Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oliver Neukum | 12002 | 59.59% | 3 | 3.23% |
Jamie Lenehan | 4099 | 20.35% | 17 | 18.28% |
Alan Cox | 2786 | 13.83% | 2 | 2.15% |
Guennadi Liakhovetski | 377 | 1.87% | 3 | 3.23% |
Christoph Hellwig | 242 | 1.20% | 11 | 11.83% |
Hannes Reinecke | 178 | 0.88% | 7 | 7.53% |
FUJITA Tomonori | 100 | 0.50% | 2 | 2.15% |
Rasmus Villemoes | 98 | 0.49% | 3 | 3.23% |
Adrian Bunk | 57 | 0.28% | 3 | 3.23% |
Jeff Garzik | 30 | 0.15% | 3 | 3.23% |
Xiaomeng Tong | 28 | 0.14% | 1 | 1.08% |
Kees Cook | 26 | 0.13% | 1 | 1.08% |
Linus Torvalds | 24 | 0.12% | 3 | 3.23% |
Al Viro | 15 | 0.07% | 4 | 4.30% |
Dan Carpenter | 13 | 0.06% | 1 | 1.08% |
James Bottomley | 10 | 0.05% | 3 | 3.23% |
Bart Van Assche | 7 | 0.03% | 3 | 3.23% |
Lucas De Marchi | 7 | 0.03% | 1 | 1.08% |
Linus Torvalds (pre-git) | 6 | 0.03% | 2 | 2.15% |
Uwe Kleine-König | 4 | 0.02% | 2 | 2.15% |
Tong Zhang | 4 | 0.02% | 1 | 1.08% |
Andy Shevchenko | 4 | 0.02% | 1 | 1.08% |
Robert P. J. Day | 3 | 0.01% | 1 | 1.08% |
Michael Opdenacker | 3 | 0.01% | 1 | 1.08% |
Lee Jones | 3 | 0.01% | 3 | 3.23% |
Suraj Upadhyay | 3 | 0.01% | 1 | 1.08% |
Liu Shixin | 2 | 0.01% | 1 | 1.08% |
Jiapeng Chong | 1 | 0.00% | 1 | 1.08% |
Andreas Mohr | 1 | 0.00% | 1 | 1.08% |
Rusty Russell | 1 | 0.00% | 1 | 1.08% |
Abhinav Singh | 1 | 0.00% | 1 | 1.08% |
Johannes Thumshirn | 1 | 0.00% | 1 | 1.08% |
Roel Kluin | 1 | 0.00% | 1 | 1.08% |
David S. Miller | 1 | 0.00% | 1 | 1.08% |
Thomas Gleixner | 1 | 0.00% | 1 | 1.08% |
Jesper Juhl | 1 | 0.00% | 1 | 1.08% |
Total | 20140 | 93 |
/* * dc395x.c * * Device Driver for Tekram DC395(U/UW/F), DC315(U) * PCI SCSI Bus Master Host Adapter * (SCSI chip set used Tekram ASIC TRM-S1040) * * Authors: * C.L. Huang <ching@tekram.com.tw> * Erich Chen <erich@tekram.com.tw> * (C) Copyright 1995-1999 Tekram Technology Co., Ltd. * * Kurt Garloff <garloff@suse.de> * (C) 1999-2000 Kurt Garloff * * Oliver Neukum <oliver@neukum.name> * Ali Akcaagac <aliakc@web.de> * Jamie Lenehan <lenehan@twibble.org> * (C) 2003 * * License: GNU GPL * ************************************************************************* * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ************************************************************************ */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/delay.h> #include <linux/ctype.h> #include <linux/blkdev.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/pci.h> #include <linux/list.h> #include <linux/vmalloc.h> #include <linux/slab.h> #include <asm/io.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include <scsi/scsi_transport_spi.h> #include "dc395x.h" #define DC395X_NAME "dc395x" #define DC395X_BANNER "Tekram DC395(U/UW/F), DC315(U) - ASIC TRM-S1040" #define DC395X_VERSION "v2.05, 2004/03/08" /*--------------------------------------------------------------------------- Features ---------------------------------------------------------------------------*/ /* * Set to disable parts of the driver */ /*#define DC395x_NO_DISCONNECT*/ /*#define DC395x_NO_TAGQ*/ /*#define DC395x_NO_SYNC*/ /*#define DC395x_NO_WIDE*/ /*--------------------------------------------------------------------------- Debugging ---------------------------------------------------------------------------*/ /* * Types of debugging that can be enabled and disabled */ #define DBG_KG 0x0001 #define DBG_0 0x0002 #define DBG_1 0x0004 #define DBG_SG 0x0020 #define DBG_FIFO 0x0040 #define DBG_PIO 0x0080 /* * Set set of things to output debugging for. * Undefine to remove all debugging */ /*#define DEBUG_MASK (DBG_0|DBG_1|DBG_SG|DBG_FIFO|DBG_PIO)*/ /*#define DEBUG_MASK DBG_0*/ /* * Output a kernel mesage at the specified level and append the * driver name and a ": " to the start of the message */ #define dprintkl(level, format, arg...) \ printk(level DC395X_NAME ": " format , ## arg) #ifdef DEBUG_MASK /* * print a debug message - this is formated with KERN_DEBUG, then the * driver name followed by a ": " and then the message is output. * This also checks that the specified debug level is enabled before * outputing the message */ #define dprintkdbg(type, format, arg...) \ do { \ if ((type) & (DEBUG_MASK)) \ dprintkl(KERN_DEBUG , format , ## arg); \ } while (0) /* * Check if the specified type of debugging is enabled */ #define debug_enabled(type) ((DEBUG_MASK) & (type)) #else /* * No debugging. Do nothing */ #define dprintkdbg(type, format, arg...) \ do {} while (0) #define debug_enabled(type) (0) #endif #ifndef PCI_VENDOR_ID_TEKRAM #define PCI_VENDOR_ID_TEKRAM 0x1DE1 /* Vendor ID */ #endif #ifndef PCI_DEVICE_ID_TEKRAM_TRMS1040 #define PCI_DEVICE_ID_TEKRAM_TRMS1040 0x0391 /* Device ID */ #endif #define DC395x_LOCK_IO(dev,flags) spin_lock_irqsave(((struct Scsi_Host *)dev)->host_lock, flags) #define DC395x_UNLOCK_IO(dev,flags) spin_unlock_irqrestore(((struct Scsi_Host *)dev)->host_lock, flags) #define DC395x_read8(acb,address) (u8)(inb(acb->io_port_base + (address))) #define DC395x_read16(acb,address) (u16)(inw(acb->io_port_base + (address))) #define DC395x_read32(acb,address) (u32)(inl(acb->io_port_base + (address))) #define DC395x_write8(acb,address,value) outb((value), acb->io_port_base + (address)) #define DC395x_write16(acb,address,value) outw((value), acb->io_port_base + (address)) #define DC395x_write32(acb,address,value) outl((value), acb->io_port_base + (address)) #define TAG_NONE 255 /* * srb->segement_x is the hw sg list. It is always allocated as a * DC395x_MAX_SG_LISTENTRY entries in a linear block which does not * cross a page boundy. */ #define SEGMENTX_LEN (sizeof(struct SGentry)*DC395x_MAX_SG_LISTENTRY) struct SGentry { u32 address; /* bus! address */ u32 length; }; /* The SEEPROM structure for TRM_S1040 */ struct NVRamTarget { u8 cfg0; /* Target configuration byte 0 */ u8 period; /* Target period */ u8 cfg2; /* Target configuration byte 2 */ u8 cfg3; /* Target configuration byte 3 */ }; struct NvRamType { u8 sub_vendor_id[2]; /* 0,1 Sub Vendor ID */ u8 sub_sys_id[2]; /* 2,3 Sub System ID */ u8 sub_class; /* 4 Sub Class */ u8 vendor_id[2]; /* 5,6 Vendor ID */ u8 device_id[2]; /* 7,8 Device ID */ u8 reserved; /* 9 Reserved */ struct NVRamTarget target[DC395x_MAX_SCSI_ID]; /** 10,11,12,13 ** 14,15,16,17 ** .... ** .... ** 70,71,72,73 */ u8 scsi_id; /* 74 Host Adapter SCSI ID */ u8 channel_cfg; /* 75 Channel configuration */ u8 delay_time; /* 76 Power on delay time */ u8 max_tag; /* 77 Maximum tags */ u8 reserved0; /* 78 */ u8 boot_target; /* 79 */ u8 boot_lun; /* 80 */ u8 reserved1; /* 81 */ u16 reserved2[22]; /* 82,..125 */ u16 cksum; /* 126,127 */ }; struct ScsiReqBlk { struct list_head list; /* next/prev ptrs for srb lists */ struct DeviceCtlBlk *dcb; struct scsi_cmnd *cmd; struct SGentry *segment_x; /* Linear array of hw sg entries (up to 64 entries) */ dma_addr_t sg_bus_addr; /* Bus address of sg list (ie, of segment_x) */ u8 sg_count; /* No of HW sg entries for this request */ u8 sg_index; /* Index of HW sg entry for this request */ size_t total_xfer_length; /* Total number of bytes remaining to be transferred */ size_t request_length; /* Total number of bytes in this request */ /* * The sense buffer handling function, request_sense, uses * the first hw sg entry (segment_x[0]) and the transfer * length (total_xfer_length). While doing this it stores the * original values into the last sg hw list * (srb->segment_x[DC395x_MAX_SG_LISTENTRY - 1] and the * total_xfer_length in xferred. These values are restored in * pci_unmap_srb_sense. This is the only place xferred is used. */ size_t xferred; /* Saved copy of total_xfer_length */ u16 state; u8 msgin_buf[6]; u8 msgout_buf[6]; u8 adapter_status; u8 target_status; u8 msg_count; u8 end_message; u8 tag_number; u8 status; u8 retry_count; u8 flag; u8 scsi_phase; }; struct DeviceCtlBlk { struct list_head list; /* next/prev ptrs for the dcb list */ struct AdapterCtlBlk *acb; struct list_head srb_going_list; /* head of going srb list */ struct list_head srb_waiting_list; /* head of waiting srb list */ struct ScsiReqBlk *active_srb; u32 tag_mask; u16 max_command; u8 target_id; /* SCSI Target ID (SCSI Only) */ u8 target_lun; /* SCSI Log. Unit (SCSI Only) */ u8 identify_msg; u8 dev_mode; u8 inquiry7; /* To store Inquiry flags */ u8 sync_mode; /* 0:async mode */ u8 min_nego_period; /* for nego. */ u8 sync_period; /* for reg. */ u8 sync_offset; /* for reg. and nego.(low nibble) */ u8 flag; u8 dev_type; u8 init_tcq_flag; }; struct AdapterCtlBlk { struct Scsi_Host *scsi_host; unsigned long io_port_base; unsigned long io_port_len; struct list_head dcb_list; /* head of going dcb list */ struct DeviceCtlBlk *dcb_run_robin; struct DeviceCtlBlk *active_dcb; struct list_head srb_free_list; /* head of free srb list */ struct ScsiReqBlk *tmp_srb; struct timer_list waiting_timer; struct timer_list selto_timer; unsigned long last_reset; u16 srb_count; u8 sel_timeout; unsigned int irq_level; u8 tag_max_num; u8 acb_flag; u8 gmode2; u8 config; u8 lun_chk; u8 scan_devices; u8 hostid_bit; u8 dcb_map[DC395x_MAX_SCSI_ID]; struct DeviceCtlBlk *children[DC395x_MAX_SCSI_ID][32]; struct pci_dev *dev; u8 msg_len; struct ScsiReqBlk srb_array[DC395x_MAX_SRB_CNT]; struct ScsiReqBlk srb; struct NvRamType eeprom; /* eeprom settings for this adapter */ }; /*--------------------------------------------------------------------------- Forward declarations ---------------------------------------------------------------------------*/ static void data_out_phase0(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status); static void data_in_phase0(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status); static void command_phase0(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status); static void status_phase0(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status); static void msgout_phase0(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status); static void msgin_phase0(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status); static void data_out_phase1(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status); static void data_in_phase1(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status); static void command_phase1(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status); static void status_phase1(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status); static void msgout_phase1(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status); static void msgin_phase1(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status); static void nop0(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status); static void nop1(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status); static void set_basic_config(struct AdapterCtlBlk *acb); static void cleanup_after_transfer(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb); static void reset_scsi_bus(struct AdapterCtlBlk *acb); static void data_io_transfer(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 io_dir); static void disconnect(struct AdapterCtlBlk *acb); static void reselect(struct AdapterCtlBlk *acb); static u8 start_scsi(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb, struct ScsiReqBlk *srb); static inline void enable_msgout_abort(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb); static void build_srb(struct scsi_cmnd *cmd, struct DeviceCtlBlk *dcb, struct ScsiReqBlk *srb); static void doing_srb_done(struct AdapterCtlBlk *acb, u8 did_code, struct scsi_cmnd *cmd, u8 force); static void scsi_reset_detect(struct AdapterCtlBlk *acb); static void pci_unmap_srb(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb); static void pci_unmap_srb_sense(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb); static void srb_done(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb, struct ScsiReqBlk *srb); static void request_sense(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb, struct ScsiReqBlk *srb); static void set_xfer_rate(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb); static void waiting_timeout(struct timer_list *t); /*--------------------------------------------------------------------------- Static Data ---------------------------------------------------------------------------*/ static u16 current_sync_offset = 0; static void *dc395x_scsi_phase0[] = { data_out_phase0,/* phase:0 */ data_in_phase0, /* phase:1 */ command_phase0, /* phase:2 */ status_phase0, /* phase:3 */ nop0, /* phase:4 PH_BUS_FREE .. initial phase */ nop0, /* phase:5 PH_BUS_FREE .. initial phase */ msgout_phase0, /* phase:6 */ msgin_phase0, /* phase:7 */ }; static void *dc395x_scsi_phase1[] = { data_out_phase1,/* phase:0 */ data_in_phase1, /* phase:1 */ command_phase1, /* phase:2 */ status_phase1, /* phase:3 */ nop1, /* phase:4 PH_BUS_FREE .. initial phase */ nop1, /* phase:5 PH_BUS_FREE .. initial phase */ msgout_phase1, /* phase:6 */ msgin_phase1, /* phase:7 */ }; /* *Fast20: 000 50ns, 20.0 MHz * 001 75ns, 13.3 MHz * 010 100ns, 10.0 MHz * 011 125ns, 8.0 MHz * 100 150ns, 6.6 MHz * 101 175ns, 5.7 MHz * 110 200ns, 5.0 MHz * 111 250ns, 4.0 MHz * *Fast40(LVDS): 000 25ns, 40.0 MHz * 001 50ns, 20.0 MHz * 010 75ns, 13.3 MHz * 011 100ns, 10.0 MHz * 100 125ns, 8.0 MHz * 101 150ns, 6.6 MHz * 110 175ns, 5.7 MHz * 111 200ns, 5.0 MHz */ /*static u8 clock_period[] = {12,19,25,31,37,44,50,62};*/ /* real period:48ns,76ns,100ns,124ns,148ns,176ns,200ns,248ns */ static u8 clock_period[] = { 12, 18, 25, 31, 37, 43, 50, 62 }; static u16 clock_speed[] = { 200, 133, 100, 80, 67, 58, 50, 40 }; /*--------------------------------------------------------------------------- Configuration ---------------------------------------------------------------------------*/ /* * Module/boot parameters currently effect *all* instances of the * card in the system. */ /* * Command line parameters are stored in a structure below. * These are the index's into the structure for the various * command line options. */ #define CFG_ADAPTER_ID 0 #define CFG_MAX_SPEED 1 #define CFG_DEV_MODE 2 #define CFG_ADAPTER_MODE 3 #define CFG_TAGS 4 #define CFG_RESET_DELAY 5 #define CFG_NUM 6 /* number of configuration items */ /* * Value used to indicate that a command line override * hasn't been used to modify the value. */ #define CFG_PARAM_UNSET -1 /* * Hold command line parameters. */ struct ParameterData { int value; /* value of this setting */ int min; /* minimum value */ int max; /* maximum value */ int def; /* default value */ int safe; /* safe value */ }; static struct ParameterData cfg_data[] = { { /* adapter id */ CFG_PARAM_UNSET, 0, 15, 7, 7 }, { /* max speed */ CFG_PARAM_UNSET, 0, 7, 1, /* 13.3Mhz */ 4, /* 6.7Hmz */ }, { /* dev mode */ CFG_PARAM_UNSET, 0, 0x3f, NTC_DO_PARITY_CHK | NTC_DO_DISCONNECT | NTC_DO_SYNC_NEGO | NTC_DO_WIDE_NEGO | NTC_DO_TAG_QUEUEING | NTC_DO_SEND_START, NTC_DO_PARITY_CHK | NTC_DO_SEND_START }, { /* adapter mode */ CFG_PARAM_UNSET, 0, 0x2f, NAC_SCANLUN | NAC_GT2DRIVES | NAC_GREATER_1G | NAC_POWERON_SCSI_RESET /*| NAC_ACTIVE_NEG*/, NAC_GT2DRIVES | NAC_GREATER_1G | NAC_POWERON_SCSI_RESET | 0x08 }, { /* tags */ CFG_PARAM_UNSET, 0, 5, 3, /* 16 tags (??) */ 2, }, { /* reset delay */ CFG_PARAM_UNSET, 0, 180, 1, /* 1 second */ 10, /* 10 seconds */ } }; /* * Safe settings. If set to zero the BIOS/default values with * command line overrides will be used. If set to 1 then safe and * slow settings will be used. */ static bool use_safe_settings = 0; module_param_named(safe, use_safe_settings, bool, 0); MODULE_PARM_DESC(safe, "Use safe and slow settings only. Default: false"); module_param_named(adapter_id, cfg_data[CFG_ADAPTER_ID].value, int, 0); MODULE_PARM_DESC(adapter_id, "Adapter SCSI ID. Default 7 (0-15)"); module_param_named(max_speed, cfg_data[CFG_MAX_SPEED].value, int, 0); MODULE_PARM_DESC(max_speed, "Maximum bus speed. Default 1 (0-7) Speeds: 0=20, 1=13.3, 2=10, 3=8, 4=6.7, 5=5.8, 6=5, 7=4 Mhz"); module_param_named(dev_mode, cfg_data[CFG_DEV_MODE].value, int, 0); MODULE_PARM_DESC(dev_mode, "Device mode."); module_param_named(adapter_mode, cfg_data[CFG_ADAPTER_MODE].value, int, 0); MODULE_PARM_DESC(adapter_mode, "Adapter mode."); module_param_named(tags, cfg_data[CFG_TAGS].value, int, 0); MODULE_PARM_DESC(tags, "Number of tags (1<<x). Default 3 (0-5)"); module_param_named(reset_delay, cfg_data[CFG_RESET_DELAY].value, int, 0); MODULE_PARM_DESC(reset_delay, "Reset delay in seconds. Default 1 (0-180)"); /** * set_safe_settings - if the use_safe_settings option is set then * set all values to the safe and slow values. **/ static void set_safe_settings(void) { if (use_safe_settings) { int i; dprintkl(KERN_INFO, "Using safe settings.