Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Min Li | 7188 | 65.27% | 12 | 54.55% |
Vincent Cheng | 3795 | 34.46% | 7 | 31.82% |
Rahul Rameshbabu | 27 | 0.25% | 1 | 4.55% |
Uwe Kleine-König | 2 | 0.02% | 1 | 4.55% |
Julia Lawall | 1 | 0.01% | 1 | 4.55% |
Total | 11013 | 22 |
// SPDX-License-Identifier: GPL-2.0+ /* * PTP hardware clock driver for the IDT ClockMatrix(TM) family of timing and * synchronization devices. * * Copyright (C) 2019 Integrated Device Technology, Inc., a Renesas Company. */ #include <linux/firmware.h> #include <linux/platform_device.h> #include <linux/module.h> #include <linux/ptp_clock_kernel.h> #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/timekeeping.h> #include <linux/string.h> #include <linux/of.h> #include <linux/mfd/rsmu.h> #include <linux/mfd/idt8a340_reg.h> #include <asm/unaligned.h> #include "ptp_private.h" #include "ptp_clockmatrix.h" MODULE_DESCRIPTION("Driver for IDT ClockMatrix(TM) family"); MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>"); MODULE_AUTHOR("IDT support-1588 <IDT-support-1588@lm.renesas.com>"); MODULE_VERSION("1.0"); MODULE_LICENSE("GPL"); /* * The name of the firmware file to be loaded * over-rides any automatic selection */ static char *firmware; module_param(firmware, charp, 0); #define SETTIME_CORRECTION (0) #define EXTTS_PERIOD_MS (95) static int _idtcm_adjfine(struct idtcm_channel *channel, long scaled_ppm); static inline int idtcm_read(struct idtcm *idtcm, u16 module, u16 regaddr, u8 *buf, u16 count) { return regmap_bulk_read(idtcm->regmap, module + regaddr, buf, count); } static inline int idtcm_write(struct idtcm *idtcm, u16 module, u16 regaddr, u8 *buf, u16 count) { return regmap_bulk_write(idtcm->regmap, module + regaddr, buf, count); } static int contains_full_configuration(struct idtcm *idtcm, const struct firmware *fw) { struct idtcm_fwrc *rec = (struct idtcm_fwrc *)fw->data; u16 scratch = IDTCM_FW_REG(idtcm->fw_ver, V520, SCRATCH); s32 full_count; s32 count = 0; u16 regaddr; u8 loaddr; s32 len; /* 4 bytes skipped every 0x80 */ full_count = (scratch - GPIO_USER_CONTROL) - ((scratch >> 7) - (GPIO_USER_CONTROL >> 7)) * 4; /* If the firmware contains 'full configuration' SM_RESET can be used * to ensure proper configuration. * * Full configuration is defined as the number of programmable * bytes within the configuration range minus page offset addr range. */ for (len = fw->size; len > 0; len -= sizeof(*rec)) { regaddr = rec->hiaddr << 8; regaddr |= rec->loaddr; loaddr = rec->loaddr; rec++; /* Top (status registers) and bottom are read-only */ if (regaddr < GPIO_USER_CONTROL || regaddr >= scratch) continue; /* Page size 128, last 4 bytes of page skipped */ if ((loaddr > 0x7b && loaddr <= 0x7f) || loaddr > 0xfb) continue; count++; } return (count >= full_count); } static int char_array_to_timespec(u8 *buf, u8 count, struct timespec64 *ts) { u8 i; u64 nsec; time64_t sec; if (count < TOD_BYTE_COUNT) return 1; /* Sub-nanoseconds are in buf[0]. */ nsec = buf[4]; for (i = 0; i < 3; i++) { nsec <<= 8; nsec |= buf[3 - i]; } sec = buf[10]; for (i = 0; i < 5; i++) { sec <<= 8; sec |= buf[9 - i]; } ts->tv_sec = sec; ts->tv_nsec = nsec; return 0; } static int timespec_to_char_array(struct timespec64 const *ts, u8 *buf, u8 count) { u8 i; s32 nsec; time64_t sec; if (count < TOD_BYTE_COUNT) return 1; nsec = ts->tv_nsec; sec = ts->tv_sec; /* Sub-nanoseconds are in buf[0]. */ buf[0] = 0; for (i = 1; i < 5; i++) { buf[i] = nsec & 0xff; nsec >>= 8; } for (i = 5; i < TOD_BYTE_COUNT; i++) { buf[i] = sec & 0xff; sec >>= 8; } return 0; } static int idtcm_strverscmp(const char *version1, const char *version2) { u8 ver1[3], ver2[3]; int i; if (sscanf(version1, "%hhu.%hhu.%hhu", &ver1[0], &ver1[1], &ver1[2]) != 3) return -1; if (sscanf(version2, "%hhu.%hhu.%hhu", &ver2[0], &ver2[1], &ver2[2]) != 3) return -1; for (i = 0; i < 3; i++) { if (ver1[i] > ver2[i]) return 1; if (ver1[i] < ver2[i]) return -1; } return 0; } static enum fw_version idtcm_fw_version(const char *version) { enum fw_version ver = V_DEFAULT; if (idtcm_strverscmp(version, "4.8.7") >= 0) ver = V487; if (idtcm_strverscmp(version, "5.2.0") >= 0) ver = V520; return ver; } static int clear_boot_status(struct idtcm *idtcm) { u8 buf[4] = {0}; return idtcm_write(idtcm, GENERAL_STATUS, BOOT_STATUS, buf, sizeof(buf)); } static int read_boot_status(struct idtcm *idtcm, u32 *status) { int err; u8 buf[4] = {0}; err = idtcm_read(idtcm, GENERAL_STATUS, BOOT_STATUS, buf, sizeof(buf)); *status = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; return err; } static int wait_for_boot_status_ready(struct idtcm *idtcm) { u32 status = 0; u8 i = 30; /* 30 * 100ms = 3s */ int err; do { err = read_boot_status(idtcm, &status); if (err) return err; if (status == 0xA0) return 0; msleep(100); i--; } while (i); dev_warn(idtcm->dev, "%s timed out", __func__); return -EBUSY; } static int arm_tod_read_trig_sel_refclk(struct idtcm_channel *channel, u8 ref) { struct idtcm *idtcm = channel->idtcm; u16 tod_read_cmd = IDTCM_FW_REG(idtcm->fw_ver, V520, TOD_READ_SECONDARY_CMD); u8 val = 0; int err; val &= ~(WR_REF_INDEX_MASK << WR_REF_INDEX_SHIFT); val |= (ref << WR_REF_INDEX_SHIFT); err = idtcm_write(idtcm, channel->tod_read_secondary, TOD_READ_SECONDARY_SEL_CFG_0, &val, sizeof(val)); if (err) return err; val = 0 | (SCSR_TOD_READ_TRIG_SEL_REFCLK << TOD_READ_TRIGGER_SHIFT); err = idtcm_write(idtcm, channel->tod_read_secondary, tod_read_cmd, &val, sizeof(val)); if (err) dev_err(idtcm->dev, "%s: err = %d", __func__, err); return err; } static bool is_single_shot(u8 mask) { /* Treat single bit ToD masks as continuous trigger */ return !(mask <= 8 && is_power_of_2(mask)); } static int idtcm_extts_enable(struct idtcm_channel *channel, struct ptp_clock_request *rq, int on) { u8 index = rq->extts.index; struct idtcm *idtcm; u8 mask = 1 << index; int err = 0; u8 old_mask; int ref; idtcm = channel->idtcm; old_mask = idtcm->extts_mask; /* Reject requests with unsupported flags */ if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | PTP_RISING_EDGE | PTP_FALLING_EDGE | PTP_STRICT_FLAGS)) return -EOPNOTSUPP; /* Reject requests to enable time stamping on falling edge */ if ((rq->extts.flags & PTP_ENABLE_FEATURE) && (rq->extts.flags & PTP_FALLING_EDGE)) return -EOPNOTSUPP; if (index >= MAX_TOD) return -EINVAL; if (on) { /* Support triggering more than one TOD_0/1/2/3 by same pin */ /* Use the pin configured for the channel */ ref = ptp_find_pin(channel->ptp_clock, PTP_PF_EXTTS, channel->tod); if (ref < 0) { dev_err(idtcm->dev, "%s: No valid pin found for TOD%d!