Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Shyam Sundar S K | 2244 | 96.68% | 28 | 84.85% |
Mario Limonciello | 62 | 2.67% | 2 | 6.06% |
Hans de Goede | 11 | 0.47% | 1 | 3.03% |
Uwe Kleine-König | 2 | 0.09% | 1 | 3.03% |
Ilpo Järvinen | 2 | 0.09% | 1 | 3.03% |
Total | 2321 | 33 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * AMD Platform Management Framework Driver * * Copyright (c) 2022, Advanced Micro Devices, Inc. * All Rights Reserved. * * Author: Shyam Sundar S K <Shyam-sundar.S-k@amd.com> */ #include <asm/amd_nb.h> #include <linux/debugfs.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include "pmf.h" /* PMF-SMU communication registers */ #define AMD_PMF_REGISTER_MESSAGE 0xA18 #define AMD_PMF_REGISTER_RESPONSE 0xA78 #define AMD_PMF_REGISTER_ARGUMENT 0xA58 /* Base address of SMU for mapping physical address to virtual address */ #define AMD_PMF_MAPPING_SIZE 0x01000 #define AMD_PMF_BASE_ADDR_OFFSET 0x10000 #define AMD_PMF_BASE_ADDR_LO 0x13B102E8 #define AMD_PMF_BASE_ADDR_HI 0x13B102EC #define AMD_PMF_BASE_ADDR_LO_MASK GENMASK(15, 0) #define AMD_PMF_BASE_ADDR_HI_MASK GENMASK(31, 20) /* SMU Response Codes */ #define AMD_PMF_RESULT_OK 0x01 #define AMD_PMF_RESULT_CMD_REJECT_BUSY 0xFC #define AMD_PMF_RESULT_CMD_REJECT_PREREQ 0xFD #define AMD_PMF_RESULT_CMD_UNKNOWN 0xFE #define AMD_PMF_RESULT_FAILED 0xFF /* List of supported CPU ids */ #define AMD_CPU_ID_RMB 0x14b5 #define AMD_CPU_ID_PS 0x14e8 #define PCI_DEVICE_ID_AMD_1AH_M20H_ROOT 0x1507 #define PCI_DEVICE_ID_AMD_1AH_M60H_ROOT 0x1122 #define PMF_MSG_DELAY_MIN_US 50 #define RESPONSE_REGISTER_LOOP_MAX 20000 #define DELAY_MIN_US 2000 #define DELAY_MAX_US 3000 /* override Metrics Table sample size time (in ms) */ static int metrics_table_loop_ms = 1000; module_param(metrics_table_loop_ms, int, 0644); MODULE_PARM_DESC(metrics_table_loop_ms, "Metrics Table sample size time (default = 1000ms)"); /* Force load on supported older platforms */ static bool force_load; module_param(force_load, bool, 0444); MODULE_PARM_DESC(force_load, "Force load this driver on supported older platforms (experimental)"); static int amd_pmf_pwr_src_notify_call(struct notifier_block *nb, unsigned long event, void *data) { struct amd_pmf_dev *pmf = container_of(nb, struct amd_pmf_dev, pwr_src_notifier); if (event != PSY_EVENT_PROP_CHANGED) return NOTIFY_OK; if (is_apmf_func_supported(pmf, APMF_FUNC_AUTO_MODE) || is_apmf_func_supported(pmf, APMF_FUNC_DYN_SLIDER_DC) || is_apmf_func_supported(pmf, APMF_FUNC_DYN_SLIDER_AC)) { if ((pmf->amt_enabled || pmf->cnqf_enabled) && is_pprof_balanced(pmf)) return NOTIFY_DONE; } if (is_apmf_func_supported(pmf, APMF_FUNC_STATIC_SLIDER_GRANULAR)) amd_pmf_set_sps_power_limits(pmf); if (is_apmf_func_supported(pmf, APMF_FUNC_OS_POWER_SLIDER_UPDATE)) amd_pmf_power_slider_update_event(pmf); return NOTIFY_OK; } static int current_power_limits_show(struct seq_file *seq, void *unused) { struct amd_pmf_dev *dev = seq->private; struct amd_pmf_static_slider_granular table; int mode, src = 0; mode = amd_pmf_get_pprof_modes(dev); if (mode < 0) return mode; src = amd_pmf_get_power_source(); amd_pmf_update_slider(dev, SLIDER_OP_GET, mode, &table); seq_printf(seq, "spl:%u fppt:%u sppt:%u sppt_apu_only:%u stt_min:%u stt[APU]:%u stt[HS2]: %u\n", table.prop[src][mode].spl, table.prop[src][mode].fppt, table.prop[src][mode].sppt, table.prop[src][mode].sppt_apu_only, table.prop[src][mode].stt_min, table.prop[src][mode].stt_skin_temp[STT_TEMP_APU], table.prop[src][mode].stt_skin_temp[STT_TEMP_HS2]); return 