\n"); for (i = 0; i < CFG_NUM; i++) { cfg_data[i].value = cfg_data[i].safe; } } } /** * fix_settings - reset any boot parameters which are out of range * back to the default values. **/ static void fix_settings(void) { int i; dprintkdbg(DBG_1, "setup: AdapterId=%08x MaxSpeed=%08x DevMode=%08x " "AdapterMode=%08x Tags=%08x ResetDelay=%08x\n", cfg_data[CFG_ADAPTER_ID].value, cfg_data[CFG_MAX_SPEED].value, cfg_data[CFG_DEV_MODE].value, cfg_data[CFG_ADAPTER_MODE].value, cfg_data[CFG_TAGS].value, cfg_data[CFG_RESET_DELAY].value); for (i = 0; i < CFG_NUM; i++) { if (cfg_data[i].value < cfg_data[i].min || cfg_data[i].value > cfg_data[i].max) cfg_data[i].value = cfg_data[i].def; } } /* * Mapping from the eeprom delay index value (index into this array) * to the number of actual seconds that the delay should be for. */ static char eeprom_index_to_delay_map[] = { 1, 3, 5, 10, 16, 30, 60, 120 }; /** * eeprom_index_to_delay - Take the eeprom delay setting and convert it * into a number of seconds. * * @eeprom: The eeprom structure in which we find the delay index to map. **/ static void eeprom_index_to_delay(struct NvRamType *eeprom) { eeprom->delay_time = eeprom_index_to_delay_map[eeprom->delay_time]; } /** * delay_to_eeprom_index - Take a delay in seconds and return the * closest eeprom index which will delay for at least that amount of * seconds. * * @delay: The delay, in seconds, to find the eeprom index for. **/ static int delay_to_eeprom_index(int delay) { u8 idx = 0; while (idx < 7 && eeprom_index_to_delay_map[idx] < delay) idx++; return idx; } /** * eeprom_override - Override the eeprom settings, in the provided * eeprom structure, with values that have been set on the command * line. * * @eeprom: The eeprom data to override with command line options. **/ static void eeprom_override(struct NvRamType *eeprom) { u8 id; /* Adapter Settings */ if (cfg_data[CFG_ADAPTER_ID].value != CFG_PARAM_UNSET) eeprom->scsi_id = (u8)cfg_data[CFG_ADAPTER_ID].value; if (cfg_data[CFG_ADAPTER_MODE].value != CFG_PARAM_UNSET) eeprom->channel_cfg = (u8)cfg_data[CFG_ADAPTER_MODE].value; if (cfg_data[CFG_RESET_DELAY].value != CFG_PARAM_UNSET) eeprom->delay_time = delay_to_eeprom_index( cfg_data[CFG_RESET_DELAY].value); if (cfg_data[CFG_TAGS].value != CFG_PARAM_UNSET) eeprom->max_tag = (u8)cfg_data[CFG_TAGS].value; /* Device Settings */ for (id = 0; id < DC395x_MAX_SCSI_ID; id++) { if (cfg_data[CFG_DEV_MODE].value != CFG_PARAM_UNSET) eeprom->target[id].cfg0 = (u8)cfg_data[CFG_DEV_MODE].value; if (cfg_data[CFG_MAX_SPEED].value != CFG_PARAM_UNSET) eeprom->target[id].period = (u8)cfg_data[CFG_MAX_SPEED].value; } } /*--------------------------------------------------------------------------- ---------------------------------------------------------------------------*/ static unsigned int list_size(struct list_head *head) { unsigned int count = 0; struct list_head *pos; list_for_each(pos, head) count++; return count; } static struct DeviceCtlBlk *dcb_get_next(struct list_head *head, struct DeviceCtlBlk *pos) { int use_next = 0; struct DeviceCtlBlk* next = NULL; struct DeviceCtlBlk* i; if (list_empty(head)) return NULL; /* find supplied dcb and then select the next one */ list_for_each_entry(i, head, list) if (use_next) { next = i; break; } else if (i == pos) { use_next = 1; } /* if no next one take the head one (ie, wraparound) */ if (!next) list_for_each_entry(i, head, list) { next = i; break; } return next; } static void free_tag(struct DeviceCtlBlk *dcb, struct ScsiReqBlk *srb) { if (srb->tag_number < 255) { dcb->tag_mask &= ~(1 << srb->tag_number); /* free tag mask */ srb->tag_number = 255; } } /* Find cmd in SRB list */ static inline struct ScsiReqBlk *find_cmd(struct scsi_cmnd *cmd, struct list_head *head) { struct ScsiReqBlk *i; list_for_each_entry(i, head, list) if (i->cmd == cmd) return i; return NULL; } /* Sets the timer to wake us up */ static void waiting_set_timer(struct AdapterCtlBlk *acb, unsigned long to) { if (timer_pending(&acb->waiting_timer)) return; if (time_before(jiffies + to, acb->last_reset - HZ / 2)) acb->waiting_timer.expires = acb->last_reset - HZ / 2 + 1; else acb->waiting_timer.expires = jiffies + to + 1; add_timer(&acb->waiting_timer); } /* Send the next command from the waiting list to the bus */ static void waiting_process_next(struct AdapterCtlBlk *acb) { struct DeviceCtlBlk *start = NULL; struct DeviceCtlBlk *pos; struct DeviceCtlBlk *dcb; struct ScsiReqBlk *srb; struct list_head *dcb_list_head = &acb->dcb_list; if (acb->active_dcb || (acb->acb_flag & (RESET_DETECT + RESET_DONE + RESET_DEV))) return; if (timer_pending(&acb->waiting_timer)) del_timer(&acb->waiting_timer); if (list_empty(dcb_list_head)) return; /* * Find the starting dcb. Need to find it again in the list * since the list may have changed since we set the ptr to it */ list_for_each_entry(dcb, dcb_list_head, list) if (dcb == acb->dcb_run_robin) { start = dcb; break; } if (!start) { /* This can happen! */ start = list_entry(dcb_list_head->next, typeof(*start), list); acb->dcb_run_robin = start; } /* * Loop over the dcb, but we start somewhere (potentially) in * the middle of the loop so we need to manully do this. */ pos = start; do { struct list_head *waiting_list_head = &pos->srb_waiting_list; /* Make sure, the next another device gets scheduled ... */ acb->dcb_run_robin = dcb_get_next(dcb_list_head, acb->dcb_run_robin); if (list_empty(waiting_list_head) || pos->max_command <= list_size(&pos->srb_going_list)) { /* move to next dcb */ pos = dcb_get_next(dcb_list_head, pos); } else { srb = list_entry(waiting_list_head->next, struct ScsiReqBlk, list); /* Try to send to the bus */ if (!start_scsi(acb, pos, srb)) list_move(&srb->list, &pos->srb_going_list); else waiting_set_timer(acb, HZ/50); break; } } while (pos != start); } /* Wake up waiting queue */ static void waiting_timeout(struct timer_list *t) { unsigned long flags; struct AdapterCtlBlk *acb = from_timer(acb, t, waiting_timer); dprintkdbg(DBG_1, "waiting_timeout: Queue woken up by timer. acb=%p\n", acb); DC395x_LOCK_IO(acb->scsi_host, flags); waiting_process_next(acb); DC395x_UNLOCK_IO(acb->scsi_host, flags); } /* Get the DCB for a given ID/LUN combination */ static struct DeviceCtlBlk *find_dcb(struct AdapterCtlBlk *acb, u8 id, u8 lun) { return acb->children[id][lun]; } /* Send SCSI Request Block (srb) to adapter (acb) */ static void send_srb(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb) { struct DeviceCtlBlk *dcb = srb->dcb; if (dcb->max_command <= list_size(&dcb->srb_going_list) || acb->active_dcb || (acb->acb_flag & (RESET_DETECT + RESET_DONE + RESET_DEV))) { list_add_tail(&srb->list, &dcb->srb_waiting_list); waiting_process_next(acb); return; } if (!start_scsi(acb, dcb, srb)) { list_add_tail(&srb->list, &dcb->srb_going_list); } else { list_add(&srb->list, &dcb->srb_waiting_list); waiting_set_timer(acb, HZ / 50); } } /* Prepare SRB for being sent to Device DCB w/ command *cmd */ static void build_srb(struct scsi_cmnd *cmd, struct DeviceCtlBlk *dcb, struct ScsiReqBlk *srb) { int nseg; enum dma_data_direction dir = cmd->sc_data_direction; dprintkdbg(DBG_0, "build_srb: (0x%p) <%02i-%i>\n", cmd, dcb->target_id, dcb->target_lun); srb->dcb = dcb; srb->cmd = cmd; srb->sg_count = 0; srb->total_xfer_length = 0; srb->sg_bus_addr = 0; srb->sg_index = 0; srb->adapter_status = 0; srb->target_status = 0; srb->msg_count = 0; srb->status = 0; srb->flag = 0; srb->state = 0; srb->retry_count = 0; srb->tag_number = TAG_NONE; srb->scsi_phase = PH_BUS_FREE; /* initial phase */ srb->end_message = 0; nseg = scsi_dma_map(cmd); BUG_ON(nseg < 0); if (dir == DMA_NONE || !nseg) { dprintkdbg(DBG_0, "build_srb: [0] len=%d buf=%p use_sg=%d !MAP=%08x\n", cmd->bufflen, scsi_sglist(cmd), scsi_sg_count(cmd), srb->segment_x[0].address); } else { int i; u32 reqlen = scsi_bufflen(cmd); struct scatterlist *sg; struct SGentry *sgp = srb->segment_x; srb->sg_count = nseg; dprintkdbg(DBG_0, "build_srb: [n] len=%d buf=%p use_sg=%d segs=%d\n", reqlen, scsi_sglist(cmd), scsi_sg_count(cmd), srb->sg_count); scsi_for_each_sg(cmd, sg, srb->sg_count, i) { u32 busaddr = (u32)sg_dma_address(sg); u32 seglen = (u32)sg->length; sgp[i].address = busaddr; sgp[i].length = seglen; srb->total_xfer_length += seglen; } sgp += srb->sg_count - 1; /* * adjust last page if too big as it is allocated * on even page boundaries */ if (srb->total_xfer_length > reqlen) { sgp->length -= (srb->total_xfer_length - reqlen); srb->total_xfer_length = reqlen; } /* Fixup for WIDE padding - make sure length is even */ if (dcb->sync_period & WIDE_SYNC && srb->total_xfer_length % 2) { srb->total_xfer_length++; sgp->length++; } srb->sg_bus_addr = dma_map_single(&dcb->acb->dev->dev, srb->segment_x, SEGMENTX_LEN, DMA_TO_DEVICE); dprintkdbg(DBG_SG, "build_srb: [n] map sg %p->%08x(%05x)\n", srb->segment_x, srb->sg_bus_addr, SEGMENTX_LEN); } srb->request_length = srb->total_xfer_length; } /** * dc395x_queue_command_lck - queue scsi command passed from the mid * layer, invoke 'done' on completion * * @cmd: pointer to scsi command object * * Returns 1 if the adapter (host) is busy, else returns 0. One * reason for an adapter to be busy is that the number * of outstanding queued commands is already equal to * struct Scsi_Host::can_queue . * * Required: if struct Scsi_Host::can_queue is ever non-zero * then this function is required. * * Locks: struct Scsi_Host::host_lock held on entry (with "irqsave") * and is expected to be held on return. * */ static int dc395x_queue_command_lck(struct scsi_cmnd *cmd) { void (*done)(struct scsi_cmnd *) = scsi_done; struct DeviceCtlBlk *dcb; struct ScsiReqBlk *srb; struct AdapterCtlBlk *acb = (struct AdapterCtlBlk *)cmd->device->host->hostdata; dprintkdbg(DBG_0, "queue_command: (0x%p) <%02i-%i> cmnd=0x%02x\n", cmd, cmd->device->id, (u8)cmd->device->lun, cmd->cmnd[0]); /* Assume BAD_TARGET; will be cleared later */ set_host_byte(cmd, DID_BAD_TARGET); /* ignore invalid targets */ if (cmd->device->id >= acb->scsi_host->max_id || cmd->device->lun >= acb->scsi_host->max_lun || cmd->device->lun >31) { goto complete; } /* does the specified lun on the specified device exist */ if (!(acb->dcb_map[cmd->device->id] & (1 << cmd->device->lun))) { dprintkl(KERN_INFO, "queue_command: Ignore target <%02i-%i>\n", cmd->device->id, (u8)cmd->device->lun); goto complete; } /* do we have a DCB for the device */ dcb = find_dcb(acb, cmd->device->id, cmd->device->lun); if (!dcb) { /* should never happen */ dprintkl(KERN_ERR, "queue_command: No such device <%02i-%i>", cmd->device->id, (u8)cmd->device->lun); goto complete; } set_host_byte(cmd, DID_OK); set_status_byte(cmd, SAM_STAT_GOOD); srb = list_first_entry_or_null(&acb->srb_free_list, struct ScsiReqBlk, list); if (!srb) { /* * Return 1 since we are unable to queue this command at this * point in time. */ dprintkdbg(DBG_0, "queue_command: No free srb's\n"); return 1; } list_del(&srb->list); build_srb(cmd, dcb, srb); if (!list_empty(&dcb->srb_waiting_list)) { /* append to waiting queue */ list_add_tail(&srb->list, &dcb->srb_waiting_list); waiting_process_next(acb); } else { /* process immediately */ send_srb(acb, srb); } dprintkdbg(DBG_1, "queue_command: (0x%p) done\n", cmd); return 0; complete: /* * Complete the command immediatey, and then return 0 to * indicate that we have handled the command. This is usually * done when the commad is for things like non existent * devices. */ done(cmd); return 0; } static DEF_SCSI_QCMD(dc395x_queue_command) static void dump_register_info(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb, struct ScsiReqBlk *srb) { u16 pstat; struct pci_dev *dev = acb->dev; pci_read_config_word(dev, PCI_STATUS, &pstat); if (!dcb) dcb = acb->active_dcb; if (!srb && dcb) srb = dcb->active_srb; if (srb) { if (!srb->cmd) dprintkl(KERN_INFO, "dump: srb=%p cmd=%p OOOPS!\n", srb, srb->cmd); else dprintkl(KERN_INFO, "dump: srb=%p cmd=%p " "cmnd=0x%02x <%02i-%i>\n", srb, srb->cmd, srb->cmd->cmnd[0], srb->cmd->device->id, (u8)srb->cmd->device->lun); printk(" sglist=%p cnt=%i idx=%i len=%zu\n", srb->segment_x, srb->sg_count, srb->sg_index, srb->total_xfer_length); printk(" state=0x%04x status=0x%02x phase=0x%02x (%sconn.)\n", srb->state, srb->status, srb->scsi_phase, (acb->active_dcb) ? "" : "not"); } dprintkl(KERN_INFO, "dump: SCSI{status=0x%04x fifocnt=0x%02x " "signals=0x%02x irqstat=0x%02x sync=0x%02x target=0x%02x " "rselid=0x%02x ctr=0x%08x irqen=0x%02x config=0x%04x " "config2=0x%02x cmd=0x%02x selto=0x%02x}\n", DC395x_read16(acb, TRM_S1040_SCSI_STATUS), DC395x_read8(acb, TRM_S1040_SCSI_FIFOCNT), DC395x_read8(acb, TRM_S1040_SCSI_SIGNAL), DC395x_read8(acb, TRM_S1040_SCSI_INTSTATUS), DC395x_read8(acb, TRM_S1040_SCSI_SYNC), DC395x_read8(acb, TRM_S1040_SCSI_TARGETID), DC395x_read8(acb, TRM_S1040_SCSI_IDMSG), DC395x_read32(acb, TRM_S1040_SCSI_COUNTER), DC395x_read8(acb, TRM_S1040_SCSI_INTEN), DC395x_read16(acb, TRM_S1040_SCSI_CONFIG0), DC395x_read8(acb, TRM_S1040_SCSI_CONFIG2), DC395x_read8(acb, TRM_S1040_SCSI_COMMAND), DC395x_read8(acb, TRM_S1040_SCSI_TIMEOUT)); dprintkl(KERN_INFO, "dump: DMA{cmd=0x%04x fifocnt=0x%02x fstat=0x%02x " "irqstat=0x%02x irqen=0x%02x cfg=0x%04x tctr=0x%08x " "ctctr=0x%08x addr=0x%08x:0x%08x}\n", DC395x_read16(acb, TRM_S1040_DMA_COMMAND), DC395x_read8(acb, TRM_S1040_DMA_FIFOCNT), DC395x_read8(acb, TRM_S1040_DMA_FIFOSTAT), DC395x_read8(acb, TRM_S1040_DMA_STATUS), DC395x_read8(acb, TRM_S1040_DMA_INTEN), DC395x_read16(acb, TRM_S1040_DMA_CONFIG), DC395x_read32(acb, TRM_S1040_DMA_XCNT), DC395x_read32(acb, TRM_S1040_DMA_CXCNT), DC395x_read32(acb, TRM_S1040_DMA_XHIGHADDR), DC395x_read32(acb, TRM_S1040_DMA_XLOWADDR)); dprintkl(KERN_INFO, "dump: gen{gctrl=0x%02x gstat=0x%02x gtmr=0x%02x} " "pci{status=0x%04x}\n", DC395x_read8(acb, TRM_S1040_GEN_CONTROL), DC395x_read8(acb, TRM_S1040_GEN_STATUS), DC395x_read8(acb, TRM_S1040_GEN_TIMER), pstat); } static inline void clear_fifo(struct AdapterCtlBlk *acb, char *txt) { #if debug_enabled(DBG_FIFO) u8 lines = DC395x_read8(acb, TRM_S1040_SCSI_SIGNAL); u8 fifocnt = DC395x_read8(acb, TRM_S1040_SCSI_FIFOCNT); if (!(fifocnt & 0x40)) dprintkdbg(DBG_FIFO, "clear_fifo: (%i bytes) on phase %02x in %s\n", fifocnt & 0x3f, lines, txt); #endif DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_CLRFIFO); } static void reset_dev_param(struct AdapterCtlBlk *acb) { struct DeviceCtlBlk *dcb; struct NvRamType *eeprom = &acb->eeprom; dprintkdbg(DBG_0, "reset_dev_param: acb=%p\n", acb); list_for_each_entry(dcb, &acb->dcb_list, list) { u8 period_index; dcb->sync_mode &= ~(SYNC_NEGO_DONE + WIDE_NEGO_DONE); dcb->sync_period = 0; dcb->sync_offset = 0; dcb->dev_mode = eeprom->target[dcb->target_id].cfg0; period_index = eeprom->target[dcb->target_id].period & 0x07; dcb->min_nego_period = clock_period[period_index]; if (!(dcb->dev_mode & NTC_DO_WIDE_NEGO) || !