\n", __func__, channel->tod); return -EBUSY; } err = arm_tod_read_trig_sel_refclk(&idtcm->channel[index], ref); if (err == 0) { idtcm->extts_mask |= mask; idtcm->event_channel[index] = channel; idtcm->channel[index].refn = ref; idtcm->extts_single_shot = is_single_shot(idtcm->extts_mask); if (old_mask) return 0; schedule_delayed_work(&idtcm->extts_work, msecs_to_jiffies(EXTTS_PERIOD_MS)); } } else { idtcm->extts_mask &= ~mask; idtcm->extts_single_shot = is_single_shot(idtcm->extts_mask); if (idtcm->extts_mask == 0) cancel_delayed_work(&idtcm->extts_work); } return err; } static int read_sys_apll_status(struct idtcm *idtcm, u8 *status) { return idtcm_read(idtcm, STATUS, DPLL_SYS_APLL_STATUS, status, sizeof(u8)); } static int read_sys_dpll_status(struct idtcm *idtcm, u8 *status) { return idtcm_read(idtcm, STATUS, DPLL_SYS_STATUS, status, sizeof(u8)); } static int wait_for_sys_apll_dpll_lock(struct idtcm *idtcm) { unsigned long timeout = jiffies + msecs_to_jiffies(LOCK_TIMEOUT_MS); u8 apll = 0; u8 dpll = 0; int err; do { err = read_sys_apll_status(idtcm, &apll); if (err) return err; err = read_sys_dpll_status(idtcm, &dpll); if (err) return err; apll &= SYS_APLL_LOSS_LOCK_LIVE_MASK; dpll &= DPLL_SYS_STATE_MASK; if (apll == SYS_APLL_LOSS_LOCK_LIVE_LOCKED && dpll == DPLL_STATE_LOCKED) { return 0; } else if (dpll == DPLL_STATE_FREERUN || dpll == DPLL_STATE_HOLDOVER || dpll == DPLL_STATE_OPEN_LOOP) { dev_warn(idtcm->dev, "No wait state: DPLL_SYS_STATE %d", dpll); return -EPERM; } msleep(LOCK_POLL_INTERVAL_MS); } while (time_is_after_jiffies(timeout)); dev_warn(idtcm->dev, "%d ms lock timeout: SYS APLL Loss Lock %d SYS DPLL state %d", LOCK_TIMEOUT_MS, apll, dpll); return -ETIME; } static void wait_for_chip_ready(struct idtcm *idtcm) { if (wait_for_boot_status_ready(idtcm)) dev_warn(idtcm->dev, "BOOT_STATUS != 0xA0"); if (wait_for_sys_apll_dpll_lock(idtcm)) dev_warn(idtcm->dev, "Continuing while SYS APLL/DPLL is not locked"); } static int _idtcm_gettime_triggered(struct idtcm_channel *channel, struct timespec64 *ts) { struct idtcm *idtcm = channel->idtcm; u16 tod_read_cmd = IDTCM_FW_REG(idtcm->fw_ver, V520, TOD_READ_SECONDARY_CMD); u8 buf[TOD_BYTE_COUNT]; u8 trigger; int err; err = idtcm_read(idtcm, channel->tod_read_secondary, tod_read_cmd, &trigger, sizeof(trigger)); if (err) return err; if (trigger & TOD_READ_TRIGGER_MASK) return -EBUSY; err = idtcm_read(idtcm, channel->tod_read_secondary, TOD_READ_SECONDARY_BASE, buf, sizeof(buf)); if (err) return err; return char_array_to_timespec(buf, sizeof(buf), ts); } static int _idtcm_gettime(struct idtcm_channel *channel, struct timespec64 *ts, u8 timeout) { struct idtcm *idtcm = channel->idtcm; u16 tod_read_cmd = IDTCM_FW_REG(idtcm->fw_ver, V520, TOD_READ_PRIMARY_CMD); u8 buf[TOD_BYTE_COUNT]; u8 trigger; int err; /* wait trigger to be 0 */ do { if (timeout-- == 0) return -EIO; if (idtcm->calculate_overhead_flag) idtcm->start_time = ktime_get_raw(); err = idtcm_read(idtcm, channel->tod_read_primary, tod_read_cmd, &trigger, sizeof(trigger)); if (err) return err; } while (trigger & TOD_READ_TRIGGER_MASK); err = idtcm_read(idtcm, channel->tod_read_primary, TOD_READ_PRIMARY_BASE, buf, sizeof(buf)); if (err) return err; err = char_array_to_timespec(buf, sizeof(buf), ts); return err; } static int idtcm_extts_check_channel(struct idtcm *idtcm, u8 todn) { struct idtcm_channel *ptp_channel, *extts_channel; struct ptp_clock_event event; struct timespec64 ts; u32 dco_delay = 0; int err; extts_channel = &idtcm->channel[todn]; ptp_channel = idtcm->event_channel[todn]; if (extts_channel == ptp_channel) dco_delay = ptp_channel->dco_delay; err = _idtcm_gettime_triggered(extts_channel, &ts); if (err) return err; /* Triggered - save timestamp */ event.type = PTP_CLOCK_EXTTS; event.index = todn; event.timestamp = timespec64_to_ns(&ts) - dco_delay; ptp_clock_event(ptp_channel->ptp_clock, &event); return err; } static int _idtcm_gettime_immediate(struct idtcm_channel *channel, struct timespec64 *ts) { struct idtcm *idtcm = channel->idtcm; u16 tod_read_cmd = IDTCM_FW_REG(idtcm->fw_ver, V520, TOD_READ_PRIMARY_CMD); u8 val = (SCSR_TOD_READ_TRIG_SEL_IMMEDIATE << TOD_READ_TRIGGER_SHIFT); int err; err = idtcm_write(idtcm, channel->tod_read_primary, tod_read_cmd, &val, sizeof(val)); if (err) return err; return _idtcm_gettime(channel, ts, 10); } static int _sync_pll_output(struct idtcm *idtcm, u8 pll, u8 sync_src, u8 qn, u8 qn_plus_1) { int err; u8 val; u16 sync_ctrl0; u16 sync_ctrl1; u8 temp; if (qn == 0 && qn_plus_1 == 0) return 0; switch (pll) { case 0: sync_ctrl0 = HW_Q0_Q1_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q0_Q1_CH_SYNC_CTRL_1; break; case 1: sync_ctrl0 = HW_Q2_Q3_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q2_Q3_CH_SYNC_CTRL_1; break; case 2: sync_ctrl0 = HW_Q4_Q5_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q4_Q5_CH_SYNC_CTRL_1; break; case 3: sync_ctrl0 = HW_Q6_Q7_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q6_Q7_CH_SYNC_CTRL_1; break; case 4: sync_ctrl0 = HW_Q8_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q8_CH_SYNC_CTRL_1; break; case 5: sync_ctrl0 = HW_Q9_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q9_CH_SYNC_CTRL_1; break; case 6: sync_ctrl0 = HW_Q10_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q10_CH_SYNC_CTRL_1; break; case 7: sync_ctrl0 = HW_Q11_CH_SYNC_CTRL_0; sync_ctrl1 = HW_Q11_CH_SYNC_CTRL_1; break; default: return -EINVAL; } val = SYNCTRL1_MASTER_SYNC_RST; /* Place master sync in reset */ err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val)); if (err) return err; err = idtcm_write(idtcm, 0, sync_ctrl0, &sync_src, sizeof(sync_src)); if (err) return err; /* Set sync trigger mask */ val |= SYNCTRL1_FBDIV_FRAME_SYNC_TRIG | SYNCTRL1_FBDIV_SYNC_TRIG; if (qn) val |= SYNCTRL1_Q0_DIV_SYNC_TRIG; if (qn_plus_1) val |= SYNCTRL1_Q1_DIV_SYNC_TRIG; err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val)); if (err) return err; /* PLL5 can have OUT8 as second additional output. */ if (pll == 5 && qn_plus_1 != 0) { err = idtcm_read(idtcm, 0, HW_Q8_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; temp &= ~(Q9_TO_Q8_SYNC_TRIG); err = idtcm_write(idtcm, 0, HW_Q8_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; temp |= Q9_TO_Q8_SYNC_TRIG; err = idtcm_write(idtcm, 0, HW_Q8_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; } /* PLL6 can have OUT11 as second additional output. */ if (pll == 6 && qn_plus_1 != 0) { err = idtcm_read(idtcm, 0, HW_Q11_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; temp &= ~(Q10_TO_Q11_SYNC_TRIG); err = idtcm_write(idtcm, 0, HW_Q11_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; temp |= Q10_TO_Q11_SYNC_TRIG; err = idtcm_write(idtcm, 0, HW_Q11_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; } /* Place master sync out of reset */ val &= ~(SYNCTRL1_MASTER_SYNC_RST); err = idtcm_write(idtcm, 0, sync_ctrl1, &val, sizeof(val)); return err; } static int idtcm_sync_pps_output(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; u8 pll; u8 qn; u8 qn_plus_1; int err = 0; u8 out8_mux = 0; u8 out11_mux = 0; u8 temp; u16 output_mask = channel->output_mask; err = idtcm_read(idtcm, 0, HW_Q8_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; if ((temp & Q9_TO_Q8_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK) == Q9_TO_Q8_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK) out8_mux = 1; err = idtcm_read(idtcm, 0, HW_Q11_CTRL_SPARE, &temp, sizeof(temp)); if (err) return err; if ((temp & Q10_TO_Q11_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK) == Q10_TO_Q11_FANOUT_AND_CLOCK_SYNC_ENABLE_MASK) out11_mux = 1; for (pll = 0; pll < 8; pll++) { qn = 0; qn_plus_1 = 0; if (pll < 4) { /* First 4 pll has 2 outputs */ qn = output_mask & 0x1; output_mask = output_mask >> 1; qn_plus_1 = output_mask & 0x1; output_mask = output_mask >> 1; } else if (pll == 4) { if (out8_mux == 0) { qn = output_mask & 0x1; output_mask = output_mask >> 1; } } else if (pll == 5) { if (out8_mux) { qn_plus_1 = output_mask & 0x1; output_mask = output_mask >> 1; } qn = output_mask & 0x1; output_mask = output_mask >> 1; } else if (pll == 6) { qn = output_mask & 0x1; output_mask = output_mask >> 1; if (out11_mux) { qn_plus_1 = output_mask & 0x1; output_mask = output_mask >> 1; } } else if (pll == 7) { if (out11_mux == 0) { qn = output_mask & 0x1; output_mask = output_mask >> 1; } } if (qn != 0 || qn_plus_1 != 0) err = _sync_pll_output(idtcm, pll, channel->sync_src, qn, qn_plus_1); if (err) return err; } return err; } static int _idtcm_set_dpll_hw_tod(struct idtcm_channel *channel, struct timespec64 const *ts, enum hw_tod_write_trig_sel wr_trig) { struct idtcm *idtcm = channel->idtcm; u8 buf[TOD_BYTE_COUNT]; u8 cmd; int err; struct timespec64 local_ts = *ts; s64 total_overhead_ns; /* Configure HW TOD write trigger. */ err = idtcm_read(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1, &cmd, sizeof(cmd)); if (err) return err; cmd &= ~(0x0f); cmd |= wr_trig | 0x08; err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1, &cmd, sizeof(cmd)); if (err) return err; if (wr_trig != HW_TOD_WR_TRIG_SEL_MSB) { err = timespec_to_char_array(&local_ts, buf, sizeof(buf)); if (err) return err; err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0, buf, sizeof(buf)); if (err) return err; } /* ARM HW TOD write trigger. */ cmd &= ~(0x08); err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_CTRL_1, &cmd, sizeof(cmd)); if (wr_trig == HW_TOD_WR_TRIG_SEL_MSB) { if (idtcm->calculate_overhead_flag) { /* Assumption: I2C @ 400KHz */ ktime_t diff = ktime_sub(ktime_get_raw(), idtcm->start_time); total_overhead_ns = ktime_to_ns(diff) + idtcm->tod_write_overhead_ns + SETTIME_CORRECTION; timespec64_add_ns(&local_ts, total_overhead_ns); idtcm->calculate_overhead_flag = 0; } err = timespec_to_char_array(&local_ts, buf, sizeof(buf)); if (err) return err; err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0, buf, sizeof(buf)); } return err; } static int _idtcm_set_dpll_scsr_tod(struct idtcm_channel *channel, struct timespec64 const *ts, enum scsr_tod_write_trig_sel wr_trig, enum scsr_tod_write_type_sel wr_type) { struct idtcm *idtcm = channel->idtcm; unsigned char buf[TOD_BYTE_COUNT], cmd; struct timespec64 local_ts = *ts; int err, count = 0; timespec64_add_ns(&local_ts, SETTIME_CORRECTION); err = timespec_to_char_array(&local_ts, buf, sizeof(buf)); if (err) return err; err = idtcm_write(idtcm, channel->tod_write, TOD_WRITE, buf, sizeof(buf)); if (err) return err; /* Trigger the write operation. */ err = idtcm_read(idtcm, channel->tod_write, TOD_WRITE_CMD, &cmd, sizeof(cmd)); if (err) return err; cmd &= ~(TOD_WRITE_SELECTION_MASK << TOD_WRITE_SELECTION_SHIFT); cmd &= ~(TOD_WRITE_TYPE_MASK << TOD_WRITE_TYPE_SHIFT); cmd |= (wr_trig << TOD_WRITE_SELECTION_SHIFT); cmd |= (wr_type << TOD_WRITE_TYPE_SHIFT); err = idtcm_write(idtcm, channel->tod_write, TOD_WRITE_CMD, &cmd, sizeof(cmd)); if (err) return err; /* Wait for the operation to complete. */ while (1) { /* pps trigger takes up to 1 sec to complete */ if (wr_trig == SCSR_TOD_WR_TRIG_SEL_TODPPS) msleep(50); err = idtcm_read(idtcm, channel->tod_write, TOD_WRITE_CMD, &cmd, sizeof(cmd)); if (err) return err; if ((cmd & TOD_WRITE_SELECTION_MASK) == 0) break; if (++count > 20) { dev_err(idtcm->dev, "Timed out waiting for the write counter"); return -EIO; } } return 0; } static int get_output_base_addr(enum fw_version ver, u8 outn) { int base; switch (outn) { case 0: base = IDTCM_FW_REG(ver, V520, OUTPUT_0); break; case 1: base = IDTCM_FW_REG(ver, V520, OUTPUT_1); break; case 2: base = IDTCM_FW_REG(ver, V520, OUTPUT_2); break; case 3: base = IDTCM_FW_REG(ver, V520, OUTPUT_3); break; case 4: base = IDTCM_FW_REG(ver, V520, OUTPUT_4); break; case 5: base = IDTCM_FW_REG(ver, V520, OUTPUT_5); break; case 6: base = IDTCM_FW_REG(ver, V520, OUTPUT_6); break; case 7: base = IDTCM_FW_REG(ver, V520, OUTPUT_7); break; case 8: base = IDTCM_FW_REG(ver, V520, OUTPUT_8); break; case 9: base = IDTCM_FW_REG(ver, V520, OUTPUT_9); break; case 10: base = IDTCM_FW_REG(ver, V520, OUTPUT_10); break; case 11: base = IDTCM_FW_REG(ver, V520, OUTPUT_11); break; default: base = -EINVAL; } return base; } static int _idtcm_settime_deprecated(struct idtcm_channel *channel, struct timespec64 const *ts) { struct idtcm *idtcm = channel->idtcm; int err; err = _idtcm_set_dpll_hw_tod(channel, ts, HW_TOD_WR_TRIG_SEL_MSB); if (err) { dev_err(idtcm->dev, "%s: Set HW ToD failed", __func__); return err; } return idtcm_sync_pps_output(channel); } static int _idtcm_settime(struct idtcm_channel *channel, struct timespec64 const *ts, enum scsr_tod_write_type_sel wr_type) { return _idtcm_set_dpll_scsr_tod(channel, ts, SCSR_TOD_WR_TRIG_SEL_IMMEDIATE, wr_type); } static int idtcm_set_phase_pull_in_offset(struct idtcm_channel *channel, s32 offset_ns) { int err; int i; struct idtcm *idtcm = channel->idtcm; u8 buf[4]; for (i = 0; i < 4; i++) { buf[i] = 0xff & (offset_ns); offset_ns >>= 8; } err = idtcm_write(idtcm, channel->dpll_phase_pull_in, PULL_IN_OFFSET, buf, sizeof(buf)); return err; } static int idtcm_set_phase_pull_in_slope_limit(struct idtcm_channel *channel, u32 max_ffo_ppb) { int err; u8 i; struct idtcm *idtcm = channel->idtcm; u8 buf[3]; if (max_ffo_ppb & 0xff000000) max_ffo_ppb = 0; for (i = 0; i < 3; i++) { buf[i] = 0xff & (max_ffo_ppb); max_ffo_ppb >>= 8; } err = idtcm_write(idtcm, channel->dpll_phase_pull_in, PULL_IN_SLOPE_LIMIT, buf, sizeof(buf)); return err; } static int idtcm_start_phase_pull_in(struct idtcm_channel *channel) { int err; struct idtcm *idtcm = channel->idtcm; u8 buf; err = idtcm_read(idtcm, channel->dpll_phase_pull_in, PULL_IN_CTRL, &buf, sizeof(buf)); if (err) return err; if (buf == 0) { buf = 0x01; err = idtcm_write(idtcm, channel->dpll_phase_pull_in, PULL_IN_CTRL, &buf, sizeof(buf)); } else { err = -EBUSY; } return err; } static int do_phase_pull_in_fw(struct idtcm_channel *channel, s32 offset_ns, u32 max_ffo_ppb) { int err; err = idtcm_set_phase_pull_in_offset(channel, -offset_ns); if (err) return err; err = idtcm_set_phase_pull_in_slope_limit(channel, max_ffo_ppb); if (err) return err; err = idtcm_start_phase_pull_in(channel); return err; } static int set_tod_write_overhead(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; s64 current_ns = 0; s64 lowest_ns = 0; int err; u8 i; ktime_t start; ktime_t stop; ktime_t diff; char buf[TOD_BYTE_COUNT] = {0}; /* Set page offset */ idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0, buf, sizeof(buf)); for (i = 0; i < TOD_WRITE_OVERHEAD_COUNT_MAX; i++) { start = ktime_get_raw(); err = idtcm_write(idtcm, channel->hw_dpll_n, HW_DPLL_TOD_OVR__0, buf, sizeof(buf)); if (err) return err; stop = ktime_get_raw(); diff = ktime_sub(stop, start); current_ns = ktime_to_ns(diff); if (i == 0) { lowest_ns = current_ns; } else { if (current_ns < lowest_ns) lowest_ns = current_ns; } } idtcm->tod_write_overhead_ns = lowest_ns; return err; } static int _idtcm_adjtime_deprecated(struct idtcm_channel *channel, s64 delta) { int err; struct idtcm *idtcm = channel->idtcm; struct timespec64 ts; s64 now; if (abs(delta) < PHASE_PULL_IN_THRESHOLD_NS_DEPRECATED) { err = channel->do_phase_pull_in(channel, delta, 0); } else { idtcm->calculate_overhead_flag = 1; err = set_tod_write_overhead(channel); if (err) return err; err = _idtcm_gettime_immediate(channel, &ts); if (err) return err; now = timespec64_to_ns(&ts); now += delta; ts = ns_to_timespec64(now); err = _idtcm_settime_deprecated(channel, &ts); } return err; } static int idtcm_state_machine_reset(struct idtcm *idtcm) { u8 byte = SM_RESET_CMD; u32 status = 0; int err; u8 i; clear_boot_status(idtcm); err = idtcm_write(idtcm, RESET_CTRL, IDTCM_FW_REG(idtcm->fw_ver, V520, SM_RESET), &byte, sizeof(byte)); if (!err) { for (i = 0; i < 30; i++) { msleep_interruptible(100); read_boot_status(idtcm, &status); if (status == 0xA0) { dev_dbg(idtcm->dev, "SM_RESET completed in %d ms", i * 100); break; } } if (!status) dev_err(idtcm->dev, "Timed out waiting for CM_RESET to complete"); } return err; } static int idtcm_read_hw_rev_id(struct idtcm *idtcm, u8 *hw_rev_id) { return idtcm_read(idtcm, HW_REVISION, REV_ID, hw_rev_id, sizeof(u8)); } static int idtcm_read_product_id(struct idtcm *idtcm, u16 *product_id) { int err; u8 buf[2] = {0}; err = idtcm_read(idtcm, GENERAL_STATUS, PRODUCT_ID, buf, sizeof(buf)); *product_id = (buf[1] << 8) | buf[0]; return err; } static int idtcm_read_major_release(struct idtcm *idtcm, u8 *major) { int err; u8 buf = 0; err = idtcm_read(idtcm, GENERAL_STATUS, MAJ_REL, &buf, sizeof(buf)); *major = buf >> 1; return err; } static int idtcm_read_minor_release(struct idtcm *idtcm, u8 *minor) { return idtcm_read(idtcm, GENERAL_STATUS, MIN_REL, minor, sizeof(u8)); } static int idtcm_read_hotfix_release(struct idtcm *idtcm, u8 *hotfix) { return idtcm_read(idtcm, GENERAL_STATUS, HOTFIX_REL, hotfix, sizeof(u8)); } static int idtcm_read_otp_scsr_config_select(struct idtcm *idtcm, u8 *config_select) { return idtcm_read(idtcm, GENERAL_STATUS, OTP_SCSR_CONFIG_SELECT, config_select, sizeof(u8)); } static int set_pll_output_mask(struct idtcm *idtcm, u16 addr, u8 val) { int err = 0; switch (addr) { case TOD0_OUT_ALIGN_MASK_ADDR: SET_U16_LSB(idtcm->channel[0].output_mask, val); break; case TOD0_OUT_ALIGN_MASK_ADDR + 1: SET_U16_MSB(idtcm->channel[0].output_mask, val); break; case TOD1_OUT_ALIGN_MASK_ADDR: SET_U16_LSB(idtcm->channel[1].output_mask, val); break; case TOD1_OUT_ALIGN_MASK_ADDR + 1: SET_U16_MSB(idtcm->channel[1].output_mask, val); break; case TOD2_OUT_ALIGN_MASK_ADDR: SET_U16_LSB(idtcm->channel[2].output_mask, val); break; case TOD2_OUT_ALIGN_MASK_ADDR + 1: SET_U16_MSB(idtcm->channel[2].output_mask, val); break; case TOD3_OUT_ALIGN_MASK_ADDR: SET_U16_LSB(idtcm->channel[3].output_mask, val); break; case TOD3_OUT_ALIGN_MASK_ADDR + 1: SET_U16_MSB(idtcm->channel[3].output_mask, val); break; default: err = -EFAULT; /* Bad address */; break; } return err; } static int set_tod_ptp_pll(struct idtcm *idtcm, u8 index, u8 pll) { if (index >= MAX_TOD) { dev_err(idtcm->dev, "ToD%d not supported", index); return -EINVAL; } if (pll >= MAX_PLL) { dev_err(idtcm->dev, "Pll%d not supported", pll); return -EINVAL; } idtcm->channel[index].pll = pll; return 0; } static int check_and_set_masks(struct idtcm *idtcm, u16 regaddr, u8 val) { int err = 0; switch (regaddr) { case TOD_MASK_ADDR: if ((val & 0xf0) || !(val & 0x0f)) { dev_err(idtcm->dev, "Invalid TOD mask 0x%02x", val); err = -EINVAL; } else { idtcm->tod_mask = val; } break; case TOD0_PTP_PLL_ADDR: err = set_tod_ptp_pll(idtcm, 0, val); break; case TOD1_PTP_PLL_ADDR: err = set_tod_ptp_pll(idtcm, 1, val); break; case TOD2_PTP_PLL_ADDR: err = set_tod_ptp_pll(idtcm, 2, val); break; case TOD3_PTP_PLL_ADDR: err = set_tod_ptp_pll(idtcm, 3, val); break; default: err = set_pll_output_mask(idtcm, regaddr, val); break; } return err; } static void display_pll_and_masks(struct idtcm *idtcm) { u8 i; u8 mask; dev_dbg(idtcm->dev, "tod_mask = 0x%02x", idtcm->tod_mask); for (i = 0; i < MAX_TOD; i++) { mask = 1 << i; if (mask & idtcm->tod_mask) dev_dbg(idtcm->dev, "TOD%d pll = %d output_mask = 0x%04x", i, idtcm->channel[i].pll, idtcm->channel[i].output_mask); } } static int idtcm_load_firmware(struct idtcm *idtcm, struct device *dev) { u16 scratch = IDTCM_FW_REG(idtcm->fw_ver, V520, SCRATCH); char fname[128] = FW_FILENAME; const struct firmware *fw; struct idtcm_fwrc *rec; u32 regaddr; int err; s32 len; u8 val; u8 loaddr; if (firmware) /* module