Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nobuhiro Iwamatsu | 654 | 94.51% | 1 | 14.29% |
Uwe Kleine-König | 27 | 3.90% | 3 | 42.86% |
zhao xiao | 5 | 0.72% | 1 | 14.29% |
Jeff Johnson | 5 | 0.72% | 1 | 14.29% |
Rob Herring | 1 | 0.14% | 1 | 14.29% |
Total | 692 | 7 |
// SPDX-License-Identifier: GPL-2.0-only /* * Toshiba Visconti pulse-width-modulation controller driver * * Copyright (c) 2020 - 2021 TOSHIBA CORPORATION * Copyright (c) 2020 - 2021 Toshiba Electronic Devices & Storage Corporation * * Authors: Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp> * * Limitations: * - The fixed input clock is running at 1 MHz and is divided by either 1, * 2, 4 or 8. * - When the settings of the PWM are modified, the new values are shadowed * in hardware until the PIPGM_PCSR register is written and the currently * running period is completed. This way the hardware switches atomically * from the old setting to the new. * - Disabling the hardware completes the currently running period and keeps * the output at low level at all times. */ #include <linux/err.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #define PIPGM_PCSR(ch) (0x400 + 4 * (ch)) #define PIPGM_PDUT(ch) (0x420 + 4 * (ch)) #define PIPGM_PWMC(ch) (0x440 + 4 * (ch)) #define PIPGM_PWMC_PWMACT BIT(5) #define PIPGM_PWMC_CLK_MASK GENMASK(1, 0) #define PIPGM_PWMC_POLARITY_MASK GENMASK(5, 5) struct visconti_pwm_chip { void __iomem *base; }; static inline struct visconti_pwm_chip *visconti_pwm_from_chip(struct pwm_chip *chip) { return pwmchip_get_drvdata(chip); } static int visconti_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct visconti_pwm_chip *priv = visconti_pwm_from_chip(chip); u32 period, duty_cycle, pwmc0; if (!state->enabled) { writel(0, priv->base + PIPGM_PCSR(pwm->hwpwm)); return 0; } /* * The biggest period the hardware can provide is * (0xffff << 3) * 1000 ns * This value fits easily in an u32, so simplify the maths by * capping the values to 32 bit integers. */ if (state->period > (0xffff << 3) * 1000) period = (0xffff << 3) * 1000; else period = state->period; if (state->duty_cycle > period) duty_cycle = period; else duty_cycle = state->duty_cycle; /* * The input clock runs fixed at 1 MHz, so we have only * microsecond resolution and so can divide by * NSEC_PER_SEC / CLKFREQ = 1000 without losing precision. */ period /= 1000; duty_cycle /= 1000; if (!period) return -ERANGE; /* * PWMC controls a divider that divides the input clk by a power of two * between 1 and 8. As a smaller divider yields higher precision, pick * the smallest possible one. As period is at most 0xffff << 3, pwmc0 is * in the intended range [0..3]. */ pwmc0 = fls(period >> 16); if (WARN_ON(pwmc0 > 3)) return -EINVAL; period >>= pwmc0; duty_cycle >>= pwmc0; if (state->polarity == PWM_POLARITY_INVERSED) pwmc0 |= PIPGM_PWMC_PWMACT; writel(pwmc0, priv->base + PIPGM_PWMC(pwm->hwpwm)); writel(duty_cycle, priv->base + PIPGM_PDUT(pwm->hwpwm)); writel(period, priv->base + PIPGM_PCSR(pwm->hwpwm)); return 0; } static int visconti_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct visconti_pwm_chip *priv = visconti_pwm_from_chip(chip); u32 period, duty, pwmc0, pwmc0_clk; period = readl(priv->base + PIPGM_PCSR(pwm->hwpwm)); duty = readl(priv->base + PIPGM_PDUT(pwm->hwpwm)); pwmc0 = readl(priv->base + PIPGM_PWMC(pwm->hwpwm)); pwmc0_clk = pwmc0 & PIPGM_PWMC_CLK_MASK; state->period = (period << pwmc0_clk) * NSEC_PER_USEC; state->duty_cycle = (duty << pwmc0_clk) * NSEC_PER_USEC; if (pwmc0 & PIPGM_PWMC_POLARITY_MASK) state->polarity = PWM_POLARITY_INVERSED; else state->polarity = PWM_POLARITY_NORMAL; state->enabled = true; return 0; } static const struct pwm_ops visconti_pwm_ops = { .apply = visconti_pwm_apply, .get_state = visconti_pwm_get_state, }; static int visconti_pwm_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct pwm_chip *chip; struct visconti_pwm_chip *priv; int ret; chip = devm_pwmchip_alloc(dev, 4, sizeof(*priv)); if (IS_ERR(chip)) return PTR_ERR(chip); priv = visconti_pwm_from_chip(chip); priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); chip->ops = &visconti_pwm_ops; ret = devm_pwmchip_add(&pdev->dev, chip); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "Cannot register visconti PWM\n"); return 0; } static const struct of_device_id visconti_pwm_of_match[] = { { .compatible = "toshiba,visconti-pwm", }, { } }; MODULE_DEVICE_TABLE(of, visconti_pwm_of_match); static struct platform_driver visconti_pwm_driver = { .driver = { .name = "pwm-visconti", .of_match_table = visconti_pwm_of_match, }, .probe = visconti_pwm_probe, }; module_platform_driver(visconti_pwm_driver); MODULE_DESCRIPTION("Toshiba Visconti Pulse Width Modulator driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Nobuhiro Iwamatsu <nobuhiro1.iwamatsu@toshiba.co.jp>"); MODULE_ALIAS("platform:pwm-visconti");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1