0; } DEFINE_SHOW_ATTRIBUTE(current_power_limits); static void amd_pmf_dbgfs_unregister(struct amd_pmf_dev *dev) { debugfs_remove_recursive(dev->dbgfs_dir); } static void amd_pmf_dbgfs_register(struct amd_pmf_dev *dev) { dev->dbgfs_dir = debugfs_create_dir("amd_pmf", NULL); if (dev->pmf_if_version == PMF_IF_V1) debugfs_create_file("current_power_limits", 0644, dev->dbgfs_dir, dev, ¤t_power_limits_fops); } int amd_pmf_get_power_source(void) { if (power_supply_is_system_supplied() > 0) return POWER_SOURCE_AC; else return POWER_SOURCE_DC; } static void amd_pmf_get_metrics(struct work_struct *work) { struct amd_pmf_dev *dev = container_of(work, struct amd_pmf_dev, work_buffer.work); ktime_t time_elapsed_ms; int socket_power; mutex_lock(&dev->update_mutex); /* Transfer table contents */ memset(dev->buf, 0, sizeof(dev->m_table)); amd_pmf_send_cmd(dev, SET_TRANSFER_TABLE, 0, 7, NULL); memcpy(&dev->m_table, dev->buf, sizeof(dev->m_table)); time_elapsed_ms = ktime_to_ms(ktime_get()) - dev->start_time; /* Calculate the avg SoC power consumption */ socket_power = dev->m_table.apu_power + dev->m_table.dgpu_power; if (dev->amt_enabled) { /* Apply the Auto Mode transition */ amd_pmf_trans_automode(dev, socket_power, time_elapsed_ms); } if (dev->cnqf_enabled) { /* Apply the CnQF transition */ amd_pmf_trans_cnqf(dev, socket_power, time_elapsed_ms); } dev->start_time = ktime_to_ms(ktime_get()); schedule_delayed_work(&dev->work_buffer, msecs_to_jiffies(metrics_table_loop_ms)); mutex_unlock(&dev->update_mutex); } static inline u32 amd_pmf_reg_read(struct amd_pmf_dev *dev, int reg_offset) { return ioread32(dev->regbase + reg_offset); } static inline void amd_pmf_reg_write(struct amd_pmf_dev *dev, int reg_offset, u32 val) { iowrite32(val, dev->regbase + reg_offset); } static void __maybe_unused amd_pmf_dump_registers(struct amd_pmf_dev *dev) { u32 value; value = amd_pmf_reg_read(dev, AMD_PMF_REGISTER_RESPONSE); dev_dbg(dev->dev, "AMD_PMF_REGISTER_RESPONSE:%x\n", value); value = amd_pmf_reg_read(dev, AMD_PMF_REGISTER_ARGUMENT); dev_dbg(dev->dev, "AMD_PMF_REGISTER_ARGUMENT:%d\n", value); value = amd_pmf_reg_read(dev, AMD_PMF_REGISTER_MESSAGE); dev_dbg(dev->dev, "AMD_PMF_REGISTER_MESSAGE:%x\n", value); } int amd_pmf_send_cmd(struct amd_pmf_dev *dev, u8 message, bool get, u32 arg, u32 *data) { int rc; u32 val; mutex_lock(&dev->lock); /* Wait until we get a valid response */ rc = readx_poll_timeout(ioread32, dev->regbase + AMD_PMF_REGISTER_RESPONSE, val, val != 0, PMF_MSG_DELAY_MIN_US, PMF_MSG_DELAY_MIN_US * RESPONSE_REGISTER_LOOP_MAX); if (rc) { dev_err(dev->dev, "failed to talk to SMU\n"); goto out_unlock; } /* Write zero to response register */ amd_pmf_reg_write(dev, AMD_PMF_REGISTER_RESPONSE, 0); /* Write argument into argument register */ amd_pmf_reg_write(dev, AMD_PMF_REGISTER_ARGUMENT, arg); /* Write message ID to message ID register */ amd_pmf_reg_write(dev, AMD_PMF_REGISTER_MESSAGE, message); /* Wait until we get a valid response */ rc = readx_poll_timeout(ioread32, dev->regbase + AMD_PMF_REGISTER_RESPONSE, val, val != 0, PMF_MSG_DELAY_MIN_US, PMF_MSG_DELAY_MIN_US * RESPONSE_REGISTER_LOOP_MAX); if (rc) { dev_err(dev->dev, "SMU response timed out\n"); goto out_unlock; } switch (val) { case AMD_PMF_RESULT_OK: if (get) { /* PMFW may take longer time to return back the data */ usleep_range(DELAY_MIN_US, 10 * DELAY_MAX_US); *data = amd_pmf_reg_read(dev, AMD_PMF_REGISTER_ARGUMENT); } break; case