parameter */ snprintf(fname, sizeof(fname), "%s", firmware); dev_info(idtcm->dev, "requesting firmware '%s'", fname); err = request_firmware(&fw, fname, dev); if (err) { dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } dev_dbg(idtcm->dev, "firmware size %zu bytes", fw->size); rec = (struct idtcm_fwrc *) fw->data; if (contains_full_configuration(idtcm, fw)) idtcm_state_machine_reset(idtcm); for (len = fw->size; len > 0; len -= sizeof(*rec)) { if (rec->reserved) { dev_err(idtcm->dev, "bad firmware, reserved field non-zero"); err = -EINVAL; } else { regaddr = rec->hiaddr << 8; regaddr |= rec->loaddr; val = rec->value; loaddr = rec->loaddr; rec++; err = check_and_set_masks(idtcm, regaddr, val); } if (err != -EINVAL) { err = 0; /* Top (status registers) and bottom are read-only */ if (regaddr < GPIO_USER_CONTROL || regaddr >= scratch) continue; /* Page size 128, last 4 bytes of page skipped */ if ((loaddr > 0x7b && loaddr <= 0x7f) || loaddr > 0xfb) continue; err = idtcm_write(idtcm, regaddr, 0, &val, sizeof(val)); } if (err) goto out; } display_pll_and_masks(idtcm); out: release_firmware(fw); return err; } static int idtcm_output_enable(struct idtcm_channel *channel, bool enable, unsigned int outn) { struct idtcm *idtcm = channel->idtcm; int base; int err; u8 val; base = get_output_base_addr(idtcm->fw_ver, outn); if (!(base > 0)) { dev_err(idtcm->dev, "%s - Unsupported out%d", __func__, outn); return base; } err = idtcm_read(idtcm, (u16)base, OUT_CTRL_1, &val, sizeof(val)); if (err) return err; if (enable) val |= SQUELCH_DISABLE; else val &= ~SQUELCH_DISABLE; return idtcm_write(idtcm, (u16)base, OUT_CTRL_1, &val, sizeof(val)); } static int idtcm_perout_enable(struct idtcm_channel *channel, struct ptp_perout_request *perout, bool enable) { struct idtcm *idtcm = channel->idtcm; struct timespec64 ts = {0, 0}; int err; err = idtcm_output_enable(channel, enable, perout->index); if (err) { dev_err(idtcm->dev, "Unable to set output enable"); return err; } /* Align output to internal 1 PPS */ return _idtcm_settime(channel, &ts, SCSR_TOD_WR_TYPE_SEL_DELTA_PLUS); } static int idtcm_get_pll_mode(struct idtcm_channel *channel, enum pll_mode *mode) { struct idtcm *idtcm = channel->idtcm; int err; u8 dpll_mode; err = idtcm_read(idtcm, channel->dpll_n, IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_MODE), &dpll_mode, sizeof(dpll_mode)); if (err) return err; *mode = (dpll_mode >> PLL_MODE_SHIFT) & PLL_MODE_MASK; return 0; } static int idtcm_set_pll_mode(struct idtcm_channel *channel, enum pll_mode mode) { struct idtcm *idtcm = channel->idtcm; int err; u8 dpll_mode; err = idtcm_read(idtcm, channel->dpll_n, IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_MODE), &dpll_mode, sizeof(dpll_mode)); if (err) return err; dpll_mode &= ~(PLL_MODE_MASK << PLL_MODE_SHIFT); dpll_mode |= (mode << PLL_MODE_SHIFT); err = idtcm_write(idtcm, channel->dpll_n, IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_MODE), &dpll_mode, sizeof(dpll_mode)); return err; } static int idtcm_get_manual_reference(struct idtcm_channel *channel, enum manual_reference *ref) { struct idtcm *idtcm = channel->idtcm; u8 dpll_manu_ref_cfg; int err; err = idtcm_read(idtcm, channel->dpll_ctrl_n, DPLL_CTRL_DPLL_MANU_REF_CFG, &dpll_manu_ref_cfg, sizeof(dpll_manu_ref_cfg)); if (err) return err; dpll_manu_ref_cfg &= (MANUAL_REFERENCE_MASK << MANUAL_REFERENCE_SHIFT); *ref = dpll_manu_ref_cfg >> MANUAL_REFERENCE_SHIFT; return 0; } static int idtcm_set_manual_reference(struct idtcm_channel *channel, enum manual_reference ref) { struct idtcm *idtcm = channel->idtcm; u8 dpll_manu_ref_cfg; int err; err = idtcm_read(idtcm, channel->dpll_ctrl_n, DPLL_CTRL_DPLL_MANU_REF_CFG, &dpll_manu_ref_cfg, sizeof(dpll_manu_ref_cfg)); if (err) return err; dpll_manu_ref_cfg &= ~(MANUAL_REFERENCE_MASK << MANUAL_REFERENCE_SHIFT); dpll_manu_ref_cfg |= (ref << MANUAL_REFERENCE_SHIFT); err = idtcm_write(idtcm, channel->dpll_ctrl_n, DPLL_CTRL_DPLL_MANU_REF_CFG, &dpll_manu_ref_cfg, sizeof(dpll_manu_ref_cfg)); return err; } static int configure_dpll_mode_write_frequency(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; int err; err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_FREQUENCY); if (err) dev_err(idtcm->dev, "Failed to set pll mode to write frequency"); else channel->mode = PTP_PLL_MODE_WRITE_FREQUENCY; return err; } static int configure_dpll_mode_write_phase(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; int err; err = idtcm_set_pll_mode(channel, PLL_MODE_WRITE_PHASE); if (err) dev_err(idtcm->dev, "Failed to set pll mode to write phase"); else channel->mode = PTP_PLL_MODE_WRITE_PHASE; return err; } static int configure_manual_reference_write_frequency(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; int err; err = idtcm_set_manual_reference(channel, MANU_REF_WRITE_FREQUENCY); if (err) dev_err(idtcm->dev, "Failed to set manual reference to write frequency"); else channel->mode = PTP_PLL_MODE_WRITE_FREQUENCY; return err; } static int configure_manual_reference_write_phase(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; int err; err = idtcm_set_manual_reference(channel, MANU_REF_WRITE_PHASE); if (err) dev_err(idtcm->dev, "Failed to set manual reference to write phase"); else channel->mode = PTP_PLL_MODE_WRITE_PHASE; return err; } static int idtcm_stop_phase_pull_in(struct idtcm_channel *channel) { int err; err = _idtcm_adjfine(channel, channel->current_freq_scaled_ppm); if (err) return err; channel->phase_pull_in = false; return 0; } static long idtcm_work_handler(struct ptp_clock_info *ptp) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; mutex_lock(idtcm->lock); (void)idtcm_stop_phase_pull_in(channel); mutex_unlock(idtcm->lock); /* Return a negative value here to not reschedule */ return -1; } static s32 phase_pull_in_scaled_ppm(s32 current_ppm, s32 phase_pull_in_ppb) { /* ppb = scaled_ppm * 125 / 2^13 */ /* scaled_ppm = ppb * 2^13 / 125 */ s64 max_scaled_ppm = div_s64((s64)PHASE_PULL_IN_MAX_PPB << 13, 125); s64 scaled_ppm = div_s64((s64)phase_pull_in_ppb << 13, 125); current_ppm += scaled_ppm; if (current_ppm > max_scaled_ppm) current_ppm = max_scaled_ppm; else if (current_ppm < -max_scaled_ppm) current_ppm = -max_scaled_ppm; return current_ppm; } static int do_phase_pull_in_sw(struct idtcm_channel *channel, s32 delta_ns, u32 max_ffo_ppb) { s32 current_ppm = channel->current_freq_scaled_ppm; u32 duration_ms = MSEC_PER_SEC; s32 delta_ppm; s32 ppb; int err; /* If the ToD correction is less than