Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Marek Behún | 4955 | 100.00% | 2 | 100.00% |
Total | 4955 | 2 |
// SPDX-License-Identifier: GPL-2.0 /* * CZ.NIC's Turris Omnia MCU GPIO and IRQ driver * * 2024 by Marek Behún <kabel@kernel.org> */ #include <linux/array_size.h> #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/bug.h> #include <linux/cleanup.h> #include <linux/device.h> #include <linux/devm-helpers.h> #include <linux/errno.h> #include <linux/gpio/driver.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/mutex.h> #include <linux/sysfs.h> #include <linux/types.h> #include <linux/workqueue.h> #include <asm/unaligned.h> #include <linux/turris-omnia-mcu-interface.h> #include "turris-omnia-mcu.h" #define OMNIA_CMD_INT_ARG_LEN 8 #define FRONT_BUTTON_RELEASE_DELAY_MS 50 static const char * const omnia_mcu_gpio_templates[64] = { /* GPIOs with value read from the 16-bit wide status */ [4] = "MiniPCIe0 Card Detect", [5] = "MiniPCIe0 mSATA Indicator", [6] = "Front USB3 port over-current", [7] = "Rear USB3 port over-current", [8] = "Front USB3 port power", [9] = "Rear USB3 port power", [12] = "Front Button", /* GPIOs with value read from the 32-bit wide extended status */ [16] = "SFP nDET", [28] = "MiniPCIe0 LED", [29] = "MiniPCIe1 LED", [30] = "MiniPCIe2 LED", [31] = "MiniPCIe0 PAN LED", [32] = "MiniPCIe1 PAN LED", [33] = "MiniPCIe2 PAN LED", [34] = "WAN PHY LED0", [35] = "WAN PHY LED1", [36] = "LAN switch p0 LED0", [37] = "LAN switch p0 LED1", [38] = "LAN switch p1 LED0", [39] = "LAN switch p1 LED1", [40] = "LAN switch p2 LED0", [41] = "LAN switch p2 LED1", [42] = "LAN switch p3 LED0", [43] = "LAN switch p3 LED1", [44] = "LAN switch p4 LED0", [45] = "LAN switch p4 LED1", [46] = "LAN switch p5 LED0", [47] = "LAN switch p5 LED1", /* GPIOs with value read from the 16-bit wide extended control status */ [48] = "eMMC nRESET", [49] = "LAN switch nRESET", [50] = "WAN PHY nRESET", [51] = "MiniPCIe0 nPERST", [52] = "MiniPCIe1 nPERST", [53] = "MiniPCIe2 nPERST", [54] = "WAN PHY SFP mux", [56] = "VHV power disable", }; struct omnia_gpio { u8 cmd; u8 ctl_cmd; u8 bit; u8 ctl_bit; u8 int_bit; u16 feat; u16 feat_mask; }; #define OMNIA_GPIO_INVALID_INT_BIT 0xff #define _DEF_GPIO(_cmd, _ctl_cmd, _bit, _ctl_bit, _int_bit, _feat, _feat_mask) \ { \ .cmd = _cmd, \ .ctl_cmd = _ctl_cmd, \ .bit = _bit, \ .ctl_bit = _ctl_bit, \ .int_bit = (_int_bit) < 0 ? OMNIA_GPIO_INVALID_INT_BIT \ : (_int_bit), \ .feat = _feat, \ .feat_mask = _feat_mask, \ } #define _DEF_GPIO_STS(_name) \ _DEF_GPIO(OMNIA_CMD_GET_STATUS_WORD, 0, __bf_shf(OMNIA_STS_ ## _name), \ 0, __bf_shf(OMNIA_INT_ ## _name), 0, 0) #define _DEF_GPIO_CTL(_name) \ _DEF_GPIO(OMNIA_CMD_GET_STATUS_WORD, OMNIA_CMD_GENERAL_CONTROL, \ __bf_shf(OMNIA_STS_ ## _name), __bf_shf(OMNIA_CTL_ ## _name), \ -1, 0, 0) #define _DEF_GPIO_EXT_STS(_name, _feat) \ _DEF_GPIO(OMNIA_CMD_GET_EXT_STATUS_DWORD, 0, \ __bf_shf(OMNIA_EXT_STS_ ## _name), 0, \ __bf_shf(OMNIA_INT_ ## _name), \ OMNIA_FEAT_ ## _feat | OMNIA_FEAT_EXT_CMDS, \ OMNIA_FEAT_ ## _feat | OMNIA_FEAT_EXT_CMDS) #define _DEF_GPIO_EXT_STS_LED(_name, _ledext) \ _DEF_GPIO(OMNIA_CMD_GET_EXT_STATUS_DWORD, 0, \ __bf_shf(OMNIA_EXT_STS_ ## _name), 0, \ __bf_shf(OMNIA_INT_ ## _name), \ OMNIA_FEAT_LED_STATE_ ## _ledext, \ OMNIA_FEAT_LED_STATE_EXT_MASK) #define _DEF_GPIO_EXT_STS_LEDALL(_name) \ _DEF_GPIO(OMNIA_CMD_GET_EXT_STATUS_DWORD, 0, \ __bf_shf(OMNIA_EXT_STS_ ## _name), 0, \ __bf_shf(OMNIA_INT_ ## _name), \ OMNIA_FEAT_LED_STATE_EXT_MASK, 0) #define _DEF_GPIO_EXT_CTL(_name, _feat) \ _DEF_GPIO(OMNIA_CMD_GET_EXT_CONTROL_STATUS, OMNIA_CMD_EXT_CONTROL, \ __bf_shf(OMNIA_EXT_CTL_ ## _name), \ __bf_shf(OMNIA_EXT_CTL_ ## _name), -1, \ OMNIA_FEAT_ ## _feat | OMNIA_FEAT_EXT_CMDS, \ OMNIA_FEAT_ ## _feat | OMNIA_FEAT_EXT_CMDS) #define _DEF_INT(_name) \ _DEF_GPIO(0, 0, 0, 0, __bf_shf(OMNIA_INT_ ## _name), 0, 0) static inline bool is_int_bit_valid(const struct omnia_gpio *gpio) { return gpio->int_bit != OMNIA_GPIO_INVALID_INT_BIT; } static const struct omnia_gpio omnia_gpios[64] = { /* GPIOs with value read from the 16-bit wide status */ [4] = _DEF_GPIO_STS(CARD_DET), [5] = _DEF_GPIO_STS(MSATA_IND), [6] = _DEF_GPIO_STS(USB30_OVC), [7] = _DEF_GPIO_STS(USB31_OVC), [8] = _DEF_GPIO_CTL(USB30_PWRON), [9] = _DEF_GPIO_CTL(USB31_PWRON), /* brightness changed interrupt, no GPIO */ [11] = _DEF_INT(BRIGHTNESS_CHANGED), [12] = _DEF_GPIO_STS(BUTTON_PRESSED), /* TRNG interrupt, no GPIO */ [13] = _DEF_INT(TRNG), /* MESSAGE_SIGNED interrupt, no GPIO */ [14] = _DEF_INT(MESSAGE_SIGNED), /* GPIOs with value read from the 32-bit wide extended status */ [16] = _DEF_GPIO_EXT_STS(SFP_nDET, PERIPH_MCU), [28] = _DEF_GPIO_EXT_STS_LEDALL(WLAN0_MSATA_LED), [29] = _DEF_GPIO_EXT_STS_LEDALL(WLAN1_LED), [30] = _DEF_GPIO_EXT_STS_LEDALL(WLAN2_LED), [31] = _DEF_GPIO_EXT_STS_LED(WPAN0_LED, EXT), [32] = _DEF_GPIO_EXT_STS_LED(WPAN1_LED, EXT), [33] = _DEF_GPIO_EXT_STS_LED(WPAN2_LED, EXT), [34] = _DEF_GPIO_EXT_STS_LEDALL(WAN_LED0), [35] = _DEF_GPIO_EXT_STS_LED(WAN_LED1, EXT_V32), [36] = _DEF_GPIO_EXT_STS_LEDALL(LAN0_LED0), [37] = _DEF_GPIO_EXT_STS_LEDALL(LAN0_LED1), [38] = _DEF_GPIO_EXT_STS_LEDALL(LAN1_LED0), [39] = _DEF_GPIO_EXT_STS_LEDALL(LAN1_LED1), [40] = _DEF_GPIO_EXT_STS_LEDALL(LAN2_LED0), [41] = _DEF_GPIO_EXT_STS_LEDALL(LAN2_LED1), [42] = _DEF_GPIO_EXT_STS_LEDALL(LAN3_LED0), [43] = _DEF_GPIO_EXT_STS_LEDALL(LAN3_LED1), [44] = _DEF_GPIO_EXT_STS_LEDALL(LAN4_LED0), [45] = _DEF_GPIO_EXT_STS_LEDALL(LAN4_LED1), [46] = _DEF_GPIO_EXT_STS_LEDALL(LAN5_LED0), [47] = _DEF_GPIO_EXT_STS_LEDALL(LAN5_LED1), /* GPIOs with value read from the 16-bit wide extended control status */ [48] = _DEF_GPIO_EXT_CTL(nRES_MMC, PERIPH_MCU), [49] = _DEF_GPIO_EXT_CTL(nRES_LAN, PERIPH_MCU), [50] = _DEF_GPIO_EXT_CTL(nRES_PHY, PERIPH_MCU), [51] = _DEF_GPIO_EXT_CTL(nPERST0, PERIPH_MCU), [52] = _DEF_GPIO_EXT_CTL(nPERST1, PERIPH_MCU), [53] = _DEF_GPIO_EXT_CTL(nPERST2, PERIPH_MCU), [54] = _DEF_GPIO_EXT_CTL(PHY_SFP, PERIPH_MCU), [56] = _DEF_GPIO_EXT_CTL(nVHV_CTRL, PERIPH_MCU), }; /* mapping from interrupts to indexes of GPIOs in the omnia_gpios array */ const u8 omnia_int_to_gpio_idx[32] = { [__bf_shf(OMNIA_INT_CARD_DET)] = 4, [__bf_shf(OMNIA_INT_MSATA_IND)] = 5, [__bf_shf(OMNIA_INT_USB30_OVC)] = 6, [__bf_shf(OMNIA_INT_USB31_OVC)] = 7, [__bf_shf(OMNIA_INT_BUTTON_PRESSED)] = 12, [__bf_shf(OMNIA_INT_TRNG)] = 13, [__bf_shf(OMNIA_INT_MESSAGE_SIGNED)] = 14, [__bf_shf(OMNIA_INT_SFP_nDET)] = 16, [__bf_shf(OMNIA_INT_BRIGHTNESS_CHANGED)] = 11, [__bf_shf(OMNIA_INT_WLAN0_MSATA_LED)] = 28, [__bf_shf(OMNIA_INT_WLAN1_LED)] = 29, [__bf_shf(OMNIA_INT_WLAN2_LED)] = 30, [__bf_shf(OMNIA_INT_WPAN0_LED)] = 31, [__bf_shf(OMNIA_INT_WPAN1_LED)] = 32, [__bf_shf(OMNIA_INT_WPAN2_LED)] = 33, [__bf_shf(OMNIA_INT_WAN_LED0)] = 34, [__bf_shf(OMNIA_INT_WAN_LED1)] = 35, [__bf_shf(OMNIA_INT_LAN0_LED0)] = 36, [__bf_shf(OMNIA_INT_LAN0_LED1)] = 37, [__bf_shf(OMNIA_INT_LAN1_LED0)] = 38, [__bf_shf(OMNIA_INT_LAN1_LED1)] = 39, [__bf_shf(OMNIA_INT_LAN2_LED0)] = 40, [__bf_shf(OMNIA_INT_LAN2_LED1)] = 41, [__bf_shf(OMNIA_INT_LAN3_LED0)] = 42, [__bf_shf(OMNIA_INT_LAN3_LED1)] = 43, [__bf_shf(OMNIA_INT_LAN4_LED0)] = 44, [__bf_shf(OMNIA_INT_LAN4_LED1)] = 45, [__bf_shf(OMNIA_INT_LAN5_LED0)] = 46, [__bf_shf(OMNIA_INT_LAN5_LED1)] = 47, }; /* index of PHY_SFP GPIO in the omnia_gpios array */ #define