AMD_PMF_RESULT_CMD_REJECT_BUSY: dev_err(dev->dev, "SMU not ready. err: 0x%x\n", val); rc = -EBUSY; goto out_unlock; case AMD_PMF_RESULT_CMD_UNKNOWN: dev_err(dev->dev, "SMU cmd unknown. err: 0x%x\n", val); rc = -EINVAL; goto out_unlock; case AMD_PMF_RESULT_CMD_REJECT_PREREQ: case AMD_PMF_RESULT_FAILED: default: dev_err(dev->dev, "SMU cmd failed. err: 0x%x\n", val); rc = -EIO; goto out_unlock; } out_unlock: mutex_unlock(&dev->lock); amd_pmf_dump_registers(dev); return rc; } static const struct pci_device_id pmf_pci_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_AMD, AMD_CPU_ID_RMB) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, AMD_CPU_ID_PS) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_1AH_M20H_ROOT) }, { PCI_DEVICE(PCI_VENDOR_ID_AMD, PCI_DEVICE_ID_AMD_1AH_M60H_ROOT) }, { } }; int amd_pmf_set_dram_addr(struct amd_pmf_dev *dev, bool alloc_buffer) { u64 phys_addr; u32 hi, low; /* Get Metrics Table Address */ if (alloc_buffer) { dev->buf = kzalloc(sizeof(dev->m_table), GFP_KERNEL); if (!dev->buf) return -ENOMEM; } phys_addr = virt_to_phys(dev->buf); hi = phys_addr >> 32; low = phys_addr & GENMASK(31, 0); amd_pmf_send_cmd(dev, SET_DRAM_ADDR_HIGH, 0, hi, NULL); amd_pmf_send_cmd(dev, SET_DRAM_ADDR_LOW, 0, low, NULL); return 0; } int amd_pmf_init_metrics_table(struct amd_pmf_dev *dev) { int ret; INIT_DELAYED_WORK(&dev->work_buffer, amd_pmf_get_metrics); ret = amd_pmf_set_dram_addr(dev, true); if (ret) return ret; /* * Start collecting the metrics data after a small delay * or else, we might end up getting stale values from PMFW. */ schedule_delayed_work(&dev->work_buffer, msecs_to_jiffies(metrics_table_loop_ms * 3)); return 0; } static int amd_pmf_suspend_handler(struct device *dev) { struct amd_pmf_dev *pdev = dev_get_drvdata(dev); if (pdev->smart_pc_enabled) cancel_delayed_work_sync(&pdev->pb_work); if (is_apmf_func_supported(pdev, APMF_FUNC_SBIOS_HEARTBEAT_V2)) amd_pmf_notify_sbios_heartbeat_event_v2(pdev, ON_SUSPEND); return 0; } static int amd_pmf_resume_handler(struct device *dev) { struct amd_pmf_dev *pdev = dev_get_drvdata(dev); int ret; if (pdev->buf) { ret = amd_pmf_set_dram_addr(pdev, false); if (ret) return ret; } if (is_apmf_func_supported(pdev, APMF_FUNC_SBIOS_HEARTBEAT_V2)) amd_pmf_notify_sbios_heartbeat_event_v2(pdev, ON_RESUME); if (pdev->smart_pc_enabled) schedule_delayed_work(&pdev->pb_work, msecs_to_jiffies(2000)); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(amd_pmf_pm, amd_pmf_suspend_handler, amd_pmf_resume_handler); static void amd_pmf_init_features(struct amd_pmf_dev *dev) { int ret; /* Enable Static Slider */ if (is_apmf_func_supported(dev, APMF_FUNC_STATIC_SLIDER_GRANULAR) || is_apmf_func_supported(dev, APMF_FUNC_OS_POWER_SLIDER_UPDATE)) { amd_pmf_init_sps(dev); dev->pwr_src_notifier.notifier_call = amd_pmf_pwr_src_notify_call; power_supply_reg_notifier(&dev->pwr_src_notifier); dev_dbg(dev->dev, "SPS enabled and Platform Profiles registered\n"); } amd_pmf_init_smart_pc(dev); if (dev->smart_pc_enabled) { dev_dbg(dev->dev, "Smart PC Solution Enabled\n"); /* If Smart PC is enabled, no need to check for other features */ return; } if (is_apmf_func_supported(dev, APMF_FUNC_AUTO_MODE)) { amd_pmf_init_auto_mode(dev); dev_dbg(dev->dev, "Auto Mode Init done\n"); } else if (is_apmf_func_supported(dev, APMF_FUNC_DYN_SLIDER_AC) || is_apmf_func_supported(dev, APMF_FUNC_DYN_SLIDER_DC)) { ret = amd_pmf_init_cnqf(dev); if (ret) dev_warn(dev->dev, "CnQF