Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sjur Brændeland | 559 | 37.69% | 5 | 21.74% |
Ohad Ben-Cohen | 399 | 26.90% | 5 | 21.74% |
Clément Leger | 388 | 26.16% | 2 | 8.70% |
Björn Andersson | 67 | 4.52% | 2 | 8.70% |
Peng Fan | 50 | 3.37% | 3 | 13.04% |
Gustavo A. R. Silva | 6 | 0.40% | 1 | 4.35% |
Dong Aisheng | 5 | 0.34% | 1 | 4.35% |
Suman Anna | 4 | 0.27% | 1 | 4.35% |
Alexey Dobriyan | 2 | 0.13% | 1 | 4.35% |
Masanari Iida | 2 | 0.13% | 1 | 4.35% |
Thomas Gleixner | 1 | 0.07% | 1 | 4.35% |
Total | 1483 | 23 |
// SPDX-License-Identifier: GPL-2.0-only /* * Remote Processor Framework ELF loader * * Copyright (C) 2011 Texas Instruments, Inc. * Copyright (C) 2011 Google, Inc. * * Ohad Ben-Cohen <ohad@wizery.com> * Brian Swetland <swetland@google.com> * Mark Grosen <mgrosen@ti.com> * Fernando Guzman Lugo <fernando.lugo@ti.com> * Suman Anna <s-anna@ti.com> * Robert Tivy <rtivy@ti.com> * Armando Uribe De Leon <x0095078@ti.com> * Sjur Brændeland <sjur.brandeland@stericsson.com> */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include <linux/module.h> #include <linux/firmware.h> #include <linux/remoteproc.h> #include <linux/elf.h> #include "remoteproc_internal.h" #include "remoteproc_elf_helpers.h" /** * rproc_elf_sanity_check() - Sanity Check for ELF32/ELF64 firmware image * @rproc: the remote processor handle * @fw: the ELF firmware image * * Make sure this fw image is sane (ie a correct ELF32/ELF64 file). * * Return: 0 on success and -EINVAL upon any failure */ int rproc_elf_sanity_check(struct rproc *rproc, const struct firmware *fw) { const char *name = rproc->firmware; struct device *dev = &rproc->dev; /* * ELF files are beginning with the same structure. Thus, to simplify * header parsing, we can use the elf32_hdr one for both elf64 and * elf32. */ struct elf32_hdr *ehdr; u32 elf_shdr_get_size; u64 phoff, shoff; char class; u16 phnum; if (!fw) { dev_err(dev, "failed to load %s\n", name); return -EINVAL; } if (fw->size < sizeof(struct elf32_hdr)) { dev_err(dev, "Image is too small\n"); return -EINVAL; } ehdr = (struct elf32_hdr *)fw->data; if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) { dev_err(dev, "Image is corrupted (bad magic)\n"); return -EINVAL; } class = ehdr->e_ident[EI_CLASS]; if (class != ELFCLASS32 && class != ELFCLASS64) { dev_err(dev, "Unsupported class: %d\n", class); return -EINVAL; } if (class == ELFCLASS64 && fw->size < sizeof(struct elf64_hdr)) { dev_err(dev, "elf64 header is too small\n"); return -EINVAL; } /* We assume the firmware has the same endianness as the host */ # ifdef __LITTLE_ENDIAN if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) { # else /* BIG ENDIAN */ if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { # endif dev_err(dev, "Unsupported firmware endianness\n"); return -EINVAL; } phoff = elf_hdr_get_e_phoff(class, fw->data); shoff = elf_hdr_get_e_shoff(class, fw->data); phnum = elf_hdr_get_e_phnum(class, fw->data); elf_shdr_get_size = elf_size_of_shdr(class); if (fw->size < shoff + elf_shdr_get_size) { dev_err(dev, "Image is too small\n"); return -EINVAL; } if (phnum == 0) { dev_err(dev, "No loadable segments\n"); return -EINVAL; } if (phoff > fw->size) { dev_err(dev, "Firmware size is too small\n"); return -EINVAL; } dev_dbg(dev, "Firmware is an elf%d file\n", class == ELFCLASS32 ? 