Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kishon Vijay Abraham I | 1974 | 91.30% | 17 | 48.57% |
Niklas Svensson (Niklas Cassel) | 80 | 3.70% | 4 | 11.43% |
Rolf Evers-Fischer | 38 | 1.76% | 3 | 8.57% |
Niklas Cassel | 35 | 1.62% | 1 | 2.86% |
Manivannan Sadhasivam | 13 | 0.60% | 1 | 2.86% |
Dan Carpenter | 6 | 0.28% | 1 | 2.86% |
Frank Li | 5 | 0.23% | 1 | 2.86% |
Bhumika Goyal | 2 | 0.09% | 1 | 2.86% |
Greg Kroah-Hartman | 2 | 0.09% | 1 | 2.86% |
Krzysztof Wilczynski | 2 | 0.09% | 1 | 2.86% |
Ricardo B. Marliere | 2 | 0.09% | 1 | 2.86% |
Björn Helgaas | 1 | 0.05% | 1 | 2.86% |
Uwe Kleine-König | 1 | 0.05% | 1 | 2.86% |
Krzysztof Kozlowski | 1 | 0.05% | 1 | 2.86% |
Total | 2162 | 35 |
// SPDX-License-Identifier: GPL-2.0 /* * PCI Endpoint *Function* (EPF) library * * Copyright (C) 2017 Texas Instruments * Author: Kishon Vijay Abraham I <kishon@ti.com> */ #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/pci-epc.h> #include <linux/pci-epf.h> #include <linux/pci-ep-cfs.h> static DEFINE_MUTEX(pci_epf_mutex); static const struct bus_type pci_epf_bus_type; static const struct device_type pci_epf_type; /** * pci_epf_unbind() - Notify the function driver that the binding between the * EPF device and EPC device has been lost * @epf: the EPF device which has lost the binding with the EPC device * * Invoke to notify the function driver that the binding between the EPF device * and EPC device has been lost. */ void pci_epf_unbind(struct pci_epf *epf) { struct pci_epf *epf_vf; if (!epf->driver) { dev_WARN(&epf->dev, "epf device not bound to driver\n"); return; } mutex_lock(&epf->lock); list_for_each_entry(epf_vf, &epf->pci_vepf, list) { if (epf_vf->is_bound) epf_vf->driver->ops->unbind(epf_vf); } if (epf->is_bound) epf->driver->ops->unbind(epf); mutex_unlock(&epf->lock); module_put(epf->driver->owner); } EXPORT_SYMBOL_GPL(pci_epf_unbind); /** * pci_epf_bind() - Notify the function driver that the EPF device has been * bound to a EPC device * @epf: the EPF device which has been bound to the EPC device * * Invoke to notify the function driver that it has been bound to a EPC device */ int pci_epf_bind(struct pci_epf *epf) { struct device *dev = &epf->dev; struct pci_epf *epf_vf; u8 func_no, vfunc_no; struct pci_epc *epc; int ret; if (!epf->driver) { dev_WARN(dev, "epf device not bound to driver\n"); return -EINVAL; } if (!try_module_get(epf->driver->owner)) return -EAGAIN; mutex_lock(&epf->lock); list_for_each_entry(epf_vf, &epf->pci_vepf, list) { vfunc_no = epf_vf->vfunc_no; if (vfunc_no < 1) { dev_err(dev, "Invalid virtual function number\n"); ret = -EINVAL; goto ret; } epc = epf->epc; func_no = epf->func_no; if (!IS_ERR_OR_NULL(epc)) { if (!epc->max_vfs) { dev_err(dev, "No support for virt function\n"); ret = -EINVAL; goto ret; } if (vfunc_no > epc->max_vfs[func_no]) { dev_err(dev, "PF%d: Exceeds max vfunc number\n", func_no); ret = -EINVAL; goto ret; } } epc = epf->sec_epc; func_no = epf->sec_epc_func_no; if (!IS_ERR_OR_NULL(epc)) { if (!epc->max_vfs) { dev_err(dev, "No support for virt function\n"); ret = -EINVAL; goto ret; } if (vfunc_no > epc->max_vfs[func_no]) { dev_err(dev, "PF%d: Exceeds max vfunc number\n", func_no); ret = -EINVAL; goto ret; } } epf_vf->func_no = epf->func_no; epf_vf->sec_epc_func_no = epf->sec_epc_func_no; epf_vf->epc = epf->epc; epf_vf->sec_epc = epf->sec_epc; ret = epf_vf->driver->ops->bind(epf_vf); if (ret) goto ret; epf_vf->is_bound = true; } ret = epf->driver->ops->bind(epf); if (ret) goto ret; epf->is_bound = true; mutex_unlock(&epf->lock); return 0; ret: mutex_unlock(&epf->lock); pci_epf_unbind(epf); return ret; } EXPORT_SYMBOL_GPL(pci_epf_bind); /** * pci_epf_add_vepf() - associate virtual EP function to physical EP function * @epf_pf: the physical EP function to which the virtual EP function should be * associated * @epf_vf: the virtual EP function to be added * * A physical endpoint function can be associated with multiple virtual * endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint * function to a physical PCI endpoint function. */ int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf) { u32 vfunc_no; if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf)) return -EINVAL; if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf) return -EBUSY; if (epf_pf->sec_epc || epf_vf->sec_epc) return -EBUSY; mutex_lock(&epf_pf->lock); vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map, BITS_PER_LONG); if (vfunc_no >= BITS_PER_LONG) { mutex_unlock(&epf_pf->lock); return -EINVAL; } set_bit(vfunc_no, &epf_pf->vfunction_num_map); epf_vf->vfunc_no = vfunc_no; epf_vf->epf_pf = epf_pf; epf_vf->is_vf = true; list_add_tail(&epf_vf->list, &epf_pf->pci_vepf); mutex_unlock(&epf_pf->lock); return 0; } EXPORT_SYMBOL_GPL(pci_epf_add_vepf); /** * pci_epf_remove_vepf() - remove virtual EP function from physical EP function * @epf_pf: the physical EP function from which the virtual EP function should * be removed * @epf_vf: the virtual EP function to be removed * * Invoke to remove a virtual endpoint function from the physical endpoint * function. */ void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf) { if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf)) return; mutex_lock(&epf_pf->lock); clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map); list_del(&epf_vf->list); mutex_unlock(&epf_pf->lock); } EXPORT_SYMBOL_GPL(pci_epf_remove_vepf); /** * pci_epf_free_space() - free the allocated PCI EPF register space * @epf: the EPF device from whom to free the memory * @addr: the virtual address of the PCI EPF register space * @bar: the BAR number corresponding to the register space * @type: Identifies if the allocated space is for primary EPC or secondary EPC * * Invoke to free the allocated PCI EPF register space. */ void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar, enum pci_epc_interface_type type) { struct device *dev; struct pci_epf_bar *epf_bar; struct pci_epc *epc; if (!addr) return; if (type == PRIMARY_INTERFACE) { epc = epf->epc; epf_bar = epf->bar; } else { epc = epf->sec_epc; epf_bar = epf->sec_epc_bar; } dev = epc->dev.parent; dma_free_coherent(dev, epf_bar[bar].size, addr, epf_bar[bar].phys_addr); epf_bar[bar].phys_addr = 0; epf_bar[bar].addr = NULL; epf_bar[bar].size = 0; epf_bar[bar].barno = 0; epf_bar[bar].flags = 0; } EXPORT_SYMBOL_GPL(pci_epf_free_space); /** * pci_epf_alloc_space() - allocate memory for the PCI EPF register space * @epf: the EPF device to whom allocate the memory * @size: the size of the memory that has to be allocated * @bar: the BAR number corresponding to the allocated register space * @epc_features: the features provided by the EPC specific to this EPF * @type: Identifies if the allocation is for primary EPC or secondary EPC * * Invoke to allocate memory for the PCI EPF register space. * Flag PCI_BASE_ADDRESS_MEM_TYPE_64 will automatically get set if the BAR * can only be a 64-bit BAR, or if the requested size is larger than 2 GB. */ void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar, const struct pci_epc_features *epc_features, enum pci_epc_interface_type type) { u64 bar_fixed_size = epc_features->bar[bar].fixed_size; size_t align = epc_features->align; struct pci_epf_bar *epf_bar; dma_addr_t phys_addr; struct pci_epc *epc; struct device *dev; void *space; if (size < 128) size = 128; if (epc_features->bar[bar].type == BAR_FIXED && bar_fixed_size) { if (size > bar_fixed_size) { dev_err(&epf->dev, "requested BAR size is larger than fixed size\n"); return NULL; } size = bar_fixed_size; } if (align) size = ALIGN(size, align); else size = roundup_pow_of_two(size); if (type == PRIMARY_INTERFACE) { epc = epf->epc; epf_bar = epf->bar; } else { epc = epf->sec_epc; epf_bar = epf->sec_epc_bar; } dev = epc->dev.parent; space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL); if (!space) { dev_err(dev, "failed to allocate mem space\n"); return NULL; } epf_bar[bar].phys_addr = phys_addr; epf_bar[bar].addr = space; epf_bar[bar].size = size; epf_bar[bar].barno = bar; if (upper_32_bits(size) || epc_features->bar[bar].only_64bit) epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; else epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_32; return space; } EXPORT_SYMBOL_GPL(pci_epf_alloc_space); static void pci_epf_remove_cfs(struct pci_epf_driver *driver) { struct config_group *group, *tmp; if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) return; mutex_lock(&pci_epf_mutex); list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry) pci_ep_cfs_remove_epf_group(group); list_del(&driver->epf_group); mutex_unlock(&pci_epf_mutex); } /** * pci_epf_unregister_driver() - unregister the PCI EPF driver * @driver: the PCI EPF driver that has to be unregistered * * Invoke to unregister the PCI EPF driver. */ void pci_epf_unregister_driver(struct