Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
James Smart | 49526 | 80.29% | 478 | 80.07% |
James Bottomley | 7546 | 12.23% | 3 | 0.50% |
Dick Kennedy | 1178 | 1.91% | 13 | 2.18% |
Justin Tee | 1166 | 1.89% | 24 | 4.02% |
Jamie Wellnitz | 584 | 0.95% | 4 | 0.67% |
Linas Vepstas | 462 | 0.75% | 1 | 0.17% |
Gaurav Srivastava | 331 | 0.54% | 3 | 0.50% |
Bradley Grove | 256 | 0.41% | 1 | 0.17% |
Christoph Hellwig | 87 | 0.14% | 2 | 0.34% |
Kees Cook | 77 | 0.12% | 3 | 0.50% |
Vaibhav Gupta | 54 | 0.09% | 1 | 0.17% |
Michael Reed | 42 | 0.07% | 1 | 0.17% |
Hannes Reinecke | 41 | 0.07% | 1 | 0.17% |
Tomas Jasek | 37 | 0.06% | 1 | 0.17% |
Dan Carpenter | 33 | 0.05% | 2 | 0.34% |
Lee Jones | 27 | 0.04% | 2 | 0.34% |
Yang Yingliang | 18 | 0.03% | 1 | 0.17% |
Shuchang Li | 18 | 0.03% | 1 | 0.17% |
Jing Xiangfeng | 13 | 0.02% | 1 | 0.17% |
André Goddard Rosa | 12 | 0.02% | 1 | 0.17% |
William Dean | 11 | 0.02% | 1 | 0.17% |
Tomohiro Kusumi | 11 | 0.02% | 1 | 0.17% |
Anton Blanchard | 11 | 0.02% | 2 | 0.34% |
Johannes Thumshirn | 10 | 0.02% | 2 | 0.34% |
Alexander Gordeev | 10 | 0.02% | 2 | 0.34% |
Romain Perier | 9 | 0.01% | 1 | 0.17% |
Thomas Gleixner | 8 | 0.01% | 2 | 0.34% |
Adrian Bunk | 8 | 0.01% | 1 | 0.17% |
Ewan D. Milne | 8 | 0.01% | 1 | 0.17% |
Jiri Slaby | 7 | 0.01% | 1 | 0.17% |
Lucas De Marchi | 7 | 0.01% | 1 | 0.17% |
Martin Wilck | 6 | 0.01% | 1 | 0.17% |
Colin Ian King | 6 | 0.01% | 5 | 0.84% |
Rafael Mendonca | 5 | 0.01% | 1 | 0.17% |
Mariusz Kozlowski | 5 | 0.01% | 1 | 0.17% |
Julia Lawall | 4 | 0.01% | 1 | 0.17% |
Bart Van Assche | 4 | 0.01% | 1 | 0.17% |
Andrew Morton | 4 | 0.01% | 1 | 0.17% |
SeongJae Park | 4 | 0.01% | 1 | 0.17% |
Paul Gortmaker | 3 | 0.00% | 1 | 0.17% |
Maurizio Lombardi | 3 | 0.00% | 1 | 0.17% |
Luis R. Rodriguez | 3 | 0.00% | 1 | 0.17% |
Jakub Kiciński | 3 | 0.00% | 1 | 0.17% |
Stefano Brivio | 3 | 0.00% | 1 | 0.17% |
Linus Torvalds (pre-git) | 2 | 0.00% | 1 | 0.17% |
Yue haibing | 2 | 0.00% | 2 | 0.34% |
Al Viro | 2 | 0.00% | 1 | 0.17% |
Rashika Kheria | 2 | 0.00% | 1 | 0.17% |
Bo Liu | 2 | 0.00% | 1 | 0.17% |
Michael Christie | 2 | 0.00% | 1 | 0.17% |
Stephen Hemminger | 1 | 0.00% | 1 | 0.17% |
Anatol Pomozov | 1 | 0.00% | 1 | 0.17% |
Justin P. Mattock | 1 | 0.00% | 1 | 0.17% |
Andrew Vasquez | 1 | 0.00% | 1 | 0.17% |
Linus Torvalds | 1 | 0.00% | 1 | 0.17% |
Tejun Heo | 1 | 0.00% | 1 | 0.17% |
Shawn Guo | 1 | 0.00% | 1 | 0.17% |
Jun Chen | 1 | 0.00% | 1 | 0.17% |
Peter Zijlstra | 1 | 0.00% | 1 | 0.17% |
Sebastian Herbszt | 1 | 0.00% | 1 | 0.17% |
Jon Mason | 1 | 0.00% | 1 | 0.17% |
Thomas Meyer | 1 | 0.00% | 1 | 0.17% |
Nitesh Narayan Lal | 1 | 0.00% | 1 | 0.17% |
Paul Walmsley | 1 | 0.00% | 1 | 0.17% |
Total | 61687 | 597 |
/******************************************************************* * This file is part of the Emulex Linux Device Driver for * * Fibre Channel Host Bus Adapters. * * Copyright (C) 2017-2024 Broadcom. All Rights Reserved. The term * * “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. * * Copyright (C) 2004-2016 Emulex. All rights reserved. * * EMULEX and SLI are trademarks of Emulex. * * www.broadcom.com * * Portions Copyright (C) 2004-2005 Christoph Hellwig * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of version 2 of the GNU General * * Public License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful. * * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * * TO BE LEGALLY INVALID. See the GNU General Public License for * * more details, a copy of which can be found in the file COPYING * * included with this package. * *******************************************************************/ #include <linux/blkdev.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/idr.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/kthread.h> #include <linux/pci.h> #include <linux/spinlock.h> #include <linux/sched/clock.h> #include <linux/ctype.h> #include <linux/slab.h> #include <linux/firmware.h> #include <linux/miscdevice.h> #include <linux/percpu.h> #include <linux/irq.h> #include <linux/bitops.h> #include <linux/crash_dump.h> #include <linux/cpu.h> #include <linux/cpuhotplug.h> #include <scsi/scsi.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include <scsi/scsi_transport_fc.h> #include <scsi/scsi_tcq.h> #include <scsi/fc/fc_fs.h> #include "lpfc_hw4.h" #include "lpfc_hw.h" #include "lpfc_sli.h" #include "lpfc_sli4.h" #include "lpfc_nl.h" #include "lpfc_disc.h" #include "lpfc.h" #include "lpfc_scsi.h" #include "lpfc_nvme.h" #include "lpfc_logmsg.h" #include "lpfc_crtn.h" #include "lpfc_vport.h" #include "lpfc_version.h" #include "lpfc_ids.h" static enum cpuhp_state lpfc_cpuhp_state; /* Used when mapping IRQ vectors in a driver centric manner */ static uint32_t lpfc_present_cpu; static bool lpfc_pldv_detect; static void __lpfc_cpuhp_remove(struct lpfc_hba *phba); static void lpfc_cpuhp_remove(struct lpfc_hba *phba); static void lpfc_cpuhp_add(struct lpfc_hba *phba); static void lpfc_get_hba_model_desc(struct lpfc_hba *, uint8_t *, uint8_t *); static int lpfc_post_rcv_buf(struct lpfc_hba *); static int lpfc_sli4_queue_verify(struct lpfc_hba *); static int lpfc_create_bootstrap_mbox(struct lpfc_hba *); static int lpfc_setup_endian_order(struct lpfc_hba *); static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *); static void lpfc_free_els_sgl_list(struct lpfc_hba *); static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *); static void lpfc_init_sgl_list(struct lpfc_hba *); static int lpfc_init_active_sgl_array(struct lpfc_hba *); static void lpfc_free_active_sgl(struct lpfc_hba *); static int lpfc_hba_down_post_s3(struct lpfc_hba *phba); static int lpfc_hba_down_post_s4(struct lpfc_hba *phba); static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *); static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *); static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *); static void lpfc_sli4_disable_intr(struct lpfc_hba *); static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *, uint32_t); static void lpfc_sli4_oas_verify(struct lpfc_hba *phba); static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *, uint16_t, int); static void lpfc_setup_bg(struct lpfc_hba *, struct Scsi_Host *); static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *); static void lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba); static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba); static struct scsi_transport_template *lpfc_transport_template = NULL; static struct scsi_transport_template *lpfc_vport_transport_template = NULL; static DEFINE_IDR(lpfc_hba_index); #define LPFC_NVMET_BUF_POST 254 static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport); static void lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts); /** * lpfc_config_port_prep - Perform lpfc initialization prior to config port * @phba: pointer to lpfc hba data structure. * * This routine will do LPFC initialization prior to issuing the CONFIG_PORT * mailbox command. It retrieves the revision information from the HBA and * collects the Vital Product Data (VPD) about the HBA for preparing the * configuration of the HBA. * * Return codes: * 0 - success. * -ERESTART - requests the SLI layer to reset the HBA and try again. * Any other value - indicates an error. **/ int lpfc_config_port_prep(struct lpfc_hba *phba) { lpfc_vpd_t *vp = &phba->vpd; int i = 0, rc; LPFC_MBOXQ_t *pmb; MAILBOX_t *mb; char *lpfc_vpd_data = NULL; uint16_t offset = 0; static char licensed[56] = "key unlock for use with gnu public licensed code only\0"; static int init_key = 1; pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) { phba->link_state = LPFC_HBA_ERROR; return -ENOMEM; } mb = &pmb->u.mb; phba->link_state = LPFC_INIT_MBX_CMDS; if (lpfc_is_LC_HBA(phba->pcidev->device)) { if (init_key) { uint32_t *ptext = (uint32_t *) licensed; for (i = 0; i < 56; i += sizeof (uint32_t), ptext++) *ptext = cpu_to_be32(*ptext); init_key = 0; } lpfc_read_nv(phba, pmb); memset((char*)mb->un.varRDnvp.rsvd3, 0, sizeof (mb->un.varRDnvp.rsvd3)); memcpy((char*)mb->un.varRDnvp.rsvd3, licensed, sizeof (licensed)); rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0324 Config Port initialization " "error, mbxCmd x%x READ_NVPARM, " "mbxStatus x%x\n", mb->mbxCommand, mb->mbxStatus); mempool_free(pmb, phba->mbox_mem_pool); return -ERESTART; } memcpy(phba->wwnn, (char *)mb->un.varRDnvp.nodename, sizeof(phba->wwnn)); memcpy(phba->wwpn, (char *)mb->un.varRDnvp.portname, sizeof(phba->wwpn)); } /* * Clear all option bits except LPFC_SLI3_BG_ENABLED, * which was already set in lpfc_get_cfgparam() */ phba->sli3_options &= (uint32_t)LPFC_SLI3_BG_ENABLED; /* Setup and issue mailbox READ REV command */ lpfc_read_rev(phba, pmb); rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0439 Adapter failed to init, mbxCmd x%x " "READ_REV, mbxStatus x%x\n", mb->mbxCommand, mb->mbxStatus); mempool_free( pmb, phba->mbox_mem_pool); return -ERESTART; } /* * The value of rr must be 1 since the driver set the cv field to 1. * This setting requires the FW to set all revision fields. */ if (mb->un.varRdRev.rr == 0) { vp->rev.rBit = 0; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0440 Adapter failed to init, READ_REV has " "missing revision information.\n"); mempool_free(pmb, phba->mbox_mem_pool); return -ERESTART; } if (phba->sli_rev == 3 && !mb->un.varRdRev.v3rsp) { mempool_free(pmb, phba->mbox_mem_pool); return -EINVAL; } /* Save information as VPD data */ vp->rev.rBit = 1; memcpy(&vp->sli3Feat, &mb->un.varRdRev.sli3Feat, sizeof(uint32_t)); vp->rev.sli1FwRev = mb->un.varRdRev.sli1FwRev; memcpy(vp->rev.sli1FwName, (char*) mb->un.varRdRev.sli1FwName, 16); vp->rev.sli2FwRev = mb->un.varRdRev.sli2FwRev; memcpy(vp->rev.sli2FwName, (char *) mb->un.varRdRev.sli2FwName, 16); vp->rev.biuRev = mb->un.varRdRev.biuRev; vp->rev.smRev = mb->un.varRdRev.smRev; vp->rev.smFwRev = mb->un.varRdRev.un.smFwRev; vp->rev.endecRev = mb->un.varRdRev.endecRev; vp->rev.fcphHigh = mb->un.varRdRev.fcphHigh; vp->rev.fcphLow = mb->un.varRdRev.fcphLow; vp->rev.feaLevelHigh = mb->un.varRdRev.feaLevelHigh; vp->rev.feaLevelLow = mb->un.varRdRev.feaLevelLow; vp->rev.postKernRev = mb->un.varRdRev.postKernRev; vp->rev.opFwRev = mb->un.varRdRev.opFwRev; /* If the sli feature level is less then 9, we must * tear down all RPIs and VPIs on link down if NPIV * is enabled. */ if (vp->rev.feaLevelHigh < 9) phba->sli3_options |= LPFC_SLI3_VPORT_TEARDOWN; if (lpfc_is_LC_HBA(phba->pcidev->device)) memcpy(phba->RandomData, (char *)&mb->un.varWords[24], sizeof (phba->RandomData)); /* Get adapter VPD information */ lpfc_vpd_data = kmalloc(DMP_VPD_SIZE, GFP_KERNEL); if (!lpfc_vpd_data) goto out_free_mbox; do { lpfc_dump_mem(phba, pmb, offset, DMP_REGION_VPD); rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0441 VPD not present on adapter, " "mbxCmd x%x DUMP VPD, mbxStatus x%x\n", mb->mbxCommand, mb->mbxStatus); mb->un.varDmp.word_cnt = 0; } /* dump mem may return a zero when finished or we got a * mailbox error, either way we are done. */ if (mb->un.varDmp.word_cnt == 0) break; if (mb->un.varDmp.word_cnt > DMP_VPD_SIZE - offset) mb->un.varDmp.word_cnt = DMP_VPD_SIZE - offset; lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET, lpfc_vpd_data + offset, mb->un.varDmp.word_cnt); offset += mb->un.varDmp.word_cnt; } while (mb->un.varDmp.word_cnt && offset < DMP_VPD_SIZE); lpfc_parse_vpd(phba, lpfc_vpd_data, offset); kfree(lpfc_vpd_data); out_free_mbox: mempool_free(pmb, phba->mbox_mem_pool); return 0; } /** * lpfc_config_async_cmpl - Completion handler for config async event mbox cmd * @phba: pointer to lpfc hba data structure. * @pmboxq: pointer to the driver internal queue element for mailbox command. * * This is the completion handler for driver's configuring asynchronous event * mailbox command to the device. If the mailbox command returns successfully, * it will set internal async event support flag to 1; otherwise, it will * set internal async event support flag to 0. **/ static void lpfc_config_async_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) { if (pmboxq->u.mb.mbxStatus == MBX_SUCCESS) phba->temp_sensor_support = 1; else phba->temp_sensor_support = 0; mempool_free(pmboxq, phba->mbox_mem_pool); return; } /** * lpfc_dump_wakeup_param_cmpl - dump memory mailbox command completion handler * @phba: pointer to lpfc hba data structure. * @pmboxq: pointer to the driver internal queue element for mailbox command. * * This is the completion handler for dump mailbox command for getting * wake up parameters. When this command complete, the response contain * Option rom version of the HBA. This function translate the version number * into a human readable string and store it in OptionROMVersion. **/ static void lpfc_dump_wakeup_param_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq) { struct prog_id *prg; uint32_t prog_id_word; char dist = ' '; /* character array used for decoding dist type. */ char dist_char[] = "nabx"; if (pmboxq->u.mb.mbxStatus != MBX_SUCCESS) { mempool_free(pmboxq, phba->mbox_mem_pool); return; } prg = (struct prog_id *) &prog_id_word; /* word 7 contain option rom version */ prog_id_word = pmboxq->u.mb.un.varWords[7]; /* Decode the Option rom version word to a readable string */ dist = dist_char[prg->dist]; if ((prg->dist == 3) && (prg->num == 0)) snprintf(phba->OptionROMVersion, 32, "%d.%d%d", prg->ver, prg->rev, prg->lev); else snprintf(phba->OptionROMVersion, 32, "%d.%d%d%c%d", prg->ver, prg->rev, prg->lev, dist, prg->num); mempool_free(pmboxq, phba->mbox_mem_pool); return; } /** * lpfc_update_vport_wwn - Updates the fc_nodename, fc_portname, * @vport: pointer to lpfc vport data structure. * * * Return codes * None. **/ void lpfc_update_vport_wwn(struct lpfc_vport *vport) { struct lpfc_hba *phba = vport->phba; /* * If the name is empty or there exists a soft name * then copy the service params name, otherwise use the fc name */ if (vport->fc_nodename.u.wwn[0] == 0) memcpy(&vport->fc_nodename, &vport->fc_sparam.nodeName, sizeof(struct lpfc_name)); else memcpy(&vport->fc_sparam.nodeName, &vport->fc_nodename, sizeof(struct lpfc_name)); /* * If the port name has changed, then set the Param changes flag * to unreg the login */ if (vport->fc_portname.u.wwn[0] != 0 && memcmp(&vport->fc_portname, &vport->fc_sparam.portName, sizeof(struct lpfc_name))) { vport->vport_flag |= FAWWPN_PARAM_CHG; if (phba->sli_rev == LPFC_SLI_REV4 && vport->port_type == LPFC_PHYSICAL_PORT && phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_FABRIC) { if (!(phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG)) phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC; lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_DISCOVERY | LOG_ELS, "2701 FA-PWWN change WWPN from %llx to " "%llx: vflag x%x fawwpn_flag x%x\n", wwn_to_u64(vport->fc_portname.u.wwn), wwn_to_u64 (vport->fc_sparam.portName.u.wwn), vport->vport_flag, phba->sli4_hba.fawwpn_flag); memcpy(&vport->fc_portname, &vport->fc_sparam.portName, sizeof(struct lpfc_name)); } } if (vport->fc_portname.u.wwn[0] == 0) memcpy(&vport->fc_portname, &vport->fc_sparam.portName, sizeof(struct lpfc_name)); else memcpy(&vport->fc_sparam.portName, &vport->fc_portname, sizeof(struct lpfc_name)); } /** * lpfc_config_port_post - Perform lpfc initialization after config port * @phba: pointer to lpfc hba data structure. * * This routine will do LPFC initialization after the CONFIG_PORT mailbox * command call. It performs all internal resource and state setups on the * port: post IOCB buffers, enable appropriate host interrupt attentions, * ELS ring timers, etc. * * Return codes * 0 - success. * Any other value - error. **/ int lpfc_config_port_post(struct lpfc_hba *phba) { struct lpfc_vport *vport = phba->pport; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); LPFC_MBOXQ_t *pmb; MAILBOX_t *mb; struct lpfc_dmabuf *mp; struct lpfc_sli *psli = &phba->sli; uint32_t status, timeout; int i, j; int rc; spin_lock_irq(&phba->hbalock); /* * If the Config port completed correctly the HBA is not * over heated any more. */ if (phba->over_temp_state == HBA_OVER_TEMP) phba->over_temp_state = HBA_NORMAL_TEMP; spin_unlock_irq(&phba->hbalock); pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) { phba->link_state = LPFC_HBA_ERROR; return -ENOMEM; } mb = &pmb->u.mb; /* Get login parameters for NID. */ rc = lpfc_read_sparam(phba, pmb, 0); if (rc) { mempool_free(pmb, phba->mbox_mem_pool); return -ENOMEM; } pmb->vport = vport; if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0448 Adapter failed init, mbxCmd x%x " "READ_SPARM mbxStatus x%x\n", mb->mbxCommand, mb->mbxStatus); phba->link_state = LPFC_HBA_ERROR; lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); return -EIO; } mp = pmb->ctx_buf; /* This dmabuf was allocated by lpfc_read_sparam. The dmabuf is no * longer needed. Prevent unintended ctx_buf access as the mbox is * reused. */ memcpy(&vport->fc_sparam, mp->virt, sizeof (struct serv_parm)); lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); pmb->ctx_buf = NULL; lpfc_update_vport_wwn(vport); /* Update the fc_host data structures with new wwn. */ fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); fc_host_max_npiv_vports(shost) = phba->max_vpi; /* If no serial number in VPD data, use low 6 bytes of WWNN */ /* This should be consolidated into parse_vpd ? - mr */ if (phba->SerialNumber[0] == 0) { uint8_t *outptr; outptr = &vport->fc_nodename.u.s.IEEE[0]; for (i = 0; i < 12; i++) { status = *outptr++; j = ((status & 0xf0) >> 4); if (j <= 9) phba->SerialNumber[i] = (char)((uint8_t) 0x30 + (uint8_t) j); else phba->SerialNumber[i] = (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); i++; j = (status & 0xf); if (j <= 9) phba->SerialNumber[i] = (char)((uint8_t) 0x30 + (uint8_t) j); else phba->SerialNumber[i] = (char)((uint8_t) 0x61 + (uint8_t) (j - 10)); } } lpfc_read_config(phba, pmb); pmb->vport = vport; if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0453 Adapter failed to init, mbxCmd x%x " "READ_CONFIG, mbxStatus x%x\n", mb->mbxCommand, mb->mbxStatus); phba->link_state = LPFC_HBA_ERROR; mempool_free( pmb, phba->mbox_mem_pool); return -EIO; } /* Check if the port is disabled */ lpfc_sli_read_link_ste(phba); /* Reset the DFT_HBA_Q_DEPTH to the max xri */ if (phba->cfg_hba_queue_depth > mb->un.varRdConfig.max_xri) { lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "3359 HBA queue depth changed from %d to %d\n", phba->cfg_hba_queue_depth, mb->un.varRdConfig.max_xri); phba->cfg_hba_queue_depth = mb->un.varRdConfig.max_xri; } phba->lmt = mb->un.varRdConfig.lmt; /* Get the default values for Model Name and Description */ lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); phba->link_state = LPFC_LINK_DOWN; /* Only process IOCBs on ELS ring till hba_state is READY */ if (psli->sli3_ring[LPFC_EXTRA_RING].sli.sli3.cmdringaddr) psli->sli3_ring[LPFC_EXTRA_RING].flag |= LPFC_STOP_IOCB_EVENT; if (psli->sli3_ring[LPFC_FCP_RING].sli.sli3.cmdringaddr) psli->sli3_ring[LPFC_FCP_RING].flag |= LPFC_STOP_IOCB_EVENT; /* Post receive buffers for desired rings */ if (phba->sli_rev != 3) lpfc_post_rcv_buf(phba); /* * Configure HBA MSI-X attention conditions to messages if MSI-X mode */ if (phba->intr_type == MSIX) { rc = lpfc_config_msi(phba, pmb); if (rc) { mempool_free(pmb, phba->mbox_mem_pool); return -EIO; } rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0352 Config MSI mailbox command " "failed, mbxCmd x%x, mbxStatus x%x\n", pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus); mempool_free(pmb, phba->mbox_mem_pool); return -EIO; } } spin_lock_irq(&phba->hbalock); /* Initialize ERATT handling flag */ clear_bit(HBA_ERATT_HANDLED, &phba->hba_flag); /* Enable appropriate host interrupts */ if (lpfc_readl(phba->HCregaddr, &status)) { spin_unlock_irq(&phba->hbalock); return -EIO; } status |= HC_MBINT_ENA | HC_ERINT_ENA | HC_LAINT_ENA; if (psli->num_rings > 0) status |= HC_R0INT_ENA; if (psli->num_rings > 1) status |= HC_R1INT_ENA; if (psli->num_rings > 2) status |= HC_R2INT_ENA; if (psli->num_rings > 3) status |= HC_R3INT_ENA; if ((phba->cfg_poll & ENABLE_FCP_RING_POLLING) && (phba->cfg_poll & DISABLE_FCP_RING_INT)) status &= ~(HC_R0INT_ENA); writel(status, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ spin_unlock_irq(&phba->hbalock); /* Set up ring-0 (ELS) timer */ timeout = phba->fc_ratov * 2; mod_timer(&vport->els_tmofunc, jiffies + msecs_to_jiffies(1000 * timeout)); /* Set up heart beat (HB) timer */ mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); clear_bit(HBA_HBEAT_INP, &phba->hba_flag); clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); phba->last_completion_time = jiffies; /* Set up error attention (ERATT) polling timer */ mod_timer(&phba->eratt_poll, jiffies + msecs_to_jiffies(1000 * phba->eratt_poll_interval)); if (test_bit(LINK_DISABLED, &phba->hba_flag)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2598 Adapter Link is disabled.