32 : 64); return 0; } EXPORT_SYMBOL(rproc_elf_sanity_check); /** * rproc_elf_get_boot_addr() - Get rproc's boot address. * @rproc: the remote processor handle * @fw: the ELF firmware image * * Note that the boot address is not a configurable property of all remote * processors. Some will always boot at a specific hard-coded address. * * Return: entry point address of the ELF image * */ u64 rproc_elf_get_boot_addr(struct rproc *rproc, const struct firmware *fw) { return elf_hdr_get_e_entry(fw_elf_get_class(fw), fw->data); } EXPORT_SYMBOL(rproc_elf_get_boot_addr); /** * rproc_elf_load_segments() - load firmware segments to memory * @rproc: remote processor which will be booted using these fw segments * @fw: the ELF firmware image * * This function loads the firmware segments to memory, where the remote * processor expects them. * * Some remote processors will expect their code and data to be placed * in specific device addresses, and can't have them dynamically assigned. * * We currently support only those kind of remote processors, and expect * the program header's paddr member to contain those addresses. We then go * through the physically contiguous "carveout" memory regions which we * allocated (and mapped) earlier on behalf of the remote processor, * and "translate" device address to kernel addresses, so we can copy the * segments where they are expected. * * Currently we only support remote processors that required carveout * allocations and got them mapped onto their iommus. Some processors * might be different: they might not have iommus, and would prefer to * directly allocate memory for every segment/resource. This is not yet * supported, though. * * Return: 0 on success and an appropriate error code otherwise */ int rproc_elf_load_segments(struct rproc *rproc, const struct firmware *fw) { struct device *dev = &rproc->dev; const void *ehdr, *phdr; int i, ret = 0; u16 phnum; const u8 *elf_data = fw->data; u8 class = fw_elf_get_class(fw); u32 elf_phdr_get_size = elf_size_of_phdr(class); ehdr = elf_data; phnum = elf_hdr_get_e_phnum(class, ehdr); phdr = elf_data + elf_hdr_get_e_phoff(class, ehdr); /* go through the available ELF segments */ for (i = 0; i < phnum; i++, phdr += elf_phdr_get_size) { u64 da = elf_phdr_get_p_paddr(class, phdr); u64 memsz = elf_phdr_get_p_memsz(class, phdr); u64 filesz = elf_phdr_get_p_filesz(class, phdr); u64 offset = elf_phdr_get_p_offset(class, phdr); u32 type = elf_phdr_get_p_type(class, phdr); bool is_iomem = false; void *ptr; if (type != PT_LOAD || !memsz) continue; dev_dbg(dev, "phdr: type %d da 0x%llx memsz 0x%llx filesz 0x%llx\n", type, da, memsz, filesz); if (filesz > memsz) { dev_err(dev, "bad phdr filesz 0x%llx memsz 0x%llx\n", filesz, memsz); ret = -EINVAL; break; } if (offset + filesz > fw->size) { dev_err(dev, "truncated fw: need 0x%llx avail 0x%zx\n", offset + filesz, fw->size); ret = -EINVAL; break; } if (!rproc_u64_fit_in_size_t(memsz)) { dev_err(dev, "size (%llx) does not fit in size_t type\n", memsz); ret = -EOVERFLOW; break; } /* grab the kernel address for this device address */ ptr = rproc_da_to_va(rproc, da, memsz, &is_iomem); if (!ptr) { dev_err(dev, "bad phdr da 0x%llx mem 0x%llx\n", da, memsz); ret = -EINVAL; break; } /* put the segment where the remote processor expects it */ if (filesz) { if (is_iomem) memcpy_toio((void __iomem *)ptr, elf_data + offset, filesz); else memcpy(ptr, elf_data + offset, filesz); } /* * Zero out remaining memory for this segment. * * This isn't strictly required since dma_alloc_coherent already * did this for us. albeit harmless, we may consider removing * this. */ if (memsz > filesz) { if (is_iomem) memset_io((void __iomem *)(ptr + filesz), 0, memsz - filesz); else memset(ptr + filesz, 0, memsz - filesz); } } return ret; } EXPORT_SYMBOL(rproc_elf_load_segments); static const void * find_table(struct device *dev, const struct firmware *fw) { const void *shdr, *name_table_shdr; int i; const char *name_table; struct resource_table *table = NULL; const u8 *elf_data = (void *)fw->data; u8 class = fw_elf_get_class(fw); size_t fw_size = fw->size; const void *ehdr = elf_data; u16 shnum = elf_hdr_get_e_shnum(class, ehdr); u32 elf_shdr_get_size = elf_size_of_shdr(class); u16 shstrndx = elf_hdr_get_e_shstrndx(class, ehdr); /* look for the resource