(acb->config & HCC_WIDE_CARD)) dcb->sync_mode &= ~WIDE_NEGO_ENABLE; } } /* * perform a hard reset on the SCSI bus * @cmd - some command for this host (for fetching hooks) * Returns: SUCCESS (0x2002) on success, else FAILED (0x2003). */ static int __dc395x_eh_bus_reset(struct scsi_cmnd *cmd) { struct AdapterCtlBlk *acb = (struct AdapterCtlBlk *)cmd->device->host->hostdata; dprintkl(KERN_INFO, "eh_bus_reset: (0%p) target=<%02i-%i> cmd=%p\n", cmd, cmd->device->id, (u8)cmd->device->lun, cmd); if (timer_pending(&acb->waiting_timer)) del_timer(&acb->waiting_timer); /* * disable interrupt */ DC395x_write8(acb, TRM_S1040_DMA_INTEN, 0x00); DC395x_write8(acb, TRM_S1040_SCSI_INTEN, 0x00); DC395x_write8(acb, TRM_S1040_SCSI_CONTROL, DO_RSTMODULE); DC395x_write8(acb, TRM_S1040_DMA_CONTROL, DMARESETMODULE); reset_scsi_bus(acb); udelay(500); /* We may be in serious trouble. Wait some seconds */ acb->last_reset = jiffies + 3 * HZ / 2 + HZ * acb->eeprom.delay_time; /* * re-enable interrupt */ /* Clear SCSI FIFO */ DC395x_write8(acb, TRM_S1040_DMA_CONTROL, CLRXFIFO); clear_fifo(acb, "eh_bus_reset"); /* Delete pending IRQ */ DC395x_read8(acb, TRM_S1040_SCSI_INTSTATUS); set_basic_config(acb); reset_dev_param(acb); doing_srb_done(acb, DID_RESET, cmd, 0); acb->active_dcb = NULL; acb->acb_flag = 0; /* RESET_DETECT, RESET_DONE ,RESET_DEV */ waiting_process_next(acb); return SUCCESS; } static int dc395x_eh_bus_reset(struct scsi_cmnd *cmd) { int rc; spin_lock_irq(cmd->device->host->host_lock); rc = __dc395x_eh_bus_reset(cmd); spin_unlock_irq(cmd->device->host->host_lock); return rc; } /* * abort an errant SCSI command * @cmd - command to be aborted * Returns: SUCCESS (0x2002) on success, else FAILED (0x2003). */ static int dc395x_eh_abort(struct scsi_cmnd *cmd) { /* * Look into our command queues: If it has not been sent already, * we remove it and return success. Otherwise fail. */ struct AdapterCtlBlk *acb = (struct AdapterCtlBlk *)cmd->device->host->hostdata; struct DeviceCtlBlk *dcb; struct ScsiReqBlk *srb; dprintkl(KERN_INFO, "eh_abort: (0x%p) target=<%02i-%i> cmd=%p\n", cmd, cmd->device->id, (u8)cmd->device->lun, cmd); dcb = find_dcb(acb, cmd->device->id, cmd->device->lun); if (!dcb) { dprintkl(KERN_DEBUG, "eh_abort: No such device\n"); return FAILED; } srb = find_cmd(cmd, &dcb->srb_waiting_list); if (srb) { list_del(&srb->list); pci_unmap_srb_sense(acb, srb); pci_unmap_srb(acb, srb); free_tag(dcb, srb); list_add_tail(&srb->list, &acb->srb_free_list); dprintkl(KERN_DEBUG, "eh_abort: Command was waiting\n"); set_host_byte(cmd, DID_ABORT); return SUCCESS; } srb = find_cmd(cmd, &dcb->srb_going_list); if (srb) { dprintkl(KERN_DEBUG, "eh_abort: Command in progress\n"); /* XXX: Should abort the command here */ } else { dprintkl(KERN_DEBUG, "eh_abort: Command not found\n"); } return FAILED; } /* SDTR */ static void build_sdtr(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb, struct ScsiReqBlk *srb) { u8 *ptr = srb->msgout_buf + srb->msg_count; if (srb->msg_count > 1) { dprintkl(KERN_INFO, "build_sdtr: msgout_buf BUSY (%i: %02x %02x)\n", srb->msg_count, srb->msgout_buf[0], srb->msgout_buf[1]); return; } if (!(dcb->dev_mode & NTC_DO_SYNC_NEGO)) { dcb->sync_offset = 0; dcb->min_nego_period = 200 >> 2; } else if (dcb->sync_offset == 0) dcb->sync_offset = SYNC_NEGO_OFFSET; srb->msg_count += spi_populate_sync_msg(ptr, dcb->min_nego_period, dcb->sync_offset); srb->state |= SRB_DO_SYNC_NEGO; } /* WDTR */ static void build_wdtr(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb, struct ScsiReqBlk *srb) { u8 wide = ((dcb->dev_mode & NTC_DO_WIDE_NEGO) & (acb->config & HCC_WIDE_CARD)) ? 1 : 0; u8 *ptr = srb->msgout_buf + srb->msg_count; if (srb->msg_count > 1) { dprintkl(KERN_INFO, "build_wdtr: msgout_buf BUSY (%i: %02x %02x)\n", srb->msg_count, srb->msgout_buf[0], srb->msgout_buf[1]); return; } srb->msg_count += spi_populate_width_msg(ptr, wide); srb->state |= SRB_DO_WIDE_NEGO; } #if 0 /* Timer to work around chip flaw: When selecting and the bus is * busy, we sometimes miss a Selection timeout IRQ */ void selection_timeout_missed(unsigned long ptr); /* Sets the timer to wake us up */ static void selto_timer(struct AdapterCtlBlk *acb) { if (timer_pending(&acb->selto_timer)) return; acb->selto_timer.function = selection_timeout_missed; acb->selto_timer.data = (unsigned long) acb; if (time_before (jiffies + HZ, acb->last_reset + HZ / 2)) acb->selto_timer.expires = acb->last_reset + HZ / 2 + 1; else acb->selto_timer.expires = jiffies + HZ + 1; add_timer(&acb->selto_timer); } void selection_timeout_missed(unsigned long ptr) { unsigned long flags; struct AdapterCtlBlk *acb = (struct AdapterCtlBlk *)ptr; struct ScsiReqBlk *srb; dprintkl(KERN_DEBUG, "Chip forgot to produce SelTO IRQ!\n"); if (!acb->active_dcb || !acb->active_dcb->active_srb) { dprintkl(KERN_DEBUG, "... but no cmd pending? Oops!\n"); return; } DC395x_LOCK_IO(acb->scsi_host, flags); srb = acb->active_dcb->active_srb; disconnect(acb); DC395x_UNLOCK_IO(acb->scsi_host, flags); } #endif static u8 start_scsi(struct AdapterCtlBlk* acb, struct DeviceCtlBlk* dcb, struct ScsiReqBlk* srb) { u16 __maybe_unused s_stat2, return_code; u8 s_stat, scsicommand, i, identify_message; u8 *ptr; dprintkdbg(DBG_0, "start_scsi: (0x%p) <%02i-%i> srb=%p\n", dcb->target_id, dcb->target_lun, srb); srb->tag_number = TAG_NONE; /* acb->tag_max_num: had error read in eeprom */ s_stat = DC395x_read8(acb, TRM_S1040_SCSI_SIGNAL); s_stat2 = 0; s_stat2 = DC395x_read16(acb, TRM_S1040_SCSI_STATUS); #if 1 if (s_stat & 0x20 /* s_stat2 & 0x02000 */ ) { dprintkdbg(DBG_KG, "start_scsi: (0x%p) BUSY %02x %04x\n", s_stat, s_stat2); /* * Try anyway? * * We could, BUT: Sometimes the TRM_S1040 misses to produce a Selection * Timeout, a Disconnect or a Reselection IRQ, so we would be screwed! * (This is likely to be a bug in the hardware. Obviously, most people * only have one initiator per SCSI bus.) * Instead let this fail and have the timer make sure the command is * tried again after a short time */ /*selto_timer (acb); */ return 1; } #endif if (acb->active_dcb) { dprintkl(KERN_DEBUG, "start_scsi: (0x%p) Attempt to start a" "command while another command (0x%p) is active.", srb->cmd, acb->active_dcb->active_srb ? acb->active_dcb->active_srb->cmd : NULL); return 1; } if (DC395x_read16(acb, TRM_S1040_SCSI_STATUS) & SCSIINTERRUPT) { dprintkdbg(DBG_KG, "start_scsi: (0x%p) Failed (busy)\n", srb->cmd); return 1; } /* Allow starting of SCSI commands half a second before we allow the mid-level * to queue them again after a reset */ if (time_before(jiffies, acb->last_reset - HZ / 2)) { dprintkdbg(DBG_KG, "start_scsi: Refuse cmds (reset wait)\n"); return 1; } /* Flush FIFO */ clear_fifo(acb, "start_scsi"); DC395x_write8(acb, TRM_S1040_SCSI_HOSTID, acb->scsi_host->this_id); DC395x_write8(acb, TRM_S1040_SCSI_TARGETID, dcb->target_id); DC395x_write8(acb, TRM_S1040_SCSI_SYNC, dcb->sync_period); DC395x_write8(acb, TRM_S1040_SCSI_OFFSET, dcb->sync_offset); srb->scsi_phase = PH_BUS_FREE; /* initial phase */ identify_message = dcb->identify_msg; /*DC395x_TRM_write8(TRM_S1040_SCSI_IDMSG, identify_message); */ /* Don't allow disconnection for AUTO_REQSENSE: Cont.All.Cond.! */ if (srb->flag & AUTO_REQSENSE) identify_message &= 0xBF; if (((srb->cmd->cmnd[0] == INQUIRY) || (srb->cmd->cmnd[0] == REQUEST_SENSE) || (srb->flag & AUTO_REQSENSE)) && (((dcb->sync_mode & WIDE_NEGO_ENABLE) && !(dcb->sync_mode & WIDE_NEGO_DONE)) || ((dcb->sync_mode & SYNC_NEGO_ENABLE) && !(dcb->sync_mode & SYNC_NEGO_DONE))) && (dcb->target_lun == 0)) { srb->msgout_buf[0] = identify_message; srb->msg_count = 1; scsicommand = SCMD_SEL_ATNSTOP; srb->state = SRB_MSGOUT; #ifndef SYNC_FIRST if (dcb->sync_mode & WIDE_NEGO_ENABLE && dcb->inquiry7 & SCSI_INQ_WBUS16) { build_wdtr(acb, dcb, srb); goto no_cmd; } #endif if (dcb->sync_mode & SYNC_NEGO_ENABLE && dcb->inquiry7 & SCSI_INQ_SYNC) { build_sdtr(acb, dcb, srb); goto no_cmd; } if (dcb->sync_mode & WIDE_NEGO_ENABLE && dcb->inquiry7 & SCSI_INQ_WBUS16) { build_wdtr(acb, dcb, srb); goto no_cmd; } srb->msg_count = 0; } /* Send identify message */ DC395x_write8(acb, TRM_S1040_SCSI_FIFO, identify_message); scsicommand = SCMD_SEL_ATN; srb->state = SRB_START_; #ifndef DC395x_NO_TAGQ if ((dcb->sync_mode & EN_TAG_QUEUEING) && (identify_message & 0xC0)) { /* Send Tag message */ u32 tag_mask = 1; u8 tag_number = 0; while (tag_mask & dcb->tag_mask && tag_number < dcb->max_command) { tag_mask = tag_mask << 1; tag_number++; } if (tag_number >= dcb->max_command) { dprintkl(KERN_WARNING, "start_scsi: (0x%p) " "Out of tags target=<%02i-%i>)\n", srb->cmd, srb->cmd->device->id, (u8)srb->cmd->device->lun); srb->state = SRB_READY; DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_HWRESELECT); return 1; } /* Send Tag id */ DC395x_write8(acb, TRM_S1040_SCSI_FIFO, SIMPLE_QUEUE_TAG); DC395x_write8(acb, TRM_S1040_SCSI_FIFO, tag_number); dcb->tag_mask |= tag_mask; srb->tag_number = tag_number; scsicommand = SCMD_SEL_ATN3; srb->state = SRB_START_; } #endif /*polling:*/ /* Send CDB ..command block ......... */ dprintkdbg(DBG_KG, "start_scsi: (0x%p) <%02i-%i> cmnd=0x%02x tag=%i\n", srb->cmd, srb->cmd->device->id, (u8)srb->cmd->device->lun, srb->cmd->cmnd[0], srb->tag_number); if (srb->flag & AUTO_REQSENSE) { DC395x_write8(acb, TRM_S1040_SCSI_FIFO, REQUEST_SENSE); DC395x_write8(acb, TRM_S1040_SCSI_FIFO, (dcb->target_lun << 5)); DC395x_write8(acb, TRM_S1040_SCSI_FIFO, 0); DC395x_write8(acb, TRM_S1040_SCSI_FIFO, 0); DC395x_write8(acb, TRM_S1040_SCSI_FIFO, SCSI_SENSE_BUFFERSIZE); DC395x_write8(acb, TRM_S1040_SCSI_FIFO, 0); } else { ptr = (u8 *)srb->cmd->cmnd; for (i = 0; i < srb->cmd->cmd_len; i++) DC395x_write8(acb, TRM_S1040_SCSI_FIFO, *ptr++); } no_cmd: DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_HWRESELECT | DO_DATALATCH); if (DC395x_read16(acb, TRM_S1040_SCSI_STATUS) & SCSIINTERRUPT) { /* * If start_scsi return 1: * we caught an interrupt (must be reset or reselection ... ) * : Let's process it first! */ dprintkdbg(DBG_0, "start_scsi: (0x%p) <%02i-%i> Failed - busy\n", srb->cmd, dcb->target_id, dcb->target_lun); srb->state = SRB_READY; free_tag(dcb, srb); srb->msg_count = 0; return_code = 1; /* This IRQ should NOT get lost, as we did not acknowledge it */ } else { /* * If start_scsi returns 0: * we know that the SCSI processor is free */ srb->scsi_phase = PH_BUS_FREE; /* initial phase */ dcb->active_srb = srb; acb->active_dcb = dcb; return_code = 0; /* it's important for atn stop */ DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH | DO_HWRESELECT); /* SCSI command */ DC395x_write8(acb, TRM_S1040_SCSI_COMMAND, scsicommand); } return return_code; } #define DC395x_ENABLE_MSGOUT \ DC395x_write16 (acb, TRM_S1040_SCSI_CONTROL, DO_SETATN); \ srb->state |= SRB_MSGOUT /* abort command */ static inline void enable_msgout_abort(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb) { srb->msgout_buf[0] = ABORT; srb->msg_count = 1; DC395x_ENABLE_MSGOUT; srb->state &= ~SRB_MSGIN; srb->state |= SRB_MSGOUT; } /** * dc395x_handle_interrupt - Handle an interrupt that has been confirmed to * have been triggered for this card. * * @acb: a pointer to the adpter control block * @scsi_status: the status return when we checked the card **/ static void dc395x_handle_interrupt(struct AdapterCtlBlk *acb, u16 scsi_status) { struct DeviceCtlBlk *dcb; struct ScsiReqBlk *srb; u16 phase; u8 scsi_intstatus; unsigned long flags; void (*dc395x_statev)(struct AdapterCtlBlk *, struct ScsiReqBlk *, u16 *); DC395x_LOCK_IO(acb->scsi_host, flags); /* This acknowledges the IRQ */ scsi_intstatus = DC395x_read8(acb, TRM_S1040_SCSI_INTSTATUS); if ((scsi_status & 0x2007) == 0x2002) dprintkl(KERN_DEBUG, "COP after COP completed? %04x\n", scsi_status); if (debug_enabled(DBG_KG)) { if (scsi_intstatus & INT_SELTIMEOUT) dprintkdbg(DBG_KG, "handle_interrupt: Selection timeout\n"); } /*dprintkl(KERN_DEBUG, "handle_interrupt: intstatus = 0x%02x ", scsi_intstatus); */ if (timer_pending(&acb->selto_timer)) del_timer(&acb->selto_timer); if (scsi_intstatus & (INT_SELTIMEOUT | INT_DISCONNECT)) { disconnect(acb); /* bus free interrupt */ goto out_unlock; } if (scsi_intstatus & INT_RESELECTED) { reselect(acb); goto out_unlock; } if (scsi_intstatus & INT_SELECT) { dprintkl(KERN_INFO, "Host does not support target mode!\n"); goto out_unlock; } if (scsi_intstatus & INT_SCSIRESET) { scsi_reset_detect(acb); goto out_unlock; } if (scsi_intstatus & (INT_BUSSERVICE | INT_CMDDONE)) { dcb = acb->active_dcb; if (!dcb) { dprintkl(KERN_DEBUG, "Oops: BusService (%04x %02x) w/o ActiveDCB!\n", scsi_status, scsi_intstatus); goto out_unlock; } srb = dcb->active_srb; if (dcb->flag & ABORT_DEV_) { dprintkdbg(DBG_0, "MsgOut Abort Device.....\n"); enable_msgout_abort(acb, srb); } /* software sequential machine */ phase = (u16)srb->scsi_phase; /* * 62037 or 62137 * call dc395x_scsi_phase0[]... "phase entry" * handle every phase before start transfer */ /* data_out_phase0, phase:0 */ /* data_in_phase0, phase:1 */ /* command_phase0, phase:2 */ /* status_phase0, phase:3 */ /* nop0, phase:4 PH_BUS_FREE .. initial phase */ /* nop0, phase:5 PH_BUS_FREE .. initial phase */ /* msgout_phase0, phase:6 */ /* msgin_phase0, phase:7 */ dc395x_statev = dc395x_scsi_phase0[phase]; dc395x_statev(acb, srb, &scsi_status); /* * if there were any exception occurred scsi_status * will be modify to bus free phase new scsi_status * transfer out from ... previous dc395x_statev */ srb->scsi_phase = scsi_status & PHASEMASK; phase = (u16)scsi_status & PHASEMASK; /* * call dc395x_scsi_phase1[]... "phase entry" handle * every phase to do transfer */ /* data_out_phase1, phase:0 */ /* data_in_phase1, phase:1 */ /* command_phase1, phase:2 */ /* status_phase1, phase:3 */ /* nop1, phase:4 PH_BUS_FREE .. initial phase */ /* nop1, phase:5 PH_BUS_FREE .. initial phase */ /* msgout_phase1, phase:6 */ /* msgin_phase1, phase:7 */ dc395x_statev = dc395x_scsi_phase1[phase]; dc395x_statev(acb, srb, &scsi_status); } out_unlock: DC395x_UNLOCK_IO(acb->scsi_host, flags); } static irqreturn_t dc395x_interrupt(int irq, void *dev_id) { struct AdapterCtlBlk *acb = dev_id; u16 scsi_status; u8 dma_status; irqreturn_t handled = IRQ_NONE; /* * Check for pending interrupt */ scsi_status = DC395x_read16(acb, TRM_S1040_SCSI_STATUS); dma_status = DC395x_read8(acb, TRM_S1040_DMA_STATUS); if (scsi_status & SCSIINTERRUPT) { /* interrupt pending - let's process it! */ dc395x_handle_interrupt(acb, scsi_status); handled = IRQ_HANDLED; } else if (dma_status & 0x20) { /* Error from the DMA engine */ dprintkl(KERN_INFO, "Interrupt from DMA engine: 0x%02x!\n", dma_status); #if 0 dprintkl(KERN_INFO, "This means DMA error! Try to handle ...\n"); if (acb->active_dcb) { acb->active_dcb-> flag |= ABORT_DEV_; if (acb->active_dcb->active_srb) enable_msgout_abort(acb, acb->active_dcb->active_srb); } DC395x_write8(acb, TRM_S1040_DMA_CONTROL, ABORTXFER | CLRXFIFO); #else dprintkl(KERN_INFO, "Ignoring DMA error (probably a bad thing) ...\n"); acb = NULL; #endif handled = IRQ_HANDLED; } return handled; } static void msgout_phase0(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status) { dprintkdbg(DBG_0, "msgout_phase0: (0x%p)\n", srb->cmd); if (srb->state & (SRB_UNEXPECT_RESEL + SRB_ABORT_SENT)) *pscsi_status = PH_BUS_FREE; /*.. initial phase */ DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); /* it's important for atn stop */ srb->state &= ~SRB_MSGOUT; } static void msgout_phase1(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status) { u16 i; u8 *ptr; dprintkdbg(DBG_0, "msgout_phase1: (0x%p)\n", srb->cmd); clear_fifo(acb, "msgout_phase1"); if (!(srb->state & SRB_MSGOUT)) { srb->state |= SRB_MSGOUT; dprintkl(KERN_DEBUG, "msgout_phase1: (0x%p) Phase unexpected\n", srb->cmd); /* So what ? */ } if (!srb->msg_count) { dprintkdbg(DBG_0, "msgout_phase1: (0x%p) NOP msg\n", srb->cmd); DC395x_write8(acb, TRM_S1040_SCSI_FIFO, NOP); DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); /* it's important for atn stop */ DC395x_write8(acb, TRM_S1040_SCSI_COMMAND, SCMD_FIFO_OUT); return; } ptr = (u8 *)srb->msgout_buf; for (i = 0; i < srb->msg_count; i++) DC395x_write8(acb, TRM_S1040_SCSI_FIFO, *ptr++); srb->msg_count = 0; if (srb->msgout_buf[0] == ABORT_TASK_SET) srb->state = SRB_ABORT_SENT; DC395x_write8(acb, TRM_S1040_SCSI_COMMAND, SCMD_FIFO_OUT); } static void command_phase0(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status) { dprintkdbg(DBG_0, "command_phase0: (0x%p)\n", srb->cmd); DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); } static void command_phase1(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status) { struct DeviceCtlBlk *dcb; u8 *ptr; u16 i; dprintkdbg(DBG_0, "command_phase1: (0x%p)\n", srb->cmd); clear_fifo(acb, "command_phase1"); DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_CLRATN); if (!