\n"); lpfc_down_link(phba, pmb); pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2599 Adapter failed to issue DOWN_LINK" " mbox command rc 0x%x\n", rc); mempool_free(pmb, phba->mbox_mem_pool); return -EIO; } } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) { mempool_free(pmb, phba->mbox_mem_pool); rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT); if (rc) return rc; } /* MBOX buffer will be freed in mbox compl */ pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) { phba->link_state = LPFC_HBA_ERROR; return -ENOMEM; } lpfc_config_async(phba, pmb, LPFC_ELS_RING); pmb->mbox_cmpl = lpfc_config_async_cmpl; pmb->vport = phba->pport; rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0456 Adapter failed to issue " "ASYNCEVT_ENABLE mbox status x%x\n", rc); mempool_free(pmb, phba->mbox_mem_pool); } /* Get Option rom version */ pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) { phba->link_state = LPFC_HBA_ERROR; return -ENOMEM; } lpfc_dump_wakeup_param(phba, pmb); pmb->mbox_cmpl = lpfc_dump_wakeup_param_cmpl; pmb->vport = phba->pport; rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0435 Adapter failed " "to get Option ROM version status x%x\n", rc); mempool_free(pmb, phba->mbox_mem_pool); } return 0; } /** * lpfc_sli4_refresh_params - update driver copy of params. * @phba: Pointer to HBA context object. * * This is called to refresh driver copy of dynamic fields from the * common_get_sli4_parameters descriptor. **/ int lpfc_sli4_refresh_params(struct lpfc_hba *phba) { LPFC_MBOXQ_t *mboxq; struct lpfc_mqe *mqe; struct lpfc_sli4_parameters *mbx_sli4_parameters; int length, rc; mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) return -ENOMEM; mqe = &mboxq->u.mqe; /* Read the port's SLI4 Config Parameters */ length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, length, LPFC_SLI4_MBX_EMBED); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (unlikely(rc)) { mempool_free(mboxq, phba->mbox_mem_pool); return rc; } mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; phba->sli4_hba.pc_sli4_params.mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters); /* Are we forcing MI off via module parameter? */ if (phba->cfg_enable_mi) phba->sli4_hba.pc_sli4_params.mi_ver = bf_get(cfg_mi_ver, mbx_sli4_parameters); else phba->sli4_hba.pc_sli4_params.mi_ver = 0; phba->sli4_hba.pc_sli4_params.cmf = bf_get(cfg_cmf, mbx_sli4_parameters); phba->sli4_hba.pc_sli4_params.pls = bf_get(cfg_pvl, mbx_sli4_parameters); mempool_free(mboxq, phba->mbox_mem_pool); return rc; } /** * lpfc_hba_init_link - Initialize the FC link * @phba: pointer to lpfc hba data structure. * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT * * This routine will issue the INIT_LINK mailbox command call. * It is available to other drivers through the lpfc_hba data * structure for use as a delayed link up mechanism with the * module parameter lpfc_suppress_link_up. * * Return code * 0 - success * Any other value - error **/ static int lpfc_hba_init_link(struct lpfc_hba *phba, uint32_t flag) { return lpfc_hba_init_link_fc_topology(phba, phba->cfg_topology, flag); } /** * lpfc_hba_init_link_fc_topology - Initialize FC link with desired topology * @phba: pointer to lpfc hba data structure. * @fc_topology: desired fc topology. * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT * * This routine will issue the INIT_LINK mailbox command call. * It is available to other drivers through the lpfc_hba data * structure for use as a delayed link up mechanism with the * module parameter lpfc_suppress_link_up. * * Return code * 0 - success * Any other value - error **/ int lpfc_hba_init_link_fc_topology(struct lpfc_hba *phba, uint32_t fc_topology, uint32_t flag) { struct lpfc_vport *vport = phba->pport; LPFC_MBOXQ_t *pmb; MAILBOX_t *mb; int rc; pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) { phba->link_state = LPFC_HBA_ERROR; return -ENOMEM; } mb = &pmb->u.mb; pmb->vport = vport; if ((phba->cfg_link_speed > LPFC_USER_LINK_SPEED_MAX) || ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_1G) && !(phba->lmt & LMT_1Gb)) || ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_2G) && !(phba->lmt & LMT_2Gb)) || ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_4G) && !(phba->lmt & LMT_4Gb)) || ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_8G) && !(phba->lmt & LMT_8Gb)) || ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_10G) && !(phba->lmt & LMT_10Gb)) || ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_16G) && !(phba->lmt & LMT_16Gb)) || ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_32G) && !(phba->lmt & LMT_32Gb)) || ((phba->cfg_link_speed == LPFC_USER_LINK_SPEED_64G) && !(phba->lmt & LMT_64Gb))) { /* Reset link speed to auto */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1302 Invalid speed for this board:%d " "Reset link speed to auto.\n", phba->cfg_link_speed); phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO; } lpfc_init_link(phba, pmb, fc_topology, phba->cfg_link_speed); pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; if (phba->sli_rev < LPFC_SLI_REV4) lpfc_set_loopback_flag(phba); rc = lpfc_sli_issue_mbox(phba, pmb, flag); if ((rc != MBX_BUSY) && (rc != MBX_SUCCESS)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0498 Adapter failed to init, mbxCmd x%x " "INIT_LINK, mbxStatus x%x\n", mb->mbxCommand, mb->mbxStatus); if (phba->sli_rev <= LPFC_SLI_REV3) { /* Clear all interrupt enable conditions */ writel(0, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ /* Clear all pending interrupts */ writel(0xffffffff, phba->HAregaddr); readl(phba->HAregaddr); /* flush */ } phba->link_state = LPFC_HBA_ERROR; if (rc != MBX_BUSY || flag == MBX_POLL) mempool_free(pmb, phba->mbox_mem_pool); return -EIO; } phba->cfg_suppress_link_up = LPFC_INITIALIZE_LINK; if (flag == MBX_POLL) mempool_free(pmb, phba->mbox_mem_pool); return 0; } /** * lpfc_hba_down_link - this routine downs the FC link * @phba: pointer to lpfc hba data structure. * @flag: mailbox command issue mode - either MBX_POLL or MBX_NOWAIT * * This routine will issue the DOWN_LINK mailbox command call. * It is available to other drivers through the lpfc_hba data * structure for use to stop the link. * * Return code * 0 - success * Any other value - error **/ static int lpfc_hba_down_link(struct lpfc_hba *phba, uint32_t flag) { LPFC_MBOXQ_t *pmb; int rc; pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) { phba->link_state = LPFC_HBA_ERROR; return -ENOMEM; } lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0491 Adapter Link is disabled.\n"); lpfc_down_link(phba, pmb); pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl; rc = lpfc_sli_issue_mbox(phba, pmb, flag); if ((rc != MBX_SUCCESS) && (rc != MBX_BUSY)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2522 Adapter failed to issue DOWN_LINK" " mbox command rc 0x%x\n", rc); mempool_free(pmb, phba->mbox_mem_pool); return -EIO; } if (flag == MBX_POLL) mempool_free(pmb, phba->mbox_mem_pool); return 0; } /** * lpfc_hba_down_prep - Perform lpfc uninitialization prior to HBA reset * @phba: pointer to lpfc HBA data structure. * * This routine will do LPFC uninitialization before the HBA is reset when * bringing down the SLI Layer. * * Return codes * 0 - success. * Any other value - error. **/ int lpfc_hba_down_prep(struct lpfc_hba *phba) { struct lpfc_vport **vports; int i; if (phba->sli_rev <= LPFC_SLI_REV3) { /* Disable interrupts */ writel(0, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ } if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) lpfc_cleanup_discovery_resources(phba->pport); else { vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) lpfc_cleanup_discovery_resources(vports[i]); lpfc_destroy_vport_work_array(phba, vports); } return 0; } /** * lpfc_sli4_free_sp_events - Cleanup sp_queue_events to free * rspiocb which got deferred * * @phba: pointer to lpfc HBA data structure. * * This routine will cleanup completed slow path events after HBA is reset * when bringing down the SLI Layer. * * * Return codes * void. **/ static void lpfc_sli4_free_sp_events(struct lpfc_hba *phba) { struct lpfc_iocbq *rspiocbq; struct hbq_dmabuf *dmabuf; struct lpfc_cq_event *cq_event; clear_bit(HBA_SP_QUEUE_EVT, &phba->hba_flag); while (!list_empty(&phba->sli4_hba.sp_queue_event)) { /* Get the response iocb from the head of work queue */ spin_lock_irq(&phba->hbalock); list_remove_head(&phba->sli4_hba.sp_queue_event, cq_event, struct lpfc_cq_event, list); spin_unlock_irq(&phba->hbalock); switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) { case CQE_CODE_COMPL_WQE: rspiocbq = container_of(cq_event, struct lpfc_iocbq, cq_event); lpfc_sli_release_iocbq(phba, rspiocbq); break; case CQE_CODE_RECEIVE: case CQE_CODE_RECEIVE_V1: dmabuf = container_of(cq_event, struct hbq_dmabuf, cq_event); lpfc_in_buf_free(phba, &dmabuf->dbuf); } } } /** * lpfc_hba_free_post_buf - Perform lpfc uninitialization after HBA reset * @phba: pointer to lpfc HBA data structure. * * This routine will cleanup posted ELS buffers after the HBA is reset * when bringing down the SLI Layer. * * * Return codes * void. **/ static void lpfc_hba_free_post_buf(struct lpfc_hba *phba) { struct lpfc_sli *psli = &phba->sli; struct lpfc_sli_ring *pring; struct lpfc_dmabuf *mp, *next_mp; LIST_HEAD(buflist); int count; if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) lpfc_sli_hbqbuf_free_all(phba); else { /* Cleanup preposted buffers on the ELS ring */ pring = &psli->sli3_ring[LPFC_ELS_RING]; spin_lock_irq(&phba->hbalock); list_splice_init(&pring->postbufq, &buflist); spin_unlock_irq(&phba->hbalock); count = 0; list_for_each_entry_safe(mp, next_mp, &buflist, list) { list_del(&mp->list); count++; lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); } spin_lock_irq(&phba->hbalock); pring->postbufq_cnt -= count; spin_unlock_irq(&phba->hbalock); } } /** * lpfc_hba_clean_txcmplq - Perform lpfc uninitialization after HBA reset * @phba: pointer to lpfc HBA data structure. * * This routine will cleanup the txcmplq after the HBA is reset when bringing * down the SLI Layer. * * Return codes * void **/ static void lpfc_hba_clean_txcmplq(struct lpfc_hba *phba) { struct lpfc_sli *psli = &phba->sli; struct lpfc_queue *qp = NULL; struct lpfc_sli_ring *pring; LIST_HEAD(completions); int i; struct lpfc_iocbq *piocb, *next_iocb; if (phba->sli_rev != LPFC_SLI_REV4) { for (i = 0; i < psli->num_rings; i++) { pring = &psli->sli3_ring[i]; spin_lock_irq(&phba->hbalock); /* At this point in time the HBA is either reset or DOA * Nothing should be on txcmplq as it will * NEVER complete. */ list_splice_init(&pring->txcmplq, &completions); pring->txcmplq_cnt = 0; spin_unlock_irq(&phba->hbalock); lpfc_sli_abort_iocb_ring(phba, pring); } /* Cancel all the IOCBs from the completions list */ lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); return; } list_for_each_entry(qp, &phba->sli4_hba.lpfc_wq_list, wq_list) { pring = qp->pring; if (!pring) continue; spin_lock_irq(&pring->ring_lock); list_for_each_entry_safe(piocb, next_iocb, &pring->txcmplq, list) piocb->cmd_flag &= ~LPFC_IO_ON_TXCMPLQ; list_splice_init(&pring->txcmplq, &completions); pring->txcmplq_cnt = 0; spin_unlock_irq(&pring->ring_lock); lpfc_sli_abort_iocb_ring(phba, pring); } /* Cancel all the IOCBs from the completions list */ lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT, IOERR_SLI_ABORTED); } /** * lpfc_hba_down_post_s3 - Perform lpfc uninitialization after HBA reset * @phba: pointer to lpfc HBA data structure. * * This routine will do uninitialization after the HBA is reset when bring * down the SLI Layer. * * Return codes * 0 - success. * Any other value - error. **/ static int lpfc_hba_down_post_s3(struct lpfc_hba *phba) { lpfc_hba_free_post_buf(phba); lpfc_hba_clean_txcmplq(phba); return 0; } /** * lpfc_hba_down_post_s4 - Perform lpfc uninitialization after HBA reset * @phba: pointer to lpfc HBA data structure. * * This routine will do uninitialization after the HBA is reset when bring * down the SLI Layer. * * Return codes * 0 - success. * Any other value - error. **/ static int lpfc_hba_down_post_s4(struct lpfc_hba *phba) { struct lpfc_io_buf *psb, *psb_next; struct lpfc_async_xchg_ctx *ctxp, *ctxp_next; struct lpfc_sli4_hdw_queue *qp; LIST_HEAD(aborts); LIST_HEAD(nvme_aborts); LIST_HEAD(nvmet_aborts); struct lpfc_sglq *sglq_entry = NULL; int cnt, idx; lpfc_sli_hbqbuf_free_all(phba); lpfc_hba_clean_txcmplq(phba); /* At this point in time the HBA is either reset or DOA. Either * way, nothing should be on lpfc_abts_els_sgl_list, it needs to be * on the lpfc_els_sgl_list so that it can either be freed if the * driver is unloading or reposted if the driver is restarting * the port. */ /* sgl_list_lock required because worker thread uses this * list. */ spin_lock_irq(&phba->sli4_hba.sgl_list_lock); list_for_each_entry(sglq_entry, &phba->sli4_hba.lpfc_abts_els_sgl_list, list) sglq_entry->state = SGL_FREED; list_splice_init(&phba->sli4_hba.lpfc_abts_els_sgl_list, &phba->sli4_hba.lpfc_els_sgl_list); spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); /* abts_xxxx_buf_list_lock required because worker thread uses this * list. */ spin_lock_irq(&phba->hbalock); cnt = 0; for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { qp = &phba->sli4_hba.hdwq[idx]; spin_lock(&qp->abts_io_buf_list_lock); list_splice_init(&qp->lpfc_abts_io_buf_list, &aborts); list_for_each_entry_safe(psb, psb_next, &aborts, list) { psb->pCmd = NULL; psb->status = IOSTAT_SUCCESS; cnt++; } spin_lock(&qp->io_buf_list_put_lock); list_splice_init(&aborts, &qp->lpfc_io_buf_list_put); qp->put_io_bufs += qp->abts_scsi_io_bufs; qp->put_io_bufs += qp->abts_nvme_io_bufs; qp->abts_scsi_io_bufs = 0; qp->abts_nvme_io_bufs = 0; spin_unlock(&qp->io_buf_list_put_lock); spin_unlock(&qp->abts_io_buf_list_lock); } spin_unlock_irq(&phba->hbalock); if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { spin_lock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); list_splice_init(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list, &nvmet_aborts); spin_unlock_irq(&phba->sli4_hba.abts_nvmet_buf_list_lock); list_for_each_entry_safe(ctxp, ctxp_next, &nvmet_aborts, list) { ctxp->flag &= ~(LPFC_NVME_XBUSY | LPFC_NVME_ABORT_OP); lpfc_nvmet_ctxbuf_post(phba, ctxp->ctxbuf); } } lpfc_sli4_free_sp_events(phba); return cnt; } /** * lpfc_hba_down_post - Wrapper func for hba down post routine * @phba: pointer to lpfc HBA data structure. * * This routine wraps the actual SLI3 or SLI4 routine for performing * uninitialization after the HBA is reset when bring down the SLI Layer. * * Return codes * 0 - success. * Any other value - error. **/ int lpfc_hba_down_post(struct lpfc_hba *phba) { return (*phba->lpfc_hba_down_post)(phba); } /** * lpfc_hb_timeout - The HBA-timer timeout handler * @t: timer context used to obtain the pointer to lpfc hba data structure. * * This is the HBA-timer timeout handler registered to the lpfc driver. When * this timer fires, a HBA timeout event shall be posted to the lpfc driver * work-port-events bitmap and the worker thread is notified. This timeout * event will be used by the worker thread to invoke the actual timeout * handler routine, lpfc_hb_timeout_handler. Any periodical operations will * be performed in the timeout handler and the HBA timeout event bit shall * be cleared by the worker thread after it has taken the event bitmap out. **/ static void lpfc_hb_timeout(struct timer_list *t) { struct lpfc_hba *phba; uint32_t tmo_posted; unsigned long iflag; phba = from_timer(phba, t, hb_tmofunc); /* Check for heart beat timeout conditions */ spin_lock_irqsave(&phba->pport->work_port_lock, iflag); tmo_posted = phba->pport->work_port_events & WORKER_HB_TMO; if (!tmo_posted) phba->pport->work_port_events |= WORKER_HB_TMO; spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag); /* Tell the worker thread there is work to do */ if (!tmo_posted) lpfc_worker_wake_up(phba); return; } /** * lpfc_rrq_timeout - The RRQ-timer timeout handler * @t: timer context used to obtain the pointer to lpfc hba data structure. * * This is the RRQ-timer timeout handler registered to the lpfc driver. When * this timer fires, a RRQ timeout event shall be posted to the lpfc driver * work-port-events bitmap and the worker thread is notified. This timeout * event will be used by the worker thread to invoke the actual timeout * handler routine, lpfc_rrq_handler. Any periodical operations will * be performed in the timeout handler and the RRQ timeout event bit shall * be cleared by the worker thread after it has taken the event bitmap out. **/ static void lpfc_rrq_timeout(struct timer_list *t) { struct lpfc_hba *phba; phba = from_timer(phba, t, rrq_tmr); if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); return; } set_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); lpfc_worker_wake_up(phba); } /** * lpfc_hb_mbox_cmpl - The lpfc heart-beat mailbox command callback function * @phba: pointer to lpfc hba data structure. * @pmboxq: pointer to the driver internal queue element for mailbox command. * * This is the callback function to the lpfc heart-beat mailbox command. * If configured, the lpfc driver issues the heart-beat mailbox command to * the HBA every LPFC_HB_MBOX_INTERVAL (current 5) seconds. At the time the * heart-beat mailbox command is issued, the driver shall set up heart-beat * timeout timer to LPFC_HB_MBOX_TIMEOUT (current 30) seconds and marks * heart-beat outstanding state. Once the mailbox command comes back and * no error conditions detected, the heart-beat mailbox command timer is * reset to LPFC_HB_MBOX_INTERVAL seconds and the heart-beat outstanding * state is cleared for the next heart-beat. If the timer expired with the * heart-beat outstanding state set, the driver will put the HBA offline. **/ static void lpfc_hb_mbox_cmpl(struct lpfc_hba * phba, LPFC_MBOXQ_t * pmboxq) { clear_bit(HBA_HBEAT_INP, &phba->hba_flag); clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); /* Check and reset heart-beat timer if necessary */ mempool_free(pmboxq, phba->mbox_mem_pool); if (!test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) && !