Init failed\n"); } } static void amd_pmf_deinit_features(struct amd_pmf_dev *dev) { if (is_apmf_func_supported(dev, APMF_FUNC_STATIC_SLIDER_GRANULAR) || is_apmf_func_supported(dev, APMF_FUNC_OS_POWER_SLIDER_UPDATE)) { power_supply_unreg_notifier(&dev->pwr_src_notifier); amd_pmf_deinit_sps(dev); } if (dev->smart_pc_enabled) { amd_pmf_deinit_smart_pc(dev); } else if (is_apmf_func_supported(dev, APMF_FUNC_AUTO_MODE)) { amd_pmf_deinit_auto_mode(dev); } else if (is_apmf_func_supported(dev, APMF_FUNC_DYN_SLIDER_AC) || is_apmf_func_supported(dev, APMF_FUNC_DYN_SLIDER_DC)) { amd_pmf_deinit_cnqf(dev); } } static const struct acpi_device_id amd_pmf_acpi_ids[] = { {"AMDI0100", 0x100}, {"AMDI0102", 0}, {"AMDI0103", 0}, {"AMDI0105", 0}, {"AMDI0107", 0}, { } }; MODULE_DEVICE_TABLE(acpi, amd_pmf_acpi_ids); static int amd_pmf_probe(struct platform_device *pdev) { const struct acpi_device_id *id; struct amd_pmf_dev *dev; struct pci_dev *rdev; u32 base_addr_lo; u32 base_addr_hi; u64 base_addr; u32 val; int err; id = acpi_match_device(amd_pmf_acpi_ids, &pdev->dev); if (!id) return -ENODEV; if (id->driver_data == 0x100 && !force_load) return -ENODEV; dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; dev->dev = &pdev->dev; rdev = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0, 0)); if (!rdev || !pci_match_id(pmf_pci_ids, rdev)) { pci_dev_put(rdev); return -ENODEV; } dev->cpu_id = rdev->device; err = amd_smn_read(0, AMD_PMF_BASE_ADDR_LO, &val); if (err) { dev_err(dev->dev, "error in reading from 0x%x\n", AMD_PMF_BASE_ADDR_LO); pci_dev_put(rdev); return pcibios_err_to_errno(err); } base_addr_lo = val & AMD_PMF_BASE_ADDR_HI_MASK; err = amd_smn_read(0, AMD_PMF_BASE_ADDR_HI, &val); if (err) { dev_err(dev->dev, "error in reading from 0x%x\n", AMD_PMF_BASE_ADDR_HI); pci_dev_put(rdev); return pcibios_err_to_errno(err); } base_addr_hi = val & AMD_PMF_BASE_ADDR_LO_MASK; pci_dev_put(rdev); base_addr = ((u64)base_addr_hi << 32 | base_addr_lo); dev->regbase = devm_ioremap(dev->dev, base_addr + AMD_PMF_BASE_ADDR_OFFSET, AMD_PMF_MAPPING_SIZE); if (!dev->regbase) return -ENOMEM; mutex_init(&dev->lock); mutex_init(&dev->update_mutex); amd_pmf_quirks_init(dev); apmf_acpi_init(dev); platform_set_drvdata(pdev, dev); amd_pmf_dbgfs_register(dev); amd_pmf_init_features(dev); apmf_install_handler(dev); if (is_apmf_func_supported(dev, APMF_FUNC_SBIOS_HEARTBEAT_V2)) amd_pmf_notify_sbios_heartbeat_event_v2(dev, ON_LOAD); dev_info(dev->dev, "registered PMF device successfully\n"); return 0; } static void amd_pmf_remove(struct platform_device *pdev) { struct amd_pmf_dev *dev = platform_get_drvdata(pdev); amd_pmf_deinit_features(dev); if (is_apmf_func_supported(dev, APMF_FUNC_SBIOS_HEARTBEAT_V2)) amd_pmf_notify_sbios_heartbeat_event_v2(dev, ON_UNLOAD); apmf_acpi_deinit(dev); amd_pmf_dbgfs_unregister(dev); mutex_destroy(&dev->lock); mutex_destroy(&dev->update_mutex); kfree(dev->buf); } static const struct attribute_group *amd_pmf_driver_groups[] = { &cnqf_feature_attribute_group, NULL, }; static struct platform_driver amd_pmf_driver = { .driver = { .name = "amd-pmf", .acpi_match_table = amd_pmf_acpi_ids, .dev_groups = amd_pmf_driver_groups, .pm = pm_sleep_ptr(&amd_pmf_pm), }, .probe = amd_pmf_probe, .remove_new = amd_pmf_remove, }; module_platform_driver(amd_pmf_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("AMD Platform Management Framework Driver"); MODULE_SOFTDEP("pre: amdtee");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1