(srb->flag & AUTO_REQSENSE)) { ptr = (u8 *)srb->cmd->cmnd; for (i = 0; i < srb->cmd->cmd_len; i++) { DC395x_write8(acb, TRM_S1040_SCSI_FIFO, *ptr); ptr++; } } else { DC395x_write8(acb, TRM_S1040_SCSI_FIFO, REQUEST_SENSE); dcb = acb->active_dcb; /* target id */ DC395x_write8(acb, TRM_S1040_SCSI_FIFO, (dcb->target_lun << 5)); DC395x_write8(acb, TRM_S1040_SCSI_FIFO, 0); DC395x_write8(acb, TRM_S1040_SCSI_FIFO, 0); DC395x_write8(acb, TRM_S1040_SCSI_FIFO, SCSI_SENSE_BUFFERSIZE); DC395x_write8(acb, TRM_S1040_SCSI_FIFO, 0); } srb->state |= SRB_COMMAND; /* it's important for atn stop */ DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); /* SCSI command */ DC395x_write8(acb, TRM_S1040_SCSI_COMMAND, SCMD_FIFO_OUT); } /* * Verify that the remaining space in the hw sg lists is the same as * the count of remaining bytes in srb->total_xfer_length */ static void sg_verify_length(struct ScsiReqBlk *srb) { if (debug_enabled(DBG_SG)) { unsigned len = 0; unsigned idx = srb->sg_index; struct SGentry *psge = srb->segment_x + idx; for (; idx < srb->sg_count; psge++, idx++) len += psge->length; if (len != srb->total_xfer_length) dprintkdbg(DBG_SG, "Inconsistent SRB S/G lengths (Tot=%i, Count=%i) !!\n", srb->total_xfer_length, len); } } /* * Compute the next Scatter Gather list index and adjust its length * and address if necessary */ static void sg_update_list(struct ScsiReqBlk *srb, u32 left) { u8 idx; u32 xferred = srb->total_xfer_length - left; /* bytes transferred */ struct SGentry *psge = srb->segment_x + srb->sg_index; dprintkdbg(DBG_0, "sg_update_list: Transferred %i of %i bytes, %i remain\n", xferred, srb->total_xfer_length, left); if (xferred == 0) { /* nothing to update since we did not transfer any data */ return; } sg_verify_length(srb); srb->total_xfer_length = left; /* update remaining count */ for (idx = srb->sg_index; idx < srb->sg_count; idx++) { if (xferred >= psge->length) { /* Complete SG entries done */ xferred -= psge->length; } else { /* Partial SG entry done */ dma_sync_single_for_cpu(&srb->dcb->acb->dev->dev, srb->sg_bus_addr, SEGMENTX_LEN, DMA_TO_DEVICE); psge->length -= xferred; psge->address += xferred; srb->sg_index = idx; dma_sync_single_for_device(&srb->dcb->acb->dev->dev, srb->sg_bus_addr, SEGMENTX_LEN, DMA_TO_DEVICE); break; } psge++; } sg_verify_length(srb); } /* * We have transferred a single byte (PIO mode?) and need to update * the count of bytes remaining (total_xfer_length) and update the sg * entry to either point to next byte in the current sg entry, or of * already at the end to point to the start of the next sg entry */ static void sg_subtract_one(struct ScsiReqBlk *srb) { sg_update_list(srb, srb->total_xfer_length - 1); } /* * cleanup_after_transfer * * Makes sure, DMA and SCSI engine are empty, after the transfer has finished * KG: Currently called from StatusPhase1 () * Should probably also be called from other places * Best might be to call it in DataXXPhase0, if new phase will differ */ static void cleanup_after_transfer(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb) { /*DC395x_write8 (TRM_S1040_DMA_STATUS, FORCEDMACOMP); */ if (DC395x_read16(acb, TRM_S1040_DMA_COMMAND) & 0x0001) { /* read */ if (!(DC395x_read8(acb, TRM_S1040_SCSI_FIFOCNT) & 0x40)) clear_fifo(acb, "cleanup/in"); if (!(DC395x_read8(acb, TRM_S1040_DMA_FIFOSTAT) & 0x80)) DC395x_write8(acb, TRM_S1040_DMA_CONTROL, CLRXFIFO); } else { /* write */ if (!(DC395x_read8(acb, TRM_S1040_DMA_FIFOSTAT) & 0x80)) DC395x_write8(acb, TRM_S1040_DMA_CONTROL, CLRXFIFO); if (!(DC395x_read8(acb, TRM_S1040_SCSI_FIFOCNT) & 0x40)) clear_fifo(acb, "cleanup/out"); } DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); } /* * Those no of bytes will be transferred w/ PIO through the SCSI FIFO * Seems to be needed for unknown reasons; could be a hardware bug :-( */ #define DC395x_LASTPIO 4 static void data_out_phase0(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status) { struct DeviceCtlBlk *dcb = srb->dcb; u16 scsi_status = *pscsi_status; u32 d_left_counter = 0; dprintkdbg(DBG_0, "data_out_phase0: (0x%p) <%02i-%i>\n", srb->cmd, srb->cmd->device->id, (u8)srb->cmd->device->lun); /* * KG: We need to drain the buffers before we draw any conclusions! * This means telling the DMA to push the rest into SCSI, telling * SCSI to push the rest to the bus. * However, the device might have been the one to stop us (phase * change), and the data in transit just needs to be accounted so * it can be retransmitted.) */ /* * KG: Stop DMA engine pushing more data into the SCSI FIFO * If we need more data, the DMA SG list will be freshly set up, anyway */ dprintkdbg(DBG_PIO, "data_out_phase0: " "DMA{fifocnt=0x%02x fifostat=0x%02x} " "SCSI{fifocnt=0x%02x cnt=0x%06x status=0x%04x} total=0x%06x\n", DC395x_read8(acb, TRM_S1040_DMA_FIFOCNT), DC395x_read8(acb, TRM_S1040_DMA_FIFOSTAT), DC395x_read8(acb, TRM_S1040_SCSI_FIFOCNT), DC395x_read32(acb, TRM_S1040_SCSI_COUNTER), scsi_status, srb->total_xfer_length); DC395x_write8(acb, TRM_S1040_DMA_CONTROL, STOPDMAXFER | CLRXFIFO); if (!(srb->state & SRB_XFERPAD)) { if (scsi_status & PARITYERROR) srb->status |= PARITY_ERROR; /* * KG: Right, we can't just rely on the SCSI_COUNTER, because this * is the no of bytes it got from the DMA engine not the no it * transferred successfully to the device. (And the difference could * be as much as the FIFO size, I guess ...) */ if (!(scsi_status & SCSIXFERDONE)) { /* * when data transfer from DMA FIFO to SCSI FIFO * if there was some data left in SCSI FIFO */ d_left_counter = (u32)(DC395x_read8(acb, TRM_S1040_SCSI_FIFOCNT) & 0x1F); if (dcb->sync_period & WIDE_SYNC) d_left_counter <<= 1; dprintkdbg(DBG_KG, "data_out_phase0: FIFO contains %i %s\n" "SCSI{fifocnt=0x%02x cnt=0x%08x} " "DMA{fifocnt=0x%04x cnt=0x%02x ctr=0x%08x}\n", DC395x_read8(acb, TRM_S1040_SCSI_FIFOCNT), (dcb->sync_period & WIDE_SYNC) ? "words" : "bytes", DC395x_read8(acb, TRM_S1040_SCSI_FIFOCNT), DC395x_read32(acb, TRM_S1040_SCSI_COUNTER), DC395x_read8(acb, TRM_S1040_DMA_FIFOCNT), DC395x_read8(acb, TRM_S1040_DMA_FIFOSTAT), DC395x_read32(acb, TRM_S1040_DMA_CXCNT)); } /* * calculate all the residue data that not yet tranfered * SCSI transfer counter + left in SCSI FIFO data * * .....TRM_S1040_SCSI_COUNTER (24bits) * The counter always decrement by one for every SCSI byte transfer. * .....TRM_S1040_SCSI_FIFOCNT ( 5bits) * The counter is SCSI FIFO offset counter (in units of bytes or! words) */ if (srb->total_xfer_length > DC395x_LASTPIO) d_left_counter += DC395x_read32(acb, TRM_S1040_SCSI_COUNTER); /* Is this a good idea? */ /*clear_fifo(acb, "DOP1"); */ /* KG: What is this supposed to be useful for? WIDE padding stuff? */ if (d_left_counter == 1 && dcb->sync_period & WIDE_SYNC && scsi_bufflen(srb->cmd) % 2) { d_left_counter = 0; dprintkl(KERN_INFO, "data_out_phase0: Discard 1 byte (0x%02x)\n", scsi_status); } /* * KG: Oops again. Same thinko as above: The SCSI might have been * faster than the DMA engine, so that it ran out of data. * In that case, we have to do just nothing! * But: Why the interrupt: No phase change. No XFERCNT_2_ZERO. Or? */ /* * KG: This is nonsense: We have been WRITING data to the bus * If the SCSI engine has no bytes left, how should the DMA engine? */ if (d_left_counter == 0) { srb->total_xfer_length = 0; } else { /* * if transfer not yet complete * there were some data residue in SCSI FIFO or * SCSI transfer counter not empty */ long oldxferred = srb->total_xfer_length - d_left_counter; const int diff = (dcb->sync_period & WIDE_SYNC) ? 2 : 1; sg_update_list(srb, d_left_counter); /* KG: Most ugly hack! Apparently, this works around a chip bug */ if ((srb->segment_x[srb->sg_index].length == diff && scsi_sg_count(srb->cmd)) || ((oldxferred & ~PAGE_MASK) == (PAGE_SIZE - diff)) ) { dprintkl(KERN_INFO, "data_out_phase0: " "Work around chip bug (%i)?\n", diff); d_left_counter = srb->total_xfer_length - diff; sg_update_list(srb, d_left_counter); /*srb->total_xfer_length -= diff; */ /*srb->virt_addr += diff; */ /*if (srb->cmd->use_sg) */ /* srb->sg_index++; */ } } } if ((*pscsi_status & PHASEMASK) != PH_DATA_OUT) { cleanup_after_transfer(acb, srb); } } static void data_out_phase1(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status) { dprintkdbg(DBG_0, "data_out_phase1: (0x%p) <%02i-%i>\n", srb->cmd, srb->cmd->device->id, (u8)srb->cmd->device->lun); clear_fifo(acb, "data_out_phase1"); /* do prepare before transfer when data out phase */ data_io_transfer(acb, srb, XFERDATAOUT); } static void data_in_phase0(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status) { u16 scsi_status = *pscsi_status; dprintkdbg(DBG_0, "data_in_phase0: (0x%p) <%02i-%i>\n", srb->cmd, srb->cmd->device->id, (u8)srb->cmd->device->lun); /* * KG: DataIn is much more tricky than DataOut. When the device is finished * and switches to another phase, the SCSI engine should be finished too. * But: There might still be bytes left in its FIFO to be fetched by the DMA * engine and transferred to memory. * We should wait for the FIFOs to be emptied by that (is there any way to * enforce this?) and then stop the DMA engine, because it might think, that * there are more bytes to follow. Yes, the device might disconnect prior to * having all bytes transferred! * Also we should make sure that all data from the DMA engine buffer's really * made its way to the system memory! Some documentation on this would not * seem to be a bad idea, actually. */ if (!(srb->state & SRB_XFERPAD)) { u32 d_left_counter; unsigned int sc, fc; if (scsi_status & PARITYERROR) { dprintkl(KERN_INFO, "data_in_phase0: (0x%p) " "Parity Error\n", srb->cmd); srb->status |= PARITY_ERROR; } /* * KG: We should wait for the DMA FIFO to be empty ... * but: it would be better to wait first for the SCSI FIFO and then the * the DMA FIFO to become empty? How do we know, that the device not already * sent data to the FIFO in a MsgIn phase, eg.? */ if (!(DC395x_read8(acb, TRM_S1040_DMA_FIFOSTAT) & 0x80)) { #if 0 int ctr = 6000000; dprintkl(KERN_DEBUG, "DIP0: Wait for DMA FIFO to flush ...\n"); /*DC395x_write8 (TRM_S1040_DMA_CONTROL, STOPDMAXFER); */ /*DC395x_write32 (TRM_S1040_SCSI_COUNTER, 7); */ /*DC395x_write8 (TRM_S1040_SCSI_COMMAND, SCMD_DMA_IN); */ while (! (DC395x_read16(acb, TRM_S1040_DMA_FIFOSTAT) & 0x80) && --ctr); if (ctr < 6000000 - 1) dprintkl(KERN_DEBUG "DIP0: Had to wait for DMA ...\n"); if (!ctr) dprintkl(KERN_ERR, "Deadlock in DIP0 waiting for DMA FIFO empty!!\n"); /*DC395x_write32 (TRM_S1040_SCSI_COUNTER, 0); */ #endif dprintkdbg(DBG_KG, "data_in_phase0: " "DMA{fifocnt=0x%02x fifostat=0x%02x}\n", DC395x_read8(acb, TRM_S1040_DMA_FIFOCNT), DC395x_read8(acb, TRM_S1040_DMA_FIFOSTAT)); } /* Now: Check remainig data: The SCSI counters should tell us ... */ sc = DC395x_read32(acb, TRM_S1040_SCSI_COUNTER); fc = DC395x_read8(acb, TRM_S1040_SCSI_FIFOCNT); d_left_counter = sc + ((fc & 0x1f) << ((srb->dcb->sync_period & WIDE_SYNC) ? 1 : 0)); dprintkdbg(DBG_KG, "data_in_phase0: " "SCSI{fifocnt=0x%02x%s ctr=0x%08x} " "DMA{fifocnt=0x%02x fifostat=0x%02x ctr=0x%08x} " "Remain{totxfer=%i scsi_fifo+ctr=%i}\n", fc, (srb->dcb->sync_period & WIDE_SYNC) ? "words" : "bytes", sc, fc, DC395x_read8(acb, TRM_S1040_DMA_FIFOSTAT), DC395x_read32(acb, TRM_S1040_DMA_CXCNT), srb->total_xfer_length, d_left_counter); #if DC395x_LASTPIO /* KG: Less than or equal to 4 bytes can not be transferred via DMA, it seems. */ if (d_left_counter && srb->total_xfer_length <= DC395x_LASTPIO) { size_t left_io = srb->total_xfer_length; /*u32 addr = (srb->segment_x[srb->sg_index].address); */ /*sg_update_list (srb, d_left_counter); */ dprintkdbg(DBG_PIO, "data_in_phase0: PIO (%i %s) " "for remaining %i bytes:", fc & 0x1f, (srb->dcb->sync_period & WIDE_SYNC) ? "words" : "bytes", srb->total_xfer_length); if (srb->dcb->sync_period & WIDE_SYNC) DC395x_write8(acb, TRM_S1040_SCSI_CONFIG2, CFG2_WIDEFIFO); while (left_io) { unsigned char *virt, *base = NULL; unsigned long flags = 0; size_t len = left_io; size_t offset = srb->request_length - left_io; local_irq_save(flags); /* Assumption: it's inside one page as it's at most 4 bytes and I just assume it's on a 4-byte boundary */ base = scsi_kmap_atomic_sg(scsi_sglist(srb->cmd), srb->sg_count, &offset, &len); virt = base + offset; left_io -= len; while (len) { u8 byte; byte = DC395x_read8(acb, TRM_S1040_SCSI_FIFO); *virt++ = byte; if (debug_enabled(DBG_PIO)) printk(" %02x", byte); d_left_counter--; sg_subtract_one(srb); len--; fc = DC395x_read8(acb, TRM_S1040_SCSI_FIFOCNT); if (fc == 0x40) { left_io = 0; break; } } WARN_ON((fc != 0x40) == !d_left_counter); if (fc == 0x40 && (srb->dcb->sync_period & WIDE_SYNC)) { /* Read the last byte ... */ if (srb->total_xfer_length > 0) { u8 byte = DC395x_read8(acb, TRM_S1040_SCSI_FIFO); *virt++ = byte; srb->total_xfer_length--; if (debug_enabled(DBG_PIO)) printk(" %02x", byte); } DC395x_write8(acb, TRM_S1040_SCSI_CONFIG2, 0); } scsi_kunmap_atomic_sg(base); local_irq_restore(flags); } /*printk(" %08x", *(u32*)(bus_to_virt (addr))); */ /*srb->total_xfer_length = 0; */ if (debug_enabled(DBG_PIO)) printk("\n"); } #endif /* DC395x_LASTPIO */ #if 0 /* * KG: This was in DATAOUT. Does it also belong here? * Nobody seems to know what counter and fifo_cnt count exactly ... */ if (!(scsi_status & SCSIXFERDONE)) { /* * when data transfer from DMA FIFO to SCSI FIFO * if there was some data left in SCSI FIFO */ d_left_counter = (u32)(DC395x_read8(acb, TRM_S1040_SCSI_FIFOCNT) & 0x1F); if (srb->dcb->sync_period & WIDE_SYNC) d_left_counter <<= 1; /* * if WIDE scsi SCSI FIFOCNT unit is word !!! * so need to *= 2 * KG: Seems to be correct ... */ } #endif /* KG: This should not be needed any more! */ if (d_left_counter == 0 || (scsi_status & SCSIXFERCNT_2_ZERO)) { #if 0 int ctr = 6000000; u8 TempDMAstatus; do { TempDMAstatus = DC395x_read8(acb, TRM_S1040_DMA_STATUS); } while (!(TempDMAstatus & DMAXFERCOMP) && --ctr); if (!ctr) dprintkl(KERN_ERR, "Deadlock in DataInPhase0 waiting for DMA!!\n"); srb->total_xfer_length = 0; #endif srb->total_xfer_length = d_left_counter; } else { /* phase changed */ /* * parsing the case: * when a transfer not yet complete * but be disconnected by target * if transfer not yet complete * there were some data residue in SCSI FIFO or * SCSI transfer counter not empty */ sg_update_list(srb, d_left_counter); } } /* KG: The target may decide to disconnect: Empty FIFO before! */ if ((*pscsi_status & PHASEMASK) != PH_DATA_IN) { cleanup_after_transfer(acb, srb); } } static void data_in_phase1(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status) { dprintkdbg(DBG_0, "data_in_phase1: (0x%p) <%02i-%i>\n", srb->cmd, srb->cmd->device->id, (u8)srb->cmd->device->lun); data_io_transfer(acb, srb, XFERDATAIN); } static void data_io_transfer(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 io_dir) { struct DeviceCtlBlk *dcb = srb->dcb; u8 bval; dprintkdbg(DBG_0, "data_io_transfer: (0x%p) <%02i-%i> %c len=%i, sg=(%i/%i)\n", srb->cmd, srb->cmd->device->id, (u8)srb->cmd->device->lun, ((io_dir & DMACMD_DIR) ? 'r' : 'w'), srb->total_xfer_length, srb->sg_index, srb->sg_count); if (srb == acb->tmp_srb) dprintkl(KERN_ERR, "data_io_transfer: Using tmp_srb!\n"); if (srb->sg_index >= srb->sg_count) { /* can't happen? out of bounds error */ return; } if (srb->total_xfer_length > DC395x_LASTPIO) { u8 dma_status = DC395x_read8(acb, TRM_S1040_DMA_STATUS); /* * KG: What should we do: Use SCSI Cmd 0x90/0x92? * Maybe, even ABORTXFER would be appropriate */ if (dma_status & XFERPENDING) { dprintkl(KERN_DEBUG, "data_io_transfer: Xfer pending! " "Expect trouble!