Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Neil Armstrong | 1366 | 47.27% | 4 | 8.89% |
Jerome Brunet | 523 | 18.10% | 5 | 11.11% |
Martin Blumenstingl | 412 | 14.26% | 15 | 33.33% |
Heiner Kallweit | 260 | 9.00% | 5 | 11.11% |
Junyi Zhao | 145 | 5.02% | 1 | 2.22% |
Uwe Kleine-König | 128 | 4.43% | 10 | 22.22% |
Jian Hu | 33 | 1.14% | 1 | 2.22% |
George Stark | 13 | 0.45% | 2 | 4.44% |
Axel Lin | 8 | 0.28% | 1 | 2.22% |
Yangtao Li | 2 | 0.07% | 1 | 2.22% |
Total | 2890 | 45 |
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * PWM controller driver for Amlogic Meson SoCs. * * This PWM is only a set of Gates, Dividers and Counters: * PWM output is achieved by calculating a clock that permits calculating * two periods (low and high). The counter then has to be set to switch after * N cycles for the first half period. * The hardware has no "polarity" setting. This driver reverses the period * cycles (the low length is inverted with the high length) for * PWM_POLARITY_INVERSED. This means that .get_state cannot read the polarity * from the hardware. * Setting the duty cycle will disable and re-enable the PWM output. * Disabling the PWM stops the output immediately (without waiting for the * current period to complete first). * * The public S912 (GXM) datasheet contains some documentation for this PWM * controller starting on page 543: * https://dl.khadas.com/Hardware/VIM2/Datasheet/S912_Datasheet_V0.220170314publicversion-Wesion.pdf * An updated version of this IP block is found in S922X (G12B) SoCs. The * datasheet contains the description for this IP block revision starting at * page 1084: * https://dn.odroid.com/S922X/ODROID-N2/Datasheet/S922X_Public_Datasheet_V0.2.pdf * * Copyright (c) 2016 BayLibre, SAS. * Author: Neil Armstrong <narmstrong@baylibre.com> * Copyright (C) 2014 Amlogic, Inc. */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/err.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/slab.h> #include <linux/spinlock.h> #define REG_PWM_A 0x0 #define REG_PWM_B 0x4 #define PWM_LOW_MASK GENMASK(15, 0) #define PWM_HIGH_MASK GENMASK(31, 16) #define REG_MISC_AB 0x8 #define MISC_B_CLK_EN_SHIFT 23 #define MISC_A_CLK_EN_SHIFT 15 #define MISC_CLK_DIV_WIDTH 7 #define MISC_B_CLK_DIV_SHIFT 16 #define MISC_A_CLK_DIV_SHIFT 8 #define MISC_B_CLK_SEL_SHIFT 6 #define MISC_A_CLK_SEL_SHIFT 4 #define MISC_CLK_SEL_MASK 0x3 #define MISC_B_EN BIT(1) #define MISC_A_EN BIT(0) #define MESON_NUM_PWMS 2 #define MESON_NUM_MUX_PARENTS 4 static struct meson_pwm_channel_data { u8 reg_offset; u8 clk_sel_shift; u8 clk_div_shift; u8 clk_en_shift; u32 pwm_en_mask; } meson_pwm_per_channel_data[MESON_NUM_PWMS] = { { .reg_offset = REG_PWM_A, .clk_sel_shift = MISC_A_CLK_SEL_SHIFT, .clk_div_shift = MISC_A_CLK_DIV_SHIFT, .clk_en_shift = MISC_A_CLK_EN_SHIFT, .pwm_en_mask = MISC_A_EN, }, { .reg_offset = REG_PWM_B, .clk_sel_shift = MISC_B_CLK_SEL_SHIFT, .clk_div_shift = MISC_B_CLK_DIV_SHIFT, .clk_en_shift = MISC_B_CLK_EN_SHIFT, .pwm_en_mask = MISC_B_EN, } }; struct meson_pwm_channel { unsigned long rate; unsigned int hi; unsigned int lo; struct clk_mux mux; struct clk_divider div; struct clk_gate gate; struct clk *clk; }; struct meson_pwm_data { const char *const parent_names[MESON_NUM_MUX_PARENTS]; int (*channels_init)(struct pwm_chip *chip); }; struct meson_pwm { const struct meson_pwm_data *data; struct