PHASE_PULL_IN_MIN_THRESHOLD_NS, * skip. The error introduced by the ToD adjustment procedure would * be bigger than the required ToD correction */ if (abs(delta_ns) < PHASE_PULL_IN_MIN_THRESHOLD_NS) return 0; if (max_ffo_ppb == 0) max_ffo_ppb = PHASE_PULL_IN_MAX_PPB; /* For most cases, keep phase pull-in duration 1 second */ ppb = delta_ns; while (abs(ppb) > max_ffo_ppb) { duration_ms *= 2; ppb /= 2; } delta_ppm = phase_pull_in_scaled_ppm(current_ppm, ppb); err = _idtcm_adjfine(channel, delta_ppm); if (err) return err; /* schedule the worker to cancel phase pull-in */ ptp_schedule_worker(channel->ptp_clock, msecs_to_jiffies(duration_ms) - 1); channel->phase_pull_in = true; return 0; } static int initialize_operating_mode_with_manual_reference(struct idtcm_channel *channel, enum manual_reference ref) { struct idtcm *idtcm = channel->idtcm; channel->mode = PTP_PLL_MODE_UNSUPPORTED; channel->configure_write_frequency = configure_manual_reference_write_frequency; channel->configure_write_phase = configure_manual_reference_write_phase; channel->do_phase_pull_in = do_phase_pull_in_sw; switch (ref) { case MANU_REF_WRITE_PHASE: channel->mode = PTP_PLL_MODE_WRITE_PHASE; break; case MANU_REF_WRITE_FREQUENCY: channel->mode = PTP_PLL_MODE_WRITE_FREQUENCY; break; default: dev_warn(idtcm->dev, "Unsupported MANUAL_REFERENCE: 0x%02x", ref); } return 0; } static int initialize_operating_mode_with_pll_mode(struct idtcm_channel *channel, enum pll_mode mode) { struct idtcm *idtcm = channel->idtcm; int err = 0; channel->mode = PTP_PLL_MODE_UNSUPPORTED; channel->configure_write_frequency = configure_dpll_mode_write_frequency; channel->configure_write_phase = configure_dpll_mode_write_phase; channel->do_phase_pull_in = do_phase_pull_in_fw; switch (mode) { case PLL_MODE_WRITE_PHASE: channel->mode = PTP_PLL_MODE_WRITE_PHASE; break; case PLL_MODE_WRITE_FREQUENCY: channel->mode = PTP_PLL_MODE_WRITE_FREQUENCY; break; default: dev_err(idtcm->dev, "Unsupported PLL_MODE: 0x%02x", mode); err = -EINVAL; } return err; } static int initialize_dco_operating_mode(struct idtcm_channel *channel) { enum manual_reference ref = MANU_REF_XO_DPLL; enum pll_mode mode = PLL_MODE_DISABLED; struct idtcm *idtcm = channel->idtcm; int err; channel->mode = PTP_PLL_MODE_UNSUPPORTED; err = idtcm_get_pll_mode(channel, &mode); if (err) { dev_err(idtcm->dev, "Unable to read pll mode!"); return err; } if (mode == PLL_MODE_PLL) { err = idtcm_get_manual_reference(channel, &ref); if (err) { dev_err(idtcm->dev, "Unable to read manual reference!"); return err; } err = initialize_operating_mode_with_manual_reference(channel, ref); } else { err = initialize_operating_mode_with_pll_mode(channel, mode); } if (channel->mode == PTP_PLL_MODE_WRITE_PHASE) channel->configure_write_frequency(channel); return err; } /* PTP Hardware Clock interface */ /* * Maximum absolute value for write phase offset in nanoseconds * * Destination signed register is 32-bit register in resolution of 50ps * * 0x7fffffff * 50 = 2147483647 * 50 = 107374182350 ps * Represent 107374182350 ps as 107374182 ns */ static s32 idtcm_getmaxphase(struct ptp_clock_info *ptp __always_unused) { return MAX_ABS_WRITE_PHASE_NANOSECONDS; } /* * Internal function for implementing support for write phase offset * * @channel: channel * @delta_ns: delta in nanoseconds */ static int _idtcm_adjphase(struct idtcm_channel *channel, s32 delta_ns) { struct idtcm *idtcm = channel->idtcm; int err; u8 i; u8 buf[4] = {0}; s32 phase_50ps; if (channel->mode != PTP_PLL_MODE_WRITE_PHASE) { err = channel->configure_write_phase(channel); if (err) return err; } phase_50ps = div_s64((s64)delta_ns * 1000, 50); for (i = 0; i < 4; i++) { buf[i] = phase_50ps & 0xff; phase_50ps >>= 8; } err = idtcm_write(idtcm, channel->dpll_phase, DPLL_WR_PHASE, buf, sizeof(buf)); return err; } static int _idtcm_adjfine(struct idtcm_channel *channel, long scaled_ppm) { struct idtcm *idtcm = channel->idtcm; u8 i; int err; u8 buf[6] = {0}; s64 fcw; if (channel->mode != PTP_PLL_MODE_WRITE_FREQUENCY) { err = channel->configure_write_frequency(channel); if (err) return err; } /* * Frequency Control Word unit is: 1.11 * 10^-10 ppm * * adjfreq: * ppb * 10^9 * FCW = ---------- * 111 * * adjfine: * ppm_16 * 5^12 * FCW = ------------- * 111 * 2^4 */ /* 2 ^ -53 = 1.1102230246251565404236316680908e-16 */ fcw = scaled_ppm * 244140625ULL; fcw = div_s64(fcw, 1776); for (i = 0; i < 6; i++) { buf[i] = fcw & 0xff; fcw >>= 8; } err = idtcm_write(idtcm, channel->dpll_freq, DPLL_WR_FREQ, buf, sizeof(buf)); return err; } static int idtcm_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; mutex_lock(idtcm->lock); err = _idtcm_gettime_immediate(channel, ts); mutex_unlock(idtcm->lock); if (err) dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } static int idtcm_settime_deprecated(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; mutex_lock(idtcm->lock); err = _idtcm_settime_deprecated(channel, ts); mutex_unlock(idtcm->lock); if (err) dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } static int idtcm_settime(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; mutex_lock(idtcm->lock); err = _idtcm_settime(channel, ts, SCSR_TOD_WR_TYPE_SEL_ABSOLUTE); mutex_unlock(idtcm->lock); if (err) dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } static int idtcm_adjtime_deprecated(struct ptp_clock_info *ptp, s64 delta) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; mutex_lock(idtcm->lock); err = _idtcm_adjtime_deprecated(channel, delta); mutex_unlock(idtcm->lock); if (err) dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } static int idtcm_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; struct timespec64 ts; enum scsr_tod_write_type_sel type; int err; if (channel->phase_pull_in == true) return -EBUSY; mutex_lock(idtcm->lock); if (abs(delta) < PHASE_PULL_IN_THRESHOLD_NS) { err = channel->do_phase_pull_in(channel, delta, 0); } else { if (delta >= 0) { ts = ns_to_timespec64(delta); type = SCSR_TOD_WR_TYPE_SEL_DELTA_PLUS; } else { ts = ns_to_timespec64(-delta); type = SCSR_TOD_WR_TYPE_SEL_DELTA_MINUS; } err = _idtcm_settime(channel, &ts, type); } mutex_unlock(idtcm->lock); if (err) dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } static int idtcm_adjphase(struct ptp_clock_info *ptp, s32 delta) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; mutex_lock(idtcm->lock); err = _idtcm_adjphase(channel, delta); mutex_unlock(idtcm->lock); if (err) dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } static int