Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Walleij | 3325 | 97.68% | 1 | 10.00% |
Rob Herring | 68 | 2.00% | 5 | 50.00% |
Li Yang | 5 | 0.15% | 1 | 10.00% |
Christophe Jaillet | 3 | 0.09% | 1 | 10.00% |
Aman Sharma | 2 | 0.06% | 1 | 10.00% |
Björn Helgaas | 1 | 0.03% | 1 | 10.00% |
Total | 3404 | 10 |
// SPDX-License-Identifier: GPL-2.0 /* * Support for V3 Semiconductor PCI Local Bus to PCI Bridge * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org> * * Based on the code from arch/arm/mach-integrator/pci_v3.c * Copyright (C) 1999 ARM Limited * Copyright (C) 2000-2001 Deep Blue Solutions Ltd * * Contributors to the old driver include: * Russell King <linux@armlinux.org.uk> * David A. Rusling <david.rusling@linaro.org> (uHAL, ARM Firmware suite) * Rob Herring <robh@kernel.org> * Liviu Dudau <Liviu.Dudau@arm.com> * Grant Likely <grant.likely@secretlab.ca> * Arnd Bergmann <arnd@arndb.de> * Bjorn Helgaas <bhelgaas@google.com> */ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/of_pci.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/bitops.h> #include <linux/irq.h> #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include <linux/clk.h> #include "../pci.h" #define V3_PCI_VENDOR 0x00000000 #define V3_PCI_DEVICE 0x00000002 #define V3_PCI_CMD 0x00000004 #define V3_PCI_STAT 0x00000006 #define V3_PCI_CC_REV 0x00000008 #define V3_PCI_HDR_CFG 0x0000000C #define V3_PCI_IO_BASE 0x00000010 #define V3_PCI_BASE0 0x00000014 #define V3_PCI_BASE1 0x00000018 #define V3_PCI_SUB_VENDOR 0x0000002C #define V3_PCI_SUB_ID 0x0000002E #define V3_PCI_ROM 0x00000030 #define V3_PCI_BPARAM 0x0000003C #define V3_PCI_MAP0 0x00000040 #define V3_PCI_MAP1 0x00000044 #define V3_PCI_INT_STAT 0x00000048 #define V3_PCI_INT_CFG 0x0000004C #define V3_LB_BASE0 0x00000054 #define V3_LB_BASE1 0x00000058 #define V3_LB_MAP0 0x0000005E #define V3_LB_MAP1 0x00000062 #define V3_LB_BASE2 0x00000064 #define V3_LB_MAP2 0x00000066 #define V3_LB_SIZE 0x00000068 #define V3_LB_IO_BASE 0x0000006E #define V3_FIFO_CFG 0x00000070 #define V3_FIFO_PRIORITY 0x00000072 #define V3_FIFO_STAT 0x00000074 #define V3_LB_ISTAT 0x00000076 #define V3_LB_IMASK 0x00000077 #define V3_SYSTEM 0x00000078 #define V3_LB_CFG 0x0000007A #define V3_PCI_CFG 0x0000007C #define V3_DMA_PCI_ADR0 0x00000080 #define V3_DMA_PCI_ADR1 0x00000090 #define V3_DMA_LOCAL_ADR0 0x00000084 #define V3_DMA_LOCAL_ADR1 0x00000094 #define V3_DMA_LENGTH0 0x00000088 #define V3_DMA_LENGTH1 0x00000098 #define V3_DMA_CSR0 0x0000008B #define V3_DMA_CSR1 0x0000009B #define V3_DMA_CTLB_ADR0 0x0000008C #define V3_DMA_CTLB_ADR1 0x0000009C #define V3_DMA_DELAY 0x000000E0 #define V3_MAIL_DATA 0x000000C0 #define V3_PCI_MAIL_IEWR 0x000000D0 #define V3_PCI_MAIL_IERD 0x000000D2 #define V3_LB_MAIL_IEWR 0x000000D4 #define V3_LB_MAIL_IERD 0x000000D6 #define V3_MAIL_WR_STAT 0x000000D8 #define V3_MAIL_RD_STAT 0x000000DA #define V3_QBA_MAP 0x000000DC /* PCI STATUS bits */ #define V3_PCI_STAT_PAR_ERR BIT(15) #define V3_PCI_STAT_SYS_ERR BIT(14) #define V3_PCI_STAT_M_ABORT_ERR BIT(13) #define V3_PCI_STAT_T_ABORT_ERR BIT(12) /* LB ISTAT bits */ #define V3_LB_ISTAT_MAILBOX BIT(7) #define V3_LB_ISTAT_PCI_RD BIT(6) #define V3_LB_ISTAT_PCI_WR BIT(5) #define V3_LB_ISTAT_PCI_INT BIT(4) #define