\n"); dump_register_info(acb, dcb, srb); DC395x_write8(acb, TRM_S1040_DMA_CONTROL, CLRXFIFO); } /* clear_fifo(acb, "IO"); */ /* * load what physical address of Scatter/Gather list table * want to be transfer */ srb->state |= SRB_DATA_XFER; DC395x_write32(acb, TRM_S1040_DMA_XHIGHADDR, 0); if (scsi_sg_count(srb->cmd)) { /* with S/G */ io_dir |= DMACMD_SG; DC395x_write32(acb, TRM_S1040_DMA_XLOWADDR, srb->sg_bus_addr + sizeof(struct SGentry) * srb->sg_index); /* load how many bytes in the sg list table */ DC395x_write32(acb, TRM_S1040_DMA_XCNT, ((u32)(srb->sg_count - srb->sg_index) << 3)); } else { /* without S/G */ io_dir &= ~DMACMD_SG; DC395x_write32(acb, TRM_S1040_DMA_XLOWADDR, srb->segment_x[0].address); DC395x_write32(acb, TRM_S1040_DMA_XCNT, srb->segment_x[0].length); } /* load total transfer length (24bits) max value 16Mbyte */ DC395x_write32(acb, TRM_S1040_SCSI_COUNTER, srb->total_xfer_length); DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); /* it's important for atn stop */ if (io_dir & DMACMD_DIR) { /* read */ DC395x_write8(acb, TRM_S1040_SCSI_COMMAND, SCMD_DMA_IN); DC395x_write16(acb, TRM_S1040_DMA_COMMAND, io_dir); } else { DC395x_write16(acb, TRM_S1040_DMA_COMMAND, io_dir); DC395x_write8(acb, TRM_S1040_SCSI_COMMAND, SCMD_DMA_OUT); } } #if DC395x_LASTPIO else if (srb->total_xfer_length > 0) { /* The last four bytes: Do PIO */ /* * load what physical address of Scatter/Gather list table * want to be transfer */ srb->state |= SRB_DATA_XFER; /* load total transfer length (24bits) max value 16Mbyte */ DC395x_write32(acb, TRM_S1040_SCSI_COUNTER, srb->total_xfer_length); DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); /* it's important for atn stop */ if (io_dir & DMACMD_DIR) { /* read */ DC395x_write8(acb, TRM_S1040_SCSI_COMMAND, SCMD_FIFO_IN); } else { /* write */ int ln = srb->total_xfer_length; size_t left_io = srb->total_xfer_length; if (srb->dcb->sync_period & WIDE_SYNC) DC395x_write8(acb, TRM_S1040_SCSI_CONFIG2, CFG2_WIDEFIFO); while (left_io) { unsigned char *virt, *base = NULL; unsigned long flags = 0; size_t len = left_io; size_t offset = srb->request_length - left_io; local_irq_save(flags); /* Again, max 4 bytes */ base = scsi_kmap_atomic_sg(scsi_sglist(srb->cmd), srb->sg_count, &offset, &len); virt = base + offset; left_io -= len; while (len--) { if (debug_enabled(DBG_PIO)) printk(" %02x", *virt); DC395x_write8(acb, TRM_S1040_SCSI_FIFO, *virt++); sg_subtract_one(srb); } scsi_kunmap_atomic_sg(base); local_irq_restore(flags); } if (srb->dcb->sync_period & WIDE_SYNC) { if (ln % 2) { DC395x_write8(acb, TRM_S1040_SCSI_FIFO, 0); if (debug_enabled(DBG_PIO)) printk(" |00"); } DC395x_write8(acb, TRM_S1040_SCSI_CONFIG2, 0); } /*DC395x_write32(acb, TRM_S1040_SCSI_COUNTER, ln); */ if (debug_enabled(DBG_PIO)) printk("\n"); DC395x_write8(acb, TRM_S1040_SCSI_COMMAND, SCMD_FIFO_OUT); } } #endif /* DC395x_LASTPIO */ else { /* xfer pad */ if (srb->sg_count) { srb->adapter_status = H_OVER_UNDER_RUN; srb->status |= OVER_RUN; } /* * KG: despite the fact that we are using 16 bits I/O ops * the SCSI FIFO is only 8 bits according to the docs * (we can set bit 1 in 0x8f to serialize FIFO access ...) */ if (dcb->sync_period & WIDE_SYNC) { DC395x_write32(acb, TRM_S1040_SCSI_COUNTER, 2); DC395x_write8(acb, TRM_S1040_SCSI_CONFIG2, CFG2_WIDEFIFO); if (io_dir & DMACMD_DIR) { DC395x_read8(acb, TRM_S1040_SCSI_FIFO); DC395x_read8(acb, TRM_S1040_SCSI_FIFO); } else { /* Danger, Robinson: If you find KGs * scattered over the wide disk, the driver * or chip is to blame :-( */ DC395x_write8(acb, TRM_S1040_SCSI_FIFO, 'K'); DC395x_write8(acb, TRM_S1040_SCSI_FIFO, 'G'); } DC395x_write8(acb, TRM_S1040_SCSI_CONFIG2, 0); } else { DC395x_write32(acb, TRM_S1040_SCSI_COUNTER, 1); /* Danger, Robinson: If you find a collection of Ks on your disk * something broke :-( */ if (io_dir & DMACMD_DIR) DC395x_read8(acb, TRM_S1040_SCSI_FIFO); else DC395x_write8(acb, TRM_S1040_SCSI_FIFO, 'K'); } srb->state |= SRB_XFERPAD; DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); /* it's important for atn stop */ /* SCSI command */ bval = (io_dir & DMACMD_DIR) ? SCMD_FIFO_IN : SCMD_FIFO_OUT; DC395x_write8(acb, TRM_S1040_SCSI_COMMAND, bval); } } static void status_phase0(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status) { dprintkdbg(DBG_0, "status_phase0: (0x%p) <%02i-%i>\n", srb->cmd, srb->cmd->device->id, (u8)srb->cmd->device->lun); srb->target_status = DC395x_read8(acb, TRM_S1040_SCSI_FIFO); srb->end_message = DC395x_read8(acb, TRM_S1040_SCSI_FIFO); /* get message */ srb->state = SRB_COMPLETED; *pscsi_status = PH_BUS_FREE; /*.. initial phase */ DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); /* it's important for atn stop */ DC395x_write8(acb, TRM_S1040_SCSI_COMMAND, SCMD_MSGACCEPT); } static void status_phase1(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status) { dprintkdbg(DBG_0, "status_phase1: (0x%p) <%02i-%i>\n", srb->cmd, srb->cmd->device->id, (u8)srb->cmd->device->lun); srb->state = SRB_STATUS; DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); /* it's important for atn stop */ DC395x_write8(acb, TRM_S1040_SCSI_COMMAND, SCMD_COMP); } /* Check if the message is complete */ static inline u8 msgin_completed(u8 * msgbuf, u32 len) { if (*msgbuf == EXTENDED_MESSAGE) { if (len < 2) return 0; if (len < msgbuf[1] + 2) return 0; } else if (*msgbuf >= 0x20 && *msgbuf <= 0x2f) /* two byte messages */ if (len < 2) return 0; return 1; } /* reject_msg */ static inline void msgin_reject(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb) { srb->msgout_buf[0] = MESSAGE_REJECT; srb->msg_count = 1; DC395x_ENABLE_MSGOUT; srb->state &= ~SRB_MSGIN; srb->state |= SRB_MSGOUT; dprintkl(KERN_INFO, "msgin_reject: 0x%02x <%02i-%i>\n", srb->msgin_buf[0], srb->dcb->target_id, srb->dcb->target_lun); } static struct ScsiReqBlk *msgin_qtag(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb, u8 tag) { struct ScsiReqBlk *srb = NULL; struct ScsiReqBlk *i; dprintkdbg(DBG_0, "msgin_qtag: (0x%p) tag=%i srb=%p\n", srb->cmd, tag, srb); if (!(dcb->tag_mask & (1 << tag))) dprintkl(KERN_DEBUG, "msgin_qtag: tag_mask=0x%08x does not reserve tag %i!\n", dcb->tag_mask, tag); if (list_empty(&dcb->srb_going_list)) goto mingx0; list_for_each_entry(i, &dcb->srb_going_list, list) { if (i->tag_number == tag) { srb = i; break; } } if (!srb) goto mingx0; dprintkdbg(DBG_0, "msgin_qtag: (0x%p) <%02i-%i>\n", srb->cmd, srb->dcb->target_id, srb->dcb->target_lun); if (dcb->flag & ABORT_DEV_) { /*srb->state = SRB_ABORT_SENT; */ enable_msgout_abort(acb, srb); } if (!(srb->state & SRB_DISCONNECT)) goto mingx0; memcpy(srb->msgin_buf, dcb->active_srb->msgin_buf, acb->msg_len); srb->state |= dcb->active_srb->state; srb->state |= SRB_DATA_XFER; dcb->active_srb = srb; /* How can we make the DORS happy? */ return srb; mingx0: srb = acb->tmp_srb; srb->state = SRB_UNEXPECT_RESEL; dcb->active_srb = srb; srb->msgout_buf[0] = ABORT_TASK; srb->msg_count = 1; DC395x_ENABLE_MSGOUT; dprintkl(KERN_DEBUG, "msgin_qtag: Unknown tag %i - abort\n", tag); return srb; } static inline void reprogram_regs(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb) { DC395x_write8(acb, TRM_S1040_SCSI_TARGETID, dcb->target_id); DC395x_write8(acb, TRM_S1040_SCSI_SYNC, dcb->sync_period); DC395x_write8(acb, TRM_S1040_SCSI_OFFSET, dcb->sync_offset); set_xfer_rate(acb, dcb); } /* set async transfer mode */ static void msgin_set_async(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb) { struct DeviceCtlBlk *dcb = srb->dcb; dprintkl(KERN_DEBUG, "msgin_set_async: No sync transfers <%02i-%i>\n", dcb->target_id, dcb->target_lun); dcb->sync_mode &= ~(SYNC_NEGO_ENABLE); dcb->sync_mode |= SYNC_NEGO_DONE; /*dcb->sync_period &= 0; */ dcb->sync_offset = 0; dcb->min_nego_period = 200 >> 2; /* 200ns <=> 5 MHz */ srb->state &= ~SRB_DO_SYNC_NEGO; reprogram_regs(acb, dcb); if ((dcb->sync_mode & WIDE_NEGO_ENABLE) && !(dcb->sync_mode & WIDE_NEGO_DONE)) { build_wdtr(acb, dcb, srb); DC395x_ENABLE_MSGOUT; dprintkdbg(DBG_0, "msgin_set_async(rej): Try WDTR anyway\n"); } } /* set sync transfer mode */ static void msgin_set_sync(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb) { struct DeviceCtlBlk *dcb = srb->dcb; u8 bval; int fact; dprintkdbg(DBG_1, "msgin_set_sync: <%02i> Sync: %ins " "(%02i.%01i MHz) Offset %i\n", dcb->target_id, srb->msgin_buf[3] << 2, (250 / srb->msgin_buf[3]), ((250 % srb->msgin_buf[3]) * 10) / srb->msgin_buf[3], srb->msgin_buf[4]); if (srb->msgin_buf[4] > 15) srb->msgin_buf[4] = 15; if (!(dcb->dev_mode & NTC_DO_SYNC_NEGO)) dcb->sync_offset = 0; else if (dcb->sync_offset == 0) dcb->sync_offset = srb->msgin_buf[4]; if (srb->msgin_buf[4] > dcb->sync_offset) srb->msgin_buf[4] = dcb->sync_offset; else dcb->sync_offset = srb->msgin_buf[4]; bval = 0; while (bval < 7 && (srb->msgin_buf[3] > clock_period[bval] || dcb->min_nego_period > clock_period[bval])) bval++; if (srb->msgin_buf[3] < clock_period[bval]) dprintkl(KERN_INFO, "msgin_set_sync: Increase sync nego period to %ins\n", clock_period[bval] << 2); srb->msgin_buf[3] = clock_period[bval]; dcb->sync_period &= 0xf0; dcb->sync_period |= ALT_SYNC | bval; dcb->min_nego_period = srb->msgin_buf[3]; if (dcb->sync_period & WIDE_SYNC) fact = 500; else fact = 250; dprintkl(KERN_INFO, "Target %02i: %s Sync: %ins Offset %i (%02i.%01i MB/s)\n", dcb->target_id, (fact == 500) ? "Wide16" : "", dcb->min_nego_period << 2, dcb->sync_offset, (fact / dcb->min_nego_period), ((fact % dcb->min_nego_period) * 10 + dcb->min_nego_period / 2) / dcb->min_nego_period); if (!(srb->state & SRB_DO_SYNC_NEGO)) { /* Reply with corrected SDTR Message */ dprintkl(KERN_DEBUG, "msgin_set_sync: answer w/%ins %i\n", srb->msgin_buf[3] << 2, srb->msgin_buf[4]); memcpy(srb->msgout_buf, srb->msgin_buf, 5); srb->msg_count = 5; DC395x_ENABLE_MSGOUT; dcb->sync_mode |= SYNC_NEGO_DONE; } else { if ((dcb->sync_mode & WIDE_NEGO_ENABLE) && !(dcb->sync_mode & WIDE_NEGO_DONE)) { build_wdtr(acb, dcb, srb); DC395x_ENABLE_MSGOUT; dprintkdbg(DBG_0, "msgin_set_sync: Also try WDTR\n"); } } srb->state &= ~SRB_DO_SYNC_NEGO; dcb->sync_mode |= SYNC_NEGO_DONE | SYNC_NEGO_ENABLE; reprogram_regs(acb, dcb); } static inline void msgin_set_nowide(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb) { struct DeviceCtlBlk *dcb = srb->dcb; dprintkdbg(DBG_1, "msgin_set_nowide: <%02i>\n", dcb->target_id); dcb->sync_period &= ~WIDE_SYNC; dcb->sync_mode &= ~(WIDE_NEGO_ENABLE); dcb->sync_mode |= WIDE_NEGO_DONE; srb->state &= ~SRB_DO_WIDE_NEGO; reprogram_regs(acb, dcb); if ((dcb->sync_mode & SYNC_NEGO_ENABLE) && !(dcb->sync_mode & SYNC_NEGO_DONE)) { build_sdtr(acb, dcb, srb); DC395x_ENABLE_MSGOUT; dprintkdbg(DBG_0, "msgin_set_nowide: Rejected. Try SDTR anyway\n"); } } static void msgin_set_wide(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb) { struct DeviceCtlBlk *dcb = srb->dcb; u8 wide = (dcb->dev_mode & NTC_DO_WIDE_NEGO && acb->config & HCC_WIDE_CARD) ? 1 : 0; dprintkdbg(DBG_1, "msgin_set_wide: <%02i>\n", dcb->target_id); if (srb->msgin_buf[3] > wide) srb->msgin_buf[3] = wide; /* Completed */ if (!(srb->state & SRB_DO_WIDE_NEGO)) { dprintkl(KERN_DEBUG, "msgin_set_wide: Wide nego initiated <%02i>\n", dcb->target_id); memcpy(srb->msgout_buf, srb->msgin_buf, 4); srb->msg_count = 4; srb->state |= SRB_DO_WIDE_NEGO; DC395x_ENABLE_MSGOUT; } dcb->sync_mode |= (WIDE_NEGO_ENABLE | WIDE_NEGO_DONE); if (srb->msgin_buf[3] > 0) dcb->sync_period |= WIDE_SYNC; else dcb->sync_period &= ~WIDE_SYNC; srb->state &= ~SRB_DO_WIDE_NEGO; /*dcb->sync_mode &= ~(WIDE_NEGO_ENABLE+WIDE_NEGO_DONE); */ dprintkdbg(DBG_1, "msgin_set_wide: Wide (%i bit) negotiated <%02i>\n", (8 << srb->msgin_buf[3]), dcb->target_id); reprogram_regs(acb, dcb); if ((dcb->sync_mode & SYNC_NEGO_ENABLE) && !(dcb->sync_mode & SYNC_NEGO_DONE)) { build_sdtr(acb, dcb, srb); DC395x_ENABLE_MSGOUT; dprintkdbg(DBG_0, "msgin_set_wide: Also try SDTR.\n"); } } /* * extended message codes: * * code description * * 02h Reserved * 00h MODIFY DATA POINTER * 01h SYNCHRONOUS DATA TRANSFER REQUEST * 03h WIDE DATA TRANSFER REQUEST * 04h - 7Fh Reserved * 80h - FFh Vendor specific */ static void msgin_phase0(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status) { struct DeviceCtlBlk *dcb = acb->active_dcb; dprintkdbg(DBG_0, "msgin_phase0: (0x%p)\n", srb->cmd); srb->msgin_buf[acb->msg_len++] = DC395x_read8(acb, TRM_S1040_SCSI_FIFO); if (msgin_completed(srb->msgin_buf, acb->msg_len)) { /* Now eval the msg */ switch (srb->msgin_buf[0]) { case DISCONNECT: srb->state = SRB_DISCONNECT; break; case SIMPLE_QUEUE_TAG: case HEAD_OF_QUEUE_TAG: case ORDERED_QUEUE_TAG: srb = msgin_qtag(acb, dcb, srb->msgin_buf[1]); break; case MESSAGE_REJECT: DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_CLRATN | DO_DATALATCH); /* A sync nego message was rejected ! */ if (srb->state & SRB_DO_SYNC_NEGO) { msgin_set_async(acb, srb); break; } /* A wide nego message was rejected ! */ if (srb->state & SRB_DO_WIDE_NEGO) { msgin_set_nowide(acb, srb); break; } enable_msgout_abort(acb, srb); /*srb->state |= SRB_ABORT_SENT */ break; case EXTENDED_MESSAGE: /* SDTR */ if (srb->msgin_buf[1] == 3 && srb->msgin_buf[2] == EXTENDED_SDTR) { msgin_set_sync(acb, srb); break; } /* WDTR */ if (srb->msgin_buf[1] == 2 && srb->msgin_buf[2] == EXTENDED_WDTR && srb->msgin_buf[3] <= 2) { /* sanity check ... */ msgin_set_wide(acb, srb); break; } msgin_reject(acb, srb); break; case IGNORE_WIDE_RESIDUE: /* Discard wide residual */ dprintkdbg(DBG_0, "msgin_phase0: Ignore Wide Residual!\n"); break; case COMMAND_COMPLETE: /* nothing has to be done */ break; case SAVE_POINTERS: /* * SAVE POINTER may be ignored as we have the struct * ScsiReqBlk* associated with the scsi command. */ dprintkdbg(DBG_0, "msgin_phase0: (0x%p) " "SAVE POINTER rem=%i Ignore\n", srb->cmd, srb->total_xfer_length); break; case RESTORE_POINTERS: dprintkdbg(DBG_0, "msgin_phase0: RESTORE POINTER. Ignore\n"); break; case ABORT: dprintkdbg(DBG_0, "msgin_phase0: (0x%p) " "<%02i-%i> ABORT msg\n", srb->cmd, dcb->target_id, dcb->target_lun); dcb->flag |= ABORT_DEV_; enable_msgout_abort(acb, srb); break; default: /* reject unknown messages */ if (srb->msgin_buf[0] & IDENTIFY_BASE) { dprintkdbg(DBG_0, "msgin_phase0: Identify msg\n"); srb->msg_count = 1; srb->msgout_buf[0] = dcb->identify_msg; DC395x_ENABLE_MSGOUT; srb->state |= SRB_MSGOUT; /*break; */ } msgin_reject(acb, srb); } /* Clear counter and MsgIn state */ srb->state &= ~SRB_MSGIN; acb->msg_len = 0; } *pscsi_status = PH_BUS_FREE; DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); /* it's important ... you know! */ DC395x_write8(acb, TRM_S1040_SCSI_COMMAND, SCMD_MSGACCEPT); } static void msgin_phase1(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status) { dprintkdbg(DBG_0, "msgin_phase1: (0x%p)\n", srb->cmd); clear_fifo(acb, "msgin_phase1"); DC395x_write32(acb, TRM_S1040_SCSI_COUNTER, 1); if (!(srb->state & SRB_MSGIN)) { srb->state &= ~SRB_DISCONNECT; srb->state |= SRB_MSGIN; } DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); /* it's important for atn stop */ /* SCSI command */ DC395x_write8(acb, TRM_S1040_SCSI_COMMAND, SCMD_FIFO_IN); } static void nop0(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status) { } static void nop1(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb, u16 *pscsi_status) { } static void set_xfer_rate(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb) { struct DeviceCtlBlk *i; /* set all lun device's period, offset */ if (dcb->identify_msg & 0x07) return; if (acb->scan_devices) { current_sync_offset = dcb->sync_offset; return; } list_for_each_entry(i, &acb->dcb_list, list) if (i->target_id == dcb->target_id) { i->sync_period = dcb->sync_period; i->sync_offset = dcb->sync_offset; i->sync_mode = dcb->sync_mode; i->min_nego_period = dcb->min_nego_period; } } static void disconnect(struct AdapterCtlBlk *acb) { struct DeviceCtlBlk *dcb = acb->active_dcb; struct ScsiReqBlk *srb; if (!dcb) { dprintkl(KERN_ERR, "disconnect: No such device\n"); udelay(500); /* Suspend queue for a while */ acb->last_reset = jiffies + HZ / 2 + HZ * acb->eeprom.delay_time; clear_fifo(acb, "disconnectEx"); DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_HWRESELECT); return; } srb = dcb->active_srb; acb->active_dcb = NULL; dprintkdbg(DBG_0, "disconnect: (0x%p)\n", srb->cmd); srb->scsi_phase = PH_BUS_FREE; /* initial phase */ clear_fifo(acb, "disconnect"); DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_HWRESELECT); if (srb->state & SRB_UNEXPECT_RESEL) { dprintkl(KERN_ERR, "disconnect: Unexpected reselection <%02i-%i>\n", dcb->target_id, dcb->target_lun); srb->state = 0; waiting_process_next(acb); } else if (srb->state & SRB_ABORT_SENT) { dcb->flag &= ~ABORT_DEV_; acb->last_reset = jiffies + HZ / 2 + 1; dprintkl(KERN_ERR, "disconnect: SRB_ABORT_SENT\n"); doing_srb_done(acb, DID_ABORT, srb->cmd, 1); waiting_process_next(acb); } else { if ((srb->state & (SRB_START_ + SRB_MSGOUT)) || !