(phba->link_state == LPFC_HBA_ERROR) && !test_bit(FC_UNLOADING, &phba->pport->load_flag)) mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL)); return; } /* * lpfc_idle_stat_delay_work - idle_stat tracking * * This routine tracks per-eq idle_stat and determines polling decisions. * * Return codes: * None **/ static void lpfc_idle_stat_delay_work(struct work_struct *work) { struct lpfc_hba *phba = container_of(to_delayed_work(work), struct lpfc_hba, idle_stat_delay_work); struct lpfc_queue *eq; struct lpfc_sli4_hdw_queue *hdwq; struct lpfc_idle_stat *idle_stat; u32 i, idle_percent; u64 wall, wall_idle, diff_wall, diff_idle, busy_time; if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) return; if (phba->link_state == LPFC_HBA_ERROR || test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag) || phba->cmf_active_mode != LPFC_CFG_OFF) goto requeue; for_each_present_cpu(i) { hdwq = &phba->sli4_hba.hdwq[phba->sli4_hba.cpu_map[i].hdwq]; eq = hdwq->hba_eq; /* Skip if we've already handled this eq's primary CPU */ if (eq->chann != i) continue; idle_stat = &phba->sli4_hba.idle_stat[i]; /* get_cpu_idle_time returns values as running counters. Thus, * to know the amount for this period, the prior counter values * need to be subtracted from the current counter values. * From there, the idle time stat can be calculated as a * percentage of 100 - the sum of the other consumption times. */ wall_idle = get_cpu_idle_time(i, &wall, 1); diff_idle = wall_idle - idle_stat->prev_idle; diff_wall = wall - idle_stat->prev_wall; if (diff_wall <= diff_idle) busy_time = 0; else busy_time = diff_wall - diff_idle; idle_percent = div64_u64(100 * busy_time, diff_wall); idle_percent = 100 - idle_percent; if (idle_percent < 15) eq->poll_mode = LPFC_QUEUE_WORK; else eq->poll_mode = LPFC_THREADED_IRQ; idle_stat->prev_idle = wall_idle; idle_stat->prev_wall = wall; } requeue: schedule_delayed_work(&phba->idle_stat_delay_work, msecs_to_jiffies(LPFC_IDLE_STAT_DELAY)); } static void lpfc_hb_eq_delay_work(struct work_struct *work) { struct lpfc_hba *phba = container_of(to_delayed_work(work), struct lpfc_hba, eq_delay_work); struct lpfc_eq_intr_info *eqi, *eqi_new; struct lpfc_queue *eq, *eq_next; unsigned char *ena_delay = NULL; uint32_t usdelay; int i; if (!phba->cfg_auto_imax || test_bit(FC_UNLOADING, &phba->pport->load_flag)) return; if (phba->link_state == LPFC_HBA_ERROR || test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) goto requeue; ena_delay = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*ena_delay), GFP_KERNEL); if (!ena_delay) goto requeue; for (i = 0; i < phba->cfg_irq_chann; i++) { /* Get the EQ corresponding to the IRQ vector */ eq = phba->sli4_hba.hba_eq_hdl[i].eq; if (!eq) continue; if (eq->q_mode || eq->q_flag & HBA_EQ_DELAY_CHK) { eq->q_flag &= ~HBA_EQ_DELAY_CHK; ena_delay[eq->last_cpu] = 1; } } for_each_present_cpu(i) { eqi = per_cpu_ptr(phba->sli4_hba.eq_info, i); if (ena_delay[i]) { usdelay = (eqi->icnt >> 10) * LPFC_EQ_DELAY_STEP; if (usdelay > LPFC_MAX_AUTO_EQ_DELAY) usdelay = LPFC_MAX_AUTO_EQ_DELAY; } else { usdelay = 0; } eqi->icnt = 0; list_for_each_entry_safe(eq, eq_next, &eqi->list, cpu_list) { if (unlikely(eq->last_cpu != i)) { eqi_new = per_cpu_ptr(phba->sli4_hba.eq_info, eq->last_cpu); list_move_tail(&eq->cpu_list, &eqi_new->list); continue; } if (usdelay != eq->q_mode) lpfc_modify_hba_eq_delay(phba, eq->hdwq, 1, usdelay); } } kfree(ena_delay); requeue: queue_delayed_work(phba->wq, &phba->eq_delay_work, msecs_to_jiffies(LPFC_EQ_DELAY_MSECS)); } /** * lpfc_hb_mxp_handler - Multi-XRI pools handler to adjust XRI distribution * @phba: pointer to lpfc hba data structure. * * For each heartbeat, this routine does some heuristic methods to adjust * XRI distribution. The goal is to fully utilize free XRIs. **/ static void lpfc_hb_mxp_handler(struct lpfc_hba *phba) { u32 i; u32 hwq_count; hwq_count = phba->cfg_hdw_queue; for (i = 0; i < hwq_count; i++) { /* Adjust XRIs in private pool */ lpfc_adjust_pvt_pool_count(phba, i); /* Adjust high watermark */ lpfc_adjust_high_watermark(phba, i); #ifdef LPFC_MXP_STAT /* Snapshot pbl, pvt and busy count */ lpfc_snapshot_mxp(phba, i); #endif } } /** * lpfc_issue_hb_mbox - Issues heart-beat mailbox command * @phba: pointer to lpfc hba data structure. * * If a HB mbox is not already in progrees, this routine will allocate * a LPFC_MBOXQ_t, populate it with a MBX_HEARTBEAT (0x31) command, * and issue it. The HBA_HBEAT_INP flag means the command is in progress. **/ int lpfc_issue_hb_mbox(struct lpfc_hba *phba) { LPFC_MBOXQ_t *pmboxq; int retval; /* Is a Heartbeat mbox already in progress */ if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) return 0; pmboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmboxq) return -ENOMEM; lpfc_heart_beat(phba, pmboxq); pmboxq->mbox_cmpl = lpfc_hb_mbox_cmpl; pmboxq->vport = phba->pport; retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT); if (retval != MBX_BUSY && retval != MBX_SUCCESS) { mempool_free(pmboxq, phba->mbox_mem_pool); return -ENXIO; } set_bit(HBA_HBEAT_INP, &phba->hba_flag); return 0; } /** * lpfc_issue_hb_tmo - Signals heartbeat timer to issue mbox command * @phba: pointer to lpfc hba data structure. * * The heartbeat timer (every 5 sec) will fire. If the HBA_HBEAT_TMO * flag is set, it will force a MBX_HEARTBEAT mbox command, regardless * of the value of lpfc_enable_hba_heartbeat. * If lpfc_enable_hba_heartbeat is set, the timeout routine will always * try to issue a MBX_HEARTBEAT mbox command. **/ void lpfc_issue_hb_tmo(struct lpfc_hba *phba) { if (phba->cfg_enable_hba_heartbeat) return; set_bit(HBA_HBEAT_TMO, &phba->hba_flag); } /** * lpfc_hb_timeout_handler - The HBA-timer timeout handler * @phba: pointer to lpfc hba data structure. * * This is the actual HBA-timer timeout handler to be invoked by the worker * thread whenever the HBA timer fired and HBA-timeout event posted. This * handler performs any periodic operations needed for the device. If such * periodic event has already been attended to either in the interrupt handler * or by processing slow-ring or fast-ring events within the HBA-timer * timeout window (LPFC_HB_MBOX_INTERVAL), this handler just simply resets * the timer for the next timeout period. If lpfc heart-beat mailbox command * is configured and there is no heart-beat mailbox command outstanding, a * heart-beat mailbox is issued and timer set properly. Otherwise, if there * has been a heart-beat mailbox command outstanding, the HBA shall be put * to offline. **/ void lpfc_hb_timeout_handler(struct lpfc_hba *phba) { struct lpfc_vport **vports; struct lpfc_dmabuf *buf_ptr; int retval = 0; int i, tmo; struct lpfc_sli *psli = &phba->sli; LIST_HEAD(completions); if (phba->cfg_xri_rebalancing) { /* Multi-XRI pools handler */ lpfc_hb_mxp_handler(phba); } vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { lpfc_rcv_seq_check_edtov(vports[i]); lpfc_fdmi_change_check(vports[i]); } lpfc_destroy_vport_work_array(phba, vports); if (phba->link_state == LPFC_HBA_ERROR || test_bit(FC_UNLOADING, &phba->pport->load_flag) || test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) return; if (phba->elsbuf_cnt && (phba->elsbuf_cnt == phba->elsbuf_prev_cnt)) { spin_lock_irq(&phba->hbalock); list_splice_init(&phba->elsbuf, &completions); phba->elsbuf_cnt = 0; phba->elsbuf_prev_cnt = 0; spin_unlock_irq(&phba->hbalock); while (!list_empty(&completions)) { list_remove_head(&completions, buf_ptr, struct lpfc_dmabuf, list); lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys); kfree(buf_ptr); } } phba->elsbuf_prev_cnt = phba->elsbuf_cnt; /* If there is no heart beat outstanding, issue a heartbeat command */ if (phba->cfg_enable_hba_heartbeat) { /* If IOs are completing, no need to issue a MBX_HEARTBEAT */ spin_lock_irq(&phba->pport->work_port_lock); if (time_after(phba->last_completion_time + msecs_to_jiffies(1000 * LPFC_HB_MBOX_INTERVAL), jiffies)) { spin_unlock_irq(&phba->pport->work_port_lock); if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); else tmo = (1000 * LPFC_HB_MBOX_INTERVAL); goto out; } spin_unlock_irq(&phba->pport->work_port_lock); /* Check if a MBX_HEARTBEAT is already in progress */ if (test_bit(HBA_HBEAT_INP, &phba->hba_flag)) { /* * If heart beat timeout called with HBA_HBEAT_INP set * we need to give the hb mailbox cmd a chance to * complete or TMO. */ lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "0459 Adapter heartbeat still outstanding: " "last compl time was %d ms.\n", jiffies_to_msecs(jiffies - phba->last_completion_time)); tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); } else { if ((!(psli->sli_flag & LPFC_SLI_MBOX_ACTIVE)) && (list_empty(&psli->mboxq))) { retval = lpfc_issue_hb_mbox(phba); if (retval) { tmo = (1000 * LPFC_HB_MBOX_INTERVAL); goto out; } phba->skipped_hb = 0; } else if (time_before_eq(phba->last_completion_time, phba->skipped_hb)) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2857 Last completion time not " " updated in %d ms\n", jiffies_to_msecs(jiffies - phba->last_completion_time)); } else phba->skipped_hb = jiffies; tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); goto out; } } else { /* Check to see if we want to force a MBX_HEARTBEAT */ if (test_bit(HBA_HBEAT_TMO, &phba->hba_flag)) { retval = lpfc_issue_hb_mbox(phba); if (retval) tmo = (1000 * LPFC_HB_MBOX_INTERVAL); else tmo = (1000 * LPFC_HB_MBOX_TIMEOUT); goto out; } tmo = (1000 * LPFC_HB_MBOX_INTERVAL); } out: mod_timer(&phba->hb_tmofunc, jiffies + msecs_to_jiffies(tmo)); } /** * lpfc_offline_eratt - Bring lpfc offline on hardware error attention * @phba: pointer to lpfc hba data structure. * * This routine is called to bring the HBA offline when HBA hardware error * other than Port Error 6 has been detected. **/ static void lpfc_offline_eratt(struct lpfc_hba *phba) { struct lpfc_sli *psli = &phba->sli; spin_lock_irq(&phba->hbalock); psli->sli_flag &= ~LPFC_SLI_ACTIVE; spin_unlock_irq(&phba->hbalock); lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); lpfc_offline(phba); lpfc_reset_barrier(phba); spin_lock_irq(&phba->hbalock); lpfc_sli_brdreset(phba); spin_unlock_irq(&phba->hbalock); lpfc_hba_down_post(phba); lpfc_sli_brdready(phba, HS_MBRDY); lpfc_unblock_mgmt_io(phba); phba->link_state = LPFC_HBA_ERROR; return; } /** * lpfc_sli4_offline_eratt - Bring lpfc offline on SLI4 hardware error attention * @phba: pointer to lpfc hba data structure. * * This routine is called to bring a SLI4 HBA offline when HBA hardware error * other than Port Error 6 has been detected. **/ void lpfc_sli4_offline_eratt(struct lpfc_hba *phba) { spin_lock_irq(&phba->hbalock); if (phba->link_state == LPFC_HBA_ERROR && test_bit(HBA_PCI_ERR, &phba->bit_flags)) { spin_unlock_irq(&phba->hbalock); return; } phba->link_state = LPFC_HBA_ERROR; spin_unlock_irq(&phba->hbalock); lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); lpfc_sli_flush_io_rings(phba); lpfc_offline(phba); lpfc_hba_down_post(phba); lpfc_unblock_mgmt_io(phba); } /** * lpfc_handle_deferred_eratt - The HBA hardware deferred error handler * @phba: pointer to lpfc hba data structure. * * This routine is invoked to handle the deferred HBA hardware error * conditions. This type of error is indicated by HBA by setting ER1 * and another ER bit in the host status register. The driver will * wait until the ER1 bit clears before handling the error condition. **/ static void lpfc_handle_deferred_eratt(struct lpfc_hba *phba) { uint32_t old_host_status = phba->work_hs; struct lpfc_sli *psli = &phba->sli; /* If the pci channel is offline, ignore possible errors, * since we cannot communicate with the pci card anyway. */ if (pci_channel_offline(phba->pcidev)) { clear_bit(DEFER_ERATT, &phba->hba_flag); return; } lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0479 Deferred Adapter Hardware Error " "Data: x%x x%x x%x\n", phba->work_hs, phba->work_status[0], phba->work_status[1]); spin_lock_irq(&phba->hbalock); psli->sli_flag &= ~LPFC_SLI_ACTIVE; spin_unlock_irq(&phba->hbalock); /* * Firmware stops when it triggred erratt. That could cause the I/Os * dropped by the firmware. Error iocb (I/O) on txcmplq and let the * SCSI layer retry it after re-establishing link. */ lpfc_sli_abort_fcp_rings(phba); /* * There was a firmware error. Take the hba offline and then * attempt to restart it. */ lpfc_offline_prep(phba, LPFC_MBX_WAIT); lpfc_offline(phba); /* Wait for the ER1 bit to clear.*/ while (phba->work_hs & HS_FFER1) { msleep(100); if (lpfc_readl(phba->HSregaddr, &phba->work_hs)) { phba->work_hs = UNPLUG_ERR ; break; } /* If driver is unloading let the worker thread continue */ if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { phba->work_hs = 0; break; } } /* * This is to ptrotect against a race condition in which * first write to the host attention register clear the * host status register. */ if (!phba->work_hs && !test_bit(FC_UNLOADING, &phba->pport->load_flag)) phba->work_hs = old_host_status & ~HS_FFER1; clear_bit(DEFER_ERATT, &phba->hba_flag); phba->work_status[0] = readl(phba->MBslimaddr + 0xa8); phba->work_status[1] = readl(phba->MBslimaddr + 0xac); } static void lpfc_board_errevt_to_mgmt(struct lpfc_hba *phba) { struct lpfc_board_event_header board_event; struct Scsi_Host *shost; board_event.event_type = FC_REG_BOARD_EVENT; board_event.subcategory = LPFC_EVENT_PORTINTERR; shost = lpfc_shost_from_vport(phba->pport); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(board_event), (char *) &board_event, LPFC_NL_VENDOR_ID); } /** * lpfc_handle_eratt_s3 - The SLI3 HBA hardware error handler * @phba: pointer to lpfc hba data structure. * * This routine is invoked to handle the following HBA hardware error * conditions: * 1 - HBA error attention interrupt * 2 - DMA ring index out of range * 3 - Mailbox command came back as unknown **/ static void lpfc_handle_eratt_s3(struct lpfc_hba *phba) { struct lpfc_vport *vport = phba->pport; struct lpfc_sli *psli = &phba->sli; uint32_t event_data; unsigned long temperature; struct temp_event temp_event_data; struct Scsi_Host *shost; /* If the pci channel is offline, ignore possible errors, * since we cannot communicate with the pci card anyway. */ if (pci_channel_offline(phba->pcidev)) { clear_bit(DEFER_ERATT, &phba->hba_flag); return; } /* If resets are disabled then leave the HBA alone and return */ if (!phba->cfg_enable_hba_reset) return; /* Send an internal error event to mgmt application */ lpfc_board_errevt_to_mgmt(phba); if (test_bit(DEFER_ERATT, &phba->hba_flag)) lpfc_handle_deferred_eratt(phba); if ((phba->work_hs & HS_FFER6) || (phba->work_hs & HS_FFER8)) { if (phba->work_hs & HS_FFER6) /* Re-establishing Link */ lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, "1301 Re-establishing Link " "Data: x%x x%x x%x\n", phba->work_hs, phba->work_status[0], phba->work_status[1]); if (phba->work_hs & HS_FFER8) /* Device Zeroization */ lpfc_printf_log(phba, KERN_INFO, LOG_LINK_EVENT, "2861 Host Authentication device " "zeroization Data:x%x x%x x%x\n", phba->work_hs, phba->work_status[0], phba->work_status[1]); spin_lock_irq(&phba->hbalock); psli->sli_flag &= ~LPFC_SLI_ACTIVE; spin_unlock_irq(&phba->hbalock); /* * Firmware stops when it triggled erratt with HS_FFER6. * That could cause the I/Os dropped by the firmware. * Error iocb (I/O) on txcmplq and let the SCSI layer * retry it after re-establishing link. */ lpfc_sli_abort_fcp_rings(phba); /* * There was a firmware error. Take the hba offline and then * attempt to restart it. */ lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); lpfc_offline(phba); lpfc_sli_brdrestart(phba); if (lpfc_online(phba) == 0) { /* Initialize the HBA */ lpfc_unblock_mgmt_io(phba); return; } lpfc_unblock_mgmt_io(phba); } else if (phba->work_hs & HS_CRIT_TEMP) { temperature = readl(phba->MBslimaddr + TEMPERATURE_OFFSET); temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; temp_event_data.event_code = LPFC_CRIT_TEMP; temp_event_data.data = (uint32_t)temperature; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0406 Adapter maximum temperature exceeded " "(%ld), taking this port offline " "Data: x%x x%x x%x\n", temperature, phba->work_hs, phba->work_status[0], phba->work_status[1]); shost = lpfc_shost_from_vport(phba->pport); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(temp_event_data), (char *) &temp_event_data, SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); spin_lock_irq(&phba->hbalock); phba->over_temp_state = HBA_OVER_TEMP; spin_unlock_irq(&phba->hbalock); lpfc_offline_eratt(phba); } else { /* The if clause above forces this code path when the status * failure is a value other than FFER6. Do not call the offline * twice. This is the adapter hardware error path. */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0457 Adapter Hardware Error " "Data: x%x x%x x%x\n", phba->work_hs, phba->work_status[0], phba->work_status[1]); event_data = FC_REG_DUMP_EVENT; shost = lpfc_shost_from_vport(vport); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(event_data), (char *) &event_data, SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); lpfc_offline_eratt(phba); } return; } /** * lpfc_sli4_port_sta_fn_reset - The SLI4 function reset due to port status reg * @phba: pointer to lpfc hba data structure. * @mbx_action: flag for mailbox shutdown action. * @en_rn_msg: send reset/port recovery message. * This routine is invoked to perform an SLI4 port PCI function reset in * response to port status register polling attention. It waits for port * status register (ERR, RDY, RN) bits before proceeding with function reset. * During this process, interrupt vectors are freed and later requested * for handling possible port resource change. **/ static int lpfc_sli4_port_sta_fn_reset(struct lpfc_hba *phba, int mbx_action, bool en_rn_msg) { int rc; uint32_t intr_mode; LPFC_MBOXQ_t *mboxq; if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= LPFC_SLI_INTF_IF_TYPE_2) { /* * On error status condition, driver need to wait for port * ready before performing reset. */ rc = lpfc_sli4_pdev_status_reg_wait(phba); if (rc) return rc; } /* need reset: attempt for port recovery */ if (en_rn_msg) lpfc_printf_log(phba, KERN_ERR, LOG_SLI, "2887 Reset Needed: Attempting Port " "Recovery...\n"); /* If we are no wait, the HBA has been reset and is not * functional, thus we should clear * (LPFC_SLI_ACTIVE | LPFC_SLI_MBOX_ACTIVE) flags. */ if (mbx_action == LPFC_MBX_NO_WAIT) { spin_lock_irq(&phba->hbalock); phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE; if (phba->sli.mbox_active) { mboxq = phba->sli.mbox_active; mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; __lpfc_mbox_cmpl_put(phba, mboxq); phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; phba->sli.mbox_active = NULL; } spin_unlock_irq(&phba->hbalock); } lpfc_offline_prep(phba, mbx_action); lpfc_sli_flush_io_rings(phba); lpfc_offline(phba); /* release interrupt for possible resource change */ lpfc_sli4_disable_intr(phba); rc = lpfc_sli_brdrestart(phba); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6309 Failed to restart board\n"); return rc; } /* request and enable interrupt */ intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); if (intr_mode == LPFC_INTR_ERROR) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3175 Failed to enable interrupt\n"); return -EIO; } phba->intr_mode = intr_mode; rc = lpfc_online(phba); if (rc == 0) lpfc_unblock_mgmt_io(phba); return rc; } /** * lpfc_handle_eratt_s4 - The SLI4 HBA hardware error handler * @phba: pointer to lpfc hba data structure. * * This routine is invoked to handle the SLI4 HBA hardware error attention * conditions. **/ static void lpfc_handle_eratt_s4(struct lpfc_hba *phba) { struct lpfc_vport *vport = phba->pport; uint32_t event_data; struct Scsi_Host *shost; uint32_t if_type; struct lpfc_register portstat_reg = {0}; uint32_t reg_err1, reg_err2; uint32_t uerrlo_reg, uemasklo_reg; uint32_t smphr_port_status = 0, pci_rd_rc1, pci_rd_rc2; bool en_rn_msg = true; struct temp_event temp_event_data; struct lpfc_register portsmphr_reg; int rc, i; /* If the pci channel is offline, ignore possible errors, since * we cannot communicate with the pci card anyway. */ if (pci_channel_offline(phba->pcidev)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3166 pci channel is offline\n"); lpfc_sli_flush_io_rings(phba); return; } memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); switch (if_type) { case LPFC_SLI_INTF_IF_TYPE_0: pci_rd_rc1 = lpfc_readl( phba->sli4_hba.u.if_type0.UERRLOregaddr, &uerrlo_reg); pci_rd_rc2 = lpfc_readl( phba->sli4_hba.u.if_type0.UEMASKLOregaddr, &uemasklo_reg); /* consider PCI bus read error as pci_channel_offline */ if (pci_rd_rc1 == -EIO && pci_rd_rc2 == -EIO) return; if (!test_bit(HBA_RECOVERABLE_UE, &phba->hba_flag)) { lpfc_sli4_offline_eratt(phba); return; } lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "7623 Checking UE recoverable"); for (i = 0; i < phba->sli4_hba.ue_to_sr / 1000; i++) { if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, &portsmphr_reg.word0)) continue; smphr_port_status = bf_get(lpfc_port_smphr_port_status, &portsmphr_reg); if ((smphr_port_status & LPFC_PORT_SEM_MASK) == LPFC_PORT_SEM_UE_RECOVERABLE) break; /*Sleep for 1Sec, before checking SEMAPHORE */ msleep(1000); } lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "4827 smphr_port_status x%x : Waited %dSec", smphr_port_status, i); /* Recoverable UE, reset the HBA device */ if ((smphr_port_status & LPFC_PORT_SEM_MASK) == LPFC_PORT_SEM_UE_RECOVERABLE) { for (i = 0; i < 20; i++) { msleep(1000); if (!lpfc_readl(phba->sli4_hba.PSMPHRregaddr, &portsmphr_reg.word0) && (LPFC_POST_STAGE_PORT_READY == bf_get(lpfc_port_smphr_port_status, &portsmphr_reg))) { rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT, en_rn_msg); if (rc == 0) return; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "4215 Failed to recover UE"); break; } } } lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "7624 Firmware not ready: Failing UE recovery," " waited %dSec", i); phba->link_state = LPFC_HBA_ERROR; break; case LPFC_SLI_INTF_IF_TYPE_2: case LPFC_SLI_INTF_IF_TYPE_6: pci_rd_rc1 = lpfc_readl( phba->sli4_hba.u.if_type2.STATUSregaddr, &portstat_reg.word0); /* consider PCI bus read error as pci_channel_offline */ if (pci_rd_rc1 == -EIO) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3151 PCI bus read access failure: x%x\n", readl(phba->sli4_hba.u.if_type2.STATUSregaddr)); lpfc_sli4_offline_eratt(phba); return; } reg_err1 = readl(phba->sli4_hba.u.if_type2.ERR1regaddr); reg_err2 = readl(phba->sli4_hba.u.if_type2.ERR2regaddr); if (bf_get(lpfc_sliport_status_oti, &portstat_reg)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2889 Port Overtemperature event, " "taking port offline Data: x%x x%x\n", reg_err1, reg_err2); phba->sfp_alarm |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; temp_event_data.event_code = LPFC_CRIT_TEMP; temp_event_data.data = 0xFFFFFFFF; shost = lpfc_shost_from_vport(phba->pport); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(temp_event_data), (char *)&temp_event_data, SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); spin_lock_irq(&phba->hbalock); phba->over_temp_state = HBA_OVER_TEMP; spin_unlock_irq(&phba->hbalock); lpfc_sli4_offline_eratt(phba); return; } if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && reg_err2 == SLIPORT_ERR2_REG_FW_RESTART) { lpfc_printf_log(phba, KERN_ERR, LOG_SLI, "3143 Port Down: Firmware Update " "Detected\n"); en_rn_msg = false; } else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) lpfc_printf_log(phba, KERN_ERR, LOG_SLI, "3144 Port Down: Debug Dump\n"); else if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && reg_err2 == SLIPORT_ERR2_REG_FUNC_PROVISON) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3145 Port Down: Provisioning\n"); /* If resets are disabled then leave the HBA alone and return */ if (!phba->cfg_enable_hba_reset) return; /* Check port status register for function reset */ rc = lpfc_sli4_port_sta_fn_reset(phba, LPFC_MBX_NO_WAIT, en_rn_msg); if (rc == 0) { /* don't report event on forced debug dump */ if (reg_err1 == SLIPORT_ERR1_REG_ERR_CODE_2 && reg_err2 == SLIPORT_ERR2_REG_FORCED_DUMP) return; else break; } /* fall through for not able to recover */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3152 Unrecoverable error\n"); lpfc_sli4_offline_eratt(phba); break; case LPFC_SLI_INTF_IF_TYPE_1: default: break; } lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "3123 Report dump event to upper layer\n"); /* Send an internal error event to mgmt application */ lpfc_board_errevt_to_mgmt(phba); event_data = FC_REG_DUMP_EVENT; shost = lpfc_shost_from_vport(vport); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(event_data), (char *) &event_data, SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); } /** * lpfc_handle_eratt - Wrapper func for handling hba error attention * @phba: pointer to lpfc HBA data structure. * * This routine wraps the actual SLI3 or SLI4 hba error attention handling * routine from the API jump table function pointer from the lpfc_hba struct. * * Return codes * 0 - success. * Any other value - error. **/ void lpfc_handle_eratt(struct lpfc_hba *phba) { (*phba->lpfc_handle_eratt)(phba); } /** * lpfc_handle_latt - The HBA link event handler * @phba: pointer to lpfc hba data structure. * * This routine is invoked from the worker thread to handle a HBA host * attention link event. SLI3 only. **/ void lpfc_handle_latt(struct lpfc_hba *phba) { struct lpfc_vport *vport = phba->pport; struct lpfc_sli *psli = &phba->sli; LPFC_MBOXQ_t *pmb; volatile uint32_t control; int rc = 0; pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) { rc = 1; goto lpfc_handle_latt_err_exit; } rc = lpfc_mbox_rsrc_prep(phba, pmb); if (rc) { rc = 2; mempool_free(pmb, phba->mbox_mem_pool); goto lpfc_handle_latt_err_exit; } /* Cleanup any outstanding ELS commands */ lpfc_els_flush_all_cmd(phba); psli->slistat.link_event++; lpfc_read_topology(phba, pmb, pmb->ctx_buf); pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; pmb->vport = vport; /* Block ELS IOCBs until we have processed this mbox command */ phba->sli.sli3_ring[LPFC_ELS_RING].flag |= LPFC_STOP_IOCB_EVENT; rc = lpfc_sli_issue_mbox (phba, pmb, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { rc = 4; goto lpfc_handle_latt_free_mbuf; } /* Clear Link Attention in HA REG */ spin_lock_irq(&phba->hbalock); writel(HA_LATT, phba->HAregaddr); readl(phba->HAregaddr); /* flush */ spin_unlock_irq(&phba->hbalock); return; lpfc_handle_latt_free_mbuf: phba->sli.sli3_ring[LPFC_ELS_RING].flag &= ~LPFC_STOP_IOCB_EVENT; lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); lpfc_handle_latt_err_exit: /* Enable Link attention interrupts */ spin_lock_irq(&phba->hbalock); psli->sli_flag |= LPFC_PROCESS_LA; control = readl(phba->HCregaddr); control |= HC_LAINT_ENA; writel(control, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ /* Clear Link Attention in HA REG */ writel(HA_LATT, phba->HAregaddr); readl(phba->HAregaddr); /* flush */ spin_unlock_irq(&phba->hbalock); lpfc_linkdown(phba); phba->link_state = LPFC_HBA_ERROR; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0300 LATT: Cannot issue READ_LA: Data:%d\n", rc); return; } static void lpfc_fill_vpd(struct lpfc_hba *phba, uint8_t *vpd, int length, int *pindex) { int i, j; while (length > 0) { /* Look for Serial Number */ if ((vpd[*pindex] == 'S') && (vpd[*pindex + 1] == 'N')) { *pindex += 2; i = vpd[*pindex]; *pindex += 1; j = 0; length -= (3+i); while (i--) { phba->SerialNumber[j++] = vpd[(*pindex)++]; if (j == 31) break; } phba->SerialNumber[j] = 0; continue; } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '1')) { phba->vpd_flag |= VPD_MODEL_DESC; *pindex += 2; i = vpd[*pindex]; *pindex += 1; j = 0; length -= (3+i); while (i--) { phba->ModelDesc[j++] = vpd[(*pindex)++]; if (j == 255) break; } phba->ModelDesc[j] = 0; continue; } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '2')) { phba->vpd_flag |= VPD_MODEL_NAME; *pindex += 2; i = vpd[*pindex]; *pindex += 1; j = 0; length -= (3+i); while (i--) { phba->ModelName[j++] = vpd[(*pindex)++]; if (j == 79) break; } phba->ModelName[j] = 0; continue; } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '3')) { phba->vpd_flag |= VPD_PROGRAM_TYPE; *pindex += 2; i = vpd[*pindex]; *pindex += 1; j = 0; length -= (3+i); while (i--) { phba->ProgramType[j++] = vpd[(*pindex)++]; if (j == 255) break; } phba->ProgramType[j] = 0; continue; } else if ((vpd[*pindex] == 'V') && (vpd[*pindex + 1] == '4')) { phba->vpd_flag |= VPD_PORT; *pindex += 2; i = vpd[*pindex]; *pindex += 1; j = 0; length -= (3 + i); while (i--) { if ((phba->sli_rev == LPFC_SLI_REV4) && (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET)) { j++; (*pindex)++; } else phba->Port[j++] = vpd[(*pindex)++]; if (j == 19) break; } if ((phba->sli_rev != LPFC_SLI_REV4) || (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_NON)) phba->Port[j] = 0; continue; } else { *pindex += 2; i = vpd[*pindex]; *pindex += 1; *pindex += i; length -= (3 + i); } } } /** * lpfc_parse_vpd - Parse VPD (Vital Product Data) * @phba: pointer to lpfc hba data structure. * @vpd: pointer to the vital product data. * @len: length of the vital product data in bytes. * * This routine parses the Vital Product Data (VPD). The VPD is treated as * an array of characters. In this routine, the ModelName, ProgramType, and * ModelDesc, etc. fields of the phba data structure will be populated. * * Return codes * 0 - pointer to the VPD passed in is NULL * 1 - success **/ int lpfc_parse_vpd(struct lpfc_hba *phba, uint8_t *vpd, int len) { uint8_t lenlo, lenhi; int Length; int i; int finished = 0; int index = 0; if (!vpd) return 0; /* Vital Product */ lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0455 Vital Product Data: x%x x%x x%x x%x\n", (uint32_t) vpd[0], (uint32_t) vpd[1], (uint32_t) vpd[2], (uint32_t) vpd[3]); while (!finished && (index < (len - 4))) { switch (vpd[index]) { case 0x82: case 0x91: index += 1; lenlo = vpd[index]; index += 1; lenhi = vpd[index]; index += 1; i = ((((unsigned short)lenhi) << 8) + lenlo); index += i; break; case 0x90: index += 1; lenlo = vpd[index]; index += 1; lenhi = vpd[index]; index += 1; Length = ((((unsigned short)lenhi) << 8) + lenlo); if (Length > len - index) Length = len - index; lpfc_fill_vpd(phba, vpd, Length, &index); finished = 0; break; case 0x78: finished = 1; break; default: index ++; break; } } return(1); } /** * lpfc_get_atto_model_desc - Retrieve ATTO HBA device model name and description * @phba: pointer to lpfc hba data structure. * @mdp: pointer to the data structure to hold the derived model name. * @descp: pointer to the data structure to hold the derived description. * * This routine retrieves HBA's description based on its registered PCI device * ID. The @descp passed into this function points to an array of 256 chars. It * shall be returned with the model name, maximum speed, and the host bus type. * The @mdp passed into this function points to an array of 80 chars. When the * function returns, the @mdp will be filled with the model name. **/ static void lpfc_get_atto_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) { uint16_t sub_dev_id = phba->pcidev->subsystem_device; char *model = "<Unknown>"; int tbolt = 0; switch (sub_dev_id) { case PCI_DEVICE_ID_CLRY_161E: model = "161E"; break; case PCI_DEVICE_ID_CLRY_162E: model = "162E"; break; case PCI_DEVICE_ID_CLRY_164E: model = "164E"; break; case PCI_DEVICE_ID_CLRY_161P: model = "161P"; break; case PCI_DEVICE_ID_CLRY_162P: model = "162P"; break; case PCI_DEVICE_ID_CLRY_164P: model = "164P"; break; case PCI_DEVICE_ID_CLRY_321E: model = "321E"; break; case PCI_DEVICE_ID_CLRY_322E: model = "322E"; break; case PCI_DEVICE_ID_CLRY_324E: model = "324E"; break; case PCI_DEVICE_ID_CLRY_321P: model = "321P"; break; case PCI_DEVICE_ID_CLRY_322P: model = "322P"; break; case PCI_DEVICE_ID_CLRY_324P: model = "324P"; break; case PCI_DEVICE_ID_TLFC_2XX2: model = "2XX2"; tbolt = 1; break; case PCI_DEVICE_ID_TLFC_3162: model = "3162"; tbolt = 1; break; case PCI_DEVICE_ID_TLFC_3322: model = "3322"; tbolt = 1; break; default: model = "Unknown"; break; } if (mdp && mdp[0] == '\0') snprintf(mdp, 79, "%s", model); if (descp && descp[0] == '\0') snprintf(descp, 255, "ATTO %s%s, Fibre Channel Adapter Initiator, Port %s", (tbolt) ? "ThunderLink FC " : "Celerity FC-", model, phba->Port); } /** * lpfc_get_hba_model_desc - Retrieve HBA device model name and description * @phba: pointer to lpfc hba data structure. * @mdp: pointer to the data structure to hold the derived model name. * @descp: pointer to the data structure to hold the derived description. * * This routine retrieves HBA's description based on its registered PCI device * ID. The @descp passed into this function points to an array of 256 chars. It * shall be returned with the model name, maximum speed, and the host bus type. * The @mdp passed into this function points to an array of 80 chars. When the * function returns, the @mdp will be filled with the model name. **/ static void lpfc_get_hba_model_desc(struct lpfc_hba *phba, uint8_t *mdp, uint8_t *descp) { lpfc_vpd_t *vp; uint16_t dev_id = phba->pcidev->device; int max_speed; int GE = 0; int oneConnect = 0; /* default is not a oneConnect */ struct { char *name; char *bus; char *function; } m = {"<Unknown>", "", ""}; if (mdp && mdp[0] != '\0' && descp && descp[0] != '\0') return; if (phba->pcidev->vendor == PCI_VENDOR_ID_ATTO) { lpfc_get_atto_model_desc(phba, mdp, descp); return; } if (phba->lmt & LMT_64Gb) max_speed = 64; else if (phba->lmt & LMT_32Gb) max_speed = 32; else if (phba->lmt & LMT_16Gb) max_speed = 16; else if (phba->lmt & LMT_10Gb) max_speed = 10; else if (phba->lmt & LMT_8Gb) max_speed = 8; else if (phba->lmt & LMT_4Gb) max_speed = 4; else if (phba->lmt & LMT_2Gb) max_speed = 2; else if (phba->lmt & LMT_1Gb) max_speed = 1; else max_speed = 0; vp = &phba->vpd; switch (dev_id) { case PCI_DEVICE_ID_FIREFLY: m = (typeof(m)){"LP6000", "PCI", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_SUPERFLY: if (vp->rev.biuRev >= 1 && vp->rev.biuRev <= 3) m = (typeof(m)){"LP7000", "PCI", ""}; else m = (typeof(m)){"LP7000E", "PCI", ""}; m.function = "Obsolete, Unsupported Fibre Channel Adapter"; break; case PCI_DEVICE_ID_DRAGONFLY: m = (typeof(m)){"LP8000", "PCI", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_CENTAUR: if (FC_JEDEC_ID(vp->rev.biuRev) == CENTAUR_2G_JEDEC_ID) m = (typeof(m)){"LP9002", "PCI", ""}; else m = (typeof(m)){"LP9000", "PCI", ""}; m.function = "Obsolete, Unsupported Fibre Channel Adapter"; break; case PCI_DEVICE_ID_RFLY: m = (typeof(m)){"LP952", "PCI", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_PEGASUS: m = (typeof(m)){"LP9802", "PCI-X", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_THOR: m = (typeof(m)){"LP10000", "PCI-X", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_VIPER: m = (typeof(m)){"LPX1000", "PCI-X", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_PFLY: m = (typeof(m)){"LP982", "PCI-X", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_TFLY: m = (typeof(m)){"LP1050", "PCI-X", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_HELIOS: m = (typeof(m)){"LP11000", "PCI-X2", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_HELIOS_SCSP: m = (typeof(m)){"LP11000-SP", "PCI-X2", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_HELIOS_DCSP: m = (typeof(m)){"LP11002-SP", "PCI-X2", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_NEPTUNE: m = (typeof(m)){"LPe1000", "PCIe", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_NEPTUNE_SCSP: m = (typeof(m)){"LPe1000-SP", "PCIe", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_NEPTUNE_DCSP: m = (typeof(m)){"LPe1002-SP", "PCIe", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_BMID: m = (typeof(m)){"LP1150", "PCI-X2", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_BSMB: m = (typeof(m)){"LP111", "PCI-X2", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_ZEPHYR: m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_ZEPHYR_SCSP: m = (typeof(m)){"LPe11000", "PCIe", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_ZEPHYR_DCSP: m = (typeof(m)){"LP2105", "PCIe", "FCoE Adapter"}; GE = 1; break; case PCI_DEVICE_ID_ZMID: m = (typeof(m)){"LPe1150", "PCIe", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_ZSMB: m = (typeof(m)){"LPe111", "PCIe", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_LP101: m = (typeof(m)){"LP101", "PCI-X", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_LP10000S: m = (typeof(m)){"LP10000-S", "PCI", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_LP11000S: m = (typeof(m)){"LP11000-S", "PCI-X2", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_LPE11000S: m = (typeof(m)){"LPe11000-S", "PCIe", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_SAT: m = (typeof(m)){"LPe12000", "PCIe", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_SAT_MID: m = (typeof(m)){"LPe1250", "PCIe", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_SAT_SMB: m = (typeof(m)){"LPe121", "PCIe", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_SAT_DCSP: m = (typeof(m)){"LPe12002-SP", "PCIe", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_SAT_SCSP: m = (typeof(m)){"LPe12000-SP", "PCIe", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_SAT_S: m = (typeof(m)){"LPe12000-S", "PCIe", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_PROTEUS_VF: m = (typeof(m)){"LPev12000", "PCIe IOV", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_PROTEUS_PF: m = (typeof(m)){"LPev12000", "PCIe IOV", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_PROTEUS_S: m = (typeof(m)){"LPemv12002-S", "PCIe IOV", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_TIGERSHARK: oneConnect = 1; m = (typeof(m)){"OCe10100", "PCIe", "FCoE"}; break; case PCI_DEVICE_ID_TOMCAT: oneConnect = 1; m = (typeof(m)){"OCe11100", "PCIe", "FCoE"}; break; case PCI_DEVICE_ID_FALCON: m = (typeof(m)){"LPSe12002-ML1-E", "PCIe", "EmulexSecure Fibre"}; break; case PCI_DEVICE_ID_BALIUS: m = (typeof(m)){"LPVe12002", "PCIe Shared I/O", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_LANCER_FC: m = (typeof(m)){"LPe16000", "PCIe", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_LANCER_FC_VF: m = (typeof(m)){"LPe16000", "PCIe", "Obsolete, Unsupported Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_LANCER_FCOE: oneConnect = 1; m = (typeof(m)){"OCe15100", "PCIe", "FCoE"}; break; case PCI_DEVICE_ID_LANCER_FCOE_VF: oneConnect = 1; m = (typeof(m)){"OCe15100", "PCIe", "Obsolete, Unsupported FCoE"}; break; case PCI_DEVICE_ID_LANCER_G6_FC: m = (typeof(m)){"LPe32000", "PCIe", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_LANCER_G7_FC: m = (typeof(m)){"LPe36000", "PCIe", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_LANCER_G7P_FC: m = (typeof(m)){"LPe38000", "PCIe", "Fibre Channel Adapter"}; break; case PCI_DEVICE_ID_SKYHAWK: case PCI_DEVICE_ID_SKYHAWK_VF: oneConnect = 1; m = (typeof(m)){"OCe14000", "PCIe", "FCoE"}; break; default: m = (typeof(m)){"Unknown", "", ""}; break; } if (mdp && mdp[0] == '\0') snprintf(mdp, 79,"%s", m.name); /* * oneConnect hba requires special processing, they are all initiators * and we put the port number on the end */ if (descp && descp[0] == '\0') { if (oneConnect) snprintf(descp, 255, "Emulex OneConnect %s, %s Initiator %s", m.name, m.function, phba->Port); else if (max_speed == 0) snprintf(descp, 255, "Emulex %s %s %s", m.name, m.bus, m.function); else snprintf(descp, 255, "Emulex %s %d%s %s %s", m.name, max_speed, (GE) ? "GE" : "Gb", m.bus, m.function); } } /** * lpfc_sli3_post_buffer - Post IOCB(s) with DMA buffer descriptor(s) to a IOCB ring * @phba: pointer to lpfc hba data structure. * @pring: pointer to a IOCB ring. * @cnt: the number of IOCBs to be posted to the IOCB ring. * * This routine posts a given number of IOCBs with the associated DMA buffer * descriptors specified by the cnt argument to the given IOCB ring. * * Return codes * The number of IOCBs NOT able to be posted to the IOCB ring. **/ int lpfc_sli3_post_buffer(struct lpfc_hba *phba, struct lpfc_sli_ring *pring, int cnt) { IOCB_t *icmd; struct lpfc_iocbq *iocb; struct lpfc_dmabuf *mp1, *mp2; cnt += pring->missbufcnt; /* While there are buffers to post */ while (cnt > 0) { /* Allocate buffer for command iocb */ iocb = lpfc_sli_get_iocbq(phba); if (iocb == NULL) { pring->missbufcnt = cnt; return cnt; } icmd = &iocb->iocb; /* 2 buffers can be posted per command */ /* Allocate buffer to post */ mp1 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); if (mp1) mp1->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp1->phys); if (!mp1 || !mp1->virt) { kfree(mp1); lpfc_sli_release_iocbq(phba, iocb); pring->missbufcnt = cnt; return cnt; } INIT_LIST_HEAD(&mp1->list); /* Allocate buffer to post */ if (cnt > 1) { mp2 = kmalloc(sizeof (struct lpfc_dmabuf), GFP_KERNEL); if (mp2) mp2->virt = lpfc_mbuf_alloc(phba, MEM_PRI, &mp2->phys); if (!mp2 || !mp2->virt) { kfree(mp2); lpfc_mbuf_free(phba, mp1->virt, mp1->phys); kfree(mp1); lpfc_sli_release_iocbq(phba, iocb); pring->missbufcnt = cnt; return cnt; } INIT_LIST_HEAD(&mp2->list); } else { mp2 = NULL; } icmd->un.cont64[0].addrHigh = putPaddrHigh(mp1->phys); icmd->un.cont64[0].addrLow = putPaddrLow(mp1->phys); icmd->un.cont64[0].tus.f.bdeSize = FCELSSIZE; icmd->ulpBdeCount = 1; cnt--; if (mp2) { icmd->un.cont64[1].addrHigh = putPaddrHigh(mp2->phys); icmd->un.cont64[1].addrLow = putPaddrLow(mp2->phys); icmd->un.cont64[1].tus.f.bdeSize = FCELSSIZE; cnt--; icmd->ulpBdeCount = 2; } icmd->ulpCommand = CMD_QUE_RING_BUF64_CN; icmd->ulpLe = 1; if (lpfc_sli_issue_iocb(phba, pring->ringno, iocb, 0) == IOCB_ERROR) { lpfc_mbuf_free(phba, mp1->virt, mp1->phys); kfree(mp1); cnt++; if (mp2) { lpfc_mbuf_free(phba, mp2->virt, mp2->phys); kfree(mp2); cnt++; } lpfc_sli_release_iocbq(phba, iocb); pring->missbufcnt = cnt; return cnt; } lpfc_sli_ringpostbuf_put(phba, pring, mp1); if (mp2) lpfc_sli_ringpostbuf_put(phba, pring, mp2); } pring->missbufcnt = 0; return 0; } /** * lpfc_post_rcv_buf - Post the initial receive IOCB buffers to ELS ring * @phba: pointer to lpfc hba data structure. * * This routine posts initial receive IOCB buffers to the ELS ring. The * current number of initial IOCB buffers specified by LPFC_BUF_RING0 is * set to 64 IOCBs. SLI3 only. * * Return codes * 0 - success (currently always success) **/ static int lpfc_post_rcv_buf(struct lpfc_hba *phba) { struct lpfc_sli *psli = &phba->sli; /* Ring 0, ELS / CT buffers */ lpfc_sli3_post_buffer(phba, &psli->sli3_ring[LPFC_ELS_RING], LPFC_BUF_RING0); /* Ring 2 - FCP no buffers needed */ return 0; } #define S(N,V) (((V)<<(N))|((V)>>(32-(N)))) /** * lpfc_sha_init - Set up initial array of hash table entries * @HashResultPointer: pointer to an array as hash table. * * This routine sets up the initial values to the array of hash table entries * for the LC HBAs. **/ static void lpfc_sha_init(uint32_t * HashResultPointer) { HashResultPointer[0] = 0x67452301; HashResultPointer[1] = 0xEFCDAB89; HashResultPointer[2] = 0x98BADCFE; HashResultPointer[3] = 0x10325476; HashResultPointer[4] = 0xC3D2E1F0; } /** * lpfc_sha_iterate - Iterate initial hash table with the working hash table * @HashResultPointer: pointer to an initial/result hash table. * @HashWorkingPointer: pointer to an working hash table. * * This routine iterates an initial hash table pointed by @HashResultPointer * with the values from the working hash table pointeed by @HashWorkingPointer. * The results are putting back to the initial hash table, returned through * the @HashResultPointer as the result hash table. **/ static void lpfc_sha_iterate(uint32_t * HashResultPointer, uint32_t * HashWorkingPointer) { int t; uint32_t TEMP; uint32_t A, B, C, D, E; t = 16; do { HashWorkingPointer[t] = S(1, HashWorkingPointer[t - 3] ^ HashWorkingPointer[t - 8] ^ HashWorkingPointer[t - 14] ^ HashWorkingPointer[t - 16]); } while (++t <= 79); t = 0; A = HashResultPointer[0]; B = HashResultPointer[1]; C = HashResultPointer[2]; D = HashResultPointer[3]; E = HashResultPointer[4]; do { if (t < 20) { TEMP = ((B & C) | ((~B) & D)) + 0x5A827999; } else if (t < 40) { TEMP = (B ^ C ^ D) + 0x6ED9EBA1; } else if (t < 60) { TEMP = ((B & C) | (B & D) | (C & D)) + 0x8F1BBCDC; } else { TEMP = (B ^ C ^ D) + 0xCA62C1D6; } TEMP += S(5, A) + E + HashWorkingPointer[t]; E = D; D = C; C = S(30, B); B = A; A = TEMP; } while (++t <= 79); HashResultPointer[0] += A; HashResultPointer[1] += B; HashResultPointer[2] += C; HashResultPointer[3] += D; HashResultPointer[4] += E; } /** * lpfc_challenge_key - Create challenge key based on WWPN of the HBA * @RandomChallenge: pointer to the entry of host challenge random number array. * @HashWorking: pointer to the entry of the working hash array. * * This routine calculates the working hash array referred by @HashWorking * from the challenge random numbers associated with the host, referred by * @RandomChallenge. The result is put into the entry of the working hash * array and returned by reference through @HashWorking. **/ static void lpfc_challenge_key(uint32_t * RandomChallenge, uint32_t * HashWorking) { *HashWorking = (*RandomChallenge ^ *HashWorking); } /** * lpfc_hba_init - Perform special handling for LC HBA initialization * @phba: pointer to lpfc hba data structure. * @hbainit: pointer to an array of unsigned 32-bit integers. * * This routine performs the special handling for LC HBA initialization. **/ void lpfc_hba_init(struct lpfc_hba *phba, uint32_t *hbainit) { int t; uint32_t *HashWorking; uint32_t *pwwnn = (uint32_t *) phba->wwnn; HashWorking = kcalloc(80, sizeof(uint32_t), GFP_KERNEL); if (!HashWorking) return; HashWorking[0] = HashWorking[78] = *pwwnn++; HashWorking[1] = HashWorking[79] = *pwwnn; for (t = 0; t < 7; t++) lpfc_challenge_key(phba->RandomData + t, HashWorking + t); lpfc_sha_init(hbainit); lpfc_sha_iterate(hbainit, HashWorking); kfree(HashWorking); } /** * lpfc_cleanup - Performs vport cleanups before deleting a vport * @vport: pointer to a virtual N_Port data structure. * * This routine performs the necessary cleanups before deleting the @vport. * It invokes the discovery state machine to perform necessary state * transitions and to release the ndlps associated with the @vport. Note, * the physical port is treated as @vport 0. **/ void lpfc_cleanup(struct lpfc_vport *vport) { struct lpfc_hba *phba = vport->phba; struct lpfc_nodelist *ndlp, *next_ndlp; int i = 0; if (phba->link_state > LPFC_LINK_DOWN) lpfc_port_link_failure(vport); /* Clean up VMID resources */ if (lpfc_is_vmid_enabled(phba)) lpfc_vmid_vport_cleanup(vport); list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { if (vport->port_type != LPFC_PHYSICAL_PORT && ndlp->nlp_DID == Fabric_DID) { /* Just free up ndlp with Fabric_DID for vports */ lpfc_nlp_put(ndlp); continue; } if (ndlp->nlp_DID == Fabric_Cntl_DID && ndlp->nlp_state == NLP_STE_UNUSED_NODE) { lpfc_nlp_put(ndlp); continue; } /* Fabric Ports not in UNMAPPED state are cleaned up in the * DEVICE_RM event. */ if (ndlp->nlp_type & NLP_FABRIC && ndlp->nlp_state == NLP_STE_UNMAPPED_NODE) lpfc_disc_state_machine(vport, ndlp, NULL, NLP_EVT_DEVICE_RECOVERY); if (!(ndlp->fc4_xpt_flags & (NVME_XPT_REGD|SCSI_XPT_REGD))) lpfc_disc_state_machine(vport, ndlp, NULL, NLP_EVT_DEVICE_RM); } /* This is a special case flush to return all * IOs before entering this loop. There are * two points in the code where a flush is * avoided if the FC_UNLOADING flag is set. * one is in the multipool destroy, * (this prevents a crash) and the other is * in the nvme abort handler, ( also prevents * a crash). Both of these exceptions are * cases where the slot is still accessible. * The flush here is only when the pci slot * is offline. */ if (test_bit(FC_UNLOADING, &vport->load_flag) && pci_channel_offline(phba->pcidev)) lpfc_sli_flush_io_rings(vport->phba); /* At this point, ALL ndlp's should be gone * because of the previous NLP_EVT_DEVICE_RM. * Lets wait for this to happen, if needed. */ while (!list_empty(&vport->fc_nodes)) { if (i++ > 3000) { lpfc_printf_vlog(vport, KERN_ERR, LOG_TRACE_EVENT, "0233 Nodelist not empty\n"); list_for_each_entry_safe(ndlp, next_ndlp, &vport->fc_nodes, nlp_listp) { lpfc_printf_vlog(ndlp->vport, KERN_ERR, LOG_DISCOVERY, "0282 did:x%x ndlp:x%px " "refcnt:%d xflags x%x nflag x%x\n", ndlp->nlp_DID, (void *)ndlp, kref_read(&ndlp->kref), ndlp->fc4_xpt_flags, ndlp->nlp_flag); } break; } /* Wait for any activity on ndlps to settle */ msleep(10); } lpfc_cleanup_vports_rrqs(vport, NULL); } /** * lpfc_stop_vport_timers - Stop all the timers associated with a vport * @vport: pointer to a virtual N_Port data structure. * * This routine stops all the timers associated with a @vport. This function * is invoked before disabling or deleting a @vport. Note that the physical * port is treated as @vport 0. **/ void lpfc_stop_vport_timers(struct lpfc_vport *vport) { del_timer_sync(&vport->els_tmofunc); del_timer_sync(&vport->delayed_disc_tmo); lpfc_can_disctmo(vport); return; } /** * __lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer * @phba: pointer to lpfc hba data structure. * * This routine stops the SLI4 FCF rediscover wait timer if it's on. The * caller of this routine should already hold the host lock. **/ void __lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) { /* Clear pending FCF rediscovery wait flag */ phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; /* Now, try to stop the timer */ del_timer(&phba->fcf.redisc_wait); } /** * lpfc_sli4_stop_fcf_redisc_wait_timer - Stop FCF rediscovery wait timer * @phba: pointer to lpfc hba data structure. * * This routine stops the SLI4 FCF rediscover wait timer if it's on. It * checks whether the FCF rediscovery wait timer is pending with the host * lock held before proceeding with disabling the timer and clearing the * wait timer pendig flag. **/ void lpfc_sli4_stop_fcf_redisc_wait_timer(struct lpfc_hba *phba) { spin_lock_irq(&phba->hbalock); if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { /* FCF rediscovery timer already fired or stopped */ spin_unlock_irq(&phba->hbalock); return; } __lpfc_sli4_stop_fcf_redisc_wait_timer(phba); /* Clear failover in progress flags */ phba->fcf.fcf_flag &= ~(FCF_DEAD_DISC | FCF_ACVL_DISC); spin_unlock_irq(&phba->hbalock); } /** * lpfc_cmf_stop - Stop CMF processing * @phba: pointer to lpfc hba data structure. * * This is called when the link goes down or if CMF mode is turned OFF. * It is also called when going offline or unloaded just before the * congestion info buffer is unregistered. **/ void lpfc_cmf_stop(struct lpfc_hba *phba) { int cpu; struct lpfc_cgn_stat *cgs; /* We only do something if CMF is enabled */ if (!phba->sli4_hba.pc_sli4_params.cmf) return; lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6221 Stop CMF / Cancel Timer\n"); /* Cancel the CMF timer */ hrtimer_cancel(&phba->cmf_stats_timer); hrtimer_cancel(&phba->cmf_timer); /* Zero CMF counters */ atomic_set(&phba->cmf_busy, 0); for_each_present_cpu(cpu) { cgs = per_cpu_ptr(phba->cmf_stat, cpu); atomic64_set(&cgs->total_bytes, 0); atomic64_set(&cgs->rcv_bytes, 0); atomic_set(&cgs->rx_io_cnt, 0); atomic64_set(&cgs->rx_latency, 0); } atomic_set(&phba->cmf_bw_wait, 0); /* Resume any blocked IO - Queue unblock on workqueue */ queue_work(phba->wq, &phba->unblock_request_work); } static inline uint64_t lpfc_get_max_line_rate(struct lpfc_hba *phba) { uint64_t rate = lpfc_sli_port_speed_get(phba); return ((((unsigned long)rate) * 1024 * 1024) / 10); } void lpfc_cmf_signal_init(struct lpfc_hba *phba) { lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6223 Signal CMF init\n"); /* Use the new fc_linkspeed to recalculate */ phba->cmf_interval_rate = LPFC_CMF_INTERVAL; phba->cmf_max_line_rate = lpfc_get_max_line_rate(phba); phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate * phba->cmf_interval_rate, 1000); phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count; /* This is a signal to firmware to sync up CMF BW with link speed */ lpfc_issue_cmf_sync_wqe(phba, 0, 0); } /** * lpfc_cmf_start - Start CMF processing * @phba: pointer to lpfc hba data structure. * * This is called when the link comes up or if CMF mode is turned OFF * to Monitor or Managed. **/ void lpfc_cmf_start(struct lpfc_hba *phba) { struct lpfc_cgn_stat *cgs; int cpu; /* We only do something if CMF is enabled */ if (!phba->sli4_hba.pc_sli4_params.cmf || phba->cmf_active_mode == LPFC_CFG_OFF) return; /* Reinitialize congestion buffer info */ lpfc_init_congestion_buf(phba); atomic_set(&phba->cgn_fabric_warn_cnt, 0); atomic_set(&phba->cgn_fabric_alarm_cnt, 0); atomic_set(&phba->cgn_sync_alarm_cnt, 0); atomic_set(&phba->cgn_sync_warn_cnt, 0); atomic_set(&phba->cmf_busy, 0); for_each_present_cpu(cpu) { cgs = per_cpu_ptr(phba->cmf_stat, cpu); atomic64_set(&cgs->total_bytes, 0); atomic64_set(&cgs->rcv_bytes, 0); atomic_set(&cgs->rx_io_cnt, 0); atomic64_set(&cgs->rx_latency, 0); } phba->cmf_latency.tv_sec = 0; phba->cmf_latency.tv_nsec = 0; lpfc_cmf_signal_init(phba); lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6222 Start CMF / Timer\n"); phba->cmf_timer_cnt = 0; hrtimer_start(&phba->cmf_timer, ktime_set(0, LPFC_CMF_INTERVAL * NSEC_PER_MSEC), HRTIMER_MODE_REL); hrtimer_start(&phba->cmf_stats_timer, ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC), HRTIMER_MODE_REL); /* Setup for latency check in IO cmpl routines */ ktime_get_real_ts64(&phba->cmf_latency); atomic_set(&phba->cmf_bw_wait, 0); atomic_set(&phba->cmf_stop_io, 0); } /** * lpfc_stop_hba_timers - Stop all the timers associated with an HBA * @phba: pointer to lpfc hba data structure. * * This routine stops all the timers associated with a HBA. This function is * invoked before either putting a HBA offline or unloading the driver. **/ void lpfc_stop_hba_timers(struct lpfc_hba *phba) { if (phba->pport) lpfc_stop_vport_timers(phba->pport); cancel_delayed_work_sync(&phba->eq_delay_work); cancel_delayed_work_sync(&phba->idle_stat_delay_work); del_timer_sync(&phba->sli.mbox_tmo); del_timer_sync(&phba->fabric_block_timer); del_timer_sync(&phba->eratt_poll); del_timer_sync(&phba->hb_tmofunc); if (phba->sli_rev == LPFC_SLI_REV4) { del_timer_sync(&phba->rrq_tmr); clear_bit(HBA_RRQ_ACTIVE, &phba->hba_flag); } clear_bit(HBA_HBEAT_INP, &phba->hba_flag); clear_bit(HBA_HBEAT_TMO, &phba->hba_flag); switch (phba->pci_dev_grp) { case LPFC_PCI_DEV_LP: /* Stop any LightPulse device specific driver timers */ del_timer_sync(&phba->fcp_poll_timer); break; case LPFC_PCI_DEV_OC: /* Stop any OneConnect device specific driver timers */ lpfc_sli4_stop_fcf_redisc_wait_timer(phba); break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0297 Invalid device group (x%x)\n", phba->pci_dev_grp); break; } return; } /** * lpfc_block_mgmt_io - Mark a HBA's management interface as blocked * @phba: pointer to lpfc hba data structure. * @mbx_action: flag for mailbox no wait action. * * This routine marks a HBA's management interface as blocked. Once the HBA's * management interface is marked as blocked, all the user space access to * the HBA, whether they are from sysfs interface or libdfc interface will * all be blocked. The HBA is set to block the management interface when the * driver prepares the HBA interface for online or offline. **/ static void lpfc_block_mgmt_io(struct lpfc_hba *phba, int mbx_action) { unsigned long iflag; uint8_t actcmd = MBX_HEARTBEAT; unsigned long timeout; spin_lock_irqsave(&phba->hbalock, iflag); phba->sli.sli_flag |= LPFC_BLOCK_MGMT_IO; spin_unlock_irqrestore(&phba->hbalock, iflag); if (mbx_action == LPFC_MBX_NO_WAIT) return; timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies; spin_lock_irqsave(&phba->hbalock, iflag); if (phba->sli.mbox_active) { actcmd = phba->sli.mbox_active->u.mb.mbxCommand; /* Determine how long we might wait for the active mailbox * command to be gracefully completed by firmware. */ timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, phba->sli.mbox_active) * 1000) + jiffies; } spin_unlock_irqrestore(&phba->hbalock, iflag); /* Wait for the outstnading mailbox command to complete */ while (phba->sli.mbox_active) { /* Check active mailbox complete status every 2ms */ msleep(2); if (time_after(jiffies, timeout)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2813 Mgmt IO is Blocked %x " "- mbox cmd %x still active\n", phba->sli.sli_flag, actcmd); break; } } } /** * lpfc_sli4_node_prep - Assign RPIs for active nodes. * @phba: pointer to lpfc hba data structure. * * Allocate RPIs for all active remote nodes. This is needed whenever * an SLI4 adapter is reset and the driver is not unloading. Its purpose * is to fixup the temporary rpi assignments. **/ void lpfc_sli4_node_prep(struct lpfc_hba *phba) { struct lpfc_nodelist *ndlp, *next_ndlp; struct lpfc_vport **vports; int i, rpi; if (phba->sli_rev != LPFC_SLI_REV4) return; vports = lpfc_create_vport_work_array(phba); if (vports == NULL) return; for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { if (test_bit(FC_UNLOADING, &vports[i]->load_flag)) continue; list_for_each_entry_safe(ndlp, next_ndlp, &vports[i]->fc_nodes, nlp_listp) { rpi = lpfc_sli4_alloc_rpi(phba); if (rpi == LPFC_RPI_ALLOC_ERROR) { /* TODO print log? */ continue; } ndlp->nlp_rpi = rpi; lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_NODE | LOG_DISCOVERY, "0009 Assign RPI x%x to ndlp x%px " "DID:x%06x flg:x%x\n", ndlp->nlp_rpi, ndlp, ndlp->nlp_DID, ndlp->nlp_flag); } } lpfc_destroy_vport_work_array(phba, vports); } /** * lpfc_create_expedite_pool - create expedite pool * @phba: pointer to lpfc hba data structure. * * This routine moves a batch of XRIs from lpfc_io_buf_list_put of HWQ 0 * to expedite pool. Mark them as expedite. **/ static void lpfc_create_expedite_pool(struct lpfc_hba *phba) { struct lpfc_sli4_hdw_queue *qp; struct lpfc_io_buf *lpfc_ncmd; struct lpfc_io_buf *lpfc_ncmd_next; struct lpfc_epd_pool *epd_pool; unsigned long iflag; epd_pool = &phba->epd_pool; qp = &phba->sli4_hba.hdwq[0]; spin_lock_init(&epd_pool->lock); spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); spin_lock(&epd_pool->lock); INIT_LIST_HEAD(&epd_pool->list); list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, &qp->lpfc_io_buf_list_put, list) { list_move_tail(&lpfc_ncmd->list, &epd_pool->list); lpfc_ncmd->expedite = true; qp->put_io_bufs--; epd_pool->count++; if (epd_pool->count >= XRI_BATCH) break; } spin_unlock(&epd_pool->lock); spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); } /** * lpfc_destroy_expedite_pool - destroy expedite pool * @phba: pointer to lpfc hba data structure. * * This routine returns XRIs from expedite pool to lpfc_io_buf_list_put * of HWQ 0. Clear the mark. **/ static void lpfc_destroy_expedite_pool(struct lpfc_hba *phba) { struct lpfc_sli4_hdw_queue *qp; struct lpfc_io_buf *lpfc_ncmd; struct lpfc_io_buf *lpfc_ncmd_next; struct lpfc_epd_pool *epd_pool; unsigned long iflag; epd_pool = &phba->epd_pool; qp = &phba->sli4_hba.hdwq[0]; spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); spin_lock(&epd_pool->lock); list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, &epd_pool->list, list) { list_move_tail(&lpfc_ncmd->list, &qp->lpfc_io_buf_list_put); lpfc_ncmd->flags = false; qp->put_io_bufs++; epd_pool->count--; } spin_unlock(&epd_pool->lock); spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); } /** * lpfc_create_multixri_pools - create multi-XRI pools * @phba: pointer to lpfc hba data structure. * * This routine initialize public, private per HWQ. Then, move XRIs from * lpfc_io_buf_list_put to public pool. High and low watermark are also * Initialized. **/ void lpfc_create_multixri_pools(struct lpfc_hba *phba) { u32 i, j; u32 hwq_count; u32 count_per_hwq; struct lpfc_io_buf *lpfc_ncmd; struct lpfc_io_buf *lpfc_ncmd_next; unsigned long iflag; struct lpfc_sli4_hdw_queue *qp; struct lpfc_multixri_pool *multixri_pool; struct lpfc_pbl_pool *pbl_pool; struct lpfc_pvt_pool *pvt_pool; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "1234 num_hdw_queue=%d num_present_cpu=%d common_xri_cnt=%d\n", phba->cfg_hdw_queue, phba->sli4_hba.num_present_cpu, phba->sli4_hba.io_xri_cnt); if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) lpfc_create_expedite_pool(phba); hwq_count = phba->cfg_hdw_queue; count_per_hwq = phba->sli4_hba.io_xri_cnt / hwq_count; for (i = 0; i < hwq_count; i++) { multixri_pool = kzalloc(sizeof(*multixri_pool), GFP_KERNEL); if (!multixri_pool) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "1238 Failed to allocate memory for " "multixri_pool\n"); if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) lpfc_destroy_expedite_pool(phba); j = 0; while (j < i) { qp = &phba->sli4_hba.hdwq[j]; kfree(qp->p_multixri_pool); j++; } phba->cfg_xri_rebalancing = 0; return; } qp = &phba->sli4_hba.hdwq[i]; qp->p_multixri_pool = multixri_pool; multixri_pool->xri_limit = count_per_hwq; multixri_pool->rrb_next_hwqid = i; /* Deal with public free xri pool */ pbl_pool = &multixri_pool->pbl_pool; spin_lock_init(&pbl_pool->lock); spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); spin_lock(&pbl_pool->lock); INIT_LIST_HEAD(&pbl_pool->list); list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, &qp->lpfc_io_buf_list_put, list) { list_move_tail(&lpfc_ncmd->list, &pbl_pool->list); qp->put_io_bufs--; pbl_pool->count++; } lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "1235 Moved %d buffers from PUT list over to pbl_pool[%d]\n", pbl_pool->count, i); spin_unlock(&pbl_pool->lock); spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); /* Deal with private free xri pool */ pvt_pool = &multixri_pool->pvt_pool; pvt_pool->high_watermark = multixri_pool->xri_limit / 2; pvt_pool->low_watermark = XRI_BATCH; spin_lock_init(&pvt_pool->lock); spin_lock_irqsave(&pvt_pool->lock, iflag); INIT_LIST_HEAD(&pvt_pool->list); pvt_pool->count = 0; spin_unlock_irqrestore(&pvt_pool->lock, iflag); } } /** * lpfc_destroy_multixri_pools - destroy multi-XRI pools * @phba: pointer to lpfc hba data structure. * * This routine returns XRIs from public/private to lpfc_io_buf_list_put. **/ static void lpfc_destroy_multixri_pools(struct lpfc_hba *phba) { u32 i; u32 hwq_count; struct lpfc_io_buf *lpfc_ncmd; struct lpfc_io_buf *lpfc_ncmd_next; unsigned long iflag; struct lpfc_sli4_hdw_queue *qp; struct lpfc_multixri_pool *multixri_pool; struct lpfc_pbl_pool *pbl_pool; struct lpfc_pvt_pool *pvt_pool; if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) lpfc_destroy_expedite_pool(phba); if (!test_bit(FC_UNLOADING, &phba->pport->load_flag)) lpfc_sli_flush_io_rings(phba); hwq_count = phba->cfg_hdw_queue; for (i = 0; i < hwq_count; i++) { qp = &phba->sli4_hba.hdwq[i]; multixri_pool = qp->p_multixri_pool; if (!multixri_pool) continue; qp->p_multixri_pool = NULL; spin_lock_irqsave(&qp->io_buf_list_put_lock, iflag); /* Deal with public free xri pool */ pbl_pool = &multixri_pool->pbl_pool; spin_lock(&pbl_pool->lock); lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "1236 Moving %d buffers from pbl_pool[%d] TO PUT