Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tim Kryger | 1154 | 82.25% | 1 | 9.09% |
Uwe Kleine-König | 200 | 14.26% | 5 | 45.45% |
Jonathan Richardson | 36 | 2.57% | 1 | 9.09% |
Sheetal Tigadoli | 8 | 0.57% | 1 | 9.09% |
Yangtao Li | 2 | 0.14% | 1 | 9.09% |
Thomas Gleixner | 2 | 0.14% | 1 | 9.09% |
Arun Ramamurthy | 1 | 0.07% | 1 | 9.09% |
Total | 1403 | 11 |
// SPDX-License-Identifier: GPL-2.0-only // Copyright (C) 2014 Broadcom Corporation #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/slab.h> #include <linux/types.h> /* * The Kona PWM has some unusual characteristics. Here are the main points. * * 1) There is no disable bit and the hardware docs advise programming a zero * duty to achieve output equivalent to that of a normal disable operation. * * 2) Changes to prescale, duty, period, and polarity do not take effect until * a subsequent rising edge of the trigger bit. * * 3) If the smooth bit and trigger bit are both low, the output is a constant * high signal. Otherwise, the earlier waveform continues to be output. * * 4) If the smooth bit is set on the rising edge of the trigger bit, output * will transition to the new settings on a period boundary (which could be * seconds away). If the smooth bit is clear, new settings will be applied * as soon as possible (the hardware always has a 400ns delay). * * 5) When the external clock that feeds the PWM is disabled, output is pegged * high or low depending on its state at that exact instant. */ #define PWM_CONTROL_OFFSET 0x00000000 #define PWM_CONTROL_SMOOTH_SHIFT(chan) (24 + (chan)) #define PWM_CONTROL_TYPE_SHIFT(chan) (16 + (chan)) #define PWM_CONTROL_POLARITY_SHIFT(chan) (8 + (chan)) #define PWM_CONTROL_TRIGGER_SHIFT(chan) (chan) #define PRESCALE_OFFSET 0x00000004 #define PRESCALE_SHIFT(chan) ((chan) << 2) #define PRESCALE_MASK(chan) (0x7 << PRESCALE_SHIFT(chan)) #define PRESCALE_MIN 0x00000000 #define PRESCALE_MAX 0x00000007 #define PERIOD_COUNT_OFFSET(chan) (0x00000008 + ((chan) << 3)) #define PERIOD_COUNT_MIN 0x00000002 #define PERIOD_COUNT_MAX 0x00ffffff #define DUTY_CYCLE_HIGH_OFFSET(chan) (0x0000000c + ((chan) << 3)) #define DUTY_CYCLE_HIGH_MIN 0x00000000 #define DUTY_CYCLE_HIGH_MAX 0x00ffffff struct kona_pwmc { void __iomem *base; struct clk *clk; }; static inline struct kona_pwmc *to_kona_pwmc(struct pwm_chip *chip) { return pwmchip_get_drvdata(chip); } /* * Clear trigger bit but set smooth bit to maintain old output. */ static void kona_pwmc_prepare_for_settings(struct kona_pwmc *kp, unsigned int chan) { unsigned int value = readl(kp->base + PWM_CONTROL_OFFSET); value |= 1 << PWM_CONTROL_SMOOTH_SHIFT(chan); value &= ~(1 << PWM_CONTROL_TRIGGER_SHIFT(chan)); writel(value, kp->base + PWM_CONTROL_OFFSET); /* * There must be a min 400ns delay between clearing trigger and setting * it. Failing to do this may result in no PWM signal. */ ndelay(400); } static void kona_pwmc_apply_settings(struct kona_pwmc *kp, unsigned int chan) { unsigned int value = readl(kp->base + PWM_CONTROL_OFFSET); /* Set trigger bit and clear smooth bit to apply new settings */ value &= ~(1 << PWM_CONTROL_SMOOTH_SHIFT(chan)); value |= 1 << PWM_CONTROL_TRIGGER_SHIFT(chan); writel(value, kp->base + PWM_CONTROL_OFFSET); /* Trigger bit must be held high for at least 400 ns. */ ndelay(400); } static int kona_pwmc_config(struct pwm_chip *chip, struct pwm_device *pwm, u64 duty_ns, u64 period_ns) { struct kona_pwmc *kp = to_kona_pwmc(chip); u64 div, rate; unsigned long prescale = PRESCALE_MIN, pc, dc; unsigned int value, chan = pwm->hwpwm; /* * Find period count, duty count and prescale to suit duty_ns and * period_ns. This is done according to formulas described below: * * period_ns = 10^9 * (PRESCALE + 1) * PC / PWM_CLK_RATE * duty_ns = 10^9 * (PRESCALE + 1) * DC / PWM_CLK_RATE * * PC = (PWM_CLK_RATE * period_ns) / (10^9 * (PRESCALE + 1)) * DC = (PWM_CLK_RATE * duty_ns) / (10^9 * (PRESCALE + 1)) */ rate = clk_get_rate(kp->clk); while (1) { div = 1000000000; div *= 1 + prescale; pc = mul_u64_u64_div_u64(rate, period_ns, div); dc = mul_u64_u64_div_u64(rate, duty_ns, div); /* If duty_ns or period_ns are not achievable then return */ if (pc < PERIOD_COUNT_MIN) return -EINVAL; /* If pc and dc are in bounds, the calculation is done */ if (pc <= PERIOD_COUNT_MAX && dc <= DUTY_CYCLE_HIGH_MAX) break; /* Otherwise, increase prescale and recalculate pc and dc */ if (++prescale > PRESCALE_MAX) return -EINVAL; } kona_pwmc_prepare_for_settings(kp, chan); value = readl(kp->base + PRESCALE_OFFSET); value &= ~PRESCALE_MASK(chan); value |= prescale << PRESCALE_SHIFT(chan); writel(value, kp->base + PRESCALE_OFFSET); writel(pc, kp->base + PERIOD_COUNT_OFFSET(chan)); writel(dc, kp->base + DUTY_CYCLE_HIGH_OFFSET(chan)); kona_pwmc_apply_settings(kp, chan); return 0; } static int kona_pwmc_set_polarity(struct pwm_chip *chip, struct pwm_device *pwm, enum pwm_polarity polarity) { struct kona_pwmc *kp = to_kona_pwmc(chip); unsigned int chan = pwm->hwpwm; unsigned int value; int ret; ret = clk_prepare_enable(kp->clk); if (ret < 0) { dev_err(pwmchip_parent(chip), "failed to enable clock: %d\n", ret); return ret; } kona_pwmc_prepare_for_settings(kp, chan); value = readl(kp->base + PWM_CONTROL_OFFSET); if (polarity == PWM_POLARITY_NORMAL) value |= 1 << PWM_CONTROL_POLARITY_SHIFT(chan); else value &= ~(1 << PWM_CONTROL_POLARITY_SHIFT(chan)); writel(value, kp->base + PWM_CONTROL_OFFSET); kona_pwmc_apply_settings(kp, chan); clk_disable_unprepare(kp->clk); return 0; } static int kona_pwmc_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct kona_pwmc *kp = to_kona_pwmc(chip); int ret; ret = clk_prepare_enable(kp->clk); if (ret < 0) { dev_err(pwmchip_parent(chip), "failed to enable clock: %d\n", ret); return ret; } return 0; } static void kona_pwmc_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct kona_pwmc *kp = to_kona_pwmc(chip); unsigned int chan = pwm->hwpwm; unsigned int value; kona_pwmc_prepare_for_settings(kp, chan); /* Simulate a disable by configuring for zero duty */ writel(0, kp->base + DUTY_CYCLE_HIGH_OFFSET(chan)); writel(0, kp->base + PERIOD_COUNT_OFFSET(chan)); /* Set prescale to 0 for this channel */ value = readl(kp->base + PRESCALE_OFFSET); value &= ~PRESCALE_MASK(chan); writel(value, kp->base + PRESCALE_OFFSET); kona_pwmc_apply_settings(kp, chan); clk_disable_unprepare(kp->clk); } static int kona_pwmc_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { int err; struct kona_pwmc *kp = to_kona_pwmc(chip); bool enabled = pwm->state.enabled; if (state->polarity != pwm->state.polarity) { if (enabled) { kona_pwmc_disable(chip, pwm); enabled = false; } err = kona_pwmc_set_polarity(chip, pwm, state->polarity); if (err) return err; pwm->state.polarity = state->polarity; } if (!state->enabled) { if (enabled) kona_pwmc_disable(chip, pwm); return 0; } else if (!enabled) { /* * This is a bit special here, usually the PWM should only be * enabled when duty and period are setup. But before this * driver was converted to .apply it was done the other way * around and so this behaviour was kept even though this might * result in a glitch. This might be improvable by someone with * hardware and/or documentation. */ err = kona_pwmc_enable(chip, pwm); if (err) return err; } err = kona_pwmc_config(chip, pwm, state->duty_cycle, state->period); if (err && !pwm->state.enabled) clk_disable_unprepare(kp->clk); return err; } static const struct pwm_ops kona_pwm_ops = { .apply = kona_pwmc_apply, }; static int kona_pwmc_probe(struct platform_device *pdev) { struct pwm_chip *chip; struct kona_pwmc *kp; unsigned int chan; unsigned int value = 0; int ret = 0; chip = devm_pwmchip_alloc(&pdev->dev, 6, sizeof(*kp)); if (IS_ERR(chip)) return PTR_ERR(chip); kp = to_kona_pwmc(chip); chip->ops = &kona_pwm_ops; kp->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(kp->base)) return PTR_ERR(kp->base); kp->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(kp->clk)) { dev_err(&pdev->dev, "failed to get clock: %ld\n", PTR_ERR(kp->clk)); return PTR_ERR(kp->clk); } ret = clk_prepare_enable(kp->clk); if (ret < 0) { dev_err(&pdev->dev, "failed to enable clock: %d\n", ret); return ret; } /* Set push/pull for all channels */ for (chan = 0; chan < chip->npwm; chan++) value |= (1 << PWM_CONTROL_TYPE_SHIFT(chan)); writel(value, kp->base + PWM_CONTROL_OFFSET); clk_disable_unprepare(kp->clk); ret = devm_pwmchip_add(&pdev->dev, chip); if (ret < 0) dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret); return ret; } static const struct of_device_id bcm_kona_pwmc_dt[] = { { .compatible = "brcm,kona-pwm" }, { }, }; MODULE_DEVICE_TABLE(of, bcm_kona_pwmc_dt); static struct platform_driver kona_pwmc_driver = { .driver = { .name = "bcm-kona-pwm", .of_match_table = bcm_kona_pwmc_dt, }, .probe = kona_pwmc_probe, }; module_platform_driver(kona_pwmc_driver); MODULE_AUTHOR("Broadcom Corporation <bcm-kernel-feedback-list@broadcom.com>"); MODULE_AUTHOR("Tim Kryger <tkryger@broadcom.com>"); MODULE_DESCRIPTION("Broadcom Kona PWM driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1