pci_epf_driver *driver) { pci_epf_remove_cfs(driver); driver_unregister(&driver->driver); } EXPORT_SYMBOL_GPL(pci_epf_unregister_driver); static int pci_epf_add_cfs(struct pci_epf_driver *driver) { struct config_group *group; const struct pci_epf_device_id *id; if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) return 0; INIT_LIST_HEAD(&driver->epf_group); id = driver->id_table; while (id->name[0]) { group = pci_ep_cfs_add_epf_group(id->name); if (IS_ERR(group)) { pci_epf_remove_cfs(driver); return PTR_ERR(group); } mutex_lock(&pci_epf_mutex); list_add_tail(&group->group_entry, &driver->epf_group); mutex_unlock(&pci_epf_mutex); id++; } return 0; } /** * __pci_epf_register_driver() - register a new PCI EPF driver * @driver: structure representing PCI EPF driver * @owner: the owner of the module that registers the PCI EPF driver * * Invoke to register a new PCI EPF driver. */ int __pci_epf_register_driver(struct pci_epf_driver *driver, struct module *owner) { int ret; if (!driver->ops) return -EINVAL; if (!driver->ops->bind || !driver->ops->unbind) return -EINVAL; driver->driver.bus = &pci_epf_bus_type; driver->driver.owner = owner; ret = driver_register(&driver->driver); if (ret) return ret; pci_epf_add_cfs(driver); return 0; } EXPORT_SYMBOL_GPL(__pci_epf_register_driver); /** * pci_epf_destroy() - destroy the created PCI EPF device * @epf: the PCI EPF device that has to be destroyed. * * Invoke to destroy the PCI EPF device created by invoking pci_epf_create(). */ void pci_epf_destroy(struct pci_epf *epf) { device_unregister(&epf->dev); } EXPORT_SYMBOL_GPL(pci_epf_destroy); /** * pci_epf_create() - create a new PCI EPF device * @name: the name of the PCI EPF device. This name will be used to bind the * EPF device to a EPF driver * * Invoke to create a new PCI EPF device by providing the name of the function * device. */ struct pci_epf *pci_epf_create(const char *name) { int ret; struct pci_epf *epf; struct device *dev; int len; epf = kzalloc(sizeof(*epf), GFP_KERNEL); if (!epf) return ERR_PTR(-ENOMEM); len = strchrnul(name, '.') - name; epf->name = kstrndup(name, len, GFP_KERNEL); if (!epf->name) { kfree(epf); return ERR_PTR(-ENOMEM); } /* VFs are numbered starting with 1. So set BIT(0) by default */ epf->vfunction_num_map = 1; INIT_LIST_HEAD(&epf->pci_vepf); dev = &epf->dev; device_initialize(dev); dev->bus = &pci_epf_bus_type; dev->type = &pci_epf_type; mutex_init(&epf->lock); ret = dev_set_name(dev, "%s", name); if (ret) { put_device(dev); return ERR_PTR(ret); } ret = device_add(dev); if (ret) { put_device(dev); return ERR_PTR(ret); } return epf; } EXPORT_SYMBOL_GPL(pci_epf_create); static void pci_epf_dev_release(struct device *dev) { struct pci_epf *epf = to_pci_epf(dev); kfree(epf->name); kfree(epf); } static const struct device_type pci_epf_type = { .release = pci_epf_dev_release, }; static const struct pci_epf_device_id * pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf) { while (id->name[0]) { if (strcmp(epf->name, id->name) == 0) return id; id++; } return NULL; } static int pci_epf_device_match(struct device *dev, const struct device_driver *drv) { struct pci_epf *epf = to_pci_epf(dev); const struct pci_epf_driver *driver = to_pci_epf_driver(drv); if (driver->id_table) return !!pci_epf_match_id(driver->id_table, epf); return !strcmp(epf->name, drv->name); } static int pci_epf_device_probe(struct device *dev) { struct pci_epf *epf = to_pci_epf(dev); struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); if (!driver->probe) return -ENODEV; epf->driver = driver; return driver->probe(epf, pci_epf_match_id(driver->id_table, epf)); } static void pci_epf_device_remove(struct device *dev) { struct pci_epf *epf = to_pci_epf(dev); struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); if (driver->remove) driver->remove(epf); epf->driver = NULL; } static const struct bus_type pci_epf_bus_type = { .name = "pci-epf", .match = pci_epf_device_match, .probe = pci_epf_device_probe, .remove = pci_epf_device_remove, }; static int __init pci_epf_init(void) { int ret; ret = bus_register(&pci_epf_bus_type); if (ret) { pr_err("failed to register pci epf bus --> %d\n", ret); return ret; } return 0; } module_init(pci_epf_init); static void __exit pci_epf_exit(void) { bus_unregister(&pci_epf_bus_type); } module_exit(pci_epf_exit); MODULE_DESCRIPTION("PCI EPF Library"); MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1