list\n", pbl_pool->count, i); list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, &pbl_pool->list, list) { list_move_tail(&lpfc_ncmd->list, &qp->lpfc_io_buf_list_put); qp->put_io_bufs++; pbl_pool->count--; } INIT_LIST_HEAD(&pbl_pool->list); pbl_pool->count = 0; spin_unlock(&pbl_pool->lock); /* Deal with private free xri pool */ pvt_pool = &multixri_pool->pvt_pool; spin_lock(&pvt_pool->lock); lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "1237 Moving %d buffers from pvt_pool[%d] TO PUT list\n", pvt_pool->count, i); list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, &pvt_pool->list, list) { list_move_tail(&lpfc_ncmd->list, &qp->lpfc_io_buf_list_put); qp->put_io_bufs++; pvt_pool->count--; } INIT_LIST_HEAD(&pvt_pool->list); pvt_pool->count = 0; spin_unlock(&pvt_pool->lock); spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflag); kfree(multixri_pool); } } /** * lpfc_online - Initialize and bring a HBA online * @phba: pointer to lpfc hba data structure. * * This routine initializes the HBA and brings a HBA online. During this * process, the management interface is blocked to prevent user space access * to the HBA interfering with the driver initialization. * * Return codes * 0 - successful * 1 - failed **/ int lpfc_online(struct lpfc_hba *phba) { struct lpfc_vport *vport; struct lpfc_vport **vports; int i, error = 0; bool vpis_cleared = false; if (!phba) return 0; vport = phba->pport; if (!test_bit(FC_OFFLINE_MODE, &vport->fc_flag)) return 0; lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "0458 Bring Adapter online\n"); lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); if (phba->sli_rev == LPFC_SLI_REV4) { if (lpfc_sli4_hba_setup(phba)) { /* Initialize SLI4 HBA */ lpfc_unblock_mgmt_io(phba); return 1; } spin_lock_irq(&phba->hbalock); if (!phba->sli4_hba.max_cfg_param.vpi_used) vpis_cleared = true; spin_unlock_irq(&phba->hbalock); /* Reestablish the local initiator port. * The offline process destroyed the previous lport. */ if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME && !phba->nvmet_support) { error = lpfc_nvme_create_localport(phba->pport); if (error) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6132 NVME restore reg failed " "on nvmei error x%x\n", error); } } else { lpfc_sli_queue_init(phba); if (lpfc_sli_hba_setup(phba)) { /* Initialize SLI2/SLI3 HBA */ lpfc_unblock_mgmt_io(phba); return 1; } } vports = lpfc_create_vport_work_array(phba); if (vports != NULL) { for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { clear_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag); if (phba->sli3_options & LPFC_SLI3_NPIV_ENABLED) set_bit(FC_VPORT_NEEDS_REG_VPI, &vports[i]->fc_flag); if (phba->sli_rev == LPFC_SLI_REV4) { set_bit(FC_VPORT_NEEDS_INIT_VPI, &vports[i]->fc_flag); if ((vpis_cleared) && (vports[i]->port_type != LPFC_PHYSICAL_PORT)) vports[i]->vpi = 0; } } } lpfc_destroy_vport_work_array(phba, vports); if (phba->cfg_xri_rebalancing) lpfc_create_multixri_pools(phba); lpfc_cpuhp_add(phba); lpfc_unblock_mgmt_io(phba); return 0; } /** * lpfc_unblock_mgmt_io - Mark a HBA's management interface to be not blocked * @phba: pointer to lpfc hba data structure. * * This routine marks a HBA's management interface as not blocked. Once the * HBA's management interface is marked as not blocked, all the user space * access to the HBA, whether they are from sysfs interface or libdfc * interface will be allowed. The HBA is set to block the management interface * when the driver prepares the HBA interface for online or offline and then * set to unblock the management interface afterwards. **/ void lpfc_unblock_mgmt_io(struct lpfc_hba * phba) { unsigned long iflag; spin_lock_irqsave(&phba->hbalock, iflag); phba->sli.sli_flag &= ~LPFC_BLOCK_MGMT_IO; spin_unlock_irqrestore(&phba->hbalock, iflag); } /** * lpfc_offline_prep - Prepare a HBA to be brought offline * @phba: pointer to lpfc hba data structure. * @mbx_action: flag for mailbox shutdown action. * * This routine is invoked to prepare a HBA to be brought offline. It performs * unregistration login to all the nodes on all vports and flushes the mailbox * queue to make it ready to be brought offline. **/ void lpfc_offline_prep(struct lpfc_hba *phba, int mbx_action) { struct lpfc_vport *vport = phba->pport; struct lpfc_nodelist *ndlp, *next_ndlp; struct lpfc_vport **vports; struct Scsi_Host *shost; int i; int offline; bool hba_pci_err; if (test_bit(FC_OFFLINE_MODE, &vport->fc_flag)) return; lpfc_block_mgmt_io(phba, mbx_action); lpfc_linkdown(phba); offline = pci_channel_offline(phba->pcidev); hba_pci_err = test_bit(HBA_PCI_ERR, &phba->bit_flags); /* Issue an unreg_login to all nodes on all vports */ vports = lpfc_create_vport_work_array(phba); if (vports != NULL) { for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { if (test_bit(FC_UNLOADING, &vports[i]->load_flag)) continue; shost = lpfc_shost_from_vport(vports[i]); spin_lock_irq(shost->host_lock); vports[i]->vpi_state &= ~LPFC_VPI_REGISTERED; spin_unlock_irq(shost->host_lock); set_bit(FC_VPORT_NEEDS_REG_VPI, &vports[i]->fc_flag); clear_bit(FC_VFI_REGISTERED, &vports[i]->fc_flag); list_for_each_entry_safe(ndlp, next_ndlp, &vports[i]->fc_nodes, nlp_listp) { spin_lock_irq(&ndlp->lock); ndlp->nlp_flag &= ~NLP_NPR_ADISC; spin_unlock_irq(&ndlp->lock); if (offline || hba_pci_err) { spin_lock_irq(&ndlp->lock); ndlp->nlp_flag &= ~(NLP_UNREG_INP | NLP_RPI_REGISTERED); spin_unlock_irq(&ndlp->lock); if (phba->sli_rev == LPFC_SLI_REV4) lpfc_sli_rpi_release(vports[i], ndlp); } else { lpfc_unreg_rpi(vports[i], ndlp); } /* * Whenever an SLI4 port goes offline, free the * RPI. Get a new RPI when the adapter port * comes back online. */ if (phba->sli_rev == LPFC_SLI_REV4) { lpfc_printf_vlog(vports[i], KERN_INFO, LOG_NODE | LOG_DISCOVERY, "0011 Free RPI x%x on " "ndlp: x%px did x%x\n", ndlp->nlp_rpi, ndlp, ndlp->nlp_DID); lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi); ndlp->nlp_rpi = LPFC_RPI_ALLOC_ERROR; } if (ndlp->nlp_type & NLP_FABRIC) { lpfc_disc_state_machine(vports[i], ndlp, NULL, NLP_EVT_DEVICE_RECOVERY); /* Don't remove the node unless the node * has been unregistered with the * transport, and we're not in recovery * before dev_loss_tmo triggered. * Otherwise, let dev_loss take care of * the node. */ if (!(ndlp->save_flags & NLP_IN_RECOV_POST_DEV_LOSS) && !(ndlp->fc4_xpt_flags & (NVME_XPT_REGD | SCSI_XPT_REGD))) lpfc_disc_state_machine (vports[i], ndlp, NULL, NLP_EVT_DEVICE_RM); } } } } lpfc_destroy_vport_work_array(phba, vports); lpfc_sli_mbox_sys_shutdown(phba, mbx_action); if (phba->wq) flush_workqueue(phba->wq); } /** * lpfc_offline - Bring a HBA offline * @phba: pointer to lpfc hba data structure. * * This routine actually brings a HBA offline. It stops all the timers * associated with the HBA, brings down the SLI layer, and eventually * marks the HBA as in offline state for the upper layer protocol. **/ void lpfc_offline(struct lpfc_hba *phba) { struct Scsi_Host *shost; struct lpfc_vport **vports; int i; if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) return; /* stop port and all timers associated with this hba */ lpfc_stop_port(phba); /* Tear down the local and target port registrations. The * nvme transports need to cleanup. */ lpfc_nvmet_destroy_targetport(phba); lpfc_nvme_destroy_localport(phba->pport); vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) lpfc_stop_vport_timers(vports[i]); lpfc_destroy_vport_work_array(phba, vports); lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "0460 Bring Adapter offline\n"); /* Bring down the SLI Layer and cleanup. The HBA is offline now. */ lpfc_sli_hba_down(phba); spin_lock_irq(&phba->hbalock); phba->work_ha = 0; spin_unlock_irq(&phba->hbalock); vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { shost = lpfc_shost_from_vport(vports[i]); spin_lock_irq(shost->host_lock); vports[i]->work_port_events = 0; spin_unlock_irq(shost->host_lock); set_bit(FC_OFFLINE_MODE, &vports[i]->fc_flag); } lpfc_destroy_vport_work_array(phba, vports); /* If OFFLINE flag is clear (i.e. unloading), cpuhp removal is handled * in hba_unset */ if (test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) __lpfc_cpuhp_remove(phba); if (phba->cfg_xri_rebalancing) lpfc_destroy_multixri_pools(phba); } /** * lpfc_scsi_free - Free all the SCSI buffers and IOCBs from driver lists * @phba: pointer to lpfc hba data structure. * * This routine is to free all the SCSI buffers and IOCBs from the driver * list back to kernel. It is called from lpfc_pci_remove_one to free * the internal resources before the device is removed from the system. **/ static void lpfc_scsi_free(struct lpfc_hba *phba) { struct lpfc_io_buf *sb, *sb_next; if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) return; spin_lock_irq(&phba->hbalock); /* Release all the lpfc_scsi_bufs maintained by this host. */ spin_lock(&phba->scsi_buf_list_put_lock); list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_put, list) { list_del(&sb->list); dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, sb->dma_handle); kfree(sb); phba->total_scsi_bufs--; } spin_unlock(&phba->scsi_buf_list_put_lock); spin_lock(&phba->scsi_buf_list_get_lock); list_for_each_entry_safe(sb, sb_next, &phba->lpfc_scsi_buf_list_get, list) { list_del(&sb->list); dma_pool_free(phba->lpfc_sg_dma_buf_pool, sb->data, sb->dma_handle); kfree(sb); phba->total_scsi_bufs--; } spin_unlock(&phba->scsi_buf_list_get_lock); spin_unlock_irq(&phba->hbalock); } /** * lpfc_io_free - Free all the IO buffers and IOCBs from driver lists * @phba: pointer to lpfc hba data structure. * * This routine is to free all the IO buffers and IOCBs from the driver * list back to kernel. It is called from lpfc_pci_remove_one to free * the internal resources before the device is removed from the system. **/ void lpfc_io_free(struct lpfc_hba *phba) { struct lpfc_io_buf *lpfc_ncmd, *lpfc_ncmd_next; struct lpfc_sli4_hdw_queue *qp; int idx; for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { qp = &phba->sli4_hba.hdwq[idx]; /* Release all the lpfc_nvme_bufs maintained by this host. */ spin_lock(&qp->io_buf_list_put_lock); list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, &qp->lpfc_io_buf_list_put, list) { list_del(&lpfc_ncmd->list); qp->put_io_bufs--; dma_pool_free(phba->lpfc_sg_dma_buf_pool, lpfc_ncmd->data, lpfc_ncmd->dma_handle); if (phba->cfg_xpsgl && !phba->nvmet_support) lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); kfree(lpfc_ncmd); qp->total_io_bufs--; } spin_unlock(&qp->io_buf_list_put_lock); spin_lock(&qp->io_buf_list_get_lock); list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, &qp->lpfc_io_buf_list_get, list) { list_del(&lpfc_ncmd->list); qp->get_io_bufs--; dma_pool_free(phba->lpfc_sg_dma_buf_pool, lpfc_ncmd->data, lpfc_ncmd->dma_handle); if (phba->cfg_xpsgl && !phba->nvmet_support) lpfc_put_sgl_per_hdwq(phba, lpfc_ncmd); lpfc_put_cmd_rsp_buf_per_hdwq(phba, lpfc_ncmd); kfree(lpfc_ncmd); qp->total_io_bufs--; } spin_unlock(&qp->io_buf_list_get_lock); } } /** * lpfc_sli4_els_sgl_update - update ELS xri-sgl sizing and mapping * @phba: pointer to lpfc hba data structure. * * This routine first calculates the sizes of the current els and allocated * scsi sgl lists, and then goes through all sgls to updates the physical * XRIs assigned due to port function reset. During port initialization, the * current els and allocated scsi sgl lists are 0s. * * Return codes * 0 - successful (for now, it always returns 0) **/ int lpfc_sli4_els_sgl_update(struct lpfc_hba *phba) { struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; uint16_t i, lxri, xri_cnt, els_xri_cnt; LIST_HEAD(els_sgl_list); int rc; /* * update on pci function's els xri-sgl list */ els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); if (els_xri_cnt > phba->sli4_hba.els_xri_cnt) { /* els xri-sgl expanded */ xri_cnt = els_xri_cnt - phba->sli4_hba.els_xri_cnt; lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3157 ELS xri-sgl count increased from " "%d to %d\n", phba->sli4_hba.els_xri_cnt, els_xri_cnt); /* allocate the additional els sgls */ for (i = 0; i < xri_cnt; i++) { sglq_entry = kzalloc(sizeof(struct lpfc_sglq), GFP_KERNEL); if (sglq_entry == NULL) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2562 Failure to allocate an " "ELS sgl entry:%d\n", i); rc = -ENOMEM; goto out_free_mem; } sglq_entry->buff_type = GEN_BUFF_TYPE; sglq_entry->virt = lpfc_mbuf_alloc(phba, 0, &sglq_entry->phys); if (sglq_entry->virt == NULL) { kfree(sglq_entry); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2563 Failure to allocate an " "ELS mbuf:%d\n", i); rc = -ENOMEM; goto out_free_mem; } sglq_entry->sgl = sglq_entry->virt; memset(sglq_entry->sgl, 0, LPFC_BPL_SIZE); sglq_entry->state = SGL_FREED; list_add_tail(&sglq_entry->list, &els_sgl_list); } spin_lock_irq(&phba->sli4_hba.sgl_list_lock); list_splice_init(&els_sgl_list, &phba->sli4_hba.lpfc_els_sgl_list); spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); } else if (els_xri_cnt < phba->sli4_hba.els_xri_cnt) { /* els xri-sgl shrinked */ xri_cnt = phba->sli4_hba.els_xri_cnt - els_xri_cnt; lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3158 ELS xri-sgl count decreased from " "%d to %d\n", phba->sli4_hba.els_xri_cnt, els_xri_cnt); spin_lock_irq(&phba->sli4_hba.sgl_list_lock); list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &els_sgl_list); /* release extra els sgls from list */ for (i = 0; i < xri_cnt; i++) { list_remove_head(&els_sgl_list, sglq_entry, struct lpfc_sglq, list); if (sglq_entry) { __lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys); kfree(sglq_entry); } } list_splice_init(&els_sgl_list, &phba->sli4_hba.lpfc_els_sgl_list); spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); } else lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3163 ELS xri-sgl count unchanged: %d\n", els_xri_cnt); phba->sli4_hba.els_xri_cnt = els_xri_cnt; /* update xris to els sgls on the list */ sglq_entry = NULL; sglq_entry_next = NULL; list_for_each_entry_safe(sglq_entry, sglq_entry_next, &phba->sli4_hba.lpfc_els_sgl_list, list) { lxri = lpfc_sli4_next_xritag(phba); if (lxri == NO_XRI) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2400 Failed to allocate xri for " "ELS sgl\n"); rc = -ENOMEM; goto out_free_mem; } sglq_entry->sli4_lxritag = lxri; sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; } return 0; out_free_mem: lpfc_free_els_sgl_list(phba); return rc; } /** * lpfc_sli4_nvmet_sgl_update - update xri-sgl sizing and mapping * @phba: pointer to lpfc hba data structure. * * This routine first calculates the sizes of the current els and allocated * scsi sgl lists, and then goes through all sgls to updates the physical * XRIs assigned due to port function reset. During port initialization, the * current els and allocated scsi sgl lists are 0s. * * Return codes * 0 - successful (for now, it always returns 0) **/ int lpfc_sli4_nvmet_sgl_update(struct lpfc_hba *phba) { struct lpfc_sglq *sglq_entry = NULL, *sglq_entry_next = NULL; uint16_t i, lxri, xri_cnt, els_xri_cnt; uint16_t nvmet_xri_cnt; LIST_HEAD(nvmet_sgl_list); int rc; /* * update on pci function's nvmet xri-sgl list */ els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); /* For NVMET, ALL remaining XRIs are dedicated for IO processing */ nvmet_xri_cnt = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; if (nvmet_xri_cnt > phba->sli4_hba.nvmet_xri_cnt) { /* els xri-sgl expanded */ xri_cnt = nvmet_xri_cnt - phba->sli4_hba.nvmet_xri_cnt; lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "6302 NVMET xri-sgl cnt grew from %d to %d\n", phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt); /* allocate the additional nvmet sgls */ for (i = 0; i < xri_cnt; i++) { sglq_entry = kzalloc(sizeof(struct lpfc_sglq), GFP_KERNEL); if (sglq_entry == NULL) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6303 Failure to allocate an " "NVMET sgl entry:%d\n", i); rc = -ENOMEM; goto out_free_mem; } sglq_entry->buff_type = NVMET_BUFF_TYPE; sglq_entry->virt = lpfc_nvmet_buf_alloc(phba, 0, &sglq_entry->phys); if (sglq_entry->virt == NULL) { kfree(sglq_entry); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6304 Failure to allocate an " "NVMET buf:%d\n", i); rc = -ENOMEM; goto out_free_mem; } sglq_entry->sgl = sglq_entry->virt; memset(sglq_entry->sgl, 0, phba->cfg_sg_dma_buf_size); sglq_entry->state = SGL_FREED; list_add_tail(&sglq_entry->list, &nvmet_sgl_list); } spin_lock_irq(&phba->hbalock); spin_lock(&phba->sli4_hba.sgl_list_lock); list_splice_init(&nvmet_sgl_list, &phba->sli4_hba.lpfc_nvmet_sgl_list); spin_unlock(&phba->sli4_hba.sgl_list_lock); spin_unlock_irq(&phba->hbalock); } else if (nvmet_xri_cnt < phba->sli4_hba.nvmet_xri_cnt) { /* nvmet xri-sgl shrunk */ xri_cnt = phba->sli4_hba.nvmet_xri_cnt - nvmet_xri_cnt; lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "6305 NVMET xri-sgl count decreased from " "%d to %d\n", phba->sli4_hba.nvmet_xri_cnt, nvmet_xri_cnt); spin_lock_irq(&phba->hbalock); spin_lock(&phba->sli4_hba.sgl_list_lock); list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &nvmet_sgl_list); /* release extra nvmet sgls from list */ for (i = 0; i < xri_cnt; i++) { list_remove_head(&nvmet_sgl_list, sglq_entry, struct lpfc_sglq, list); if (sglq_entry) { lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys); kfree(sglq_entry); } } list_splice_init(&nvmet_sgl_list, &phba->sli4_hba.lpfc_nvmet_sgl_list); spin_unlock(&phba->sli4_hba.sgl_list_lock); spin_unlock_irq(&phba->hbalock); } else lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "6306 NVMET xri-sgl count unchanged: %d\n", nvmet_xri_cnt); phba->sli4_hba.nvmet_xri_cnt = nvmet_xri_cnt; /* update xris to nvmet sgls on the list */ sglq_entry = NULL; sglq_entry_next = NULL; list_for_each_entry_safe(sglq_entry, sglq_entry_next, &phba->sli4_hba.lpfc_nvmet_sgl_list, list) { lxri = lpfc_sli4_next_xritag(phba); if (lxri == NO_XRI) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6307 Failed to allocate xri for " "NVMET sgl\n"); rc = -ENOMEM; goto out_free_mem; } sglq_entry->sli4_lxritag = lxri; sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; } return 0; out_free_mem: lpfc_free_nvmet_sgl_list(phba); return rc; } int lpfc_io_buf_flush(struct lpfc_hba *phba, struct list_head *cbuf) { LIST_HEAD(blist); struct lpfc_sli4_hdw_queue *qp; struct lpfc_io_buf *lpfc_cmd; struct lpfc_io_buf *iobufp, *prev_iobufp; int idx, cnt, xri, inserted; cnt = 0; for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { qp = &phba->sli4_hba.hdwq[idx]; spin_lock_irq(&qp->io_buf_list_get_lock); spin_lock(&qp->io_buf_list_put_lock); /* Take everything off the get and put lists */ list_splice_init(&qp->lpfc_io_buf_list_get, &blist); list_splice(&qp->lpfc_io_buf_list_put, &blist); INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); cnt += qp->get_io_bufs + qp->put_io_bufs; qp->get_io_bufs = 0; qp->put_io_bufs = 0; qp->total_io_bufs = 0; spin_unlock(&qp->io_buf_list_put_lock); spin_unlock_irq(&qp->io_buf_list_get_lock); } /* * Take IO buffers off blist and put on cbuf sorted by XRI. * This is because POST_SGL takes a sequential range of XRIs * to post to the firmware. */ for (idx = 0; idx < cnt; idx++) { list_remove_head(&blist, lpfc_cmd, struct lpfc_io_buf, list); if (!lpfc_cmd) return cnt; if (idx == 0) { list_add_tail(&lpfc_cmd->list, cbuf); continue; } xri = lpfc_cmd->cur_iocbq.sli4_xritag; inserted = 0; prev_iobufp = NULL; list_for_each_entry(iobufp, cbuf, list) { if (xri < iobufp->cur_iocbq.sli4_xritag) { if (prev_iobufp) list_add(&lpfc_cmd->list, &prev_iobufp->list); else list_add(&lpfc_cmd->list, cbuf); inserted = 1; break; } prev_iobufp = iobufp; } if (!inserted) list_add_tail(&lpfc_cmd->list, cbuf); } return cnt; } int lpfc_io_buf_replenish(struct lpfc_hba *phba, struct list_head *cbuf) { struct lpfc_sli4_hdw_queue *qp; struct lpfc_io_buf *lpfc_cmd; int idx, cnt; unsigned long iflags; qp = phba->sli4_hba.hdwq; cnt = 0; while (!list_empty(cbuf)) { for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { list_remove_head(cbuf, lpfc_cmd, struct lpfc_io_buf, list); if (!lpfc_cmd) return cnt; cnt++; qp = &phba->sli4_hba.hdwq[idx]; lpfc_cmd->hdwq_no = idx; lpfc_cmd->hdwq = qp; lpfc_cmd->cur_iocbq.cmd_cmpl = NULL; spin_lock_irqsave(&qp->io_buf_list_put_lock, iflags); list_add_tail(&lpfc_cmd->list, &qp->lpfc_io_buf_list_put); qp->put_io_bufs++; qp->total_io_bufs++; spin_unlock_irqrestore(&qp->io_buf_list_put_lock, iflags); } } return cnt; } /** * lpfc_sli4_io_sgl_update - update xri-sgl sizing and mapping * @phba: pointer to lpfc hba data structure. * * This