(srb-> state & (SRB_DISCONNECT | SRB_COMPLETED))) { /* * Selection time out * SRB_START_ || SRB_MSGOUT || (!SRB_DISCONNECT && !SRB_COMPLETED) */ /* Unexp. Disc / Sel Timeout */ if (srb->state != SRB_START_ && srb->state != SRB_MSGOUT) { srb->state = SRB_READY; dprintkl(KERN_DEBUG, "disconnect: (0x%p) Unexpected\n", srb->cmd); srb->target_status = SCSI_STAT_SEL_TIMEOUT; goto disc1; } else { /* Normal selection timeout */ dprintkdbg(DBG_KG, "disconnect: (0x%p) " "<%02i-%i> SelTO\n", srb->cmd, dcb->target_id, dcb->target_lun); if (srb->retry_count++ > DC395x_MAX_RETRIES || acb->scan_devices) { srb->target_status = SCSI_STAT_SEL_TIMEOUT; goto disc1; } free_tag(dcb, srb); list_move(&srb->list, &dcb->srb_waiting_list); dprintkdbg(DBG_KG, "disconnect: (0x%p) Retry\n", srb->cmd); waiting_set_timer(acb, HZ / 20); } } else if (srb->state & SRB_DISCONNECT) { u8 bval = DC395x_read8(acb, TRM_S1040_SCSI_SIGNAL); /* * SRB_DISCONNECT (This is what we expect!) */ if (bval & 0x40) { dprintkdbg(DBG_0, "disconnect: SCSI bus stat " " 0x%02x: ACK set! Other controllers?\n", bval); /* It could come from another initiator, therefore don't do much ! */ } else waiting_process_next(acb); } else if (srb->state & SRB_COMPLETED) { disc1: /* ** SRB_COMPLETED */ free_tag(dcb, srb); dcb->active_srb = NULL; srb->state = SRB_FREE; srb_done(acb, dcb, srb); } } } static void reselect(struct AdapterCtlBlk *acb) { struct DeviceCtlBlk *dcb = acb->active_dcb; struct ScsiReqBlk *srb = NULL; u16 rsel_tar_lun_id; u8 id, lun; dprintkdbg(DBG_0, "reselect: acb=%p\n", acb); clear_fifo(acb, "reselect"); /*DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_HWRESELECT | DO_DATALATCH); */ /* Read Reselected Target ID and LUN */ rsel_tar_lun_id = DC395x_read16(acb, TRM_S1040_SCSI_TARGETID); if (dcb) { /* Arbitration lost but Reselection win */ srb = dcb->active_srb; if (!srb) { dprintkl(KERN_DEBUG, "reselect: Arb lost Resel won, " "but active_srb == NULL\n"); DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); /* it's important for atn stop */ return; } /* Why the if ? */ if (!acb->scan_devices) { dprintkdbg(DBG_KG, "reselect: (0x%p) <%02i-%i> " "Arb lost but Resel win rsel=%i stat=0x%04x\n", srb->cmd, dcb->target_id, dcb->target_lun, rsel_tar_lun_id, DC395x_read16(acb, TRM_S1040_SCSI_STATUS)); /*srb->state |= SRB_DISCONNECT; */ srb->state = SRB_READY; free_tag(dcb, srb); list_move(&srb->list, &dcb->srb_waiting_list); waiting_set_timer(acb, HZ / 20); /* return; */ } } /* Read Reselected Target Id and LUN */ if (!(rsel_tar_lun_id & (IDENTIFY_BASE << 8))) dprintkl(KERN_DEBUG, "reselect: Expects identify msg. " "Got %i!\n", rsel_tar_lun_id); id = rsel_tar_lun_id & 0xff; lun = (rsel_tar_lun_id >> 8) & 7; dcb = find_dcb(acb, id, lun); if (!dcb) { dprintkl(KERN_ERR, "reselect: From non existent device " "<%02i-%i>\n", id, lun); DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); /* it's important for atn stop */ return; } acb->active_dcb = dcb; if (!(dcb->dev_mode & NTC_DO_DISCONNECT)) dprintkl(KERN_DEBUG, "reselect: in spite of forbidden " "disconnection? <%02i-%i>\n", dcb->target_id, dcb->target_lun); if (dcb->sync_mode & EN_TAG_QUEUEING) { srb = acb->tmp_srb; dcb->active_srb = srb; } else { /* There can be only one! */ srb = dcb->active_srb; if (!srb || !(srb->state & SRB_DISCONNECT)) { /* * abort command */ dprintkl(KERN_DEBUG, "reselect: w/o disconnected cmds <%02i-%i>\n", dcb->target_id, dcb->target_lun); srb = acb->tmp_srb; srb->state = SRB_UNEXPECT_RESEL; dcb->active_srb = srb; enable_msgout_abort(acb, srb); } else { if (dcb->flag & ABORT_DEV_) { /*srb->state = SRB_ABORT_SENT; */ enable_msgout_abort(acb, srb); } else srb->state = SRB_DATA_XFER; } } srb->scsi_phase = PH_BUS_FREE; /* initial phase */ /* Program HA ID, target ID, period and offset */ dprintkdbg(DBG_0, "reselect: select <%i>\n", dcb->target_id); DC395x_write8(acb, TRM_S1040_SCSI_HOSTID, acb->scsi_host->this_id); /* host ID */ DC395x_write8(acb, TRM_S1040_SCSI_TARGETID, dcb->target_id); /* target ID */ DC395x_write8(acb, TRM_S1040_SCSI_OFFSET, dcb->sync_offset); /* offset */ DC395x_write8(acb, TRM_S1040_SCSI_SYNC, dcb->sync_period); /* sync period, wide */ DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_DATALATCH); /* it's important for atn stop */ /* SCSI command */ DC395x_write8(acb, TRM_S1040_SCSI_COMMAND, SCMD_MSGACCEPT); } static inline u8 tagq_blacklist(char *name) { #ifndef DC395x_NO_TAGQ #if 0 u8 i; for (i = 0; i < BADDEVCNT; i++) if (memcmp(name, DC395x_baddevname1[i], 28) == 0) return 1; #endif return 0; #else return 1; #endif } static void disc_tagq_set(struct DeviceCtlBlk *dcb, struct ScsiInqData *ptr) { /* Check for SCSI format (ANSI and Response data format) */ if ((ptr->Vers & 0x07) >= 2 || (ptr->RDF & 0x0F) == 2) { if ((ptr->Flags & SCSI_INQ_CMDQUEUE) && (dcb->dev_mode & NTC_DO_TAG_QUEUEING) && /*(dcb->dev_mode & NTC_DO_DISCONNECT) */ /* ((dcb->dev_type == TYPE_DISK) || (dcb->dev_type == TYPE_MOD)) && */ !tagq_blacklist(((char *)ptr) + 8)) { if (dcb->max_command == 1) dcb->max_command = dcb->acb->tag_max_num; dcb->sync_mode |= EN_TAG_QUEUEING; /*dcb->tag_mask = 0; */ } else dcb->max_command = 1; } } static void add_dev(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb, struct ScsiInqData *ptr) { u8 bval1 = ptr->DevType & SCSI_DEVTYPE; dcb->dev_type = bval1; /* if (bval1 == TYPE_DISK || bval1 == TYPE_MOD) */ disc_tagq_set(dcb, ptr); } /* unmap mapped pci regions from SRB */ static void pci_unmap_srb(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb) { struct scsi_cmnd *cmd = srb->cmd; enum dma_data_direction dir = cmd->sc_data_direction; if (scsi_sg_count(cmd) && dir != DMA_NONE) { /* unmap DC395x SG list */ dprintkdbg(DBG_SG, "pci_unmap_srb: list=%08x(%05x)\n", srb->sg_bus_addr, SEGMENTX_LEN); dma_unmap_single(&acb->dev->dev, srb->sg_bus_addr, SEGMENTX_LEN, DMA_TO_DEVICE); dprintkdbg(DBG_SG, "pci_unmap_srb: segs=%i buffer=%p\n", scsi_sg_count(cmd), scsi_bufflen(cmd)); /* unmap the sg segments */ scsi_dma_unmap(cmd); } } /* unmap mapped pci sense buffer from SRB */ static void pci_unmap_srb_sense(struct AdapterCtlBlk *acb, struct ScsiReqBlk *srb) { if (!(srb->flag & AUTO_REQSENSE)) return; /* Unmap sense buffer */ dprintkdbg(DBG_SG, "pci_unmap_srb_sense: buffer=%08x\n", srb->segment_x[0].address); dma_unmap_single(&acb->dev->dev, srb->segment_x[0].address, srb->segment_x[0].length, DMA_FROM_DEVICE); /* Restore SG stuff */ srb->total_xfer_length = srb->xferred; srb->segment_x[0].address = srb->segment_x[DC395x_MAX_SG_LISTENTRY - 1].address; srb->segment_x[0].length = srb->segment_x[DC395x_MAX_SG_LISTENTRY - 1].length; } /* * Complete execution of a SCSI command * Signal completion to the generic SCSI driver */ static void srb_done(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb, struct ScsiReqBlk *srb) { u8 tempcnt, status; struct scsi_cmnd *cmd = srb->cmd; enum dma_data_direction dir = cmd->sc_data_direction; int ckc_only = 1; dprintkdbg(DBG_1, "srb_done: (0x%p) <%02i-%i>\n", srb->cmd, srb->cmd->device->id, (u8)srb->cmd->device->lun); dprintkdbg(DBG_SG, "srb_done: srb=%p sg=%i(%i/%i) buf=%p\n", srb, scsi_sg_count(cmd), srb->sg_index, srb->sg_count, scsi_sgtalbe(cmd)); status = srb->target_status; set_host_byte(cmd, DID_OK); set_status_byte(cmd, SAM_STAT_GOOD); if (srb->flag & AUTO_REQSENSE) { dprintkdbg(DBG_0, "srb_done: AUTO_REQSENSE1\n"); pci_unmap_srb_sense(acb, srb); /* ** target status.......................... */ srb->flag &= ~AUTO_REQSENSE; srb->adapter_status = 0; srb->target_status = SAM_STAT_CHECK_CONDITION; if (debug_enabled(DBG_1)) { switch (cmd->sense_buffer[2] & 0x0f) { case NOT_READY: dprintkl(KERN_DEBUG, "ReqSense: NOT_READY cmnd=0x%02x <%02i-%i> stat=%i scan=%i ", cmd->cmnd[0], dcb->target_id, dcb->target_lun, status, acb->scan_devices); break; case UNIT_ATTENTION: dprintkl(KERN_DEBUG, "ReqSense: UNIT_ATTENTION cmnd=0x%02x <%02i-%i> stat=%i scan=%i ", cmd->cmnd[0], dcb->target_id, dcb->target_lun, status, acb->scan_devices); break; case ILLEGAL_REQUEST: dprintkl(KERN_DEBUG, "ReqSense: ILLEGAL_REQUEST cmnd=0x%02x <%02i-%i> stat=%i scan=%i ", cmd->cmnd[0], dcb->target_id, dcb->target_lun, status, acb->scan_devices); break; case MEDIUM_ERROR: dprintkl(KERN_DEBUG, "ReqSense: MEDIUM_ERROR cmnd=0x%02x <%02i-%i> stat=%i scan=%i ", cmd->cmnd[0], dcb->target_id, dcb->target_lun, status, acb->scan_devices); break; case HARDWARE_ERROR: dprintkl(KERN_DEBUG, "ReqSense: HARDWARE_ERROR cmnd=0x%02x <%02i-%i> stat=%i scan=%i ", cmd->cmnd[0], dcb->target_id, dcb->target_lun, status, acb->scan_devices); break; } if (cmd->sense_buffer[7] >= 6) printk("sense=0x%02x ASC=0x%02x ASCQ=0x%02x " "(0x%08x 0x%08x)\n", cmd->sense_buffer[2], cmd->sense_buffer[12], cmd->sense_buffer[13], *((unsigned int *)(cmd->sense_buffer + 3)), *((unsigned int *)(cmd->sense_buffer + 8))); else printk("sense=0x%02x No ASC/ASCQ (0x%08x)\n", cmd->sense_buffer[2], *((unsigned int *)(cmd->sense_buffer + 3))); } if (status == SAM_STAT_CHECK_CONDITION) { set_host_byte(cmd, DID_BAD_TARGET); goto ckc_e; } dprintkdbg(DBG_0, "srb_done: AUTO_REQSENSE2\n"); set_status_byte(cmd, SAM_STAT_CHECK_CONDITION); goto ckc_e; } /*************************************************************/ if (status) { /* * target status.......................... */ if (status == SAM_STAT_CHECK_CONDITION) { request_sense(acb, dcb, srb); return; } else if (status == SAM_STAT_TASK_SET_FULL) { tempcnt = (u8)list_size(&dcb->srb_going_list); dprintkl(KERN_INFO, "QUEUE_FULL for dev <%02i-%i> with %i cmnds\n", dcb->target_id, dcb->target_lun, tempcnt); if (tempcnt > 1) tempcnt--; dcb->max_command = tempcnt; free_tag(dcb, srb); list_move(&srb->list, &dcb->srb_waiting_list); waiting_set_timer(acb, HZ / 20); srb->adapter_status = 0; srb->target_status = 0; return; } else if (status == SCSI_STAT_SEL_TIMEOUT) { srb->adapter_status = H_SEL_TIMEOUT; srb->target_status = 0; set_host_byte(cmd, DID_NO_CONNECT); } else { srb->adapter_status = 0; set_host_byte(cmd, DID_ERROR); set_status_byte(cmd, status); } } else { /* ** process initiator status.......................... */ status = srb->adapter_status; if (status & H_OVER_UNDER_RUN) { srb->target_status = 0; scsi_msg_to_host_byte(cmd, srb->end_message); } else if (srb->status & PARITY_ERROR) { set_host_byte(cmd, DID_PARITY); } else { /* No error */ srb->adapter_status = 0; srb->target_status = 0; } } ckc_only = 0; /* Check Error Conditions */ ckc_e: pci_unmap_srb(acb, srb); if (cmd->cmnd[0] == INQUIRY) { unsigned char *base = NULL; struct ScsiInqData *ptr; unsigned long flags = 0; struct scatterlist* sg = scsi_sglist(cmd); size_t offset = 0, len = sizeof(struct ScsiInqData); local_irq_save(flags); base = scsi_kmap_atomic_sg(sg, scsi_sg_count(cmd), &offset, &len); ptr = (struct ScsiInqData *)(base + offset); if (!ckc_only && get_host_byte(cmd) == DID_OK && cmd->cmnd[2] == 0 && scsi_bufflen(cmd) >= 8 && dir != DMA_NONE && ptr && (ptr->Vers & 0x07) >= 2) dcb->inquiry7 = ptr->Flags; /*if( srb->cmd->cmnd[0] == INQUIRY && */ /* (host_byte(cmd->result) == DID_OK || status_byte(cmd->result) & CHECK_CONDITION) ) */ if ((get_host_byte(cmd) == DID_OK) || (get_status_byte(cmd) == SAM_STAT_CHECK_CONDITION)) { if (!dcb->init_tcq_flag) { add_dev(acb, dcb, ptr); dcb->init_tcq_flag = 1; } } scsi_kunmap_atomic_sg(base); local_irq_restore(flags); } /* Here is the info for Doug Gilbert's sg3 ... */ scsi_set_resid(cmd, srb->total_xfer_length); if (debug_enabled(DBG_KG)) { if (srb->total_xfer_length) dprintkdbg(DBG_KG, "srb_done: (0x%p) <%02i-%i> " "cmnd=0x%02x Missed %i bytes\n", cmd, cmd->device->id, (u8)cmd->device->lun, cmd->cmnd[0], srb->total_xfer_length); } if (srb != acb->tmp_srb) { /* Add to free list */ dprintkdbg(DBG_0, "srb_done: (0x%p) done result=0x%08x\n", cmd, cmd->result); list_move_tail(&srb->list, &acb->srb_free_list); } else { dprintkl(KERN_ERR, "srb_done: ERROR! Completed cmd with tmp_srb\n"); } scsi_done(cmd); waiting_process_next(acb); } /* abort all cmds in our queues */ static void doing_srb_done(struct AdapterCtlBlk *acb, u8 did_flag, struct scsi_cmnd *cmd, u8 force) { struct DeviceCtlBlk *dcb; dprintkl(KERN_INFO, "doing_srb_done: pids "); list_for_each_entry(dcb, &acb->dcb_list, list) { struct ScsiReqBlk *srb; struct ScsiReqBlk *tmp; struct scsi_cmnd *p; list_for_each_entry_safe(srb, tmp, &dcb->srb_going_list, list) { p = srb->cmd; printk("G:%p(%02i-%i) ", p, p->device->id, (u8)p->device->lun); list_del(&srb->list); free_tag(dcb, srb); list_add_tail(&srb->list, &acb->srb_free_list); set_host_byte(p, did_flag); set_status_byte(p, SAM_STAT_GOOD); pci_unmap_srb_sense(acb, srb); pci_unmap_srb(acb, srb); if (force) { /* For new EH, we normally don't need to give commands back, * as they all complete or all time out */ scsi_done(p); } } if (!list_empty(&dcb->srb_going_list)) dprintkl(KERN_DEBUG, "How could the ML send cmnds to the Going queue? <%02i-%i>\n", dcb->target_id, dcb->target_lun); if (dcb->tag_mask) dprintkl(KERN_DEBUG, "tag_mask for <%02i-%i> should be empty, is %08x!\n", dcb->target_id, dcb->target_lun, dcb->tag_mask); /* Waiting queue */ list_for_each_entry_safe(srb, tmp, &dcb->srb_waiting_list, list) { p = srb->cmd; printk("W:%p<%02i-%i>", p, p->device->id, (u8)p->device->lun); list_move_tail(&srb->list, &acb->srb_free_list); set_host_byte(p, did_flag); set_status_byte(p, SAM_STAT_GOOD); pci_unmap_srb_sense(acb, srb); pci_unmap_srb(acb, srb); if (force) { /* For new EH, we normally don't need to give commands back, * as they all complete or all time out */ scsi_done(cmd); } } if (!list_empty(&dcb->srb_waiting_list)) dprintkl(KERN_DEBUG, "ML queued %i cmnds again to <%02i-%i>\n", list_size(&dcb->srb_waiting_list), dcb->target_id, dcb->target_lun); dcb->flag &= ~ABORT_DEV_; } printk("\n"); } static void reset_scsi_bus(struct AdapterCtlBlk *acb) { dprintkdbg(DBG_0, "reset_scsi_bus: acb=%p\n", acb); acb->acb_flag |= RESET_DEV; /* RESET_DETECT, RESET_DONE, RESET_DEV */ DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_RSTSCSI); while (!(DC395x_read8(acb, TRM_S1040_SCSI_INTSTATUS) & INT_SCSIRESET)) /* nothing */; } static void set_basic_config(struct AdapterCtlBlk *acb) { u8 bval; u16 wval; DC395x_write8(acb, TRM_S1040_SCSI_TIMEOUT, acb->sel_timeout); if (acb->config & HCC_PARITY) bval = PHASELATCH | INITIATOR | BLOCKRST | PARITYCHECK; else bval = PHASELATCH | INITIATOR | BLOCKRST; DC395x_write8(acb, TRM_S1040_SCSI_CONFIG0, bval); /* program configuration 1: Act_Neg (+ Act_Neg_Enh? + Fast_Filter? + DataDis?) */ DC395x_write8(acb, TRM_S1040_SCSI_CONFIG1, 0x03); /* was 0x13: default */ /* program Host ID */ DC395x_write8(acb, TRM_S1040_SCSI_HOSTID, acb->scsi_host->this_id); /* set ansynchronous transfer */ DC395x_write8(acb, TRM_S1040_SCSI_OFFSET, 0x00); /* Turn LED control off */ wval = DC395x_read16(acb, TRM_S1040_GEN_CONTROL) & 0x7F; DC395x_write16(acb, TRM_S1040_GEN_CONTROL, wval); /* DMA config */ wval = DC395x_read16(acb, TRM_S1040_DMA_CONFIG) & ~DMA_FIFO_CTRL; wval |= DMA_FIFO_HALF_HALF | DMA_ENHANCE /*| DMA_MEM_MULTI_READ */ ; DC395x_write16(acb, TRM_S1040_DMA_CONFIG, wval); /* Clear pending interrupt status */ DC395x_read8(acb, TRM_S1040_SCSI_INTSTATUS); /* Enable SCSI interrupt */ DC395x_write8(acb, TRM_S1040_SCSI_INTEN, 0x7F); DC395x_write8(acb, TRM_S1040_DMA_INTEN, EN_SCSIINTR | EN_DMAXFERERROR /*| EN_DMAXFERABORT | EN_DMAXFERCOMP | EN_FORCEDMACOMP */ ); } static void scsi_reset_detect(struct AdapterCtlBlk *acb) { dprintkl(KERN_INFO, "scsi_reset_detect: acb=%p\n", acb); /* delay half a second */ if (timer_pending(&acb->waiting_timer)) del_timer(&acb->waiting_timer); DC395x_write8(acb, TRM_S1040_SCSI_CONTROL, DO_RSTMODULE); DC395x_write8(acb, TRM_S1040_DMA_CONTROL, DMARESETMODULE); /*DC395x_write8(acb, TRM_S1040_DMA_CONTROL,STOPDMAXFER); */ udelay(500); /* Maybe we locked up the bus? Then lets wait even longer ... */ acb->last_reset = jiffies + 5 * HZ / 2 + HZ * acb->eeprom.delay_time; clear_fifo(acb, "scsi_reset_detect"); set_basic_config(acb); /*1.25 */ /*DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_HWRESELECT); */ if (acb->acb_flag & RESET_DEV) { /* RESET_DETECT, RESET_DONE, RESET_DEV */ acb->acb_flag |= RESET_DONE; } else { acb->acb_flag |= RESET_DETECT; reset_dev_param(acb); doing_srb_done(acb, DID_RESET, NULL, 1); /*DC395x_RecoverSRB( acb ); */ acb->active_dcb = NULL; acb->acb_flag = 0; waiting_process_next(acb); } } static void request_sense(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb, struct ScsiReqBlk *srb) { struct scsi_cmnd *cmd = srb->cmd; dprintkdbg(DBG_1, "request_sense: (0x%p) <%02i-%i>\n", cmd, cmd->device->id, (u8)cmd->device->lun); srb->flag |= AUTO_REQSENSE; srb->adapter_status = 0; srb->target_status = 0; /* KG: Can this prevent crap sense data ? */ memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); /* Save some data */ srb->segment_x[DC395x_MAX_SG_LISTENTRY - 1].address = srb->segment_x[0].address; srb->segment_x[DC395x_MAX_SG_LISTENTRY - 1].length = srb->segment_x[0].length; srb->xferred = srb->total_xfer_length; /* srb->segment_x : a one entry of S/G list table */ srb->total_xfer_length = SCSI_SENSE_BUFFERSIZE; srb->segment_x[0].length = SCSI_SENSE_BUFFERSIZE; /* Map sense buffer */ srb->segment_x[0].address = dma_map_single(&acb->dev->dev, cmd->sense_buffer, SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); dprintkdbg(DBG_SG, "request_sense: map buffer %p->%08x(%05x)\n", cmd->sense_buffer, srb->segment_x[0].address, SCSI_SENSE_BUFFERSIZE); srb->sg_count = 1; srb->sg_index = 0; if (start_scsi(acb, dcb, srb)) { /* Should only happen, if sb. else grabs the bus */ dprintkl(KERN_DEBUG, "request_sense: (0x%p) failed <%02i-%i>\n", srb->cmd, dcb->target_id, dcb->target_lun); list_move(&srb->list, &dcb->srb_waiting_list); waiting_set_timer(acb, HZ / 100); } } /** * device_alloc - Allocate a new device instance. This create the * devices instance and sets up all the data items. The adapter * instance is required to obtain confiuration information for this * device. This does *not* add this device to the adapters device * list. * * @acb: The adapter to obtain configuration information from. * @target: The target for the new device. * @lun: The lun for the new device. * * Return the new device if successful or NULL on failure. **/ static struct DeviceCtlBlk *device_alloc(struct AdapterCtlBlk *acb, u8 target, u8 lun) { struct NvRamType *eeprom = &acb->eeprom; u8 period_index = eeprom->target[target].period & 0x07; struct DeviceCtlBlk *dcb; dcb = kmalloc(sizeof(struct DeviceCtlBlk), GFP_ATOMIC); dprintkdbg(DBG_0, "device_alloc: <%02i-%i>\n", target, lun); if (!dcb) return NULL; dcb->acb = NULL; INIT_LIST_HEAD(&dcb->srb_going_list); INIT_LIST_HEAD(&dcb->srb_waiting_list); dcb->active_srb = NULL; dcb->tag_mask = 0; dcb->max_command = 1; dcb->target_id = target; dcb->target_lun = lun; dcb->dev_mode = eeprom->target[target].cfg0; #ifndef DC395x_NO_DISCONNECT dcb->identify_msg = IDENTIFY(dcb->dev_mode & NTC_DO_DISCONNECT, lun); #else dcb->identify_msg = IDENTIFY(0, lun); #endif dcb->inquiry7 = 0; dcb->sync_mode = 0; dcb->min_nego_period = clock_period[period_index]; dcb->sync_period = 0; dcb->sync_offset = 0; dcb->flag = 0; #ifndef DC395x_NO_WIDE if ((dcb->dev_mode & NTC_DO_WIDE_NEGO) && (acb->config & HCC_WIDE_CARD)) dcb->sync_mode |= WIDE_NEGO_ENABLE; #endif #ifndef DC395x_NO_SYNC if (dcb->dev_mode & NTC_DO_SYNC_NEGO) if (!(lun) || current_sync_offset) dcb->sync_mode |= SYNC_NEGO_ENABLE; #endif if (dcb->target_lun != 0) { /* Copy settings */ struct DeviceCtlBlk *p = NULL, *iter; list_for_each_entry(iter, &acb->dcb_list, list) if (iter->target_id == dcb->target_id) { p = iter; break; } if (!p) { kfree(dcb); return NULL; } dprintkdbg(DBG_1, "device_alloc: <%02i-%i> copy from <%02i-%i>\n", dcb->target_id, dcb->target_lun, p->target_id, p->target_lun); dcb->sync_mode = p->sync_mode; dcb->sync_period = p->sync_period; dcb->min_nego_period = p->min_nego_period; dcb->sync_offset = p->sync_offset; dcb->inquiry7 = p->inquiry7; } return dcb; } /** * adapter_add_device - Adds the device instance to the adaptor instance. * * @acb: The adapter device to be updated * @dcb: A newly created and initialised device instance to add. **/ static void adapter_add_device(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb) { /* backpointer to adapter */ dcb->acb = acb; /* set run_robin to this device if it is currently empty */ if (list_empty(&acb->dcb_list)) acb->dcb_run_robin = dcb; /* add device to list */ list_add_tail(&dcb->list, &acb->dcb_list); /* update device maps */ acb->dcb_map[dcb->target_id] |= (1 << dcb->target_lun); acb->children[dcb->target_id][dcb->target_lun] = dcb; } /** * adapter_remove_device - Removes the device instance from the adaptor * instance. The device instance is not check in any way or freed by this. * The caller is expected to take care of that. This will simply remove the * device from the adapters data strcutures. * * @acb: The adapter device to be updated * @dcb: A device that has previously been added to the adapter. **/ static void adapter_remove_device(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb) { struct DeviceCtlBlk *i; struct DeviceCtlBlk *tmp; dprintkdbg(DBG_0, "adapter_remove_device: <%02i-%i>\n", dcb->target_id, dcb->target_lun); /* fix up any pointers to this device that we have in the adapter */ if (acb->active_dcb == dcb) acb->active_dcb = NULL; if (acb->dcb_run_robin == dcb) acb->dcb_run_robin = dcb_get_next(&acb->dcb_list, dcb); /* unlink from list */ list_for_each_entry_safe(i, tmp, &acb->dcb_list, list) if (dcb == i) { list_del(&i->list); break; } /* clear map and children */ acb->dcb_map[dcb->target_id] &= ~(1 << dcb->target_lun); acb->children[dcb->target_id][dcb->target_lun] = NULL; dcb->acb = NULL; } /** * adapter_remove_and_free_device - Removes a single device from the adapter * and then frees the device information. * * @acb: The adapter device to be updated * @dcb: A device that has previously been added to the adapter. */ static void adapter_remove_and_free_device(struct AdapterCtlBlk *acb, struct DeviceCtlBlk *dcb) { if (list_size(&dcb->srb_going_list) > 1) { dprintkdbg(DBG_1, "adapter_remove_and_free_device: <%02i-%i> " "Won't remove because of %i active requests.\n", dcb->target_id, dcb->target_lun, list_size(&dcb->srb_going_list)); return; } adapter_remove_device(acb, dcb); kfree(dcb); } /** * adapter_remove_and_free_all_devices - Removes and frees all of the * devices associated with the specified adapter. * * @acb: The adapter from which all devices should be removed. **/ static void adapter_remove_and_free_all_devices(struct AdapterCtlBlk* acb) { struct DeviceCtlBlk *dcb; struct DeviceCtlBlk *tmp; dprintkdbg(DBG_1, "adapter_remove_and_free_all_devices: num=%i\n", list_size(&acb->dcb_list)); list_for_each_entry_safe(dcb, tmp, &acb->dcb_list, list) adapter_remove_and_free_device(acb, dcb); } /** * dc395x_slave_alloc - Called by the scsi mid layer to tell us about a new * scsi device that we need to deal with. We allocate a new device and then * insert that device into the adapters device list. * * @scsi_device: The new scsi device that we need to handle. **/ static int dc395x_slave_alloc(struct scsi_device *scsi_device) { struct AdapterCtlBlk *acb = (struct AdapterCtlBlk *)scsi_device->host->hostdata; struct DeviceCtlBlk *dcb; dcb = device_alloc(acb, scsi_device->id, scsi_device->lun); if (!dcb) return -ENOMEM; adapter_add_device(acb, dcb); return 0; } /** * dc395x_slave_destroy - Called by the scsi mid layer to tell us about a * device that is going away. * * @scsi_device: The new scsi device that we need to handle. **/ static void dc395x_slave_destroy(struct scsi_device *scsi_device) { struct AdapterCtlBlk *acb = (struct AdapterCtlBlk *)scsi_device->host->hostdata; struct DeviceCtlBlk *dcb = find_dcb(acb, scsi_device->id, scsi_device->lun); if (dcb) adapter_remove_and_free_device(acb, dcb); } /** * trms1040_wait_30us: wait for 30 us * * Waits for 30us (using the chip by the looks of it..) * * @io_port: base I/O address **/ static void trms1040_wait_30us(unsigned long io_port) { /* ScsiPortStallExecution(30); wait 30 us */ outb(5, io_port + TRM_S1040_GEN_TIMER); while (!(inb(io_port + TRM_S1040_GEN_STATUS) & GTIMEOUT)) /* nothing */ ; } /** * trms1040_write_cmd - write the secified command and address to * chip * * @io_port: base I/O address * @cmd: SB + op code (command) to send * @addr: address to send **/ static void trms1040_write_cmd(unsigned long io_port, u8 cmd, u8 addr) { int i; u8 send_data; /* program SB + OP code */ for (i = 0; i < 3; i++, cmd <<= 1) { send_data = NVR_SELECT; if (cmd & 0x04) /* Start from bit 2 */ send_data |= NVR_BITOUT; outb(send_data, io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); outb((send_data | NVR_CLOCK), io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); } /* send address */ for (i = 0; i < 7; i++, addr <<= 1) { send_data = NVR_SELECT; if (addr & 0x40) /* Start from bit 6 */ send_data |= NVR_BITOUT; outb(send_data, io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); outb((send_data | NVR_CLOCK), io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); } outb(NVR_SELECT, io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); } /** * trms1040_set_data - store a single byte in the eeprom * * Called from write all to write a single byte into the SSEEPROM * Which is done one bit at a time. * * @io_port: base I/O address * @addr: offset into EEPROM * @byte: bytes to write **/ static void trms1040_set_data(unsigned long io_port, u8 addr, u8 byte) { int i; u8 send_data; /* Send write command & address */ trms1040_write_cmd(io_port, 0x05, addr); /* Write data */ for (i = 0; i < 8; i++, byte <<= 1) { send_data = NVR_SELECT; if (byte & 0x80) /* Start from bit 7 */ send_data |= NVR_BITOUT; outb(send_data, io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); outb((send_data | NVR_CLOCK), io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); } outb(NVR_SELECT, io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); /* Disable chip select */ outb(0, io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); outb(NVR_SELECT, io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); /* Wait for write ready */ while (1) { outb((NVR_SELECT | NVR_CLOCK), io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); outb(NVR_SELECT, io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); if (inb(io_port + TRM_S1040_GEN_NVRAM) & NVR_BITIN) break; } /* Disable chip select */ outb(0, io_port + TRM_S1040_GEN_NVRAM); } /** * trms1040_write_all - write 128 bytes to the eeprom * * Write the supplied 128 bytes to the chips SEEPROM * * @eeprom: the data to write * @io_port: the base io port **/ static void trms1040_write_all(struct NvRamType *eeprom, unsigned long io_port) { u8 *b_eeprom = (u8 *)eeprom; u8 addr; /* Enable SEEPROM */ outb((inb(io_port + TRM_S1040_GEN_CONTROL) | EN_EEPROM), io_port + TRM_S1040_GEN_CONTROL); /* write enable */ trms1040_write_cmd(io_port, 0x04, 0xFF); outb(0, io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); /* write */ for (addr = 0; addr < 128; addr++, b_eeprom++) trms1040_set_data(io_port, addr, *b_eeprom); /* write disable */ trms1040_write_cmd(io_port, 0x04, 0x00); outb(0, io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); /* Disable SEEPROM */ outb((inb(io_port + TRM_S1040_GEN_CONTROL) & ~EN_EEPROM), io_port + TRM_S1040_GEN_CONTROL); } /** * trms1040_get_data - get a single byte from the eeprom * * Called from read all to read a single byte into the SSEEPROM * Which is done one bit at a time. * * @io_port: base I/O address * @addr: offset into SEEPROM * * Returns the byte read. **/ static u8 trms1040_get_data(unsigned long io_port, u8 addr) { int i; u8 read_byte; u8 result = 0; /* Send read command & address */ trms1040_write_cmd(io_port, 0x06, addr); /* read data */ for (i = 0; i < 8; i++) { outb((NVR_SELECT | NVR_CLOCK), io_port + TRM_S1040_GEN_NVRAM); trms1040_wait_30us(io_port); outb(NVR_SELECT, io_port + TRM_S1040_GEN_NVRAM); /* Get data bit while falling edge */ read_byte = inb(io_port + TRM_S1040_GEN_NVRAM); result <<= 1; if (read_byte & NVR_BITIN) result |= 1; trms1040_wait_30us(io_port); } /* Disable chip select */ outb(0, io_port + TRM_S1040_GEN_NVRAM); return result; } /** * trms1040_read_all - read all bytes from the eeprom * * Read the 128 bytes from the SEEPROM. * * @eeprom: where to store the data * @io_port: the base io port **/ static void trms1040_read_all(struct NvRamType *eeprom, unsigned long io_port) { u8 *b_eeprom = (u8 *)eeprom; u8 addr; /* Enable SEEPROM */ outb((inb(io_port + TRM_S1040_GEN_CONTROL) | EN_EEPROM), io_port + TRM_S1040_GEN_CONTROL); /* read details */ for (addr = 0; addr < 128; addr++, b_eeprom++) *b_eeprom = trms1040_get_data(io_port, addr); /* Disable SEEPROM */ outb((inb(io_port + TRM_S1040_GEN_CONTROL) & ~EN_EEPROM), io_port + TRM_S1040_GEN_CONTROL); } /** * check_eeprom - get and check contents of the eeprom * * Read seeprom 128 bytes into the memory provider in eeprom. * Checks the checksum and if it's not correct it uses a set of default * values. * * @eeprom: caller allocated strcuture to read the eeprom data into * @io_port: io port to read from **/ static void check_eeprom(struct NvRamType *eeprom, unsigned long io_port) { u16 *w_eeprom = (u16 *)eeprom; u16 w_addr; u16 cksum; u32 d_addr; u32 *d_eeprom; trms1040_read_all(eeprom, io_port); /* read eeprom */ cksum = 0; for (w_addr = 0, w_eeprom = (u16 *)eeprom; w_addr < 64; w_addr++, w_eeprom++) cksum += *w_eeprom; if (cksum != 0x1234) { /* * Checksum is wrong. * Load a set of defaults into the eeprom buffer */ dprintkl(KERN_WARNING, "EEProm checksum error: using default values and options.\n"); eeprom->sub_vendor_id[0] = (u8)PCI_VENDOR_ID_TEKRAM; eeprom->sub_vendor_id[1] = (u8)(PCI_VENDOR_ID_TEKRAM >> 8); eeprom->sub_sys_id[0] = (u8)PCI_DEVICE_ID_TEKRAM_TRMS1040; eeprom->sub_sys_id[1] = (u8)(PCI_DEVICE_ID_TEKRAM_TRMS1040 >> 8); eeprom->sub_class = 0x00; eeprom->vendor_id[0] = (u8)PCI_VENDOR_ID_TEKRAM; eeprom->vendor_id[1] = (u8)(PCI_VENDOR_ID_TEKRAM >> 8); eeprom->device_id[0] = (u8)PCI_DEVICE_ID_TEKRAM_TRMS1040; eeprom->device_id[1] = (u8)(PCI_DEVICE_ID_TEKRAM_TRMS1040 >> 8); eeprom->reserved = 0x00; for (d_addr = 0, d_eeprom = (u32 *)eeprom->target; d_addr < 16; d_addr++, d_eeprom++) *d_eeprom = 0x00000077; /* cfg3,cfg2,period,cfg0 */ *d_eeprom++ = 0x04000F07; /* max_tag,delay_time,channel_cfg,scsi_id */ *d_eeprom++ = 0x00000015; /* reserved1,boot_lun,boot_target,reserved0 */ for (d_addr = 0; d_addr < 12; d_addr++, d_eeprom++) *d_eeprom = 0x00; /* Now load defaults (maybe set by boot/module params) */ set_safe_settings(); fix_settings(); eeprom_override(eeprom); eeprom->cksum = 0x00; for (w_addr = 0, cksum = 0, w_eeprom = (u16 *)eeprom; w_addr < 63; w_addr++, w_eeprom++) cksum += *w_eeprom; *w_eeprom = 0x1234 - cksum; trms1040_write_all(eeprom, io_port); eeprom->delay_time = cfg_data[CFG_RESET_DELAY].value; } else { set_safe_settings(); eeprom_index_to_delay(eeprom); eeprom_override(eeprom); } } /** * print_eeprom_settings - output the eeprom settings * to the kernel log so people can see what they were. * * @eeprom: The eeprom data strucutre to show details for. **/ static void print_eeprom_settings(struct NvRamType *eeprom) { dprintkl(KERN_INFO, "Used settings: AdapterID=%02i, Speed=%i(%02i.%01iMHz), dev_mode=0x%02x\n", eeprom->scsi_id, eeprom->target[0].period, clock_speed[eeprom->target[0].period] / 10, clock_speed[eeprom->target[0].period] % 10, eeprom->target[0].cfg0); dprintkl(KERN_INFO, " AdaptMode=0x%02x, Tags=%i(%02i), DelayReset=%is\n", eeprom->channel_cfg, eeprom->max_tag, 1 << eeprom->max_tag, eeprom->delay_time); } /* Free SG tables */ static void adapter_sg_tables_free(struct AdapterCtlBlk *acb) { int i; const unsigned srbs_per_page = PAGE_SIZE/SEGMENTX_LEN; for (i = 0; i < DC395x_MAX_SRB_CNT; i += srbs_per_page) kfree(acb->srb_array[i].segment_x); } /* * Allocate SG tables; as we have to pci_map them, an SG list (struct SGentry*) * should never cross a page boundary */ static int adapter_sg_tables_alloc(struct AdapterCtlBlk *acb) { const unsigned mem_needed = (DC395x_MAX_SRB_CNT+1) *SEGMENTX_LEN; int pages = (mem_needed+(PAGE_SIZE-1))/PAGE_SIZE; const unsigned srbs_per_page = PAGE_SIZE/SEGMENTX_LEN; int srb_idx = 0; unsigned i = 0; struct SGentry *ptr; for (i = 0; i < DC395x_MAX_SRB_CNT; i++) acb->srb_array[i].segment_x = NULL; dprintkdbg(DBG_1, "Allocate %i pages for SG tables\n", pages); while (pages--) { ptr = kmalloc(PAGE_SIZE, GFP_KERNEL); if (!ptr) { adapter_sg_tables_free(acb); return 1; } dprintkdbg(DBG_1, "Allocate %li bytes at %p for SG segments %i\n", PAGE_SIZE, ptr, srb_idx); i = 0; while (i < srbs_per_page && srb_idx < DC395x_MAX_SRB_CNT) acb->srb_array[srb_idx++].segment_x = ptr + (i++ * DC395x_MAX_SG_LISTENTRY); } if (i < srbs_per_page) acb->srb.segment_x = ptr + (i * DC395x_MAX_SG_LISTENTRY); else dprintkl(KERN_DEBUG, "No space for tmsrb SG table reserved?!