OMNIA_GPIO_PHY_SFP_OFFSET 54 static int omnia_ctl_cmd_locked(struct omnia_mcu *mcu, u8 cmd, u16 val, u16 mask) { unsigned int len; u8 buf[5]; buf[0] = cmd; switch (cmd) { case OMNIA_CMD_GENERAL_CONTROL: buf[1] = val; buf[2] = mask; len = 3; break; case OMNIA_CMD_EXT_CONTROL: put_unaligned_le16(val, &buf[1]); put_unaligned_le16(mask, &buf[3]); len = 5; break; default: BUG(); } return omnia_cmd_write(mcu->client, buf, len); } static int omnia_ctl_cmd(struct omnia_mcu *mcu, u8 cmd, u16 val, u16 mask) { guard(mutex)(&mcu->lock); return omnia_ctl_cmd_locked(mcu, cmd, val, mask); } static int omnia_gpio_request(struct gpio_chip *gc, unsigned int offset) { if (!omnia_gpios[offset].cmd) return -EINVAL; return 0; } static int omnia_gpio_get_direction(struct gpio_chip *gc, unsigned int offset) { struct omnia_mcu *mcu = gpiochip_get_data(gc); if (offset == OMNIA_GPIO_PHY_SFP_OFFSET) { int val; scoped_guard(mutex, &mcu->lock) { val = omnia_cmd_read_bit(mcu->client, OMNIA_CMD_GET_EXT_CONTROL_STATUS, OMNIA_EXT_CTL_PHY_SFP_AUTO); if (val < 0) return val; } if (val) return GPIO_LINE_DIRECTION_IN; return GPIO_LINE_DIRECTION_OUT; } if (omnia_gpios[offset].ctl_cmd) return GPIO_LINE_DIRECTION_OUT; return GPIO_LINE_DIRECTION_IN; } static int omnia_gpio_direction_input(struct gpio_chip *gc, unsigned int offset) { const struct omnia_gpio *gpio = &omnia_gpios[offset]; struct omnia_mcu *mcu = gpiochip_get_data(gc); if (offset == OMNIA_GPIO_PHY_SFP_OFFSET) return omnia_ctl_cmd(mcu, OMNIA_CMD_EXT_CONTROL, OMNIA_EXT_CTL_PHY_SFP_AUTO, OMNIA_EXT_CTL_PHY_SFP_AUTO); if (gpio->ctl_cmd) return -ENOTSUPP; return 0; } static int omnia_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value) { const struct omnia_gpio *gpio = &omnia_gpios[offset]; struct omnia_mcu *mcu = gpiochip_get_data(gc); u16 val, mask; if (!gpio->ctl_cmd) return -ENOTSUPP; mask = BIT(gpio->ctl_bit); val = value ? mask : 0; if (offset == OMNIA_GPIO_PHY_SFP_OFFSET) mask |= OMNIA_EXT_CTL_PHY_SFP_AUTO; return omnia_ctl_cmd(mcu, gpio->ctl_cmd, val, mask); } static int omnia_gpio_get(struct gpio_chip *gc, unsigned int offset) { const struct omnia_gpio *gpio = &omnia_gpios[offset]; struct omnia_mcu *mcu = gpiochip_get_data(gc); /* * If firmware does not support the new interrupt API, we are informed * of every change of the status word by an interrupt from MCU and save * its value in the interrupt service routine. Simply return the saved * value. */ if (gpio->cmd == OMNIA_CMD_GET_STATUS_WORD && !(mcu->features & OMNIA_FEAT_NEW_INT_API)) return test_bit(gpio->bit, &mcu->last_status); guard(mutex)(&mcu->lock); /* * If firmware does support the new interrupt API, we may have cached * the value of a GPIO in the interrupt service routine. If not, read * the relevant bit now. */ if (is_int_bit_valid(gpio) && test_bit(gpio->int_bit, &mcu->is_cached)) return test_bit(gpio->int_bit, &mcu->cached); return omnia_cmd_read_bit(mcu->client, gpio->cmd, BIT(gpio->bit)); } static unsigned long * _relevant_field_for_sts_cmd(u8 cmd, unsigned long *sts, unsigned long *ext_sts, unsigned long *ext_ctl) { switch (cmd) { case OMNIA_CMD_GET_STATUS_WORD: return sts; case OMNIA_CMD_GET_EXT_STATUS_DWORD: return ext_sts; case OMNIA_CMD_GET_EXT_CONTROL_STATUS: return ext_ctl; default: return NULL; } } static int omnia_gpio_get_multiple(struct gpio_chip *gc, unsigned long *mask, unsigned long *bits) { unsigned long sts = 0, ext_sts = 0, ext_ctl = 0, *field; struct omnia_mcu *mcu = gpiochip_get_data(gc); struct i2c_client *client = mcu->client; unsigned int i; int err; /* determine which bits to read from the 3 possible commands */ for_each_set_bit(i, mask, ARRAY_SIZE(omnia_gpios)) { field = _relevant_field_for_sts_cmd(omnia_gpios[i].cmd, &sts, &ext_sts, &ext_ctl); if (!field) continue; __set_bit(omnia_gpios[i].bit, field); } guard(mutex)(&mcu->lock); if (mcu->features & OMNIA_FEAT_NEW_INT_API) { /* read relevant bits from status */ err = omnia_cmd_read_bits(client, OMNIA_CMD_GET_STATUS_WORD, sts, &sts); if (err) return err; } else { /* * Use status word value cached in the interrupt service routine * if firmware does not support the new interrupt API. */ sts = mcu->last_status; } /* read relevant bits from extended status */ err = omnia_cmd_read_bits(client, OMNIA_CMD_GET_EXT_STATUS_DWORD, ext_sts, &ext_sts); if (err) return err; /* read relevant bits from extended control */ err = omnia_cmd_read_bits(client, OMNIA_CMD_GET_EXT_CONTROL_STATUS, ext_ctl, &ext_ctl); if (err) return err; /* assign relevant bits in result */ for_each_set_bit(i, mask, ARRAY_SIZE(omnia_gpios)) { field = _relevant_field_for_sts_cmd(omnia_gpios[i].cmd, &sts, &ext_sts, &ext_ctl); if (!field) continue; __assign_bit(i, bits, test_bit(omnia_gpios[i].bit, field)); } return 0; } static void omnia_gpio_set(struct gpio_chip *gc, unsigned int offset, int value) { const struct omnia_gpio *gpio = &omnia_gpios[offset]; struct omnia_mcu *mcu = gpiochip_get_data(gc); u16 val, mask; if (!gpio->ctl_cmd) return; mask = BIT(gpio->ctl_bit); val = value ? mask : 0; omnia_ctl_cmd(mcu, gpio->ctl_cmd, val, mask); } static void omnia_gpio_set_multiple(struct gpio_chip *gc, unsigned long *mask, unsigned long *bits) { unsigned long ctl = 0, ctl_mask = 0, ext_ctl = 0, ext_ctl_mask = 0; struct omnia_mcu *mcu = gpiochip_get_data(gc); unsigned int i; for_each_set_bit(i, mask, ARRAY_SIZE(omnia_gpios)) { unsigned long *field, *field_mask; u8 bit = omnia_gpios[i].ctl_bit; switch (omnia_gpios[i].ctl_cmd) { case OMNIA_CMD_GENERAL_CONTROL: field = &ctl; field_mask = &ctl_mask; break; case OMNIA_CMD_EXT_CONTROL: field = &ext_ctl; field_mask = &ext_ctl_mask; break; default: field = field_mask = NULL; break; } if (!field) continue; __set_bit(bit, field_mask); __assign_bit(bit, field, test_bit(i, bits)); } guard(mutex)(&mcu->lock); if (ctl_mask) omnia_ctl_cmd_locked(mcu, OMNIA_CMD_GENERAL_CONTROL, ctl, ctl_mask); if (ext_ctl_mask) omnia_ctl_cmd_locked(mcu, OMNIA_CMD_EXT_CONTROL, ext_ctl, ext_ctl_mask); } static bool omnia_gpio_available(struct omnia_mcu *mcu, const struct omnia_gpio *gpio) { if (gpio->feat_mask) return (mcu->features & gpio->feat_mask) == gpio->feat; if (gpio->feat) return mcu->features & gpio->feat; return true; } static int omnia_gpio_init_valid_mask(struct gpio_chip *gc, unsigned long *valid_mask, unsigned int ngpios) { struct omnia_mcu *mcu = gpiochip_get_data(gc); for (unsigned int i = 0; i < ngpios; i++) { const struct omnia_gpio *gpio = &omnia_gpios[i]; if (gpio->cmd || is_int_bit_valid(gpio)) __assign_bit(i, valid_mask, omnia_gpio_available(mcu, gpio)); else __clear_bit(i, valid_mask); } return 0; } static int omnia_gpio_of_xlate(struct gpio_chip *gc, const struct of_phandle_args *gpiospec, u32 *flags) { u32 bank, gpio; if (WARN_ON(gpiospec->args_count != 3)) return -EINVAL; if (flags) *flags = gpiospec->args[2]; bank = gpiospec->args[0]; gpio = gpiospec->args[1]; switch (bank) { case 0: return gpio < 16 ? gpio : -EINVAL; case 1: return gpio < 32 ? 16 + gpio : -EINVAL; case 2: return gpio < 16 ? 