routine first calculates the sizes of the current els and allocated * scsi sgl lists, and then goes through all sgls to updates the physical * XRIs assigned due to port function reset. During port initialization, the * current els and allocated scsi sgl lists are 0s. * * Return codes * 0 - successful (for now, it always returns 0) **/ int lpfc_sli4_io_sgl_update(struct lpfc_hba *phba) { struct lpfc_io_buf *lpfc_ncmd = NULL, *lpfc_ncmd_next = NULL; uint16_t i, lxri, els_xri_cnt; uint16_t io_xri_cnt, io_xri_max; LIST_HEAD(io_sgl_list); int rc, cnt; /* * update on pci function's allocated nvme xri-sgl list */ /* maximum number of xris available for nvme buffers */ els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba); io_xri_max = phba->sli4_hba.max_cfg_param.max_xri - els_xri_cnt; phba->sli4_hba.io_xri_max = io_xri_max; lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "6074 Current allocated XRI sgl count:%d, " "maximum XRI count:%d els_xri_cnt:%d\n\n", phba->sli4_hba.io_xri_cnt, phba->sli4_hba.io_xri_max, els_xri_cnt); cnt = lpfc_io_buf_flush(phba, &io_sgl_list); if (phba->sli4_hba.io_xri_cnt > phba->sli4_hba.io_xri_max) { /* max nvme xri shrunk below the allocated nvme buffers */ io_xri_cnt = phba->sli4_hba.io_xri_cnt - phba->sli4_hba.io_xri_max; /* release the extra allocated nvme buffers */ for (i = 0; i < io_xri_cnt; i++) { list_remove_head(&io_sgl_list, lpfc_ncmd, struct lpfc_io_buf, list); if (lpfc_ncmd) { dma_pool_free(phba->lpfc_sg_dma_buf_pool, lpfc_ncmd->data, lpfc_ncmd->dma_handle); kfree(lpfc_ncmd); } } phba->sli4_hba.io_xri_cnt -= io_xri_cnt; } /* update xris associated to remaining allocated nvme buffers */ lpfc_ncmd = NULL; lpfc_ncmd_next = NULL; phba->sli4_hba.io_xri_cnt = cnt; list_for_each_entry_safe(lpfc_ncmd, lpfc_ncmd_next, &io_sgl_list, list) { lxri = lpfc_sli4_next_xritag(phba); if (lxri == NO_XRI) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6075 Failed to allocate xri for " "nvme buffer\n"); rc = -ENOMEM; goto out_free_mem; } lpfc_ncmd->cur_iocbq.sli4_lxritag = lxri; lpfc_ncmd->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri]; } cnt = lpfc_io_buf_replenish(phba, &io_sgl_list); return 0; out_free_mem: lpfc_io_free(phba); return rc; } /** * lpfc_new_io_buf - IO buffer allocator for HBA with SLI4 IF spec * @phba: Pointer to lpfc hba data structure. * @num_to_alloc: The requested number of buffers to allocate. * * This routine allocates nvme buffers for device with SLI-4 interface spec, * the nvme buffer contains all the necessary information needed to initiate * an I/O. After allocating up to @num_to_allocate IO buffers and put * them on a list, it post them to the port by using SGL block post. * * Return codes: * int - number of IO buffers that were allocated and posted. * 0 = failure, less than num_to_alloc is a partial failure. **/ int lpfc_new_io_buf(struct lpfc_hba *phba, int num_to_alloc) { struct lpfc_io_buf *lpfc_ncmd; struct lpfc_iocbq *pwqeq; uint16_t iotag, lxri = 0; int bcnt, num_posted; LIST_HEAD(prep_nblist); LIST_HEAD(post_nblist); LIST_HEAD(nvme_nblist); phba->sli4_hba.io_xri_cnt = 0; for (bcnt = 0; bcnt < num_to_alloc; bcnt++) { lpfc_ncmd = kzalloc(sizeof(*lpfc_ncmd), GFP_KERNEL); if (!lpfc_ncmd) break; /* * Get memory from the pci pool to map the virt space to * pci bus space for an I/O. The DMA buffer includes the * number of SGE's necessary to support the sg_tablesize. */ lpfc_ncmd->data = dma_pool_zalloc(phba->lpfc_sg_dma_buf_pool, GFP_KERNEL, &lpfc_ncmd->dma_handle); if (!lpfc_ncmd->data) { kfree(lpfc_ncmd); break; } if (phba->cfg_xpsgl && !phba->nvmet_support) { INIT_LIST_HEAD(&lpfc_ncmd->dma_sgl_xtra_list); } else { /* * 4K Page alignment is CRITICAL to BlockGuard, double * check to be sure. */ if ((phba->sli3_options & LPFC_SLI3_BG_ENABLED) && (((unsigned long)(lpfc_ncmd->data) & (unsigned long)(SLI4_PAGE_SIZE - 1)) != 0)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3369 Memory alignment err: " "addr=%lx\n", (unsigned long)lpfc_ncmd->data); dma_pool_free(phba->lpfc_sg_dma_buf_pool, lpfc_ncmd->data, lpfc_ncmd->dma_handle); kfree(lpfc_ncmd); break; } } INIT_LIST_HEAD(&lpfc_ncmd->dma_cmd_rsp_list); lxri = lpfc_sli4_next_xritag(phba); if (lxri == NO_XRI) { dma_pool_free(phba->lpfc_sg_dma_buf_pool, lpfc_ncmd->data, lpfc_ncmd->dma_handle); kfree(lpfc_ncmd); break; } pwqeq = &lpfc_ncmd->cur_iocbq; /* Allocate iotag for lpfc_ncmd->cur_iocbq. */ iotag = lpfc_sli_next_iotag(phba, pwqeq); if (iotag == 0) { dma_pool_free(phba->lpfc_sg_dma_buf_pool, lpfc_ncmd->data, lpfc_ncmd->dma_handle); kfree(lpfc_ncmd); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6121 Failed to allocate IOTAG for" " XRI:0x%x\n", lxri); lpfc_sli4_free_xri(phba, lxri); break; } pwqeq->sli4_lxritag = lxri; pwqeq->sli4_xritag = phba->sli4_hba.xri_ids[lxri]; /* Initialize local short-hand pointers. */ lpfc_ncmd->dma_sgl = lpfc_ncmd->data; lpfc_ncmd->dma_phys_sgl = lpfc_ncmd->dma_handle; lpfc_ncmd->cur_iocbq.io_buf = lpfc_ncmd; spin_lock_init(&lpfc_ncmd->buf_lock); /* add the nvme buffer to a post list */ list_add_tail(&lpfc_ncmd->list, &post_nblist); phba->sli4_hba.io_xri_cnt++; } lpfc_printf_log(phba, KERN_INFO, LOG_NVME, "6114 Allocate %d out of %d requested new NVME " "buffers of size x%zu bytes\n", bcnt, num_to_alloc, sizeof(*lpfc_ncmd)); /* post the list of nvme buffer sgls to port if available */ if (!list_empty(&post_nblist)) num_posted = lpfc_sli4_post_io_sgl_list( phba, &post_nblist, bcnt); else num_posted = 0; return num_posted; } static uint64_t lpfc_get_wwpn(struct lpfc_hba *phba) { uint64_t wwn; int rc; LPFC_MBOXQ_t *mboxq; MAILBOX_t *mb; mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) return (uint64_t)-1; /* First get WWN of HBA instance */ lpfc_read_nv(phba, mboxq); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6019 Mailbox failed , mbxCmd x%x " "READ_NV, mbxStatus x%x\n", bf_get(lpfc_mqe_command, &mboxq->u.mqe), bf_get(lpfc_mqe_status, &mboxq->u.mqe)); mempool_free(mboxq, phba->mbox_mem_pool); return (uint64_t) -1; } mb = &mboxq->u.mb; memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t)); /* wwn is WWPN of HBA instance */ mempool_free(mboxq, phba->mbox_mem_pool); if (phba->sli_rev == LPFC_SLI_REV4) return be64_to_cpu(wwn); else return rol64(wwn, 32); } static unsigned short lpfc_get_sg_tablesize(struct lpfc_hba *phba) { if (phba->sli_rev == LPFC_SLI_REV4) if (phba->cfg_xpsgl && !phba->nvmet_support) return LPFC_MAX_SG_TABLESIZE; else return phba->cfg_scsi_seg_cnt; else return phba->cfg_sg_seg_cnt; } /** * lpfc_vmid_res_alloc - Allocates resources for VMID * @phba: pointer to lpfc hba data structure. * @vport: pointer to vport data structure * * This routine allocated the resources needed for the VMID. * * Return codes * 0 on Success * Non-0 on Failure */ static int lpfc_vmid_res_alloc(struct lpfc_hba *phba, struct lpfc_vport *vport) { /* VMID feature is supported only on SLI4 */ if (phba->sli_rev == LPFC_SLI_REV3) { phba->cfg_vmid_app_header = 0; phba->cfg_vmid_priority_tagging = 0; } if (lpfc_is_vmid_enabled(phba)) { vport->vmid = kcalloc(phba->cfg_max_vmid, sizeof(struct lpfc_vmid), GFP_KERNEL); if (!vport->vmid) return -ENOMEM; rwlock_init(&vport->vmid_lock); /* Set the VMID parameters for the vport */ vport->vmid_priority_tagging = phba->cfg_vmid_priority_tagging; vport->vmid_inactivity_timeout = phba->cfg_vmid_inactivity_timeout; vport->max_vmid = phba->cfg_max_vmid; vport->cur_vmid_cnt = 0; vport->vmid_priority_range = bitmap_zalloc (LPFC_VMID_MAX_PRIORITY_RANGE, GFP_KERNEL); if (!vport->vmid_priority_range) { kfree(vport->vmid); return -ENOMEM; } hash_init(vport->hash_table); } return 0; } /** * lpfc_create_port - Create an FC port * @phba: pointer to lpfc hba data structure. * @instance: a unique integer ID to this FC port. * @dev: pointer to the device data structure. * * This routine creates a FC port for the upper layer protocol. The FC port * can be created on top of either a physical port or a virtual port provided * by the HBA. This routine also allocates a SCSI host data structure (shost) * and associates the FC port created before adding the shost into the SCSI * layer. * * Return codes * @vport - pointer to the virtual N_Port data structure. * NULL - port create failed. **/ struct lpfc_vport * lpfc_create_port(struct lpfc_hba *phba, int instance, struct device *dev) { struct lpfc_vport *vport; struct Scsi_Host *shost = NULL; struct scsi_host_template *template; int error = 0; int i; uint64_t wwn; bool use_no_reset_hba = false; int rc; if (lpfc_no_hba_reset_cnt) { if (phba->sli_rev < LPFC_SLI_REV4 && dev == &phba->pcidev->dev) { /* Reset the port first */ lpfc_sli_brdrestart(phba); rc = lpfc_sli_chipset_init(phba); if (rc) return NULL; } wwn = lpfc_get_wwpn(phba); } for (i = 0; i < lpfc_no_hba_reset_cnt; i++) { if (wwn == lpfc_no_hba_reset[i]) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6020 Setting use_no_reset port=%llx\n", wwn); use_no_reset_hba = true; break; } } /* Seed template for SCSI host registration */ if (dev == &phba->pcidev->dev) { if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { /* Seed physical port template */ template = &lpfc_template; if (use_no_reset_hba) /* template is for a no reset SCSI Host */ template->eh_host_reset_handler = NULL; /* Seed updated value of sg_tablesize */ template->sg_tablesize = lpfc_get_sg_tablesize(phba); } else { /* NVMET is for physical port only */ template = &lpfc_template_nvme; } } else { /* Seed vport template */ template = &lpfc_vport_template; /* Seed updated value of sg_tablesize */ template->sg_tablesize = lpfc_get_sg_tablesize(phba); } shost = scsi_host_alloc(template, sizeof(struct lpfc_vport)); if (!shost) goto out; vport = (struct lpfc_vport *) shost->hostdata; vport->phba = phba; set_bit(FC_LOADING, &vport->load_flag); set_bit(FC_VPORT_NEEDS_REG_VPI, &vport->fc_flag); vport->fc_rscn_flush = 0; atomic_set(&vport->fc_plogi_cnt, 0); atomic_set(&vport->fc_adisc_cnt, 0); atomic_set(&vport->fc_reglogin_cnt, 0); atomic_set(&vport->fc_prli_cnt, 0); atomic_set(&vport->fc_unmap_cnt, 0); atomic_set(&vport->fc_map_cnt, 0); atomic_set(&vport->fc_npr_cnt, 0); atomic_set(&vport->fc_unused_cnt, 0); lpfc_get_vport_cfgparam(vport); /* Adjust value in vport */ vport->cfg_enable_fc4_type = phba->cfg_enable_fc4_type; shost->unique_id = instance; shost->max_id = LPFC_MAX_TARGET; shost->max_lun = vport->cfg_max_luns; shost->this_id = -1; if (phba->sli_rev == LPFC_SLI_REV4) shost->max_cmd_len = LPFC_FCP_CDB_LEN_32; else shost->max_cmd_len = LPFC_FCP_CDB_LEN; if (phba->sli_rev == LPFC_SLI_REV4) { if (!phba->cfg_fcp_mq_threshold || phba->cfg_fcp_mq_threshold > phba->cfg_hdw_queue) phba->cfg_fcp_mq_threshold = phba->cfg_hdw_queue; shost->nr_hw_queues = min_t(int, 2 * num_possible_nodes(), phba->cfg_fcp_mq_threshold); shost->dma_boundary = phba->sli4_hba.pc_sli4_params.sge_supp_len-1; } else /* SLI-3 has a limited number of hardware queues (3), * thus there is only one for FCP processing. */ shost->nr_hw_queues = 1; /* * Set initial can_queue value since 0 is no longer supported and * scsi_add_host will fail. This will be adjusted later based on the * max xri value determined in hba setup. */ shost->can_queue = phba->cfg_hba_queue_depth - 10; if (dev != &phba->pcidev->dev) { shost->transportt = lpfc_vport_transport_template; vport->port_type = LPFC_NPIV_PORT; } else { shost->transportt = lpfc_transport_template; vport->port_type = LPFC_PHYSICAL_PORT; } lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, "9081 CreatePort TMPLATE type %x TBLsize %d " "SEGcnt %d/%d\n", vport->port_type, shost->sg_tablesize, phba->cfg_scsi_seg_cnt, phba->cfg_sg_seg_cnt); /* Allocate the resources for VMID */ rc = lpfc_vmid_res_alloc(phba, vport); if (rc) goto out_put_shost; /* Initialize all internally managed lists. */ INIT_LIST_HEAD(&vport->fc_nodes); spin_lock_init(&vport->fc_nodes_list_lock); INIT_LIST_HEAD(&vport->rcv_buffer_list); spin_lock_init(&vport->work_port_lock); timer_setup(&vport->fc_disctmo, lpfc_disc_timeout, 0); timer_setup(&vport->els_tmofunc, lpfc_els_timeout, 0); timer_setup(&vport->delayed_disc_tmo, lpfc_delayed_disc_tmo, 0); if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) lpfc_setup_bg(phba, shost); error = scsi_add_host_with_dma(shost, dev, &phba->pcidev->dev); if (error) goto out_free_vmid; spin_lock_irq(&phba->port_list_lock); list_add_tail(&vport->listentry, &phba->port_list); spin_unlock_irq(&phba->port_list_lock); return vport; out_free_vmid: kfree(vport->vmid); bitmap_free(vport->vmid_priority_range); out_put_shost: scsi_host_put(shost); out: return NULL; } /** * destroy_port - destroy an FC port * @vport: pointer to an lpfc virtual N_Port data structure. * * This routine destroys a FC port from the upper layer protocol. All the * resources associated with the port are released. **/ void destroy_port(struct lpfc_vport *vport) { struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_hba *phba = vport->phba; lpfc_debugfs_terminate(vport); fc_remove_host(shost); scsi_remove_host(shost); spin_lock_irq(&phba->port_list_lock); list_del_init(&vport->listentry); spin_unlock_irq(&phba->port_list_lock); lpfc_cleanup(vport); return; } /** * lpfc_get_instance - Get a unique integer ID * * This routine allocates a unique integer ID from lpfc_hba_index pool. It * uses the kernel idr facility to perform the task. * * Return codes: * instance - a unique integer ID allocated as the new instance. * -1 - lpfc get instance failed. **/ int lpfc_get_instance(void) { int ret; ret = idr_alloc(&lpfc_hba_index, NULL, 0, 0, GFP_KERNEL); return ret < 0 ? -1 : ret; } /** * lpfc_scan_finished - method for SCSI layer to detect whether scan is done * @shost: pointer to SCSI host data structure. * @time: elapsed time of the scan in jiffies. * * This routine is called by the SCSI layer with a SCSI host to determine * whether the scan host is finished. * * Note: there is no scan_start function as adapter initialization will have * asynchronously kicked off the link initialization. * * Return codes * 0 - SCSI host scan is not over yet. * 1 - SCSI host scan is over. **/ int lpfc_scan_finished(struct Scsi_Host *shost, unsigned long time) { struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_hba *phba = vport->phba; int stat = 0; spin_lock_irq(shost->host_lock); if (test_bit(FC_UNLOADING, &vport->load_flag)) { stat = 1; goto finished; } if (time >= msecs_to_jiffies(30 * 1000)) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0461 Scanning longer than 30 " "seconds. Continuing initialization\n"); stat = 1; goto finished; } if (time >= msecs_to_jiffies(15 * 1000) && phba->link_state <= LPFC_LINK_DOWN) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0465 Link down longer than 15 " "seconds. Continuing initialization\n"); stat = 1; goto finished; } if (vport->port_state != LPFC_VPORT_READY) goto finished; if (vport->num_disc_nodes || vport->fc_prli_sent) goto finished; if (!atomic_read(&vport->fc_map_cnt) && time < msecs_to_jiffies(2 * 1000)) goto finished; if ((phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) != 0) goto finished; stat = 1; finished: spin_unlock_irq(shost->host_lock); return stat; } static void lpfc_host_supported_speeds_set(struct Scsi_Host *shost) { struct lpfc_vport *vport = (struct lpfc_vport *)shost->hostdata; struct lpfc_hba *phba = vport->phba; fc_host_supported_speeds(shost) = 0; /* * Avoid reporting supported link speed for FCoE as it can't be * controlled via FCoE. */ if (test_bit(HBA_FCOE_MODE, &phba->hba_flag)) return; if (phba->lmt & LMT_256Gb) fc_host_supported_speeds(shost) |= FC_PORTSPEED_256GBIT; if (phba->lmt & LMT_128Gb) fc_host_supported_speeds(shost) |= FC_PORTSPEED_128GBIT; if (phba->lmt & LMT_64Gb) fc_host_supported_speeds(shost) |= FC_PORTSPEED_64GBIT; if (phba->lmt & LMT_32Gb) fc_host_supported_speeds(shost) |= FC_PORTSPEED_32GBIT; if (phba->lmt & LMT_16Gb) fc_host_supported_speeds(shost) |= FC_PORTSPEED_16GBIT; if (phba->lmt & LMT_10Gb) fc_host_supported_speeds(shost) |= FC_PORTSPEED_10GBIT; if (phba->lmt & LMT_8Gb) fc_host_supported_speeds(shost) |= FC_PORTSPEED_8GBIT; if (phba->lmt & LMT_4Gb) fc_host_supported_speeds(shost) |= FC_PORTSPEED_4GBIT; if (phba->lmt & LMT_2Gb) fc_host_supported_speeds(shost) |= FC_PORTSPEED_2GBIT; if (phba->lmt & LMT_1Gb) fc_host_supported_speeds(shost) |= FC_PORTSPEED_1GBIT; } /** * lpfc_host_attrib_init - Initialize SCSI host attributes on a FC port * @shost: pointer to SCSI host data structure. * * This routine initializes a given SCSI host attributes on a FC port. The * SCSI host can be either on top of a physical port or a virtual port. **/ void lpfc_host_attrib_init(struct Scsi_Host *shost) { struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_hba *phba = vport->phba; /* * Set fixed host attributes. Must done after lpfc_sli_hba_setup(). */ fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn); fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn); fc_host_supported_classes(shost) = FC_COS_CLASS3; memset(fc_host_supported_fc4s(shost), 0, sizeof(fc_host_supported_fc4s(shost))); fc_host_supported_fc4s(shost)[2] = 1; fc_host_supported_fc4s(shost)[7] = 1; lpfc_vport_symbolic_node_name(vport, fc_host_symbolic_name(shost), sizeof fc_host_symbolic_name(shost)); lpfc_host_supported_speeds_set(shost); fc_host_maxframe_size(shost) = (((uint32_t) vport->fc_sparam.cmn.bbRcvSizeMsb & 0x0F) << 8) | (uint32_t) vport->fc_sparam.cmn.bbRcvSizeLsb; fc_host_dev_loss_tmo(shost) = vport->cfg_devloss_tmo; /* This value is also unchanging */ memset(fc_host_active_fc4s(shost), 0, sizeof(fc_host_active_fc4s(shost))); fc_host_active_fc4s(shost)[2] = 1; fc_host_active_fc4s(shost)[7] = 1; fc_host_max_npiv_vports(shost) = phba->max_vpi; clear_bit(FC_LOADING, &vport->load_flag); } /** * lpfc_stop_port_s3 - Stop SLI3 device port * @phba: pointer to lpfc hba data structure. * * This routine is invoked to stop an SLI3 device port, it stops the device * from generating interrupts and stops the device driver's timers for the * device. **/ static void lpfc_stop_port_s3(struct lpfc_hba *phba) { /* Clear all interrupt enable conditions */ writel(0, phba->HCregaddr); readl(phba->HCregaddr); /* flush */ /* Clear all pending interrupts */ writel(0xffffffff, phba->HAregaddr); readl(phba->HAregaddr); /* flush */ /* Reset some HBA SLI setup states */ lpfc_stop_hba_timers(phba); phba->pport->work_port_events = 0; } /** * lpfc_stop_port_s4 - Stop SLI4 device port * @phba: pointer to lpfc hba data structure. * * This routine is invoked to stop an SLI4 device port, it stops the device * from generating interrupts and stops the device driver's timers for the * device. **/ static void lpfc_stop_port_s4(struct lpfc_hba *phba) { /* Reset some HBA SLI4 setup states */ lpfc_stop_hba_timers(phba); if (phba->pport) phba->pport->work_port_events = 0; phba->sli4_hba.intr_enable = 0; } /** * lpfc_stop_port - Wrapper function for stopping hba port * @phba: Pointer to HBA context object. * * This routine wraps the actual SLI3 or SLI4 hba stop port routine from * the API jump table function pointer from the lpfc_hba struct. **/ void lpfc_stop_port(struct lpfc_hba *phba) { phba->lpfc_stop_port(phba); if (phba->wq) flush_workqueue(phba->wq); } /** * lpfc_fcf_redisc_wait_start_timer - Start fcf rediscover wait timer * @phba: Pointer to hba for which this call is being executed. * * This routine starts the timer waiting for the FCF rediscovery to complete. **/ void lpfc_fcf_redisc_wait_start_timer(struct lpfc_hba *phba) { unsigned long fcf_redisc_wait_tmo = (jiffies + msecs_to_jiffies(LPFC_FCF_REDISCOVER_WAIT_TMO)); /* Start fcf rediscovery wait period timer */ mod_timer(&phba->fcf.redisc_wait, fcf_redisc_wait_tmo); spin_lock_irq(&phba->hbalock); /* Allow action to new fcf asynchronous event */ phba->fcf.fcf_flag &= ~(FCF_AVAILABLE | FCF_SCAN_DONE); /* Mark the FCF rediscovery pending state */ phba->fcf.fcf_flag |= FCF_REDISC_PEND; spin_unlock_irq(&phba->hbalock); } /** * lpfc_sli4_fcf_redisc_wait_tmo - FCF table rediscover wait timeout * @t: Timer context used to obtain the pointer to lpfc hba data structure. * * This routine is invoked when waiting for FCF table rediscover has been * timed out. If new FCF record(s) has (have) been discovered during the * wait period, a new FCF event shall be added to the FCOE async event * list, and then worker thread shall be waked up for processing from the * worker thread context. **/ static void lpfc_sli4_fcf_redisc_wait_tmo(struct timer_list *t) { struct lpfc_hba *phba = from_timer(phba, t, fcf.redisc_wait); /* Don't send FCF rediscovery event if timer cancelled */ spin_lock_irq(&phba->hbalock); if (!