meson_pwm_channel channels[MESON_NUM_PWMS]; void __iomem *base; /* * Protects register (write) access to the REG_MISC_AB register * that is shared between the two PWMs. */ spinlock_t lock; }; static inline struct meson_pwm *to_meson_pwm(struct pwm_chip *chip) { return pwmchip_get_drvdata(chip); } static int meson_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct meson_pwm *meson = to_meson_pwm(chip); struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; struct device *dev = pwmchip_parent(chip); int err; err = clk_prepare_enable(channel->clk); if (err < 0) { dev_err(dev, "failed to enable clock %s: %d\n", __clk_get_name(channel->clk), err); return err; } return 0; } static void meson_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct meson_pwm *meson = to_meson_pwm(chip); struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; clk_disable_unprepare(channel->clk); } static int meson_pwm_calc(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct meson_pwm *meson = to_meson_pwm(chip); struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; unsigned int cnt, duty_cnt; long fin_freq; u64 duty, period, freq; duty = state->duty_cycle; period = state->period; /* * Note this is wrong. The result is an output wave that isn't really * inverted and so is wrongly identified by .get_state as normal. * Fixing this needs some care however as some machines might rely on * this. */ if (state->polarity == PWM_POLARITY_INVERSED) duty = period - duty; freq = div64_u64(NSEC_PER_SEC * 0xffffULL, period); if (freq > ULONG_MAX) freq = ULONG_MAX; fin_freq = clk_round_rate(channel->clk, freq); if (fin_freq <= 0) { dev_err(pwmchip_parent(chip), "invalid source clock frequency %llu\n", freq); return fin_freq ? fin_freq : -EINVAL; } dev_dbg(pwmchip_parent(chip), "fin_freq: %ld Hz\n", fin_freq); cnt = mul_u64_u64_div_u64(fin_freq, period, NSEC_PER_SEC); if (cnt > 0xffff) { dev_err(pwmchip_parent(chip), "unable to get period cnt\n"); return -EINVAL; } dev_dbg(pwmchip_parent(chip), "period=%llu cnt=%u\n", period, cnt); if (duty == period) { channel->hi = cnt; channel->lo = 0; } else if (duty == 0) { channel->hi = 0; channel->lo = cnt; } else { duty_cnt = mul_u64_u64_div_u64(fin_freq, duty, NSEC_PER_SEC); dev_dbg(pwmchip_parent(chip), "duty=%llu duty_cnt=%u\n", duty, duty_cnt); channel->hi = duty_cnt; channel->lo = cnt - duty_cnt; } channel->rate = fin_freq; return 0; } static void meson_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct meson_pwm *meson = to_meson_pwm(chip); struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; struct meson_pwm_channel_data *channel_data; unsigned long flags; u32 value; int err; channel_data = &meson_pwm_per_channel_data[pwm->hwpwm]; err = clk_set_rate(channel->clk, channel->rate); if (err) dev_err(pwmchip_parent(chip), "setting clock rate failed\n"); spin_lock_irqsave(&meson->lock, flags); value = FIELD_PREP(PWM_HIGH_MASK, channel->hi) | FIELD_PREP(PWM_LOW_MASK, channel->lo); writel(value, meson->base + channel_data->reg_offset); value = readl(meson->base + REG_MISC_AB); value |= channel_data->pwm_en_mask; writel(value, meson->base + REG_MISC_AB); spin_unlock_irqrestore(&meson->lock, flags); } static void meson_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct meson_pwm *meson = to_meson_pwm(chip); unsigned long flags; u32 value; spin_lock_irqsave(&meson->lock, flags); value = readl(meson->base + REG_MISC_AB); value &= ~meson_pwm_per_channel_data[pwm->hwpwm].pwm_en_mask; writel(value, meson->base + REG_MISC_AB); spin_unlock_irqrestore(&meson->lock, flags); } static int meson_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct meson_pwm *meson = to_meson_pwm(chip); struct meson_pwm_channel *channel = &meson->channels[pwm->hwpwm]; int err = 0; if (!state->enabled) { if (state->polarity == PWM_POLARITY_INVERSED) { /* * This IP block revision doesn't have an "always high" * setting which we can use for "inverted disabled". * Instead we achieve this by setting mux parent with * highest rate and minimum divider value, resulting * in the shortest possible duration for one "count" * and "period == duty_cycle". This results in a signal * which is LOW for one "count", while being HIGH for * the rest of the (so the signal is HIGH for slightly * less than 100% of the period, but this is the best * we can achieve). */ channel->rate = ULONG_MAX; channel->hi = ~0; channel->lo = 0; meson_pwm_enable(chip, pwm); } else { meson_pwm_disable(chip, pwm); } } else { err = meson_pwm_calc(chip, pwm, state); if (err < 0) return err; meson_pwm_enable(chip, pwm); } return 0; } static u64 meson_pwm_cnt_to_ns(struct pwm_chip *chip, struct pwm_device *pwm, u32 cnt) { struct meson_pwm *meson = to_meson_pwm(chip); struct meson_pwm_channel *channel; unsigned long fin_freq; /* to_meson_pwm() can only be used after .get_state() is called */ channel = &meson->channels[pwm->hwpwm]; fin_freq = clk_get_rate(channel->clk); if (fin_freq == 0) return 0; return div64_ul(NSEC_PER_SEC * (u64)cnt, fin_freq); } static int meson_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct meson_pwm *meson = to_meson_pwm(chip); struct meson_pwm_channel_data *channel_data; struct meson_pwm_channel *channel; u32 value; channel = &meson->channels[pwm->hwpwm]; channel_data = &meson_pwm_per_channel_data[pwm->hwpwm]; value = readl(meson->base + REG_MISC_AB); state->enabled = value & channel_data->pwm_en_mask; value = readl(meson->base + channel_data->reg_offset); channel->lo = FIELD_GET(PWM_LOW_MASK, value); channel->hi = FIELD_GET(PWM_HIGH_MASK, value); state->period = meson_pwm_cnt_to_ns(chip, pwm, channel->lo + channel->hi); state->duty_cycle = meson_pwm_cnt_to_ns(chip, pwm, channel->hi); state->polarity = PWM_POLARITY_NORMAL; return 0; } static const struct pwm_ops meson_pwm_ops = { .request = meson_pwm_request, .free = meson_pwm_free, .apply = meson_pwm_apply, .get_state = meson_pwm_get_state, }; static int meson_pwm_init_clocks_meson8b(struct pwm_chip *chip, struct clk_parent_data *mux_parent_data) { struct meson_pwm *meson = to_meson_pwm(chip); struct device *dev = pwmchip_parent(chip); unsigned int i; char name[255]; int err; for (i = 0; i < MESON_NUM_PWMS; i++) { struct meson_pwm_channel *channel = &meson->channels[i]; struct clk_parent_data div_parent = {}, gate_parent = {}; struct clk_init_data init = {}; snprintf(name, sizeof(name), "%s#mux%u", dev_name(dev), i); init.name = name; init.ops = &clk_mux_ops; init.flags = 0; init.parent_data = mux_parent_data; init.num_parents = MESON_NUM_MUX_PARENTS; channel->mux.reg = meson->base + REG_MISC_AB; channel->mux.shift = meson_pwm_per_channel_data[i].clk_sel_shift; channel->mux.mask = MISC_CLK_SEL_MASK; channel->mux.flags = 0; channel->mux.lock = &meson->lock; channel->mux.table = NULL; channel->mux.hw.init = &init; err = devm_clk_hw_register(dev, &channel->mux.hw); if (err) return dev_err_probe(dev, err, "failed to register %s\n", name); snprintf(name, sizeof(name), "%s#div%u", dev_name(dev), i); init.name = name; init.ops = &clk_divider_ops; init.flags = CLK_SET_RATE_PARENT; div_parent.index = -1; div_parent.hw = &channel->mux.hw; init.parent_data = &div_parent; init.num_parents = 1; channel->div.reg = meson->base + REG_MISC_AB; channel->div.shift = meson_pwm_per_channel_data[i].clk_div_shift; channel->div.width = MISC_CLK_DIV_WIDTH; channel->div.hw.init = &init; channel->div.flags = 0; channel->div.lock = &meson->lock; err = devm_clk_hw_register(dev, &channel->div.hw); if (err) return dev_err_probe(dev, err, "failed to register %s\n", name); snprintf(name, sizeof(name), "%s#gate%u", dev_name(dev), i); init.name = name; init.ops = &clk_gate_ops; init.flags = CLK_SET_RATE_PARENT | CLK_IGNORE_UNUSED; gate_parent.index = -1; gate_parent.hw = &channel->div.hw; init.parent_data = &gate_parent; init.num_parents = 1; channel->gate.reg = meson->base + REG_MISC_AB; channel->gate.bit_idx = meson_pwm_per_channel_data[i].clk_en_shift; channel->gate.hw.init = &init; channel->gate.flags = 0; channel->gate.lock = &meson->lock; err = devm_clk_hw_register(dev, &channel->gate.hw); if (err) return dev_err_probe(dev, err, "failed to register %s\n", name); channel->clk = devm_clk_hw_get_clk(dev, &channel->gate.hw, NULL); if (IS_ERR(channel->clk)) return dev_err_probe(dev, PTR_ERR(channel->clk), "failed to register %s\n", name); } return 0; } static int meson_pwm_init_channels_meson8b_legacy(struct pwm_chip *chip) { struct clk_parent_data mux_parent_data[MESON_NUM_MUX_PARENTS] = {}; struct meson_pwm *meson = to_meson_pwm(chip); int i; dev_warn_once(pwmchip_parent(chip), "using obsolete compatible, please consider updating dt\n"); for (i = 0; i < MESON_NUM_MUX_PARENTS; i++) { mux_parent_data[i].index = -1; mux_parent_data[i].name = meson->data->parent_names[i]; } return meson_pwm_init_clocks_meson8b(chip, mux_parent_data); } static int meson_pwm_init_channels_meson8b_v2(struct pwm_chip *chip) { struct clk_parent_data mux_parent_data[MESON_NUM_MUX_PARENTS] = {}; int i; /* * NOTE: Instead of relying on the hard coded names in the driver * as the legacy version, this relies on DT to provide the list of * clocks. * For once, using input numbers actually makes more sense than names. * Also DT requires clock-names to be explicitly ordered, so there is * no point bothering with clock names in this case. */ for (i = 0; i < MESON_NUM_MUX_PARENTS; i++) mux_parent_data[i].index = i; return meson_pwm_init_clocks_meson8b(chip, mux_parent_data); } static void meson_pwm_s4_put_clk(void *data) { struct clk *clk = data; clk_put(clk); } static int meson_pwm_init_channels_s4(struct pwm_chip *chip) { struct device *dev = pwmchip_parent(chip); struct device_node *np = dev->of_node; struct meson_pwm *meson = to_meson_pwm(chip); int i, ret; for (i = 0; i < MESON_NUM_PWMS; i++) { meson->channels[i].clk = of_clk_get(np, i); if (IS_ERR(meson->channels[i].clk)) return dev_err_probe(dev, PTR_ERR(meson->channels[i].clk), "Failed to get clk\n"); ret = devm_add_action_or_reset(dev, meson_pwm_s4_put_clk, meson->channels[i].clk); if (ret) return dev_err_probe(dev, ret, "Failed to add