48 + gpio : -EINVAL; default: return -EINVAL; } } static void omnia_irq_shutdown(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct omnia_mcu *mcu = gpiochip_get_data(gc); irq_hw_number_t hwirq = irqd_to_hwirq(d); u8 bit = omnia_gpios[hwirq].int_bit; __clear_bit(bit, &mcu->rising); __clear_bit(bit, &mcu->falling); } static void omnia_irq_mask(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct omnia_mcu *mcu = gpiochip_get_data(gc); irq_hw_number_t hwirq = irqd_to_hwirq(d); u8 bit = omnia_gpios[hwirq].int_bit; if (!omnia_gpios[hwirq].cmd) __clear_bit(bit, &mcu->rising); __clear_bit(bit, &mcu->mask); gpiochip_disable_irq(gc, hwirq); } static void omnia_irq_unmask(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct omnia_mcu *mcu = gpiochip_get_data(gc); irq_hw_number_t hwirq = irqd_to_hwirq(d); u8 bit = omnia_gpios[hwirq].int_bit; gpiochip_enable_irq(gc, hwirq); __set_bit(bit, &mcu->mask); if (!omnia_gpios[hwirq].cmd) __set_bit(bit, &mcu->rising); } static int omnia_irq_set_type(struct irq_data *d, unsigned int type) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct omnia_mcu *mcu = gpiochip_get_data(gc); irq_hw_number_t hwirq = irqd_to_hwirq(d); struct device *dev = &mcu->client->dev; u8 bit = omnia_gpios[hwirq].int_bit; if (!(type & IRQ_TYPE_EDGE_BOTH)) { dev_err(dev, "irq %u: unsupported type %u\n", d->irq, type); return -EINVAL; } __assign_bit(bit, &mcu->rising, type & IRQ_TYPE_EDGE_RISING); __assign_bit(bit, &mcu->falling, type & IRQ_TYPE_EDGE_FALLING); return 0; } static void omnia_irq_bus_lock(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct omnia_mcu *mcu = gpiochip_get_data(gc); /* nothing to do if MCU firmware does not support new interrupt API */ if (!(mcu->features & OMNIA_FEAT_NEW_INT_API)) return; mutex_lock(&mcu->lock); } /** * omnia_mask_interleave - Interleaves the bytes from @rising and @falling * @dst: the destination u8 array of interleaved bytes * @rising: rising mask * @falling: falling mask * * Interleaves the little-endian bytes from @rising and @falling words. * * If @rising = (r0, r1, r2, r3) and @falling = (f0, f1, f2, f3), the result is * @dst = (r0, f0, r1, f1, r2, f2, r3, f3). * * The MCU receives an interrupt mask and reports a pending interrupt bitmap in * this interleaved format. The rationale behind this is that the low-indexed * bits are more important - in many cases, the user will be interested only in * interrupts with indexes 0 to 7, and so the system can stop reading after * first 2 bytes (r0, f0), to save time on the slow I2C bus. * * Feel free to remove this function and its inverse, omnia_mask_deinterleave, * and use an appropriate bitmap_*() function once such a function exists. */ static void omnia_mask_interleave(u8 *dst, unsigned long rising, unsigned long falling) { for (unsigned int i = 0; i < sizeof(u32); i++) { dst[2 * i] = rising >> (8 * i); dst[2 * i + 1] = falling >> (8 * i); } } /** * omnia_mask_deinterleave - Deinterleaves the bytes into @rising and @falling * @src: the source u8 array containing the interleaved bytes * @rising: pointer where to store the rising mask gathered from @src * @falling: pointer where to store the falling mask gathered from @src * * This is the inverse function to omnia_mask_interleave. */ static void omnia_mask_deinterleave(const u8 *src, unsigned long *rising, unsigned long *falling) { *rising = *falling = 0; for (unsigned int i = 0; i < sizeof(u32); i++) { *rising |= src[2 * i] << (8 * i); *falling |= src[2 * i + 1] << (8 * i); } } static void omnia_irq_bus_sync_unlock(struct irq_data *d) { struct gpio_chip *gc = irq_data_get_irq_chip_data(d); struct omnia_mcu *mcu = gpiochip_get_data(gc); struct device *dev = &mcu->client->dev; u8 cmd[1 + OMNIA_CMD_INT_ARG_LEN]; unsigned long rising, falling; int err; /* nothing to do if MCU firmware does not support new interrupt API */ if (!