idtcm_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err; if (channel->phase_pull_in == true) return 0; if (scaled_ppm == channel->current_freq_scaled_ppm) return 0; mutex_lock(idtcm->lock); err = _idtcm_adjfine(channel, scaled_ppm); mutex_unlock(idtcm->lock); if (err) dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); else channel->current_freq_scaled_ppm = scaled_ppm; return err; } static int idtcm_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct idtcm_channel *channel = container_of(ptp, struct idtcm_channel, caps); struct idtcm *idtcm = channel->idtcm; int err = -EOPNOTSUPP; mutex_lock(idtcm->lock); switch (rq->type) { case PTP_CLK_REQ_PEROUT: if (!on) err = idtcm_perout_enable(channel, &rq->perout, false); /* Only accept a 1-PPS aligned to the second. */ else if (rq->perout.start.nsec || rq->perout.period.sec != 1 || rq->perout.period.nsec) err = -ERANGE; else err = idtcm_perout_enable(channel, &rq->perout, true); break; case PTP_CLK_REQ_EXTTS: err = idtcm_extts_enable(channel, rq, on); break; default: break; } mutex_unlock(idtcm->lock); if (err) dev_err(channel->idtcm->dev, "Failed in %s with err %d!", __func__, err); return err; } static int idtcm_enable_tod(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; struct timespec64 ts = {0, 0}; u16 tod_cfg = IDTCM_FW_REG(idtcm->fw_ver, V520, TOD_CFG); u8 cfg; int err; /* * Start the TOD clock ticking. */ err = idtcm_read(idtcm, channel->tod_n, tod_cfg, &cfg, sizeof(cfg)); if (err) return err; cfg |= TOD_ENABLE; err = idtcm_write(idtcm, channel->tod_n, tod_cfg, &cfg, sizeof(cfg)); if (err) return err; if (idtcm->fw_ver < V487) return _idtcm_settime_deprecated(channel, &ts); else return _idtcm_settime(channel, &ts, SCSR_TOD_WR_TYPE_SEL_ABSOLUTE); } static void idtcm_set_version_info(struct idtcm *idtcm) { u8 major; u8 minor; u8 hotfix; u16 product_id; u8 hw_rev_id; u8 config_select; idtcm_read_major_release(idtcm, &major); idtcm_read_minor_release(idtcm, &minor); idtcm_read_hotfix_release(idtcm, &hotfix); idtcm_read_product_id(idtcm, &product_id); idtcm_read_hw_rev_id(idtcm, &hw_rev_id); idtcm_read_otp_scsr_config_select(idtcm, &config_select); snprintf(idtcm->version, sizeof(idtcm->version), "%u.%u.%u", major, minor, hotfix); idtcm->fw_ver = idtcm_fw_version(idtcm->version); dev_info(idtcm->dev, "%d.%d.%d, Id: 0x%04x HW Rev: %d OTP Config Select: %d", major, minor, hotfix, product_id, hw_rev_id, config_select); } static int idtcm_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { switch (func) { case PTP_PF_NONE: case PTP_PF_EXTTS: break; case PTP_PF_PEROUT: case PTP_PF_PHYSYNC: return -1; } return 0; } static struct ptp_pin_desc pin_config[MAX_TOD][MAX_REF_CLK]; static const struct ptp_clock_info idtcm_caps = { .owner = THIS_MODULE, .max_adj = 244000, .n_per_out = 12, .n_ext_ts = MAX_TOD, .n_pins = MAX_REF_CLK, .adjphase = &idtcm_adjphase, .getmaxphase = &idtcm_getmaxphase, .adjfine = &idtcm_adjfine, .adjtime = &idtcm_adjtime, .gettime64 = &idtcm_gettime, .settime64 = &idtcm_settime, .enable = &idtcm_enable, .verify = &idtcm_verify_pin, .do_aux_work = &idtcm_work_handler, }; static const struct ptp_clock_info idtcm_caps_deprecated = { .owner = THIS_MODULE, .max_adj = 244000, .n_per_out = 12, .n_ext_ts = MAX_TOD, .n_pins = MAX_REF_CLK, .adjphase = &idtcm_adjphase, .getmaxphase = &idtcm_getmaxphase, .adjfine = &idtcm_adjfine, .adjtime = &idtcm_adjtime_deprecated, .gettime64 = &idtcm_gettime, .settime64 = &idtcm_settime_deprecated, .enable = &idtcm_enable, .verify = &idtcm_verify_pin, .do_aux_work = &idtcm_work_handler, }; static int configure_channel_pll(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; int err = 0; switch (channel->pll) { case 0: channel->dpll_freq = DPLL_FREQ_0; channel->dpll_n = DPLL_0; channel->hw_dpll_n = HW_DPLL_0; channel->dpll_phase = DPLL_PHASE_0; channel->dpll_ctrl_n = DPLL_CTRL_0; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_0; break; case 1: channel->dpll_freq = DPLL_FREQ_1; channel->dpll_n = DPLL_1; channel->hw_dpll_n = HW_DPLL_1; channel->dpll_phase = DPLL_PHASE_1; channel->dpll_ctrl_n = DPLL_CTRL_1; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_1; break; case 2: channel->dpll_freq = DPLL_FREQ_2; channel->dpll_n = IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_2); channel->hw_dpll_n = HW_DPLL_2; channel->dpll_phase = DPLL_PHASE_2; channel->dpll_ctrl_n = DPLL_CTRL_2; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_2; break; case 3: channel->dpll_freq = DPLL_FREQ_3; channel->dpll_n = DPLL_3; channel->hw_dpll_n = HW_DPLL_3; channel->dpll_phase = DPLL_PHASE_3; channel->dpll_ctrl_n = DPLL_CTRL_3; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_3; break; case 4: channel->dpll_freq = DPLL_FREQ_4; channel->dpll_n = IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_4); channel->hw_dpll_n = HW_DPLL_4; channel->dpll_phase = DPLL_PHASE_4; channel->dpll_ctrl_n = DPLL_CTRL_4; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_4; break; case 5: channel->dpll_freq = DPLL_FREQ_5; channel->dpll_n = DPLL_5; channel->hw_dpll_n = HW_DPLL_5; channel->dpll_phase = DPLL_PHASE_5; channel->dpll_ctrl_n = DPLL_CTRL_5; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_5; break; case 6: channel->dpll_freq = DPLL_FREQ_6; channel->dpll_n = IDTCM_FW_REG(idtcm->fw_ver, V520, DPLL_6); channel->hw_dpll_n = HW_DPLL_6; channel->dpll_phase = DPLL_PHASE_6; channel->dpll_ctrl_n = DPLL_CTRL_6; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_6; break; case 7: channel->dpll_freq = DPLL_FREQ_7; channel->dpll_n = DPLL_7; channel->hw_dpll_n = HW_DPLL_7; channel->dpll_phase = DPLL_PHASE_7; channel->dpll_ctrl_n = DPLL_CTRL_7; channel->dpll_phase_pull_in = DPLL_PHASE_PULL_IN_7; break; default: err = -EINVAL; } return err; } /* * Compensate for the PTP DCO input-to-output delay. * This delay is 18 FOD cycles. */ static u32 idtcm_get_dco_delay(struct idtcm_channel *channel) { struct idtcm *idtcm = channel->idtcm; u8 mbuf[8] = {0}; u8 nbuf[2] = {0}; u32 fodFreq; int err; u64 m; u16 n; err = idtcm_read(idtcm, channel->dpll_ctrl_n, DPLL_CTRL_DPLL_FOD_FREQ, mbuf, 6); if (err) return 0; err = idtcm_read(idtcm, channel->dpll_ctrl_n, DPLL_CTRL_DPLL_FOD_FREQ + 6, nbuf, 2); if (err) return 0; m = get_unaligned_le64(mbuf); n = get_unaligned_le16(nbuf); if (n == 0) n = 1; fodFreq = (u32)div_u64(m, n); if (fodFreq >= 500000000) return (u32)div_u64(18 * (u64)NSEC_PER_SEC, fodFreq); return 0; } static int configure_channel_tod(struct idtcm_channel *channel, u32 index) { enum fw_version fw_ver = channel->idtcm->fw_ver; /* Set tod addresses */ switch (index) { case 0: channel->tod_read_primary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_PRIMARY_0); channel->tod_read_secondary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_SECONDARY_0); channel->tod_write = IDTCM_FW_REG(fw_ver, V520, TOD_WRITE_0); channel->tod_n = IDTCM_FW_REG(fw_ver, V520, TOD_0); channel->sync_src = SYNC_SOURCE_DPLL0_TOD_PPS; break; case 1: channel->tod_read_primary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_PRIMARY_1); channel->tod_read_secondary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_SECONDARY_1); channel->tod_write = IDTCM_FW_REG(fw_ver, V520, TOD_WRITE_1); channel->tod_n = IDTCM_FW_REG(fw_ver, V520, TOD_1); channel->sync_src = SYNC_SOURCE_DPLL1_TOD_PPS; break; case 2: channel->tod_read_primary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_PRIMARY_2); channel->tod_read_secondary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_SECONDARY_2); channel->tod_write = IDTCM_FW_REG(fw_ver, V520, TOD_WRITE_2); channel->tod_n = IDTCM_FW_REG(fw_ver, V520, TOD_2); channel->sync_src = SYNC_SOURCE_DPLL2_TOD_PPS; break; case 3: channel->tod_read_primary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_PRIMARY_3); channel->tod_read_secondary = IDTCM_FW_REG(fw_ver, V520, TOD_READ_SECONDARY_3); channel->tod_write = IDTCM_FW_REG(fw_ver, V520, TOD_WRITE_3); channel->tod_n = IDTCM_FW_REG(fw_ver, V520, TOD_3); channel->sync_src = SYNC_SOURCE_DPLL3_TOD_PPS; break; default: return -EINVAL; } return 0; } static int idtcm_enable_channel(struct idtcm *idtcm, u32 index) { struct idtcm_channel *channel; int err; int i; if (!(index < MAX_TOD)) return -EINVAL; channel = &idtcm->channel[index]; channel->idtcm = idtcm; channel->current_freq_scaled_ppm = 0; /* Set pll addresses */ err = configure_channel_pll(channel); if (err) return err; /* Set tod addresses */ err = configure_channel_tod(channel, index); if (err) return err; if (idtcm->fw_ver < V487) channel->caps = idtcm_caps_deprecated; else channel->caps = idtcm_caps; snprintf(channel->caps.name, sizeof(channel->caps.name), "IDT CM TOD%u", index); channel->caps.pin_config = pin_config[index]; for (i = 0; i < channel->caps.n_pins; ++i) { struct ptp_pin_desc *ppd = &channel->caps.pin_config[i]; snprintf(ppd->name, sizeof(ppd->name), "input_ref%d", i); ppd->index = i; ppd->func = PTP_PF_NONE; ppd->chan = index; } err = initialize_dco_operating_mode(channel); if (err) return err; err = idtcm_enable_tod(channel); if (err) { dev_err(idtcm->dev, "Failed at line %d in %s!", __LINE__, __func__); return err; } channel->dco_delay = idtcm_get_dco_delay(channel); channel->ptp_clock = ptp_clock_register(&channel->caps, NULL); if (IS_ERR(channel->ptp_clock)) { err = PTR_ERR(channel->ptp_clock); channel->ptp_clock = NULL; return err; } if (!channel->ptp_clock) return -ENOTSUPP; dev_info(idtcm->dev, "PLL%d registered as ptp%d", index, channel->ptp_clock->index); return 0; } static int idtcm_enable_extts_channel(struct idtcm *idtcm, u32 index) { struct idtcm_channel *channel; int err; if (!(index < MAX_TOD)) return -EINVAL; channel = &idtcm->channel[index]; channel->idtcm = idtcm; /* Set tod addresses */ err = configure_channel_tod(channel, index); if (err) return err; channel->idtcm = idtcm; return 0; } static void idtcm_extts_check(struct work_struct *work) { struct idtcm *idtcm = container_of(work, struct idtcm, extts_work.work); struct idtcm_channel *channel; u8 mask; int err; int i; if (idtcm->extts_mask == 0) return; mutex_lock(idtcm->lock); for (i = 0; i < MAX_TOD; i++) { mask = 1 << i; if ((idtcm->extts_mask & mask) == 0) continue; err = idtcm_extts_check_channel(idtcm, i); if (err == 0) { /* trigger clears itself, so clear the mask */ if (idtcm->extts_single_shot) { idtcm->extts_mask &= ~mask; } else { /* Re-arm */ channel = &idtcm->channel[i]; arm_tod_read_trig_sel_refclk(channel, channel->refn); } } } if (idtcm->extts_mask) schedule_delayed_work(&idtcm->extts_work, msecs_to_jiffies(EXTTS_PERIOD_MS)); mutex_unlock(idtcm->lock); } static void ptp_clock_unregister_all(struct idtcm *idtcm) { u8 i; struct idtcm_channel *channel; for (i = 0; i < MAX_TOD; i++) { channel = &idtcm->channel[i]; if (channel->ptp_clock) ptp_clock_unregister(channel->ptp_clock); } } static void set_default_masks(struct idtcm *idtcm) { idtcm->tod_mask = DEFAULT_TOD_MASK; idtcm->extts_mask = 0; idtcm->channel[0].tod = 0; idtcm->channel[1].tod = 1; idtcm->channel[2].tod = 2; idtcm->channel[3].tod = 3; idtcm->channel[0].pll = DEFAULT_TOD0_PTP_PLL; idtcm->channel[1].pll = DEFAULT_TOD1_PTP_PLL; idtcm->channel[2].pll = DEFAULT_TOD2_PTP_PLL; idtcm->channel[3].pll = DEFAULT_TOD3_PTP_PLL; idtcm->channel[0].output_mask = DEFAULT_OUTPUT_MASK_PLL0; idtcm->channel[1].output_mask = DEFAULT_OUTPUT_MASK_PLL1; idtcm->channel[2].output_mask = DEFAULT_OUTPUT_MASK_PLL2; idtcm->channel[3].output_mask = DEFAULT_OUTPUT_MASK_PLL3; } static int idtcm_probe(struct platform_device *pdev) { struct rsmu_ddata *ddata = dev_get_drvdata(pdev->dev.parent); struct idtcm *idtcm; int err; u8 i; idtcm = devm_kzalloc(&pdev->dev, sizeof(struct idtcm), GFP_KERNEL); if (!idtcm) return -ENOMEM; idtcm->dev = &pdev->dev; idtcm->mfd = pdev->dev.parent; idtcm->lock = &ddata->lock; idtcm->regmap = ddata->regmap; idtcm->calculate_overhead_flag = 0; INIT_DELAYED_WORK(&idtcm->extts_work, idtcm_extts_check); set_default_masks(idtcm); mutex_lock(idtcm->lock); idtcm_set_version_info(idtcm); err = idtcm_load_firmware(idtcm, &pdev->dev); if (err) dev_warn(idtcm->dev, "loading firmware failed with %d", err); wait_for_chip_ready(idtcm); if (idtcm->tod_mask) { for (i = 0; i < MAX_TOD; i++) { if (idtcm->tod_mask & (1 << i)) err = idtcm_enable_channel(idtcm, i); else err = idtcm_enable_extts_channel(idtcm, i); if (err) { dev_err(idtcm->dev, "idtcm_enable_channel %d failed!", i); break; } } } else { dev_err(idtcm->dev, "no PLLs flagged as PHCs, nothing to do"); err = -ENODEV; } mutex_unlock(idtcm->lock); if (err) { ptp_clock_unregister_all(idtcm); return err; } platform_set_drvdata(pdev, idtcm); return 0; } static void idtcm_remove(struct platform_device *pdev) { struct idtcm *idtcm = platform_get_drvdata(pdev); idtcm->extts_mask = 0; ptp_clock_unregister_all(idtcm); cancel_delayed_work_sync(&idtcm->extts_work); } static struct platform_driver idtcm_driver = { .driver = { .name = "8a3400x-phc", }, .probe = idtcm_probe, .remove_new = idtcm_remove, }; module_platform_driver(idtcm_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1