clk_put action\n"); } return 0; } static const struct meson_pwm_data pwm_meson8b_data = { .parent_names = { "xtal", NULL, "fclk_div4", "fclk_div3" }, .channels_init = meson_pwm_init_channels_meson8b_legacy, }; /* * Only the 2 first inputs of the GXBB AO PWMs are valid * The last 2 are grounded */ static const struct meson_pwm_data pwm_gxbb_ao_data = { .parent_names = { "xtal", "clk81", NULL, NULL }, .channels_init = meson_pwm_init_channels_meson8b_legacy, }; static const struct meson_pwm_data pwm_axg_ee_data = { .parent_names = { "xtal", "fclk_div5", "fclk_div4", "fclk_div3" }, .channels_init = meson_pwm_init_channels_meson8b_legacy, }; static const struct meson_pwm_data pwm_axg_ao_data = { .parent_names = { "xtal", "axg_ao_clk81", "fclk_div4", "fclk_div5" }, .channels_init = meson_pwm_init_channels_meson8b_legacy, }; static const struct meson_pwm_data pwm_g12a_ao_ab_data = { .parent_names = { "xtal", "g12a_ao_clk81", "fclk_div4", "fclk_div5" }, .channels_init = meson_pwm_init_channels_meson8b_legacy, }; static const struct meson_pwm_data pwm_g12a_ao_cd_data = { .parent_names = { "xtal", "g12a_ao_clk81", NULL, NULL }, .channels_init = meson_pwm_init_channels_meson8b_legacy, }; static const struct meson_pwm_data pwm_meson8_v2_data = { .channels_init = meson_pwm_init_channels_meson8b_v2, }; static const struct meson_pwm_data pwm_s4_data = { .channels_init = meson_pwm_init_channels_s4, }; static const struct of_device_id meson_pwm_matches[] = { { .compatible = "amlogic,meson8-pwm-v2", .data = &pwm_meson8_v2_data }, /* The following compatibles are obsolete */ { .compatible = "amlogic,meson8b-pwm", .data = &pwm_meson8b_data }, { .compatible = "amlogic,meson-gxbb-pwm", .data = &pwm_meson8b_data }, { .compatible = "amlogic,meson-gxbb-ao-pwm", .data = &pwm_gxbb_ao_data }, { .compatible = "amlogic,meson-axg-ee-pwm", .data = &pwm_axg_ee_data }, { .compatible = "amlogic,meson-axg-ao-pwm", .data = &pwm_axg_ao_data }, { .compatible = "amlogic,meson-g12a-ee-pwm", .data = &pwm_meson8b_data }, { .compatible = "amlogic,meson-g12a-ao-pwm-ab", .data = &pwm_g12a_ao_ab_data }, { .compatible = "amlogic,meson-g12a-ao-pwm-cd", .data = &pwm_g12a_ao_cd_data }, { .compatible = "amlogic,meson-s4-pwm", .data = &pwm_s4_data }, {}, }; MODULE_DEVICE_TABLE(of, meson_pwm_matches); static int meson_pwm_probe(struct platform_device *pdev) { struct pwm_chip *chip; struct meson_pwm *meson; int err; chip = devm_pwmchip_alloc(&pdev->dev, MESON_NUM_PWMS, sizeof(*meson)); if (IS_ERR(chip)) return PTR_ERR(chip); meson = to_meson_pwm(chip); meson->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(meson->base)) return PTR_ERR(meson->base); spin_lock_init(&meson->lock); chip->ops = &meson_pwm_ops; meson->data = of_device_get_match_data(&pdev->dev); err = meson->data->channels_init(chip); if (err < 0) return err; err = devm_pwmchip_add(&pdev->dev, chip); if (err < 0) return dev_err_probe(&pdev->dev, err, "failed to register PWM chip\n"); return 0; } static struct platform_driver meson_pwm_driver = { .driver = { .name = "meson-pwm", .of_match_table = meson_pwm_matches, }, .probe = meson_pwm_probe, }; module_platform_driver(meson_pwm_driver); MODULE_DESCRIPTION("Amlogic Meson PWM Generator driver"); MODULE_AUTHOR("Neil Armstrong <narmstrong@baylibre.com>"); MODULE_LICENSE("Dual BSD/GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1