(mcu->features & OMNIA_FEAT_NEW_INT_API)) return; cmd[0] = OMNIA_CMD_SET_INT_MASK; rising = mcu->rising & mcu->mask; falling = mcu->falling & mcu->mask; /* interleave the rising and falling bytes into the command arguments */ omnia_mask_interleave(&cmd[1], rising, falling); dev_dbg(dev, "set int mask %8ph\n", &cmd[1]); err = omnia_cmd_write(mcu->client, cmd, sizeof(cmd)); if (err) { dev_err(dev, "Cannot set mask: %d\n", err); goto unlock; } /* * Remember which GPIOs have both rising and falling interrupts enabled. * For those we will cache their value so that .get() method is faster. * We also need to forget cached values of GPIOs that aren't cached * anymore. */ mcu->both = rising & falling; mcu->is_cached &= mcu->both; unlock: mutex_unlock(&mcu->lock); } static const struct irq_chip omnia_mcu_irq_chip = { .name = "Turris Omnia MCU interrupts", .irq_shutdown = omnia_irq_shutdown, .irq_mask = omnia_irq_mask, .irq_unmask = omnia_irq_unmask, .irq_set_type = omnia_irq_set_type, .irq_bus_lock = omnia_irq_bus_lock, .irq_bus_sync_unlock = omnia_irq_bus_sync_unlock, .flags = IRQCHIP_IMMUTABLE, GPIOCHIP_IRQ_RESOURCE_HELPERS, }; static void omnia_irq_init_valid_mask(struct gpio_chip *gc, unsigned long *valid_mask, unsigned int ngpios) { struct omnia_mcu *mcu = gpiochip_get_data(gc); for (unsigned int i = 0; i < ngpios; i++) { const struct omnia_gpio *gpio = &omnia_gpios[i]; if (is_int_bit_valid(gpio)) __assign_bit(i, valid_mask, omnia_gpio_available(mcu, gpio)); else __clear_bit(i, valid_mask); } } static int omnia_irq_init_hw(struct gpio_chip *gc) { struct omnia_mcu *mcu = gpiochip_get_data(gc); u8 cmd[1 + OMNIA_CMD_INT_ARG_LEN] = {}; cmd[0] = OMNIA_CMD_SET_INT_MASK; return omnia_cmd_write(mcu->client, cmd, sizeof(cmd)); } /* * Determine how many bytes we need to read from the reply to the * OMNIA_CMD_GET_INT_AND_CLEAR command in order to retrieve all unmasked * interrupts. */ static unsigned int omnia_irq_compute_pending_length(unsigned long rising, unsigned long falling) { return max(omnia_compute_reply_length(rising, true, 0), omnia_compute_reply_length(falling, true, 1)); } static bool omnia_irq_read_pending_new(struct omnia_mcu *mcu, unsigned long *pending) { struct device *dev = &mcu->client->dev; u8 reply[OMNIA_CMD_INT_ARG_LEN] = {}; unsigned long rising, falling; unsigned int len; int err; len = omnia_irq_compute_pending_length(mcu->rising & mcu->mask, mcu->falling & mcu->mask); if (!len) return false; guard(mutex)(&mcu->lock); err = omnia_cmd_read(mcu->client, OMNIA_CMD_GET_INT_AND_CLEAR, reply, len); if (err) { dev_err(dev, "Cannot read pending IRQs: %d\n", err); return false; } /* deinterleave the reply bytes into rising and falling */ omnia_mask_deinterleave(reply, &rising, &falling); rising &= mcu->mask; falling &= mcu->mask; *pending = rising | falling; /* cache values for GPIOs that have both edges enabled */ mcu->is_cached &= ~(rising & falling); mcu->is_cached |= mcu->both & (rising ^ falling); mcu->cached = (mcu->cached | rising) & ~falling; return true; } static int omnia_read_status_word_old_fw(struct omnia_mcu *mcu, unsigned long *status) { u16 raw_status; int err; err = omnia_cmd_read_u16(mcu->client, OMNIA_CMD_GET_STATUS_WORD, &raw_status); if (err) return err; /* * Old firmware has a bug wherein it never resets the USB port * overcurrent bits back to zero. Ignore them. */ *status = raw_status & ~(OMNIA_STS_USB30_OVC | OMNIA_STS_USB31_OVC); return 0; } static void button_release_emul_fn(struct work_struct *work) { struct omnia_mcu *mcu = container_of(to_delayed_work(work), struct omnia_mcu, button_release_emul_work); mcu->button_pressed_emul = false; generic_handle_irq_safe(mcu->client->irq); } static void fill_int_from_sts(unsigned long *rising, unsigned long *falling, unsigned long rising_sts, unsigned long falling_sts, unsigned long sts_bit, unsigned long int_bit) { if (rising_sts & sts_bit) *rising |= int_bit; if (falling_sts & sts_bit) *falling |= int_bit; } static bool omnia_irq_read_pending_old(struct omnia_mcu *mcu, unsigned long *pending) { unsigned long status, rising_sts, falling_sts, rising, falling; struct device *dev = &mcu->client->dev; int err; guard(mutex)(&mcu->lock); err = omnia_read_status_word_old_fw(mcu, &status); if (err) { dev_err(dev, "Cannot read pending IRQs: %d\n", err); return false; } /* * The old firmware triggers an interrupt whenever status word changes, * but does not inform about which bits rose or fell. We need to compute * this here by comparing with the last status word value. * * The OMNIA_STS_BUTTON_PRESSED bit needs special handling, because the * old firmware clears the OMNIA_STS_BUTTON_PRESSED bit on successful * completion of the OMNIA_CMD_GET_STATUS_WORD command, resulting in * another interrupt: * - first we get an interrupt, we read the status word where * OMNIA_STS_BUTTON_PRESSED is present, * - MCU clears the OMNIA_STS_BUTTON_PRESSED bit because we read the * status word, * - we get another interrupt because the status word changed again * (the OMNIA_STS_BUTTON_PRESSED bit was cleared). * * The gpiolib-cdev, gpiolib-sysfs and gpio-keys input driver all call * the gpiochip's .get() method after an edge event on a requested GPIO * occurs. * * We ensure that the .get() method reads 1 for the button GPIO for some * time. */ if (status & OMNIA_STS_BUTTON_PRESSED) { mcu->button_pressed_emul = true; mod_delayed_work(system_wq, &mcu->button_release_emul_work, msecs_to_jiffies(FRONT_BUTTON_RELEASE_DELAY_MS)); } else if (mcu->button_pressed_emul) { status |= OMNIA_STS_BUTTON_PRESSED; } rising_sts = ~mcu->last_status & status; falling_sts = mcu->last_status & ~status; mcu->last_status = status; /* * Fill in the relevant interrupt bits from status bits for CARD_DET, * MSATA_IND and BUTTON_PRESSED. */ rising = 0; falling = 0; fill_int_from_sts(&rising, &falling, rising_sts, falling_sts, OMNIA_STS_CARD_DET, OMNIA_INT_CARD_DET); fill_int_from_sts(&rising, &falling, rising_sts, falling_sts, OMNIA_STS_MSATA_IND, OMNIA_INT_MSATA_IND); fill_int_from_sts(&rising, &falling, rising_sts, falling_sts, OMNIA_STS_BUTTON_PRESSED, OMNIA_INT_BUTTON_PRESSED); /* Use only bits that are enabled */ rising &= mcu->rising & mcu->mask; falling &= mcu->falling & mcu->mask; *pending = rising | falling; return true; } static bool omnia_irq_read_pending(struct omnia_mcu *mcu, unsigned long *pending) { if (mcu->features & OMNIA_FEAT_NEW_INT_API) return omnia_irq_read_pending_new(mcu, pending); else return omnia_irq_read_pending_old(mcu, pending); } static irqreturn_t omnia_irq_thread_handler(int irq, void *dev_id) { struct omnia_mcu *mcu = dev_id; struct irq_domain *domain; unsigned long pending; unsigned int i; if (!omnia_irq_read_pending(mcu, &pending)) return IRQ_NONE; domain = mcu->gc.irq.domain; for_each_set_bit(i, &pending, 32) { unsigned int nested_irq; nested_irq = irq_find_mapping(domain, omnia_int_to_gpio_idx[i]); handle_nested_irq(nested_irq); } return IRQ_RETVAL(pending); } static const char * const front_button_modes[] = { "mcu", "cpu" }; static ssize_t front_button_mode_show(struct device *dev, struct device_attribute *a, char *buf) { struct omnia_mcu *mcu = dev_get_drvdata(dev); int val; if (mcu->features & OMNIA_FEAT_NEW_INT_API) { val = omnia_cmd_read_bit(mcu->client, OMNIA_CMD_GET_STATUS_WORD, OMNIA_STS_BUTTON_MODE); if (val < 0) return val; } else { val = !!