V3_LB_ISTAT_PCI_PERR BIT(3) #define V3_LB_ISTAT_I2O_QWR BIT(2) #define V3_LB_ISTAT_DMA1 BIT(1) #define V3_LB_ISTAT_DMA0 BIT(0) /* PCI COMMAND bits */ #define V3_COMMAND_M_FBB_EN BIT(9) #define V3_COMMAND_M_SERR_EN BIT(8) #define V3_COMMAND_M_PAR_EN BIT(6) #define V3_COMMAND_M_MASTER_EN BIT(2) #define V3_COMMAND_M_MEM_EN BIT(1) #define V3_COMMAND_M_IO_EN BIT(0) /* SYSTEM bits */ #define V3_SYSTEM_M_RST_OUT BIT(15) #define V3_SYSTEM_M_LOCK BIT(14) #define V3_SYSTEM_UNLOCK 0xa05f /* PCI CFG bits */ #define V3_PCI_CFG_M_I2O_EN BIT(15) #define V3_PCI_CFG_M_IO_REG_DIS BIT(14) #define V3_PCI_CFG_M_IO_DIS BIT(13) #define V3_PCI_CFG_M_EN3V BIT(12) #define V3_PCI_CFG_M_RETRY_EN BIT(10) #define V3_PCI_CFG_M_AD_LOW1 BIT(9) #define V3_PCI_CFG_M_AD_LOW0 BIT(8) /* * This is the value applied to C/BE[3:1], with bit 0 always held 0 * during DMA access. */ #define V3_PCI_CFG_M_RTYPE_SHIFT 5 #define V3_PCI_CFG_M_WTYPE_SHIFT 1 #define V3_PCI_CFG_TYPE_DEFAULT 0x3 /* PCI BASE bits (PCI -> Local Bus) */ #define V3_PCI_BASE_M_ADR_BASE 0xFFF00000U #define V3_PCI_BASE_M_ADR_BASEL 0x000FFF00U #define V3_PCI_BASE_M_PREFETCH BIT(3) #define V3_PCI_BASE_M_TYPE (3 << 1) #define V3_PCI_BASE_M_IO BIT(0) /* PCI MAP bits (PCI -> Local bus) */ #define V3_PCI_MAP_M_MAP_ADR 0xFFF00000U #define V3_PCI_MAP_M_RD_POST_INH BIT(15) #define V3_PCI_MAP_M_ROM_SIZE (3 << 10) #define V3_PCI_MAP_M_SWAP (3 << 8) #define V3_PCI_MAP_M_ADR_SIZE 0x000000F0U #define V3_PCI_MAP_M_REG_EN BIT(1) #define V3_PCI_MAP_M_ENABLE BIT(0) /* LB_BASE0,1 bits (Local bus -> PCI) */ #define V3_LB_BASE_ADR_BASE 0xfff00000U #define V3_LB_BASE_SWAP (3 << 8) #define V3_LB_BASE_ADR_SIZE (15 << 4) #define V3_LB_BASE_PREFETCH BIT(3) #define V3_LB_BASE_ENABLE BIT(0) #define V3_LB_BASE_ADR_SIZE_1MB (0 << 4) #define V3_LB_BASE_ADR_SIZE_2MB (1 << 4) #define V3_LB_BASE_ADR_SIZE_4MB (2 << 4) #define V3_LB_BASE_ADR_SIZE_8MB (3 << 4) #define V3_LB_BASE_ADR_SIZE_16MB (4 << 4) #define V3_LB_BASE_ADR_SIZE_32MB (5 << 4) #define V3_LB_BASE_ADR_SIZE_64MB (6 << 4) #define V3_LB_BASE_ADR_SIZE_128MB (7 << 4) #define V3_LB_BASE_ADR_SIZE_256MB (8 << 4) #define V3_LB_BASE_ADR_SIZE_512MB (9 << 4) #define V3_LB_BASE_ADR_SIZE_1GB (10 << 4) #define V3_LB_BASE_ADR_SIZE_2GB (11 << 4) #define v3_addr_to_lb_base(a) ((a) & V3_LB_BASE_ADR_BASE) /* LB_MAP0,1 bits (Local bus -> PCI) */ #define V3_LB_MAP_MAP_ADR 0xfff0U #define V3_LB_MAP_TYPE (7 << 1) #define V3_LB_MAP_AD_LOW_EN BIT(0) #define V3_LB_MAP_TYPE_IACK (0 << 1) #define V3_LB_MAP_TYPE_IO (1 << 1) #define V3_LB_MAP_TYPE_MEM (3 << 1) #define V3_LB_MAP_TYPE_CONFIG (5 << 1) #define V3_LB_MAP_TYPE_MEM_MULTIPLE (6 << 1) #define v3_addr_to_lb_map(a) (((a) >> 16) & V3_LB_MAP_MAP_ADR) /* LB_BASE2 bits (Local bus -> PCI IO) */ #define V3_LB_BASE2_ADR_BASE 0xff00U #define V3_LB_BASE2_SWAP_AUTO (3 << 6) #define V3_LB_BASE2_ENABLE BIT(0) #define v3_addr_to_lb_base2(a) (((a) >> 16) & V3_LB_BASE2_ADR_BASE) /* LB_MAP2 bits (Local bus -> PCI IO) */ #define V3_LB_MAP2_MAP_ADR 0xff00U #define v3_addr_to_lb_map2(a) (((a) >> 16) & V3_LB_MAP2_MAP_ADR) /* FIFO priority bits */ #define V3_FIFO_PRIO_LOCAL BIT(12) #define V3_FIFO_PRIO_LB_RD1_FLUSH_EOB BIT(10) #define V3_FIFO_PRIO_LB_RD1_FLUSH_AP1 BIT(11) #define V3_FIFO_PRIO_LB_RD1_FLUSH_ANY (BIT(10)|BIT(11)) #define V3_FIFO_PRIO_LB_RD0_FLUSH_EOB BIT(8) #define V3_FIFO_PRIO_LB_RD0_FLUSH_AP1 BIT(9) #define V3_FIFO_PRIO_LB_RD0_FLUSH_ANY (BIT(8)|BIT(9)) #define V3_FIFO_PRIO_PCI BIT(4) #define V3_FIFO_PRIO_PCI_RD1_FLUSH_EOB BIT(2) #define V3_FIFO_PRIO_PCI_RD1_FLUSH_AP1 BIT(3) #define V3_FIFO_PRIO_PCI_RD1_FLUSH_ANY (BIT(2)|BIT(3)) #define V3_FIFO_PRIO_PCI_RD0_FLUSH_EOB BIT(0) #define V3_FIFO_PRIO_PCI_RD0_FLUSH_AP1 BIT(1) #define V3_FIFO_PRIO_PCI_RD0_FLUSH_ANY (BIT(0)|BIT(1)) /* Local bus configuration bits */ #define V3_LB_CFG_LB_TO_64_CYCLES 0x0000 #define V3_LB_CFG_LB_TO_256_CYCLES BIT(13) #define V3_LB_CFG_LB_TO_512_CYCLES BIT(14) #define V3_LB_CFG_LB_TO_1024_CYCLES (BIT(13)|BIT(14)) #define V3_LB_CFG_LB_RST BIT(12) #define V3_LB_CFG_LB_PPC_RDY BIT(11) #define V3_LB_CFG_LB_LB_INT BIT(10) #define V3_LB_CFG_LB_ERR_EN BIT(9) #define V3_LB_CFG_LB_RDY_EN BIT(8) #define V3_LB_CFG_LB_BE_IMODE BIT(7) #define V3_LB_CFG_LB_BE_OMODE BIT(6) #define V3_LB_CFG_LB_ENDIAN BIT(5) #define V3_LB_CFG_LB_PARK_EN BIT(4) #define V3_LB_CFG_LB_FBB_DIS BIT(2) /* ARM Integrator-specific extended control registers */ #define INTEGRATOR_SC_PCI_OFFSET 0x18 #define INTEGRATOR_SC_PCI_ENABLE BIT(0) #define INTEGRATOR_SC_PCI_INTCLR BIT(1) #define INTEGRATOR_SC_LBFADDR_OFFSET 0x20 #define INTEGRATOR_SC_LBFCODE_OFFSET 0x24 struct v3_pci { struct device *dev; void __iomem *base; void __iomem *config_base; u32 config_mem; u32 non_pre_mem; u32 pre_mem; phys_addr_t non_pre_bus_addr; phys_addr_t pre_bus_addr; struct regmap *map; }; /* * The V3 PCI interface chip in Integrator provides several windows from * local bus memory into the PCI memory areas. Unfortunately, there * are not really enough windows for our usage, therefore we reuse * one of the windows for access to PCI configuration space. On the * Integrator/AP, the memory map is as follows: * * Local Bus Memory Usage * * 40000000 - 4FFFFFFF PCI memory. 256M non-prefetchable * 50000000 - 5FFFFFFF PCI memory. 256M prefetchable * 60000000 - 60FFFFFF PCI IO. 16M * 61000000 - 61FFFFFF PCI Configuration. 16M * * There are three V3 windows, each described by a pair of V3 registers. * These are LB_BASE0/LB_MAP0, LB_BASE1/LB_MAP1 and LB_BASE2/LB_MAP2. * Base0 and Base1 can be used for any type of PCI memory access. Base2 * can be used either for PCI I/O or for I20 accesses. By default, uHAL * uses this only for PCI IO space. * * Normally these spaces are mapped using the following base registers: * * Usage Local Bus Memory Base/Map registers used * * Mem 40000000 - 4FFFFFFF LB_BASE0/LB_MAP0 * Mem 50000000 - 5FFFFFFF LB_BASE1/LB_MAP1 * IO 60000000 - 60FFFFFF LB_BASE2/LB_MAP2 * Cfg 61000000 - 61FFFFFF * * This means that I20 and PCI configuration space accesses will fail. * When PCI configuration accesses are needed (via the uHAL PCI * configuration space primitives) we must remap the spaces as follows: * * Usage Local Bus Memory Base/Map registers used * * Mem 40000000 - 4FFFFFFF LB_BASE0/LB_MAP0 * Mem 50000000 - 5FFFFFFF LB_BASE0/LB_MAP0 * IO 60000000 - 60FFFFFF LB_BASE2/LB_MAP2 * Cfg 61000000 - 61FFFFFF LB_BASE1/LB_MAP1 * * To make this work, the code depends on overlapping windows working. * The V3 chip translates an address by checking its range within * each of the BASE/MAP pairs in turn (in ascending register number * order). It will use the first matching pair. So, for example, * if the same address is mapped by both LB_BASE0/LB_MAP0 and * LB_BASE1/LB_MAP1, the V3 will use the translation from * LB_BASE0/LB_MAP0. * * To allow PCI Configuration space access, the code enlarges the * window mapped by LB_BASE0/LB_MAP0 from 256M to 512M. This occludes * the windows currently mapped by LB_BASE1/LB_MAP1 so that it can * be remapped for use by configuration cycles. * * At the end of the PCI Configuration space accesses, * LB_BASE1/LB_MAP1 is reset to map PCI Memory. Finally the window * mapped by LB_BASE0/LB_MAP0 is reduced in size from 512M to 256M to * reveal the now restored LB_BASE1/LB_MAP1 window. * * NOTE: We do not set up I2O mapping. I suspect that this is only * for an intelligent (target) device. Using I2O disables most of * the mappings into PCI memory. */ static void __iomem *v3_map_bus(struct pci_bus *bus, unsigned int devfn, int offset) { struct v3_pci *v3 = bus->sysdata; unsigned int address, mapaddress, busnr; busnr = bus->number; if (busnr == 0) { int slot = PCI_SLOT(devfn); /* * local bus segment so need a type 0 config cycle * * build the PCI configuration "address" with one-hot in * A31-A11 * * mapaddress: * 3:1 = config cycle (101) * 0 = PCI A1 & A0 are 0 (0) */ address = PCI_FUNC(devfn) << 8; mapaddress = V3_LB_MAP_TYPE_CONFIG; if (slot > 12) /* * high order bits are handled by the MAP register */ mapaddress |= BIT(slot - 5); else /* * low order bits handled directly in the address */ address |= BIT(slot + 11); } else { /* * not the local bus segment so need a type 1 config cycle * * address: * 23:16 = bus number * 15:11 = slot number (7:3 of devfn) * 10:8 = func number (2:0 of devfn) * * mapaddress: * 3:1 = config cycle (101) * 0 = PCI A1 & A0 from host bus (1) */ mapaddress = V3_LB_MAP_TYPE_CONFIG | V3_LB_MAP_AD_LOW_EN; address = (busnr << 16) | (devfn << 8); } /* * Set up base0 to see all 512Mbytes of memory space (not * prefetchable), this frees up base1 for re-use by * configuration memory */ writel(v3_addr_to_lb_base(v3->non_pre_mem) | V3_LB_BASE_ADR_SIZE_512MB | V3_LB_BASE_ENABLE, v3->base + V3_LB_BASE0); /* * Set up base1/map1 to point into configuration space. * The config mem is always 16MB. */ writel(v3_addr_to_lb_base(v3->config_mem) | V3_LB_BASE_ADR_SIZE_16MB | V3_LB_BASE_ENABLE, v3->base + V3_LB_BASE1); writew(mapaddress, v3->base + V3_LB_MAP1); return v3->config_base + address + offset; } static void v3_unmap_bus(struct v3_pci *v3) { /* * Reassign base1 for use by prefetchable PCI memory */ writel(v3_addr_to_lb_base(v3->pre_mem) | V3_LB_BASE_ADR_SIZE_256MB | V3_LB_BASE_PREFETCH | V3_LB_BASE_ENABLE, v3->base + V3_LB_BASE1); writew(v3_addr_to_lb_map(v3->pre_bus_addr) | V3_LB_MAP_TYPE_MEM, /* was V3_LB_MAP_TYPE_MEM_MULTIPLE */ v3->base + V3_LB_MAP1); /* * And shrink base0 back to a 256M window (NOTE: MAP0 already correct) */ writel(v3_addr_to_lb_base(v3->non_pre_mem) | V3_LB_BASE_ADR_SIZE_256MB | V3_LB_BASE_ENABLE, v3->base + V3_LB_BASE0); } static int v3_pci_read_config(struct pci_bus *bus, unsigned int fn, int config, int size, u32 *value) { struct v3_pci *v3 = bus->sysdata; int