_ns_head *head) { if (!head->disk) return; kblockd_schedule_work(&head->requeue_work); if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) { nvme_cdev_del(&head->cdev, &head->cdev_device); del_gendisk(head->disk); } } void nvme_mpath_remove_disk(struct nvme_ns_head *head) { if (!head->disk) return; /* make sure all pending bios are cleaned up */ kblockd_schedule_work(&head->requeue_work); flush_work(&head->requeue_work); put_disk(head->disk); } void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl) { mutex_init(&ctrl->ana_lock); timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0); INIT_WORK(&ctrl->ana_work, nvme_ana_work); } int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) { size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT; size_t ana_log_size; int error = 0; /* check if multipath is enabled and we have the capability */ if (!multipath || !ctrl->subsys || !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)) return 0; /* initialize this in the identify path to cover controller resets */ atomic_set(&ctrl->nr_active, 0); if (!ctrl->max_namespaces || ctrl->max_namespaces > le32_to_cpu(id->nn)) { dev_err(ctrl->device, "Invalid MNAN value %u\n", ctrl->max_namespaces); return -EINVAL; } ctrl->anacap = id->anacap; ctrl->anatt = id->anatt; ctrl->nanagrpid = le32_to_cpu(id->nanagrpid); ctrl->anagrpmax = le32_to_cpu(id->anagrpmax); ana_log_size = sizeof(struct nvme_ana_rsp_hdr) + ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) + ctrl->max_namespaces * sizeof(__le32); if (ana_log_size > max_transfer_size) { dev_err(ctrl->device, "ANA log page size (%zd) larger than MDTS (%zd).\n", ana_log_size, max_transfer_size); dev_err(ctrl->device, "disabling ANA support.\n"); goto out_uninit; } if (ana_log_size > ctrl->ana_log_size) { nvme_mpath_stop(ctrl); nvme_mpath_uninit(ctrl); ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL); if (!ctrl->ana_log_buf) return -ENOMEM; } ctrl->ana_log_size = ana_log_size; error = nvme_read_ana_log(ctrl); if (error) goto out_uninit; return 0; out_uninit: nvme_mpath_uninit(ctrl); return error; } void nvme_mpath_uninit(struct nvme_ctrl *ctrl) { kvfree(ctrl->ana_log_buf); ctrl->ana_log_buf = NULL; ctrl->ana_log_size = 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1