Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martin Schwidefsky | 1127 | 40.98% | 5 | 12.82% |
Holger Dengler | 908 | 33.02% | 1 | 2.56% |
Ingo Tuchscherer | 346 | 12.58% | 7 | 17.95% |
Harald Freudenberger | 247 | 8.98% | 15 | 38.46% |
Felix Beck | 89 | 3.24% | 2 | 5.13% |
Ralph Wuerthner | 10 | 0.36% | 2 | 5.13% |
Heiko Carstens | 9 | 0.33% | 1 | 2.56% |
Sascha Silbe | 5 | 0.18% | 1 | 2.56% |
Julia Lawall | 4 | 0.15% | 1 | 2.56% |
Linus Torvalds (pre-git) | 2 | 0.07% | 1 | 2.56% |
Linus Torvalds | 1 | 0.04% | 1 | 2.56% |
Arun Sharma | 1 | 0.04% | 1 | 2.56% |
Greg Kroah-Hartman | 1 | 0.04% | 1 | 2.56% |
Total | 2750 | 39 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright IBM Corp. 2001, 2023 * Author(s): Robert Burroughs * Eric Rossman (edrossma@us.ibm.com) * * Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com) * Major cleanup & driver split: Martin Schwidefsky <schwidefsky@de.ibm.com> * Ralph Wuerthner <rwuerthn@de.ibm.com> * MSGTYPE restruct: Holger Dengler <hd@linux.vnet.ibm.com> */ #define KMSG_COMPONENT "zcrypt" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/err.h> #include <linux/atomic.h> #include <linux/uaccess.h> #include "ap_bus.h" #include "zcrypt_api.h" #include "zcrypt_error.h" #include "zcrypt_msgtype50.h" /* >= CEX3A: 4096 bits */ #define CEX3A_MAX_MOD_SIZE 512 /* >= CEX3A: 512 bit modulus, (max outputdatalength) + type80_hdr */ #define CEX3A_MAX_RESPONSE_SIZE 0x210 MODULE_AUTHOR("IBM Corporation"); MODULE_DESCRIPTION("Cryptographic Accelerator (message type 50), " \ "Copyright IBM Corp. 2001, 2023"); MODULE_LICENSE("GPL"); /* * The type 50 message family is associated with a CEXxA cards. * * The four members of the family are described below. * * Note that all unsigned char arrays are right-justified and left-padded * with zeroes. * * Note that all reserved fields must be zeroes. */ struct type50_hdr { unsigned char reserved1; unsigned char msg_type_code; /* 0x50 */ unsigned short msg_len; unsigned char reserved2; unsigned char ignored; unsigned short reserved3; } __packed; #define TYPE50_TYPE_CODE 0x50 #define TYPE50_MEB1_FMT 0x0001 #define TYPE50_MEB2_FMT 0x0002 #define TYPE50_MEB3_FMT 0x0003 #define TYPE50_CRB1_FMT 0x0011 #define TYPE50_CRB2_FMT 0x0012 #define TYPE50_CRB3_FMT 0x0013 /* Mod-Exp, with a small modulus */ struct type50_meb1_msg { struct type50_hdr header; unsigned short keyblock_type; /* 0x0001 */ unsigned char reserved[6]; unsigned char exponent[128]; unsigned char modulus[128]; unsigned char message[128]; } __packed; /* Mod-Exp, with a large modulus */ struct type50_meb2_msg { struct type50_hdr header; unsigned short keyblock_type; /* 0x0002 */ unsigned char reserved[6]; unsigned char exponent[256]; unsigned char modulus[256]; unsigned char message[256]; } __packed; /* Mod-Exp, with a larger modulus */ struct type50_meb3_msg { struct type50_hdr header; unsigned short keyblock_type; /* 0x0003 */ unsigned char reserved[6]; unsigned char exponent[512]; unsigned char modulus[512]; unsigned char message[512]; } __packed; /* CRT, with a small modulus */ struct type50_crb1_msg { struct type50_hdr header; unsigned short keyblock_type; /* 0x0011 */ unsigned char reserved[6]; unsigned