table and handle it */ /* First, get the section header according to the elf class */ shdr = elf_data + elf_hdr_get_e_shoff(class, ehdr); /* Compute name table section header entry in shdr array */ name_table_shdr = shdr + (shstrndx * elf_shdr_get_size); /* Finally, compute the name table section address in elf */ name_table = elf_data + elf_shdr_get_sh_offset(class, name_table_shdr); for (i = 0; i < shnum; i++, shdr += elf_shdr_get_size) { u64 size = elf_shdr_get_sh_size(class, shdr); u64 offset = elf_shdr_get_sh_offset(class, shdr); u32 name = elf_shdr_get_sh_name(class, shdr); if (strcmp(name_table + name, ".resource_table")) continue; table = (struct resource_table *)(elf_data + offset); /* make sure we have the entire table */ if (offset + size > fw_size || offset + size < size) { dev_err(dev, "resource table truncated\n"); return NULL; } /* make sure table has at least the header */ if (sizeof(struct resource_table) > size) { dev_err(dev, "header-less resource table\n"); return NULL; } /* we don't support any version beyond the first */ if (table->ver != 1) { dev_err(dev, "unsupported fw ver: %d\n", table->ver); return NULL; } /* make sure reserved bytes are zeroes */ if (table->reserved[0] || table->reserved[1]) { dev_err(dev, "non zero reserved bytes\n"); return NULL; } /* make sure the offsets array isn't truncated */ if (struct_size(table, offset, table->num) > size) { dev_err(dev, "resource table incomplete\n"); return NULL; } return shdr; } return NULL; } /** * rproc_elf_load_rsc_table() - load the resource table * @rproc: the rproc handle * @fw: the ELF firmware image * * This function finds the resource table inside the remote processor's * firmware, load it into the @cached_table and update @table_ptr. * * Return: 0 on success, negative errno on failure. */ int rproc_elf_load_rsc_table(struct rproc *rproc, const struct firmware *fw) { const void *shdr; struct device *dev = &rproc->dev; struct resource_table *table = NULL; const u8 *elf_data = fw->data; size_t tablesz; u8 class = fw_elf_get_class(fw); u64 sh_offset; shdr = find_table(dev, fw); if (!shdr) return -EINVAL; sh_offset = elf_shdr_get_sh_offset(class, shdr); table = (struct resource_table *)(elf_data + sh_offset); tablesz = elf_shdr_get_sh_size(class, shdr); /* * Create a copy of the resource table. When a virtio device starts * and calls vring_new_virtqueue() the address of the allocated vring * will be stored in the cached_table. Before the device is started, * cached_table will be copied into device memory. */ rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL); if (!rproc->cached_table) return -ENOMEM; rproc->table_ptr = rproc->cached_table; rproc->table_sz = tablesz; return 0; } EXPORT_SYMBOL(rproc_elf_load_rsc_table); /** * rproc_elf_find_loaded_rsc_table() - find the loaded resource table * @rproc: the rproc handle * @fw: the ELF firmware image * * This function finds the location of the loaded resource table. Don't * call this function if the table wasn't loaded yet - it's a bug if you do. * * Return: pointer to the resource table if it is found or NULL otherwise. * If the table wasn't loaded yet the result is unspecified. */ struct resource_table *rproc_elf_find_loaded_rsc_table(struct rproc *rproc, const struct firmware *fw) { const void *shdr; u64 sh_addr, sh_size; u8 class = fw_elf_get_class(fw); struct device *dev = &rproc->dev; shdr = find_table(&rproc->dev, fw); if (!shdr) return NULL; sh_addr = elf_shdr_get_sh_addr(class, shdr); sh_size = elf_shdr_get_sh_size(class, shdr); if (!rproc_u64_fit_in_size_t(sh_size)) { dev_err(dev, "size (%llx) does not fit in size_t type\n", sh_size); return NULL; } return rproc_da_to_va(rproc, sh_addr, sh_size, NULL); } EXPORT_SYMBOL(rproc_elf_find_loaded_rsc_table);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1