ret; dev_dbg(&bus->dev, "[read] slt: %.2d, fnc: %d, cnf: 0x%.2X, val (%d bytes): 0x%.8X\n", PCI_SLOT(fn), PCI_FUNC(fn), config, size, *value); ret = pci_generic_config_read(bus, fn, config, size, value); v3_unmap_bus(v3); return ret; } static int v3_pci_write_config(struct pci_bus *bus, unsigned int fn, int config, int size, u32 value) { struct v3_pci *v3 = bus->sysdata; int ret; dev_dbg(&bus->dev, "[write] slt: %.2d, fnc: %d, cnf: 0x%.2X, val (%d bytes): 0x%.8X\n", PCI_SLOT(fn), PCI_FUNC(fn), config, size, value); ret = pci_generic_config_write(bus, fn, config, size, value); v3_unmap_bus(v3); return ret; } static struct pci_ops v3_pci_ops = { .map_bus = v3_map_bus, .read = v3_pci_read_config, .write = v3_pci_write_config, }; static irqreturn_t v3_irq(int irq, void *data) { struct v3_pci *v3 = data; struct device *dev = v3->dev; u32 status; status = readw(v3->base + V3_PCI_STAT); if (status & V3_PCI_STAT_PAR_ERR) dev_err(dev, "parity error interrupt\n"); if (status & V3_PCI_STAT_SYS_ERR) dev_err(dev, "system error interrupt\n"); if (status & V3_PCI_STAT_M_ABORT_ERR) dev_err(dev, "master abort error interrupt\n"); if (status & V3_PCI_STAT_T_ABORT_ERR) dev_err(dev, "target abort error interrupt\n"); writew(status, v3->base + V3_PCI_STAT); status = readb(v3->base + V3_LB_ISTAT); if (status & V3_LB_ISTAT_MAILBOX) dev_info(dev, "PCI mailbox interrupt\n"); if (status & V3_LB_ISTAT_PCI_RD) dev_err(dev, "PCI target LB->PCI READ abort interrupt\n"); if (status & V3_LB_ISTAT_PCI_WR) dev_err(dev, "PCI target LB->PCI WRITE abort interrupt\n"); if (status & V3_LB_ISTAT_PCI_INT) dev_info(dev, "PCI pin interrupt\n"); if (status & V3_LB_ISTAT_PCI_PERR) dev_err(dev, "PCI parity error interrupt\n"); if (status & V3_LB_ISTAT_I2O_QWR) dev_info(dev, "I2O inbound post queue interrupt\n"); if (status & V3_LB_ISTAT_DMA1) dev_info(dev, "DMA channel 1 interrupt\n"); if (status & V3_LB_ISTAT_DMA0) dev_info(dev, "DMA channel 0 interrupt\n"); /* Clear all possible interrupts on the local bus */ writeb(0, v3->base + V3_LB_ISTAT); if (v3->map) regmap_write(v3->map, INTEGRATOR_SC_PCI_OFFSET, INTEGRATOR_SC_PCI_ENABLE | INTEGRATOR_SC_PCI_INTCLR); return IRQ_HANDLED; } static int v3_integrator_init(struct v3_pci *v3) { unsigned int val; v3->map = syscon_regmap_lookup_by_compatible("arm,integrator-ap-syscon"); if (IS_ERR(v3->map)) { dev_err(v3->dev, "no syscon\n"); return -ENODEV; } regmap_read(v3->map, INTEGRATOR_SC_PCI_OFFSET, &val); /* Take the PCI bridge out of reset, clear IRQs */ regmap_write(v3->map, INTEGRATOR_SC_PCI_OFFSET, INTEGRATOR_SC_PCI_ENABLE | INTEGRATOR_SC_PCI_INTCLR); if (!(val & INTEGRATOR_SC_PCI_ENABLE)) { /* If we were in reset we need to sleep a bit */ msleep(230); /* Set the physical base for the controller itself */ writel(0x6200, v3->base + V3_LB_IO_BASE); /* Wait for the mailbox to settle after reset */ do { writeb(0xaa, v3->base + V3_MAIL_DATA); writeb(0x55, v3->base + V3_MAIL_DATA + 4); } while (readb(v3->base + V3_MAIL_DATA) != 0xaa && readb(v3->base + V3_MAIL_DATA) != 0x55); } dev_info(v3->dev, "initialized PCI V3 Integrator/AP integration\n"); return 0; } static int v3_pci_setup_resource(struct v3_pci *v3, struct pci_host_bridge *host, struct resource_entry *win) { struct device *dev = v3->dev; struct