char p[64]; unsigned char q[64]; unsigned char dp[64]; unsigned char dq[64]; unsigned char u[64]; unsigned char message[128]; } __packed; /* CRT, with a large modulus */ struct type50_crb2_msg { struct type50_hdr header; unsigned short keyblock_type; /* 0x0012 */ unsigned char reserved[6]; unsigned char p[128]; unsigned char q[128]; unsigned char dp[128]; unsigned char dq[128]; unsigned char u[128]; unsigned char message[256]; } __packed; /* CRT, with a larger modulus */ struct type50_crb3_msg { struct type50_hdr header; unsigned short keyblock_type; /* 0x0013 */ unsigned char reserved[6]; unsigned char p[256]; unsigned char q[256]; unsigned char dp[256]; unsigned char dq[256]; unsigned char u[256]; unsigned char message[512]; } __packed; /* * The type 80 response family is associated with a CEXxA cards. * * Note that all unsigned char arrays are right-justified and left-padded * with zeroes. * * Note that all reserved fields must be zeroes. */ #define TYPE80_RSP_CODE 0x80 struct type80_hdr { unsigned char reserved1; unsigned char type; /* 0x80 */ unsigned short len; unsigned char code; /* 0x00 */ unsigned char reserved2[3]; unsigned char reserved3[8]; } __packed; int get_rsa_modex_fc(struct ica_rsa_modexpo *mex, int *fcode) { if (!mex->inputdatalength) return -EINVAL; if (mex->inputdatalength <= 128) /* 1024 bit */ *fcode = MEX_1K; else if (mex->inputdatalength <= 256) /* 2048 bit */ *fcode = MEX_2K; else /* 4096 bit */ *fcode = MEX_4K; return 0; } int get_rsa_crt_fc(struct ica_rsa_modexpo_crt *crt, int *fcode) { if (!crt->inputdatalength) return -EINVAL; if (crt->inputdatalength <= 128) /* 1024 bit */ *fcode = CRT_1K; else if (crt->inputdatalength <= 256) /* 2048 bit */ *fcode = CRT_2K; else /* 4096 bit */ *fcode = CRT_4K; return 0; } /* * Convert a ICAMEX message to a type50 MEX message. * * @zq: crypto queue pointer * @ap_msg: crypto request pointer * @mex: pointer to user input data * * Returns 0 on success or -EFAULT. */ static int ICAMEX_msg_to_type50MEX_msg(struct zcrypt_queue *zq, struct ap_message *ap_msg, struct ica_rsa_modexpo *mex) { unsigned char *mod, *exp, *inp; int mod_len; mod_len = mex->inputdatalength; if (mod_len <= 128) { struct type50_meb1_msg *meb1 = ap_msg->msg; memset(meb1, 0, sizeof(*meb1)); ap_msg->len = sizeof(*meb1); meb1->header.msg_type_code = TYPE50_TYPE_CODE; meb1->header.msg_len = sizeof(*meb1); meb1->keyblock_type = TYPE50_MEB1_FMT; mod = meb1->modulus + sizeof(meb1->modulus) - mod_len; exp = meb1->exponent + sizeof(meb1->exponent) - mod_len; inp = meb1->message + sizeof(meb1->message) - mod_len; } else if (mod_len <= 256) { struct type50_meb2_msg *meb2 = ap_msg->msg; memset(meb2, 0, sizeof(*meb2)); ap_msg->len = sizeof(*meb2); meb2->header.msg_type_code = TYPE50_TYPE_CODE; meb2->header.msg_len = sizeof(*meb2); meb2->keyblock_type = TYPE50_MEB2_FMT; mod = meb2->modulus + sizeof(meb2->modulus) - mod_len; exp = meb2->exponent + sizeof(meb2->exponent) - mod_len; inp = meb2->message + sizeof(meb2->message) - mod_len; } else if (mod_len <= 512) { struct type50_meb3_msg *meb3 = ap_msg->msg; memset(meb3, 0, sizeof(*meb3)); ap_msg->len = sizeof(*meb3); meb3->header.msg_type_code = TYPE50_TYPE_CODE; meb3->header.msg_len = sizeof(*meb3); meb3->keyblock_type = TYPE50_MEB3_FMT; mod = meb3->modulus + sizeof(meb3->modulus) - mod_len; exp = meb3->exponent + sizeof(meb3->exponent) - mod_len; inp = meb3->message + sizeof(meb3->message) - mod_len; } else { return -EINVAL; } if (copy_from_user(mod, mex->n_modulus, mod_len) || copy_from_user(exp, mex->b_key, mod_len) || copy_from_user(inp, mex->inputdata, mod_len)) return -EFAULT; return 0; } /* * Convert a ICACRT message to a type50 CRT message. * * @zq: crypto queue pointer * @ap_msg: crypto request pointer * @crt: pointer to user input data * * Returns 0 on success or -EFAULT. */ static int ICACRT_msg_to_type50CRT_msg(struct zcrypt_queue *zq, struct ap_message *ap_msg, struct ica_rsa_modexpo_crt *crt) { int mod_len, short_len; unsigned char *p, *q, *dp, *dq, *u, *inp; mod_len = crt->inputdatalength; short_len = (mod_len + 1) / 2; /* * CEX2A and CEX3A w/o FW update can handle requests up to * 256 byte modulus (2k keys). * CEX3A with FW update and newer CEXxA cards are able to handle * 512 byte modulus (4k keys). */ if (mod_len <= 128) { /* up to 1024 bit key size */ struct type50_crb1_msg *crb1 = ap_msg->msg; memset(crb1, 0, sizeof(*crb1)); ap_msg->len = sizeof(*crb1); crb1->header.msg_type_code = TYPE50_TYPE_CODE; crb1->header.msg_len = sizeof(*crb1); crb1->keyblock_type = TYPE50_CRB1_FMT; p = crb1->p + sizeof(crb1->p) - short_len; q = crb1->q + sizeof(crb1->q) - short_len; dp = crb1->dp + sizeof(crb1->dp) - short_len; dq = crb1->dq + sizeof(crb1->dq) - short_len; u = crb1->u + sizeof(crb1->u) - short_len; inp = crb1->message + sizeof(crb1->message) - mod_len; } else if (mod_len <= 256) { /* up to 2048 bit key size */ struct type50_crb2_msg *crb2 = ap_msg->msg; memset(crb2, 0, sizeof(*crb2)); ap_msg->len = sizeof(*crb2); crb2->header.msg_type_code = TYPE50_TYPE_CODE; crb2->header.msg_len = sizeof(*crb2); crb2->keyblock_type = TYPE50_CRB2_FMT; p = crb2->p + sizeof(crb2->p) - short_len; q = crb2->q + sizeof(crb2->q) - short_len; dp = crb2->dp + sizeof(crb2->dp) - short_len; dq = crb2->dq + sizeof(crb2->dq) - short_len; u = crb2->u + sizeof(crb2->u) - short_len; inp = crb2->message + sizeof(crb2->message) - mod_len; } else if ((mod_len <= 512) && /* up to 4096 bit key size */ (zq->zcard->max_mod_size == CEX3A_MAX_MOD_SIZE)) { struct type50_crb3_msg *crb3 = ap_msg->msg; memset(crb3, 0, sizeof(*crb3)); ap_msg->len = sizeof(*crb3); crb3->header.msg_type_code = TYPE50_TYPE_CODE; crb3->header.msg_len = sizeof(*crb3); crb3->keyblock_type = TYPE50_CRB3_FMT; p = crb3->p + sizeof(crb3->p) - short_len; q = crb3->q + sizeof(crb3->q) - short_len; dp = crb3->dp + sizeof(crb3->dp) - short_len; dq = crb3->dq + sizeof(crb3->dq) - short_len; u = crb3->u + sizeof(crb3->u) - short_len; inp = crb3->message + sizeof(crb3->message) - mod_len; } else { return -EINVAL; } /* * correct the offset of p, bp and mult_inv according zcrypt.h * block size right aligned (skip the first byte) */ if (copy_from_user(p, crt->np_prime + MSGTYPE_ADJUSTMENT, short_len) || copy_from_user(q, crt->nq_prime, short_len) || copy_from_user(dp, crt->bp_key + MSGTYPE_ADJUSTMENT, short_len) || copy_from_user(dq, crt->bq_key, short_len) || copy_from_user(u, crt->u_mult_inv + MSGTYPE_ADJUSTMENT, short_len) || copy_from_user(inp, crt->inputdata, mod_len)) return -EFAULT; return 0; } /* * Copy results from a type 80 reply message back to user space. * * @zq: crypto device pointer * @reply: reply AP message. * @data: pointer to user output data * @length: size of user output data * * Returns 0 on success or -EFAULT. */ static int convert_type80(struct zcrypt_queue *zq, struct ap_message *reply, char __user *outputdata, unsigned int outputdatalength) { struct type80_hdr *t80h = reply->msg; unsigned char *data; if (t80h->len < sizeof(*t80h) + outputdatalength) { /* The result is too short, the CEXxA card may not do that.. */ zq->online = 0; pr_err("Crypto dev=%02x.%04x code=0x%02x => online=0 rc=EAGAIN\n", AP_QID_CARD(zq->queue->qid), AP_QID_QUEUE(zq->queue->qid), t80h->code); ZCRYPT_DBF_ERR("%s dev=%02x.%04x code=0x%02x => online=0 rc=EAGAIN\n", __func__, AP_QID_CARD(zq->queue->qid), AP_QID_QUEUE(zq->queue->qid), t80h->code); ap_send_online_uevent(&zq->queue->ap_dev, zq->online); return -EAGAIN; } BUG_ON(t80h->len > CEX3A_MAX_RESPONSE_SIZE); data = reply->msg + t80h->len - outputdatalength; if (copy_to_user(outputdata, data, outputdatalength)) return -EFAULT; return 0; } static int convert_response(struct zcrypt_queue *zq, struct ap_message *reply, char __user *outputdata, unsigned int outputdatalength) { /* Response type byte is the second byte in the response. */ unsigned char rtype = ((unsigned char *)reply->msg)[1]; switch (rtype) { case TYPE82_RSP_CODE: case TYPE88_RSP_CODE: return convert_error(zq, reply); case TYPE80_RSP_CODE: return convert_type80(zq, reply, outputdata, outputdatalength); default: /* Unknown response type, this should NEVER EVER happen */ zq->online = 0; pr_err("Crypto dev=%02x.%04x unknown response type 0x%02x => online=0 rc=EAGAIN\n", AP_QID_CARD(zq->queue->qid), AP_QID_QUEUE(zq->queue->qid), (int)rtype); ZCRYPT_DBF_ERR( "%s dev=%02x.%04x unknown response type 0x%02x => online=0 rc=EAGAIN\n", __func__, AP_QID_CARD(zq->queue->qid), AP_QID_QUEUE(zq->queue->qid), (int)rtype); ap_send_online_uevent(&zq->queue->ap_dev, zq->online); return -EAGAIN; } } /* * This function is called from the AP bus code after a crypto request * "msg" has finished with the reply message "reply". * It is called from tasklet context. * @aq: pointer to the AP device * @msg: pointer to the AP message * @reply: pointer to the AP reply message */ static void zcrypt_msgtype50_receive(struct ap_queue *aq, struct ap_message *msg, struct ap_message *reply) { static struct error_hdr error_reply = { .type = TYPE82_RSP_CODE, .reply_code = REP82_ERROR_MACHINE_FAILURE, }; struct type80_hdr *t80h; int len; /* Copy the reply message to the request message buffer. */ if (!reply) goto out; /* ap_msg->rc indicates the error */ t80h = reply->msg; if (t80h->type == TYPE80_RSP_CODE) { len = t80h->len; if (len > reply->bufsize || len > msg->bufsize || len != reply->len) { pr_debug("%s len mismatch => EMSGSIZE\n", __func__); msg->rc = -EMSGSIZE; goto out; } memcpy(msg->msg, reply->msg, len); msg->len = len; } else { memcpy(msg->msg, reply->msg, sizeof(error_reply)); msg->len = sizeof(error_reply); } out: complete((struct completion *)msg->private); } static atomic_t zcrypt_step = ATOMIC_INIT(0); /* * The request distributor calls this function if it picked the CEXxA * device to handle a modexpo request. * @zq: pointer to zcrypt_queue structure that identifies the * CEXxA device to the request distributor * @mex: pointer to the modexpo request buffer */ static long zcrypt_msgtype50_modexpo(struct zcrypt_queue *zq, struct ica_rsa_modexpo *mex, struct ap_message *ap_msg) { struct completion work; int rc; ap_msg->bufsize = MSGTYPE50_CRB3_MAX_MSG_SIZE; ap_msg->msg = kmalloc(ap_msg->bufsize, GFP_KERNEL); if (!ap_msg->msg) return -ENOMEM; ap_msg->receive = zcrypt_msgtype50_receive; ap_msg->psmid = (((unsigned long)current->pid) << 32) + atomic_inc_return(&zcrypt_step); ap_msg->private = &work; rc = ICAMEX_msg_to_type50MEX_msg(zq, ap_msg, mex); if (rc) goto out; init_completion(&work); rc = ap_queue_message(zq->queue, ap_msg); if (rc) goto out; rc = wait_for_completion_interruptible(&work); if (rc == 0) { rc = ap_msg->rc; if (rc == 0) rc = convert_response(zq, ap_msg, mex->outputdata, mex->outputdatalength); } else { /* Signal pending. */ ap_cancel_message(zq->queue, ap_msg); } out: ap_msg->private = NULL; if (rc) pr_debug("%s send me cprb at dev=%02x.%04x rc=%d\n", __func__, AP_QID_CARD(zq->queue->qid), AP_QID_QUEUE(zq->queue->qid), rc); return rc; } /* * The request distributor calls this function if it picked the CEXxA * device to handle a modexpo_crt request. * @zq: pointer to zcrypt_queue structure that identifies the * CEXxA device to the request distributor * @crt: pointer to the modexpoc_crt request buffer */ static long zcrypt_msgtype50_modexpo_crt(struct zcrypt_queue *zq, struct ica_rsa_modexpo_crt *crt, struct ap_message *ap_msg) { struct completion work; int rc; ap_msg->bufsize = MSGTYPE50_CRB3_MAX_MSG_SIZE; ap_msg->msg = kmalloc(ap_msg->bufsize, GFP_KERNEL); if (!ap_msg->msg) return -ENOMEM; ap_msg->receive = zcrypt_msgtype50_receive; ap_msg->psmid = (((unsigned long)current->pid) << 32) + atomic_inc_return(&zcrypt_step); ap_msg->private = &work; rc = ICACRT_msg_to_type50CRT_msg(zq, ap_msg, crt); if (rc) goto out; init_completion(&work); rc = ap_queue_message(zq->queue, ap_msg); if (rc) goto out; rc = wait_for_completion_interruptible(&work); if (rc == 0) { rc = ap_msg->rc; if (rc == 0) rc = convert_response(zq, ap_msg, crt->outputdata, crt->outputdatalength); } else { /* Signal pending. */ ap_cancel_message(zq->queue, ap_msg); } out: ap_msg->private = NULL; if (rc) pr_debug("%s send crt cprb at dev=%02x.%04x rc=%d\n", __func__, AP_QID_CARD(zq->queue->qid), AP_QID_QUEUE(zq->queue->qid), rc); return rc; } /* * The crypto operations for message type 50. */ static struct zcrypt_ops zcrypt_msgtype50_ops = { .rsa_modexpo = zcrypt_msgtype50_modexpo, .rsa_modexpo_crt = zcrypt_msgtype50_modexpo_crt, .owner = THIS_MODULE, .name = MSGTYPE50_NAME, .variant = MSGTYPE50_VARIANT_DEFAULT, }; void __init zcrypt_msgtype50_init(void) { zcrypt_msgtype_register(&zcrypt_msgtype50_ops); } void __exit zcrypt_msgtype50_exit(void) { zcrypt_msgtype_unregister(&zcrypt_msgtype50_ops); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1