\n"); return 0; } /** * adapter_print_config - print adapter connection and termination * config * * The io port in the adapter needs to have been set before calling * this function. * * @acb: The adapter to print the information for. **/ static void adapter_print_config(struct AdapterCtlBlk *acb) { u8 bval; bval = DC395x_read8(acb, TRM_S1040_GEN_STATUS); dprintkl(KERN_INFO, "%sConnectors: ", ((bval & WIDESCSI) ? "(Wide) " : "")); if (!(bval & CON5068)) printk("ext%s ", !(bval & EXT68HIGH) ? "68" : "50"); if (!(bval & CON68)) printk("int68%s ", !(bval & INT68HIGH) ? "" : "(50)"); if (!(bval & CON50)) printk("int50 "); if ((bval & (CON5068 | CON50 | CON68)) == 0 /*(CON5068 | CON50 | CON68) */ ) printk(" Oops! (All 3?) "); bval = DC395x_read8(acb, TRM_S1040_GEN_CONTROL); printk(" Termination: "); if (bval & DIS_TERM) printk("Disabled\n"); else { if (bval & AUTOTERM) printk("Auto "); if (bval & LOW8TERM) printk("Low "); if (bval & UP8TERM) printk("High "); printk("\n"); } } /** * adapter_init_params - Initialize the various parameters in the * adapter structure. Note that the pointer to the scsi_host is set * early (when this instance is created) and the io_port and irq * values are set later after they have been reserved. This just gets * everything set to a good starting position. * * The eeprom structure in the adapter needs to have been set before * calling this function. * * @acb: The adapter to initialize. **/ static void adapter_init_params(struct AdapterCtlBlk *acb) { struct NvRamType *eeprom = &acb->eeprom; int i; /* NOTE: acb->scsi_host is set at scsi_host/acb creation time */ /* NOTE: acb->io_port_base is set at port registration time */ /* NOTE: acb->io_port_len is set at port registration time */ INIT_LIST_HEAD(&acb->dcb_list); acb->dcb_run_robin = NULL; acb->active_dcb = NULL; INIT_LIST_HEAD(&acb->srb_free_list); /* temp SRB for Q tag used or abort command used */ acb->tmp_srb = &acb->srb; timer_setup(&acb->waiting_timer, waiting_timeout, 0); timer_setup(&acb->selto_timer, NULL, 0); acb->srb_count = DC395x_MAX_SRB_CNT; acb->sel_timeout = DC395x_SEL_TIMEOUT; /* timeout=250ms */ /* NOTE: acb->irq_level is set at IRQ registration time */ acb->tag_max_num = 1 << eeprom->max_tag; if (acb->tag_max_num > 30) acb->tag_max_num = 30; acb->acb_flag = 0; /* RESET_DETECT, RESET_DONE, RESET_DEV */ acb->gmode2 = eeprom->channel_cfg; acb->config = 0; /* NOTE: actually set in adapter_init_chip */ if (eeprom->channel_cfg & NAC_SCANLUN) acb->lun_chk = 1; acb->scan_devices = 1; acb->scsi_host->this_id = eeprom->scsi_id; acb->hostid_bit = (1 << acb->scsi_host->this_id); for (i = 0; i < DC395x_MAX_SCSI_ID; i++) acb->dcb_map[i] = 0; acb->msg_len = 0; /* link static array of srbs into the srb free list */ for (i = 0; i < acb->srb_count - 1; i++) list_add_tail(&acb->srb_array[i].list, &acb->srb_free_list); } /** * adapter_init_scsi_host - Initialize the scsi host instance based on * values that we have already stored in the adapter instance. There's * some mention that a lot of these are deprecated, so we won't use * them (we'll use the ones in the adapter instance) but we'll fill * them in in case something else needs them. * * The eeprom structure, irq and io ports in the adapter need to have * been set before calling this function. * * @host: The scsi host instance to fill in the values for. **/ static void adapter_init_scsi_host(struct Scsi_Host *host) { struct AdapterCtlBlk *acb = (struct AdapterCtlBlk *)host->hostdata; struct NvRamType *eeprom = &acb->eeprom; host->max_cmd_len = 24; host->can_queue = DC395x_MAX_CMD_QUEUE; host->cmd_per_lun = DC395x_MAX_CMD_PER_LUN; host->this_id = (int)eeprom->scsi_id; host->io_port = acb->io_port_base; host->n_io_port = acb->io_port_len; host->dma_channel = -1; host->unique_id = acb->io_port_base; host->irq = acb->irq_level; acb->last_reset = jiffies; host->max_id = 16; if (host->max_id - 1 == eeprom->scsi_id) host->max_id--; if (eeprom->channel_cfg & NAC_SCANLUN) host->max_lun = 8; else host->max_lun = 1; } /** * adapter_init_chip - Get the chip into a know state and figure out * some of the settings that apply to this adapter. * * The io port in the adapter needs to have been set before calling * this function. The config will be configured correctly on return. * * @acb: The adapter which we are to init. **/ static void adapter_init_chip(struct AdapterCtlBlk *acb) { struct NvRamType *eeprom = &acb->eeprom; /* Mask all the interrupt */ DC395x_write8(acb, TRM_S1040_DMA_INTEN, 0x00); DC395x_write8(acb, TRM_S1040_SCSI_INTEN, 0x00); /* Reset SCSI module */ DC395x_write16(acb, TRM_S1040_SCSI_CONTROL, DO_RSTMODULE); /* Reset PCI/DMA module */ DC395x_write8(acb, TRM_S1040_DMA_CONTROL, DMARESETMODULE); udelay(20); /* program configuration 0 */ acb->config = HCC_AUTOTERM | HCC_PARITY; if (DC395x_read8(acb, TRM_S1040_GEN_STATUS) & WIDESCSI) acb->config |= HCC_WIDE_CARD; if (eeprom->channel_cfg & NAC_POWERON_SCSI_RESET) acb->config |= HCC_SCSI_RESET; if (acb->config & HCC_SCSI_RESET) { dprintkl(KERN_INFO, "Performing initial SCSI bus reset\n"); DC395x_write8(acb, TRM_S1040_SCSI_CONTROL, DO_RSTSCSI); /*while (!( DC395x_read8(acb, TRM_S1040_SCSI_INTSTATUS) & INT_SCSIRESET )); */ /*spin_unlock_irq (&io_request_lock); */ udelay(500); acb->last_reset = jiffies + HZ / 2 + HZ * acb->eeprom.delay_time; /*spin_lock_irq (&io_request_lock); */ } } /** * adapter_init - Grab the resource for the card, setup the adapter * information, set the card into a known state, create the various * tables etc etc. This basically gets all adapter information all up * to date, initialised and gets the chip in sync with it. * * @acb: The adapter which we are to init. * @io_port: The base I/O port * @io_port_len: The I/O port size * @irq: IRQ * * Returns 0 if the initialization succeeds, any other value on * failure. **/ static int adapter_init(struct AdapterCtlBlk *acb, unsigned long io_port, u32 io_port_len, unsigned int irq) { if (!request_region(io_port, io_port_len, DC395X_NAME)) { dprintkl(KERN_ERR, "Failed to reserve IO region 0x%lx\n", io_port); goto failed; } /* store port base to indicate we have registered it */ acb->io_port_base = io_port; acb->io_port_len = io_port_len; if (request_irq(irq, dc395x_interrupt, IRQF_SHARED, DC395X_NAME, acb)) { /* release the region we just claimed */ dprintkl(KERN_INFO, "Failed to register IRQ\n"); goto failed; } /* store irq to indicate we have registered it */ acb->irq_level = irq; /* get eeprom configuration information and command line settings etc */ check_eeprom(&acb->eeprom, io_port); print_eeprom_settings(&acb->eeprom); /* setup adapter control block */ adapter_init_params(acb); /* display card connectors/termination settings */ adapter_print_config(acb); if (adapter_sg_tables_alloc(acb)) { dprintkl(KERN_DEBUG, "Memory allocation for SG tables failed\n"); goto failed; } adapter_init_scsi_host(acb->scsi_host); adapter_init_chip(acb); set_basic_config(acb); dprintkdbg(DBG_0, "adapter_init: acb=%p, pdcb_map=%p psrb_array=%p " "size{acb=0x%04x dcb=0x%04x srb=0x%04x}\n", acb, acb->dcb_map, acb->srb_array, sizeof(struct AdapterCtlBlk), sizeof(struct DeviceCtlBlk), sizeof(struct ScsiReqBlk)); return 0; failed: if (acb->irq_level) free_irq(acb->irq_level, acb); if (acb->io_port_base) release_region(acb->io_port_base, acb->io_port_len); adapter_sg_tables_free(acb); return 1; } /** * adapter_uninit_chip - cleanly shut down the scsi controller chip, * stopping all operations and disabling interrupt generation on the * card. * * @acb: The adapter which we are to shutdown. **/ static void adapter_uninit_chip(struct AdapterCtlBlk *acb) { /* disable interrupts */ DC395x_write8(acb, TRM_S1040_DMA_INTEN, 0); DC395x_write8(acb, TRM_S1040_SCSI_INTEN, 0); /* reset the scsi bus */ if (acb->config & HCC_SCSI_RESET) reset_scsi_bus(acb); /* clear any pending interrupt state */ DC395x_read8(acb, TRM_S1040_SCSI_INTSTATUS); } /** * adapter_uninit - Shut down the chip and release any resources that * we had allocated. Once this returns the adapter should not be used * anymore. * * @acb: The adapter which we are to un-initialize. **/ static void adapter_uninit(struct AdapterCtlBlk *acb) { unsigned long flags; DC395x_LOCK_IO(acb->scsi_host, flags); /* remove timers */ if (timer_pending(&acb->waiting_timer)) del_timer(&acb->waiting_timer); if (timer_pending(&acb->selto_timer)) del_timer(&acb->selto_timer); adapter_uninit_chip(acb); adapter_remove_and_free_all_devices(acb); DC395x_UNLOCK_IO(acb->scsi_host, flags); if (acb->irq_level) free_irq(acb->irq_level, acb); if (acb->io_port_base) release_region(acb->io_port_base, acb->io_port_len); adapter_sg_tables_free(acb); } #undef YESNO #define YESNO(YN) \ if (YN) seq_printf(m, " Yes ");\ else seq_printf(m, " No ") static int dc395x_show_info(struct seq_file *m, struct Scsi_Host *host) { struct AdapterCtlBlk *acb = (struct AdapterCtlBlk *)host->hostdata; int spd, spd1; struct DeviceCtlBlk *dcb; unsigned long flags; int dev; seq_puts(m, DC395X_BANNER " PCI SCSI Host Adapter\n" " Driver Version " DC395X_VERSION "\n"); DC395x_LOCK_IO(acb->scsi_host, flags); seq_printf(m, "SCSI Host Nr %i, ", host->host_no); seq_printf(m, "DC395U/UW/F DC315/U %s\n", (acb->config & HCC_WIDE_CARD) ? "Wide" : ""); seq_printf(m, "io_port_base 0x%04lx, ", acb->io_port_base); seq_printf(m, "irq_level 0x%04x, ", acb->irq_level); seq_printf(m, " SelTimeout %ims\n", (1638 * acb->sel_timeout) / 1000); seq_printf(m, "MaxID %i, MaxLUN %llu, ", host->max_id, host->max_lun); seq_printf(m, "AdapterID %i\n", host->this_id); seq_printf(m, "tag_max_num %i", acb->tag_max_num); /*seq_printf(m, ", DMA_Status %i\n", DC395x_read8(acb, TRM_S1040_DMA_STATUS)); */ seq_printf(m, ", FilterCfg 0x%02x", DC395x_read8(acb, TRM_S1040_SCSI_CONFIG1)); seq_printf(m, ", DelayReset %is\n", acb->eeprom.delay_time); /*seq_printf(m, "\n"); */ seq_printf(m, "Nr of DCBs: %i\n", list_size(&acb->dcb_list)); seq_printf(m, "Map of attached LUNs: %8ph\n", &acb->dcb_map[0]); seq_printf(m, " %8ph\n", &acb->dcb_map[8]); seq_puts(m, "Un ID LUN Prty Sync Wide DsCn SndS TagQ nego_period SyncFreq SyncOffs MaxCmd\n"); dev = 0; list_for_each_entry(dcb, &acb->dcb_list, list) { int nego_period; seq_printf(m, "%02i %02i %02i ", dev, dcb->target_id, dcb->target_lun); YESNO(dcb->dev_mode & NTC_DO_PARITY_CHK); YESNO(dcb->sync_offset); YESNO(dcb->sync_period & WIDE_SYNC); YESNO(dcb->dev_mode & NTC_DO_DISCONNECT); YESNO(dcb->dev_mode & NTC_DO_SEND_START); YESNO(dcb->sync_mode & EN_TAG_QUEUEING); nego_period = clock_period[dcb->sync_period & 0x07] << 2; if (dcb->sync_offset) seq_printf(m, " %03i ns ", nego_period); else seq_printf(m, " (%03i ns)", (dcb->min_nego_period << 2)); if (dcb->sync_offset & 0x0f) { spd = 1000 / (nego_period); spd1 = 1000 % (nego_period); spd1 = (spd1 * 10 + nego_period / 2) / (nego_period); seq_printf(m, " %2i.%1i M %02i ", spd, spd1, (dcb->sync_offset & 0x0f)); } else seq_puts(m, " "); /* Add more info ... */ seq_printf(m, " %02i\n", dcb->max_command); dev++; } if (timer_pending(&acb->waiting_timer)) seq_puts(m, "Waiting queue timer running\n"); else seq_putc(m, '\n'); list_for_each_entry(dcb, &acb->dcb_list, list) { struct ScsiReqBlk *srb; if (!list_empty(&dcb->srb_waiting_list)) seq_printf(m, "DCB (%02i-%i): Waiting: %i:", dcb->target_id, dcb->target_lun, list_size(&dcb->srb_waiting_list)); list_for_each_entry(srb, &dcb->srb_waiting_list, list) seq_printf(m, " %p", srb->cmd); if (!list_empty(&dcb->srb_going_list)) seq_printf(m, "\nDCB (%02i-%i): Going : %i:", dcb->target_id, dcb->target_lun, list_size(&dcb->srb_going_list)); list_for_each_entry(srb, &dcb->srb_going_list, list) seq_printf(m, " %p", srb->cmd); if (!list_empty(&dcb->srb_waiting_list) || !list_empty(&dcb->srb_going_list)) seq_putc(m, '\n'); } if (debug_enabled(DBG_1)) { seq_printf(m, "DCB list for ACB %p:\n", acb); list_for_each_entry(dcb, &acb->dcb_list, list) { seq_printf(m, "%p -> ", dcb); } seq_puts(m, "END\n"); } DC395x_UNLOCK_IO(acb->scsi_host, flags); return 0; } static const struct scsi_host_template dc395x_driver_template = { .module = THIS_MODULE, .proc_name = DC395X_NAME, .show_info = dc395x_show_info, .name = DC395X_BANNER " " DC395X_VERSION, .queuecommand = dc395x_queue_command, .slave_alloc = dc395x_slave_alloc, .slave_destroy = dc395x_slave_destroy, .can_queue = DC395x_MAX_CAN_QUEUE, .this_id = 7, .sg_tablesize = DC395x_MAX_SG_TABLESIZE, .cmd_per_lun = DC395x_MAX_CMD_PER_LUN, .eh_abort_handler = dc395x_eh_abort, .eh_bus_reset_handler = dc395x_eh_bus_reset, .dma_boundary = PAGE_SIZE - 1, }; /** * banner_display - Display banner on first instance of driver * initialized. **/ static void banner_display(void) { static int banner_done = 0; if (!banner_done) { dprintkl(KERN_INFO, "%s %s\n", DC395X_BANNER, DC395X_VERSION); banner_done = 1; } } /** * dc395x_init_one - Initialise a single instance of the adapter. * * The PCI layer will call this once for each instance of the adapter * that it finds in the system. The pci_dev strcuture indicates which * instance we are being called from. * * @dev: The PCI device to initialize. * @id: Looks like a pointer to the entry in our pci device table * that was actually matched by the PCI subsystem. * * Returns 0 on success, or an error code (-ve) on failure. **/ static int dc395x_init_one(struct pci_dev *dev, const struct pci_device_id *id) { struct Scsi_Host *scsi_host = NULL; struct AdapterCtlBlk *acb = NULL; unsigned long io_port_base; unsigned int io_port_len; unsigned int irq; dprintkdbg(DBG_0, "Init one instance (%s)\n", pci_name(dev)); banner_display(); if (pci_enable_device(dev)) { dprintkl(KERN_INFO, "PCI Enable device failed.\n"); return -ENODEV; } io_port_base = pci_resource_start(dev, 0) & PCI_BASE_ADDRESS_IO_MASK; io_port_len = pci_resource_len(dev, 0); irq = dev->irq; dprintkdbg(DBG_0, "IO_PORT=0x%04lx, IRQ=0x%x\n", io_port_base, dev->irq); /* allocate scsi host information (includes out adapter) */ scsi_host = scsi_host_alloc(&dc395x_driver_template, sizeof(struct AdapterCtlBlk)); if (!scsi_host) { dprintkl(KERN_INFO, "scsi_host_alloc failed\n"); goto fail; } acb = (struct AdapterCtlBlk*)scsi_host->hostdata; acb->scsi_host = scsi_host; acb->dev = dev; /* initialise the adapter and everything we need */ if (adapter_init(acb, io_port_base, io_port_len, irq)) { dprintkl(KERN_INFO, "adapter init failed\n"); acb = NULL; goto fail; } pci_set_master(dev); /* get the scsi mid level to scan for new devices on the bus */ if (scsi_add_host(scsi_host, &dev->dev)) { dprintkl(KERN_ERR, "scsi_add_host failed\n"); goto fail; } pci_set_drvdata(dev, scsi_host); scsi_scan_host(scsi_host); return 0; fail: if (acb != NULL) adapter_uninit(acb); if (scsi_host != NULL) scsi_host_put(scsi_host); pci_disable_device(dev); return -ENODEV; } /** * dc395x_remove_one - Called to remove a single instance of the * adapter. * * @dev: The PCI device to initialize. **/ static void dc395x_remove_one(struct pci_dev *dev) { struct Scsi_Host *scsi_host = pci_get_drvdata(dev); struct AdapterCtlBlk *acb = (struct AdapterCtlBlk *)(scsi_host->hostdata); dprintkdbg(DBG_0, "dc395x_remove_one: acb=%p\n", acb); scsi_remove_host(scsi_host); adapter_uninit(acb); pci_disable_device(dev); scsi_host_put(scsi_host); } static struct pci_device_id dc395x_pci_table[] = { { .vendor = PCI_VENDOR_ID_TEKRAM, .device = PCI_DEVICE_ID_TEKRAM_TRMS1040, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, }, {} /* Terminating entry */ }; MODULE_DEVICE_TABLE(pci, dc395x_pci_table); static struct pci_driver dc395x_driver = { .name = DC395X_NAME, .id_table = dc395x_pci_table, .probe = dc395x_init_one, .remove = dc395x_remove_one, }; module_pci_driver(dc395x_driver); MODULE_AUTHOR("C.L. Huang / Erich Chen / Kurt Garloff"); MODULE_DESCRIPTION("SCSI host adapter driver for Tekram TRM-S1040 based adapters: Tekram DC395 and DC315 series"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1