resource *mem; struct resource *io; switch (resource_type(win->res)) { case IORESOURCE_IO: io = win->res; /* Setup window 2 - PCI I/O */ writel(v3_addr_to_lb_base2(pci_pio_to_address(io->start)) | V3_LB_BASE2_ENABLE, v3->base + V3_LB_BASE2); writew(v3_addr_to_lb_map2(io->start - win->offset), v3->base + V3_LB_MAP2); break; case IORESOURCE_MEM: mem = win->res; if (mem->flags & IORESOURCE_PREFETCH) { mem->name = "V3 PCI PRE-MEM"; v3->pre_mem = mem->start; v3->pre_bus_addr = mem->start - win->offset; dev_dbg(dev, "PREFETCHABLE MEM window %pR, bus addr %pap\n", mem, &v3->pre_bus_addr); if (resource_size(mem) != SZ_256M) { dev_err(dev, "prefetchable memory range is not 256MB\n"); return -EINVAL; } if (v3->non_pre_mem && (mem->start != v3->non_pre_mem + SZ_256M)) { dev_err(dev, "prefetchable memory is not adjacent to non-prefetchable memory\n"); return -EINVAL; } /* Setup window 1 - PCI prefetchable memory */ writel(v3_addr_to_lb_base(v3->pre_mem) | V3_LB_BASE_ADR_SIZE_256MB | V3_LB_BASE_PREFETCH | V3_LB_BASE_ENABLE, v3->base + V3_LB_BASE1); writew(v3_addr_to_lb_map(v3->pre_bus_addr) | V3_LB_MAP_TYPE_MEM, /* Was V3_LB_MAP_TYPE_MEM_MULTIPLE */ v3->base + V3_LB_MAP1); } else { mem->name = "V3 PCI NON-PRE-MEM"; v3->non_pre_mem = mem->start; v3->non_pre_bus_addr = mem->start - win->offset; dev_dbg(dev, "NON-PREFETCHABLE MEM window %pR, bus addr %pap\n", mem, &v3->non_pre_bus_addr); if (resource_size(mem) != SZ_256M) { dev_err(dev, "non-prefetchable memory range is not 256MB\n"); return -EINVAL; } /* Setup window 0 - PCI non-prefetchable memory */ writel(v3_addr_to_lb_base(v3->non_pre_mem) | V3_LB_BASE_ADR_SIZE_256MB | V3_LB_BASE_ENABLE, v3->base + V3_LB_BASE0); writew(v3_addr_to_lb_map(v3->non_pre_bus_addr) | V3_LB_MAP_TYPE_MEM, v3->base + V3_LB_MAP0); } break; case IORESOURCE_BUS: break; default: dev_info(dev, "Unknown resource type %lu\n", resource_type(win->res)); break; } return 0; } static int v3_get_dma_range_config(struct v3_pci *v3, struct resource_entry *entry, u32 *pci_base, u32 *pci_map) { struct device *dev = v3->dev; u64 cpu_addr = entry->res->start; u64 cpu_end = entry->res->end; u64 pci_end = cpu_end - entry->offset; u64 pci_addr = entry->res->start - entry->offset; u32 val; if (pci_addr & ~V3_PCI_BASE_M_ADR_BASE) { dev_err(dev, "illegal range, only PCI bits 31..20 allowed\n"); return -EINVAL; } val = ((u32)pci_addr) & V3_PCI_BASE_M_ADR_BASE; *pci_base = val; if (cpu_addr & ~V3_PCI_MAP_M_MAP_ADR) { dev_err(dev, "illegal range, only CPU bits 31..20 allowed\n"); return -EINVAL; } val = ((u32)cpu_addr) & V3_PCI_MAP_M_MAP_ADR; switch (resource_size(entry->res)) { case SZ_1M: val |= V3_LB_BASE_ADR_SIZE_1MB; break; case SZ_2M: val |= V3_LB_BASE_ADR_SIZE_2MB; break; case SZ_4M: val |= V3_LB_BASE_ADR_SIZE_4MB; break; case SZ_8M: val |= V3_LB_BASE_ADR_SIZE_8MB; break; case SZ_16M: val |= V3_LB_BASE_ADR_SIZE_16MB; break; case SZ_32M: val |= V3_LB_BASE_ADR_SIZE_32MB; break; case SZ_64M: val |= V3_LB_BASE_ADR_SIZE_64MB; break; case SZ_128M: val |= V3_LB_BASE_ADR_SIZE_128MB; break; case SZ_256M: val |= V3_LB_BASE_ADR_SIZE_256MB; break; case SZ_512M: val |= V3_LB_BASE_ADR_SIZE_512MB; break; case SZ_1G: val |= V3_LB_BASE_ADR_SIZE_1GB; break; case SZ_2G: val |= V3_LB_BASE_ADR_SIZE_2GB; break; default: dev_err(v3->dev, "illegal dma memory chunk size\n"); return -EINVAL; } val |= V3_PCI_MAP_M_REG_EN | V3_PCI_MAP_M_ENABLE; *pci_map = val; dev_dbg(dev, "DMA MEM CPU: 0x%016llx -> 0x%016llx => " "PCI: 0x%016llx -> 0x%016llx base %08x map %08x\n", cpu_addr, cpu_end, pci_addr, pci_end, *pci_base, *pci_map); return 0; } static int v3_pci_parse_map_dma_ranges(struct v3_pci *v3, struct device_node *np) { struct pci_host_bridge *bridge = pci_host_bridge_from_priv(v3); struct device *dev = v3->dev; struct resource_entry *entry; int i = 0; resource_list_for_each_entry(entry, &bridge->dma_ranges) { int ret; u32 pci_base, pci_map; ret = v3_get_dma_range_config(v3, entry, &pci_base, &pci_map); if (ret) return ret; if (i == 0) { writel(pci_base, v3->base + V3_PCI_BASE0); writel(pci_map, v3->base + V3_PCI_MAP0); } else if (i == 1) { writel(pci_base, v3->base + V3_PCI_BASE1); writel(pci_map, v3->base + V3_PCI_MAP1); } else { dev_err(dev, "too many ranges, only two supported\n"); dev_err(dev, "range %d ignored\n", i); } i++; } return 0; } static int v3_pci_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct resource *regs; struct resource_entry *win; struct v3_pci *v3; struct pci_host_bridge *host; struct clk *clk; u16 val; int irq; int ret; host = devm_pci_alloc_host_bridge(dev, sizeof(*v3)); if (!host) return -ENOMEM; host->ops = &v3_pci_ops; v3 = pci_host_bridge_priv(host); host->sysdata = v3; v3->dev = dev; /* Get and enable host clock */ clk = devm_clk_get(dev, NULL); if (IS_ERR(clk)) { dev_err(dev, "clock not found\n"); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) { dev_err(dev, "unable to enable clock\n"); return ret; } v3->base = devm_platform_get_and_ioremap_resource(pdev, 0, ®s); if (IS_ERR(v3->base)) return PTR_ERR(v3->base); /* * The hardware has a register with the physical base address * of the V3 controller itself, verify that this is the same * as the physical memory we've remapped it from. */ if (readl(v3->base + V3_LB_IO_BASE) != (regs->start >> 16)) dev_err(dev, "V3_LB_IO_BASE = %08x but device is @%pR\n", readl(v3->base + V3_LB_IO_BASE), regs); /* Configuration space is 16MB directly mapped */ regs = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (resource_size(regs) != SZ_16M) { dev_err(dev, "config mem is not 16MB!\n"); return -EINVAL; } v3->config_mem = regs->start; v3->config_base = devm_ioremap_resource(dev, regs); if (IS_ERR(v3->config_base)) return PTR_ERR(v3->config_base); /* Get and request error IRQ resource */ irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_irq(dev, irq, v3_irq, 0, "PCIv3 error", v3); if (ret < 0) { dev_err(dev, "unable to request PCIv3 error IRQ %d (%d)\n", irq, ret); return ret; } /* * Unlock V3 registers, but only if they were previously locked. */ if (readw(v3->base + V3_SYSTEM) & V3_SYSTEM_M_LOCK) writew(V3_SYSTEM_UNLOCK, v3->base + V3_SYSTEM); /* Disable all slave access while we set up the windows */ val = readw(v3->base + V3_PCI_CMD); val &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); writew(val, v3->base + V3_PCI_CMD); /* Put the PCI bus into reset */ val = readw(v3->base + V3_SYSTEM); val &= ~V3_SYSTEM_M_RST_OUT; writew(val, v3->base + V3_SYSTEM); /* Retry until we're ready */ val = readw(v3->base + V3_PCI_CFG); val |= V3_PCI_CFG_M_RETRY_EN; writew(val, v3->base + V3_PCI_CFG); /* Set up the local bus protocol */ val = readw(v3->base + V3_LB_CFG); val |= V3_LB_CFG_LB_BE_IMODE; /* Byte enable input */ val |= V3_LB_CFG_LB_BE_OMODE; /* Byte enable output */ val &= ~V3_LB_CFG_LB_ENDIAN; /* Little endian */ val &= ~V3_LB_CFG_LB_PPC_RDY; /* TODO: when using on PPC403Gx, set to 1 */ writew(val, v3->base + V3_LB_CFG); /* Enable the PCI bus master */ val = readw(v3->base + V3_PCI_CMD); val |= PCI_COMMAND_MASTER; writew(val, v3->base + V3_PCI_CMD); /* Get the I/O and memory ranges from DT */ resource_list_for_each_entry(win, &host->windows) { ret = v3_pci_setup_resource(v3, host, win); if (ret) { dev_err(dev, "error setting up resources\n"); return ret; } } ret = v3_pci_parse_map_dma_ranges(v3, np); if (ret) return ret; /* * Disable PCI to host IO cycles, enable I/O buffers @3.3V, * set AD_LOW0 to 1 if one of the LB_MAP registers choose * to use this (should be unused). */ writel(0x00000000, v3->base + V3_PCI_IO_BASE); val = V3_PCI_CFG_M_IO_REG_DIS | V3_PCI_CFG_M_IO_DIS | V3_PCI_CFG_M_EN3V | V3_PCI_CFG_M_AD_LOW0; /* * DMA read and write from PCI bus commands types */ val |= V3_PCI_CFG_TYPE_DEFAULT << V3_PCI_CFG_M_RTYPE_SHIFT; val |= V3_PCI_CFG_TYPE_DEFAULT << V3_PCI_CFG_M_WTYPE_SHIFT; writew(val, v3->base + V3_PCI_CFG); /* * Set the V3 FIFO such that writes have higher priority than * reads, and local bus write causes local bus read fifo flush * on aperture 1. Same for PCI. */ writew(V3_FIFO_PRIO_LB_RD1_FLUSH_AP1 | V3_FIFO_PRIO_LB_RD0_FLUSH_AP1 | V3_FIFO_PRIO_PCI_RD1_FLUSH_AP1 | V3_FIFO_PRIO_PCI_RD0_FLUSH_AP1, v3->base + V3_FIFO_PRIORITY); /* * Clear any error interrupts, and enable parity and write error * interrupts */ writeb(0, v3->base + V3_LB_ISTAT); val = readw(v3->base + V3_LB_CFG); val |= V3_LB_CFG_LB_LB_INT; writew(val, v3->base + V3_LB_CFG); writeb(V3_LB_ISTAT_PCI_WR | V3_LB_ISTAT_PCI_PERR, v3->base + V3_LB_IMASK); /* Special Integrator initialization */ if (of_device_is_compatible(np, "arm,integrator-ap-pci")) { ret = v3_integrator_init(v3); if (ret) return ret; } /* Post-init: enable PCI memory and invalidate (master already on) */ val = readw(v3->base + V3_PCI_CMD); val |= PCI_COMMAND_MEMORY | PCI_COMMAND_INVALIDATE; writew(val, v3->base + V3_PCI_CMD); /* Clear pending interrupts */ writeb(0, v3->base + V3_LB_ISTAT); /* Read or write errors and parity errors cause interrupts */ writeb(V3_LB_ISTAT_PCI_RD | V3_LB_ISTAT_PCI_WR | V3_LB_ISTAT_PCI_PERR, v3->base + V3_LB_IMASK); /* Take the PCI bus out of reset so devices can initialize */ val = readw(v3->base + V3_SYSTEM); val |= V3_SYSTEM_M_RST_OUT; writew(val, v3->base + V3_SYSTEM); /* * Re-lock the system register. */ val = readw(v3->base + V3_SYSTEM); val |= V3_SYSTEM_M_LOCK; writew(val, v3->base + V3_SYSTEM); return pci_host_probe(host); } static const struct of_device_id v3_pci_of_match[] = { { .compatible = "v3,v360epc-pci", }, {}, }; static struct platform_driver v3_pci_driver = { .driver = { .name = "pci-v3-semi", .of_match_table = v3_pci_of_match, .suppress_bind_attrs = true, }, .probe = v3_pci_probe, }; builtin_platform_driver(v3_pci_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1