(mcu->last_status & OMNIA_STS_BUTTON_MODE); } return sysfs_emit(buf, "%s\n", front_button_modes[val]); } static ssize_t front_button_mode_store(struct device *dev, struct device_attribute *a, const char *buf, size_t count) { struct omnia_mcu *mcu = dev_get_drvdata(dev); int err, i; i = sysfs_match_string(front_button_modes, buf); if (i < 0) return i; err = omnia_ctl_cmd_locked(mcu, OMNIA_CMD_GENERAL_CONTROL, i ? OMNIA_CTL_BUTTON_MODE : 0, OMNIA_CTL_BUTTON_MODE); if (err) return err; return count; } static DEVICE_ATTR_RW(front_button_mode); static struct attribute *omnia_mcu_gpio_attrs[] = { &dev_attr_front_button_mode.attr, NULL }; const struct attribute_group omnia_mcu_gpio_group = { .attrs = omnia_mcu_gpio_attrs, }; int omnia_mcu_register_gpiochip(struct omnia_mcu *mcu) { bool new_api = mcu->features & OMNIA_FEAT_NEW_INT_API; struct device *dev = &mcu->client->dev; unsigned long irqflags; int err; err = devm_mutex_init(dev, &mcu->lock); if (err) return err; mcu->gc.request = omnia_gpio_request; mcu->gc.get_direction = omnia_gpio_get_direction; mcu->gc.direction_input = omnia_gpio_direction_input; mcu->gc.direction_output = omnia_gpio_direction_output; mcu->gc.get = omnia_gpio_get; mcu->gc.get_multiple = omnia_gpio_get_multiple; mcu->gc.set = omnia_gpio_set; mcu->gc.set_multiple = omnia_gpio_set_multiple; mcu->gc.init_valid_mask = omnia_gpio_init_valid_mask; mcu->gc.can_sleep = true; mcu->gc.names = omnia_mcu_gpio_templates; mcu->gc.base = -1; mcu->gc.ngpio = ARRAY_SIZE(omnia_gpios); mcu->gc.label = "Turris Omnia MCU GPIOs"; mcu->gc.parent = dev; mcu->gc.owner = THIS_MODULE; mcu->gc.of_gpio_n_cells = 3; mcu->gc.of_xlate = omnia_gpio_of_xlate; gpio_irq_chip_set_chip(&mcu->gc.irq, &omnia_mcu_irq_chip); /* This will let us handle the parent IRQ in the driver */ mcu->gc.irq.parent_handler = NULL; mcu->gc.irq.num_parents = 0; mcu->gc.irq.parents = NULL; mcu->gc.irq.default_type = IRQ_TYPE_NONE; mcu->gc.irq.handler = handle_bad_irq; mcu->gc.irq.threaded = true; if (new_api) mcu->gc.irq.init_hw = omnia_irq_init_hw; mcu->gc.irq.init_valid_mask = omnia_irq_init_valid_mask; err = devm_gpiochip_add_data(dev, &mcu->gc, mcu); if (err) return dev_err_probe(dev, err, "Cannot add GPIO chip\n"); /* * Before requesting the interrupt, if firmware does not support the new * interrupt API, we need to cache the value of the status word, so that * when it changes, we may compare the new value with the cached one in * the interrupt handler. */ if (!new_api) { err = omnia_read_status_word_old_fw(mcu, &mcu->last_status); if (err) return dev_err_probe(dev, err, "Cannot read status word\n"); INIT_DELAYED_WORK(&mcu->button_release_emul_work, button_release_emul_fn); } irqflags = IRQF_ONESHOT; if (new_api) irqflags |= IRQF_TRIGGER_LOW; else irqflags |= IRQF_TRIGGER_FALLING; err = devm_request_threaded_irq(dev, mcu->client->irq, NULL, omnia_irq_thread_handler, irqflags, "turris-omnia-mcu", mcu); if (err) return dev_err_probe(dev, err, "Cannot request IRQ\n"); if (!new_api) { /* * The button_release_emul_work has to be initialized before the * thread is requested, and on driver remove it needs to be * canceled before the thread is freed. Therefore we can't use * devm_delayed_work_autocancel() directly, because the order * devm_delayed_work_autocancel(); * devm_request_threaded_irq(); * would cause improper release order: * free_irq(); * cancel_delayed_work_sync(); * Instead we first initialize the work above, and only now * after IRQ is requested we add the work devm action. */ err = devm_add_action(dev, devm_delayed_work_drop, &mcu->button_release_emul_work); if (err) return err; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1