(phba->fcf.fcf_flag & FCF_REDISC_PEND)) { spin_unlock_irq(&phba->hbalock); return; } /* Clear FCF rediscovery timer pending flag */ phba->fcf.fcf_flag &= ~FCF_REDISC_PEND; /* FCF rediscovery event to worker thread */ phba->fcf.fcf_flag |= FCF_REDISC_EVT; spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_INFO, LOG_FIP, "2776 FCF rediscover quiescent timer expired\n"); /* wake up worker thread */ lpfc_worker_wake_up(phba); } /** * lpfc_vmid_poll - VMID timeout detection * @t: Timer context used to obtain the pointer to lpfc hba data structure. * * This routine is invoked when there is no I/O on by a VM for the specified * amount of time. When this situation is detected, the VMID has to be * deregistered from the switch and all the local resources freed. The VMID * will be reassigned to the VM once the I/O begins. **/ static void lpfc_vmid_poll(struct timer_list *t) { struct lpfc_hba *phba = from_timer(phba, t, inactive_vmid_poll); u32 wake_up = 0; /* check if there is a need to issue QFPA */ if (phba->pport->vmid_priority_tagging) { wake_up = 1; phba->pport->work_port_events |= WORKER_CHECK_VMID_ISSUE_QFPA; } /* Is the vmid inactivity timer enabled */ if (phba->pport->vmid_inactivity_timeout || test_bit(FC_DEREGISTER_ALL_APP_ID, &phba->pport->load_flag)) { wake_up = 1; phba->pport->work_port_events |= WORKER_CHECK_INACTIVE_VMID; } if (wake_up) lpfc_worker_wake_up(phba); /* restart the timer for the next iteration */ mod_timer(&phba->inactive_vmid_poll, jiffies + msecs_to_jiffies(1000 * LPFC_VMID_TIMER)); } /** * lpfc_sli4_parse_latt_fault - Parse sli4 link-attention link fault code * @phba: pointer to lpfc hba data structure. * @acqe_link: pointer to the async link completion queue entry. * * This routine is to parse the SLI4 link-attention link fault code. **/ static void lpfc_sli4_parse_latt_fault(struct lpfc_hba *phba, struct lpfc_acqe_link *acqe_link) { switch (bf_get(lpfc_acqe_fc_la_att_type, acqe_link)) { case LPFC_FC_LA_TYPE_LINK_DOWN: case LPFC_FC_LA_TYPE_TRUNKING_EVENT: case LPFC_FC_LA_TYPE_ACTIVATE_FAIL: case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT: break; default: switch (bf_get(lpfc_acqe_link_fault, acqe_link)) { case LPFC_ASYNC_LINK_FAULT_NONE: case LPFC_ASYNC_LINK_FAULT_LOCAL: case LPFC_ASYNC_LINK_FAULT_REMOTE: case LPFC_ASYNC_LINK_FAULT_LR_LRR: break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0398 Unknown link fault code: x%x\n", bf_get(lpfc_acqe_link_fault, acqe_link)); break; } break; } } /** * lpfc_sli4_parse_latt_type - Parse sli4 link attention type * @phba: pointer to lpfc hba data structure. * @acqe_link: pointer to the async link completion queue entry. * * This routine is to parse the SLI4 link attention type and translate it * into the base driver's link attention type coding. * * Return: Link attention type in terms of base driver's coding. **/ static uint8_t lpfc_sli4_parse_latt_type(struct lpfc_hba *phba, struct lpfc_acqe_link *acqe_link) { uint8_t att_type; switch (bf_get(lpfc_acqe_link_status, acqe_link)) { case LPFC_ASYNC_LINK_STATUS_DOWN: case LPFC_ASYNC_LINK_STATUS_LOGICAL_DOWN: att_type = LPFC_ATT_LINK_DOWN; break; case LPFC_ASYNC_LINK_STATUS_UP: /* Ignore physical link up events - wait for logical link up */ att_type = LPFC_ATT_RESERVED; break; case LPFC_ASYNC_LINK_STATUS_LOGICAL_UP: att_type = LPFC_ATT_LINK_UP; break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0399 Invalid link attention type: x%x\n", bf_get(lpfc_acqe_link_status, acqe_link)); att_type = LPFC_ATT_RESERVED; break; } return att_type; } /** * lpfc_sli_port_speed_get - Get sli3 link speed code to link speed * @phba: pointer to lpfc hba data structure. * * This routine is to get an SLI3 FC port's link speed in Mbps. * * Return: link speed in terms of Mbps. **/ uint32_t lpfc_sli_port_speed_get(struct lpfc_hba *phba) { uint32_t link_speed; if (!lpfc_is_link_up(phba)) return 0; if (phba->sli_rev <= LPFC_SLI_REV3) { switch (phba->fc_linkspeed) { case LPFC_LINK_SPEED_1GHZ: link_speed = 1000; break; case LPFC_LINK_SPEED_2GHZ: link_speed = 2000; break; case LPFC_LINK_SPEED_4GHZ: link_speed = 4000; break; case LPFC_LINK_SPEED_8GHZ: link_speed = 8000; break; case LPFC_LINK_SPEED_10GHZ: link_speed = 10000; break; case LPFC_LINK_SPEED_16GHZ: link_speed = 16000; break; default: link_speed = 0; } } else { if (phba->sli4_hba.link_state.logical_speed) link_speed = phba->sli4_hba.link_state.logical_speed; else link_speed = phba->sli4_hba.link_state.speed; } return link_speed; } /** * lpfc_sli4_port_speed_parse - Parse async evt link speed code to link speed * @phba: pointer to lpfc hba data structure. * @evt_code: asynchronous event code. * @speed_code: asynchronous event link speed code. * * This routine is to parse the giving SLI4 async event link speed code into * value of Mbps for the link speed. * * Return: link speed in terms of Mbps. **/ static uint32_t lpfc_sli4_port_speed_parse(struct lpfc_hba *phba, uint32_t evt_code, uint8_t speed_code) { uint32_t port_speed; switch (evt_code) { case LPFC_TRAILER_CODE_LINK: switch (speed_code) { case LPFC_ASYNC_LINK_SPEED_ZERO: port_speed = 0; break; case LPFC_ASYNC_LINK_SPEED_10MBPS: port_speed = 10; break; case LPFC_ASYNC_LINK_SPEED_100MBPS: port_speed = 100; break; case LPFC_ASYNC_LINK_SPEED_1GBPS: port_speed = 1000; break; case LPFC_ASYNC_LINK_SPEED_10GBPS: port_speed = 10000; break; case LPFC_ASYNC_LINK_SPEED_20GBPS: port_speed = 20000; break; case LPFC_ASYNC_LINK_SPEED_25GBPS: port_speed = 25000; break; case LPFC_ASYNC_LINK_SPEED_40GBPS: port_speed = 40000; break; case LPFC_ASYNC_LINK_SPEED_100GBPS: port_speed = 100000; break; default: port_speed = 0; } break; case LPFC_TRAILER_CODE_FC: switch (speed_code) { case LPFC_FC_LA_SPEED_UNKNOWN: port_speed = 0; break; case LPFC_FC_LA_SPEED_1G: port_speed = 1000; break; case LPFC_FC_LA_SPEED_2G: port_speed = 2000; break; case LPFC_FC_LA_SPEED_4G: port_speed = 4000; break; case LPFC_FC_LA_SPEED_8G: port_speed = 8000; break; case LPFC_FC_LA_SPEED_10G: port_speed = 10000; break; case LPFC_FC_LA_SPEED_16G: port_speed = 16000; break; case LPFC_FC_LA_SPEED_32G: port_speed = 32000; break; case LPFC_FC_LA_SPEED_64G: port_speed = 64000; break; case LPFC_FC_LA_SPEED_128G: port_speed = 128000; break; case LPFC_FC_LA_SPEED_256G: port_speed = 256000; break; default: port_speed = 0; } break; default: port_speed = 0; } return port_speed; } /** * lpfc_sli4_async_link_evt - Process the asynchronous FCoE link event * @phba: pointer to lpfc hba data structure. * @acqe_link: pointer to the async link completion queue entry. * * This routine is to handle the SLI4 asynchronous FCoE link event. **/ static void lpfc_sli4_async_link_evt(struct lpfc_hba *phba, struct lpfc_acqe_link *acqe_link) { LPFC_MBOXQ_t *pmb; MAILBOX_t *mb; struct lpfc_mbx_read_top *la; uint8_t att_type; int rc; att_type = lpfc_sli4_parse_latt_type(phba, acqe_link); if (att_type != LPFC_ATT_LINK_DOWN && att_type != LPFC_ATT_LINK_UP) return; phba->fcoe_eventtag = acqe_link->event_tag; pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0395 The mboxq allocation failed\n"); return; } rc = lpfc_mbox_rsrc_prep(phba, pmb); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0396 mailbox allocation failed\n"); goto out_free_pmb; } /* Cleanup any outstanding ELS commands */ lpfc_els_flush_all_cmd(phba); /* Block ELS IOCBs until we have done process link event */ phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; /* Update link event statistics */ phba->sli.slistat.link_event++; /* Create lpfc_handle_latt mailbox command from link ACQE */ lpfc_read_topology(phba, pmb, pmb->ctx_buf); pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; pmb->vport = phba->pport; /* Keep the link status for extra SLI4 state machine reference */ phba->sli4_hba.link_state.speed = lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_LINK, bf_get(lpfc_acqe_link_speed, acqe_link)); phba->sli4_hba.link_state.duplex = bf_get(lpfc_acqe_link_duplex, acqe_link); phba->sli4_hba.link_state.status = bf_get(lpfc_acqe_link_status, acqe_link); phba->sli4_hba.link_state.type = bf_get(lpfc_acqe_link_type, acqe_link); phba->sli4_hba.link_state.number = bf_get(lpfc_acqe_link_number, acqe_link); phba->sli4_hba.link_state.fault = bf_get(lpfc_acqe_link_fault, acqe_link); phba->sli4_hba.link_state.logical_speed = bf_get(lpfc_acqe_logical_link_speed, acqe_link) * 10; lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "2900 Async FC/FCoE Link event - Speed:%dGBit " "duplex:x%x LA Type:x%x Port Type:%d Port Number:%d " "Logical speed:%dMbps Fault:%d\n", phba->sli4_hba.link_state.speed, phba->sli4_hba.link_state.topology, phba->sli4_hba.link_state.status, phba->sli4_hba.link_state.type, phba->sli4_hba.link_state.number, phba->sli4_hba.link_state.logical_speed, phba->sli4_hba.link_state.fault); /* * For FC Mode: issue the READ_TOPOLOGY mailbox command to fetch * topology info. Note: Optional for non FC-AL ports. */ if (!test_bit(HBA_FCOE_MODE, &phba->hba_flag)) { rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) goto out_free_pmb; return; } /* * For FCoE Mode: fill in all the topology information we need and call * the READ_TOPOLOGY completion routine to continue without actually * sending the READ_TOPOLOGY mailbox command to the port. */ /* Initialize completion status */ mb = &pmb->u.mb; mb->mbxStatus = MBX_SUCCESS; /* Parse port fault information field */ lpfc_sli4_parse_latt_fault(phba, acqe_link); /* Parse and translate link attention fields */ la = (struct lpfc_mbx_read_top *) &pmb->u.mb.un.varReadTop; la->eventTag = acqe_link->event_tag; bf_set(lpfc_mbx_read_top_att_type, la, att_type); bf_set(lpfc_mbx_read_top_link_spd, la, (bf_get(lpfc_acqe_link_speed, acqe_link))); /* Fake the following irrelevant fields */ bf_set(lpfc_mbx_read_top_topology, la, LPFC_TOPOLOGY_PT_PT); bf_set(lpfc_mbx_read_top_alpa_granted, la, 0); bf_set(lpfc_mbx_read_top_il, la, 0); bf_set(lpfc_mbx_read_top_pb, la, 0); bf_set(lpfc_mbx_read_top_fa, la, 0); bf_set(lpfc_mbx_read_top_mm, la, 0); /* Invoke the lpfc_handle_latt mailbox command callback function */ lpfc_mbx_cmpl_read_topology(phba, pmb); return; out_free_pmb: lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); } /** * lpfc_async_link_speed_to_read_top - Parse async evt link speed code to read * topology. * @phba: pointer to lpfc hba data structure. * @speed_code: asynchronous event link speed code. * * This routine is to parse the giving SLI4 async event link speed code into * value of Read topology link speed. * * Return: link speed in terms of Read topology. **/ static uint8_t lpfc_async_link_speed_to_read_top(struct lpfc_hba *phba, uint8_t speed_code) { uint8_t port_speed; switch (speed_code) { case LPFC_FC_LA_SPEED_1G: port_speed = LPFC_LINK_SPEED_1GHZ; break; case LPFC_FC_LA_SPEED_2G: port_speed = LPFC_LINK_SPEED_2GHZ; break; case LPFC_FC_LA_SPEED_4G: port_speed = LPFC_LINK_SPEED_4GHZ; break; case LPFC_FC_LA_SPEED_8G: port_speed = LPFC_LINK_SPEED_8GHZ; break; case LPFC_FC_LA_SPEED_16G: port_speed = LPFC_LINK_SPEED_16GHZ; break; case LPFC_FC_LA_SPEED_32G: port_speed = LPFC_LINK_SPEED_32GHZ; break; case LPFC_FC_LA_SPEED_64G: port_speed = LPFC_LINK_SPEED_64GHZ; break; case LPFC_FC_LA_SPEED_128G: port_speed = LPFC_LINK_SPEED_128GHZ; break; case LPFC_FC_LA_SPEED_256G: port_speed = LPFC_LINK_SPEED_256GHZ; break; default: port_speed = 0; break; } return port_speed; } void lpfc_cgn_dump_rxmonitor(struct lpfc_hba *phba) { if (!phba->rx_monitor) { lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "4411 Rx Monitor Info is empty.\n"); } else { lpfc_rx_monitor_report(phba, phba->rx_monitor, NULL, 0, LPFC_MAX_RXMONITOR_DUMP); } } /** * lpfc_cgn_update_stat - Save data into congestion stats buffer * @phba: pointer to lpfc hba data structure. * @dtag: FPIN descriptor received * * Increment the FPIN received counter/time when it happens. */ void lpfc_cgn_update_stat(struct lpfc_hba *phba, uint32_t dtag) { struct lpfc_cgn_info *cp; u32 value; /* Make sure we have a congestion info buffer */ if (!phba->cgn_i) return; cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; /* Update congestion statistics */ switch (dtag) { case ELS_DTAG_LNK_INTEGRITY: le32_add_cpu(&cp->link_integ_notification, 1); lpfc_cgn_update_tstamp(phba, &cp->stat_lnk); break; case ELS_DTAG_DELIVERY: le32_add_cpu(&cp->delivery_notification, 1); lpfc_cgn_update_tstamp(phba, &cp->stat_delivery); break; case ELS_DTAG_PEER_CONGEST: le32_add_cpu(&cp->cgn_peer_notification, 1); lpfc_cgn_update_tstamp(phba, &cp->stat_peer); break; case ELS_DTAG_CONGESTION: le32_add_cpu(&cp->cgn_notification, 1); lpfc_cgn_update_tstamp(phba, &cp->stat_fpin); } if (phba->cgn_fpin_frequency && phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; cp->cgn_stat_npm = value; } value = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); cp->cgn_info_crc = cpu_to_le32(value); } /** * lpfc_cgn_update_tstamp - Update cmf timestamp * @phba: pointer to lpfc hba data structure. * @ts: structure to write the timestamp to. */ void lpfc_cgn_update_tstamp(struct lpfc_hba *phba, struct lpfc_cgn_ts *ts) { struct timespec64 cur_time; struct tm tm_val; ktime_get_real_ts64(&cur_time); time64_to_tm(cur_time.tv_sec, 0, &tm_val); ts->month = tm_val.tm_mon + 1; ts->day = tm_val.tm_mday; ts->year = tm_val.tm_year - 100; ts->hour = tm_val.tm_hour; ts->minute = tm_val.tm_min; ts->second = tm_val.tm_sec; lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "2646 Updated CMF timestamp : " "%u/%u/%u %u:%u:%u\n", ts->day, ts->month, ts->year, ts->hour, ts->minute, ts->second); } /** * lpfc_cmf_stats_timer - Save data into registered congestion buffer * @timer: Timer cookie to access lpfc private data * * Save the congestion event data every minute. * On the hour collapse all the minute data into hour data. Every day * collapse all the hour data into daily data. Separate driver * and fabrc congestion event counters that will be saved out * to the registered congestion buffer every minute. */ static enum hrtimer_restart lpfc_cmf_stats_timer(struct hrtimer *timer) { struct lpfc_hba *phba; struct lpfc_cgn_info *cp; uint32_t i, index; uint16_t value, mvalue; uint64_t bps; uint32_t mbps; uint32_t dvalue, wvalue, lvalue, avalue; uint64_t latsum; __le16 *ptr; __le32 *lptr; __le16 *mptr; phba = container_of(timer, struct lpfc_hba, cmf_stats_timer); /* Make sure we have a congestion info buffer */ if (!phba->cgn_i) return HRTIMER_NORESTART; cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; phba->cgn_evt_timestamp = jiffies + msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); phba->cgn_evt_minute++; /* We should get to this point in the routine on 1 minute intervals */ lpfc_cgn_update_tstamp(phba, &cp->base_time); if (phba->cgn_fpin_frequency && phba->cgn_fpin_frequency != LPFC_FPIN_INIT_FREQ) { value = LPFC_CGN_TIMER_TO_MIN / phba->cgn_fpin_frequency; cp->cgn_stat_npm = value; } /* Read and clear the latency counters for this minute */ lvalue = atomic_read(&phba->cgn_latency_evt_cnt); latsum = atomic64_read(&phba->cgn_latency_evt); atomic_set(&phba->cgn_latency_evt_cnt, 0); atomic64_set(&phba->cgn_latency_evt, 0); /* We need to store MB/sec bandwidth in the congestion information. * block_cnt is count of 512 byte blocks for the entire minute, * bps will get bytes per sec before finally converting to MB/sec. */ bps = div_u64(phba->rx_block_cnt, LPFC_SEC_MIN) * 512; phba->rx_block_cnt = 0; mvalue = bps / (1024 * 1024); /* convert to MB/sec */ /* Every minute */ /* cgn parameters */ cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; /* Fill in default LUN qdepth */ value = (uint16_t)(phba->pport->cfg_lun_queue_depth); cp->cgn_lunq = cpu_to_le16(value); /* Record congestion buffer info - every minute * cgn_driver_evt_cnt (Driver events) * cgn_fabric_warn_cnt (Congestion Warnings) * cgn_latency_evt_cnt / cgn_latency_evt (IO Latency) * cgn_fabric_alarm_cnt (Congestion Alarms) */ index = ++cp->cgn_index_minute; if (cp->cgn_index_minute == LPFC_MIN_HOUR) { cp->cgn_index_minute = 0; index = 0; } /* Get the number of driver events in this sample and reset counter */ dvalue = atomic_read(&phba->cgn_driver_evt_cnt); atomic_set(&phba->cgn_driver_evt_cnt, 0); /* Get the number of warning events - FPIN and Signal for this minute */ wvalue = 0; if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_WARN) || phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) wvalue = atomic_read(&phba->cgn_fabric_warn_cnt); atomic_set(&phba->cgn_fabric_warn_cnt, 0); /* Get the number of alarm events - FPIN and Signal for this minute */ avalue = 0; if ((phba->cgn_reg_fpin & LPFC_CGN_FPIN_ALARM) || phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) avalue = atomic_read(&phba->cgn_fabric_alarm_cnt); atomic_set(&phba->cgn_fabric_alarm_cnt, 0); /* Collect the driver, warning, alarm and latency counts for this * minute into the driver congestion buffer. */ ptr = &cp->cgn_drvr_min[index]; value = (uint16_t)dvalue; *ptr = cpu_to_le16(value); ptr = &cp->cgn_warn_min[index]; value = (uint16_t)wvalue; *ptr = cpu_to_le16(value); ptr = &cp->cgn_alarm_min[index]; value = (uint16_t)avalue; *ptr = cpu_to_le16(value); lptr = &cp->cgn_latency_min[index]; if (lvalue) { lvalue = (uint32_t)div_u64(latsum, lvalue); *lptr = cpu_to_le32(lvalue); } else { *lptr = 0; } /* Collect the bandwidth value into the driver's congesion buffer. */ mptr = &cp->cgn_bw_min[index]; *mptr = cpu_to_le16(mvalue); lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "2418 Congestion Info - minute (%d): %d %d %d %d %d\n", index, dvalue, wvalue, *lptr, mvalue, avalue); /* Every hour */ if ((phba->cgn_evt_minute % LPFC_MIN_HOUR) == 0) { /* Record congestion buffer info - every hour * Collapse all minutes into an hour */ index = ++cp->cgn_index_hour; if (cp->cgn_index_hour == LPFC_HOUR_DAY) { cp->cgn_index_hour = 0; index = 0; } dvalue = 0; wvalue = 0; lvalue = 0; avalue = 0; mvalue = 0; mbps = 0; for (i = 0; i < LPFC_MIN_HOUR; i++) { dvalue += le16_to_cpu(cp->cgn_drvr_min[i]); wvalue += le16_to_cpu(cp->cgn_warn_min[i]); lvalue += le32_to_cpu(cp->cgn_latency_min[i]); mbps += le16_to_cpu(cp->cgn_bw_min[i]); avalue += le16_to_cpu(cp->cgn_alarm_min[i]); } if (lvalue) /* Avg of latency averages */ lvalue /= LPFC_MIN_HOUR; if (mbps) /* Avg of Bandwidth averages */ mvalue = mbps / LPFC_MIN_HOUR; lptr = &cp->cgn_drvr_hr[index]; *lptr = cpu_to_le32(dvalue); lptr = &cp->cgn_warn_hr[index]; *lptr = cpu_to_le32(wvalue); lptr = &cp->cgn_latency_hr[index]; *lptr = cpu_to_le32(lvalue); mptr = &cp->cgn_bw_hr[index]; *mptr = cpu_to_le16(mvalue); lptr = &cp->cgn_alarm_hr[index]; *lptr = cpu_to_le32(avalue); lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "2419 Congestion Info - hour " "(%d): %d %d %d %d %d\n", index, dvalue, wvalue, lvalue, mvalue, avalue); } /* Every day */ if ((phba->cgn_evt_minute % LPFC_MIN_DAY) == 0) { /* Record congestion buffer info - every hour * Collapse all hours into a day. Rotate days * after LPFC_MAX_CGN_DAYS. */ index = ++cp->cgn_index_day; if (cp->cgn_index_day == LPFC_MAX_CGN_DAYS) { cp->cgn_index_day = 0; index = 0; } dvalue = 0; wvalue = 0; lvalue = 0; mvalue = 0; mbps = 0; avalue = 0; for (i = 0; i < LPFC_HOUR_DAY; i++) { dvalue += le32_to_cpu(cp->cgn_drvr_hr[i]); wvalue += le32_to_cpu(cp->cgn_warn_hr[i]); lvalue += le32_to_cpu(cp->cgn_latency_hr[i]); mbps += le16_to_cpu(cp->cgn_bw_hr[i]); avalue += le32_to_cpu(cp->cgn_alarm_hr[i]); } if (lvalue) /* Avg of latency averages */ lvalue /= LPFC_HOUR_DAY; if (mbps) /* Avg of Bandwidth averages */ mvalue = mbps / LPFC_HOUR_DAY; lptr = &cp->cgn_drvr_day[index]; *lptr = cpu_to_le32(dvalue); lptr = &cp->cgn_warn_day[index]; *lptr = cpu_to_le32(wvalue); lptr = &cp->cgn_latency_day[index]; *lptr = cpu_to_le32(lvalue); mptr = &cp->cgn_bw_day[index]; *mptr = cpu_to_le16(mvalue); lptr = &cp->cgn_alarm_day[index]; *lptr = cpu_to_le32(avalue); lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "2420 Congestion Info - daily (%d): " "%d %d %d %d %d\n", index, dvalue, wvalue, lvalue, mvalue, avalue); } /* Use the frequency found in the last rcv'ed FPIN */ value = phba->cgn_fpin_frequency; cp->cgn_warn_freq = cpu_to_le16(value); cp->cgn_alarm_freq = cpu_to_le16(value); lvalue = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); cp->cgn_info_crc = cpu_to_le32(lvalue); hrtimer_forward_now(timer, ktime_set(0, LPFC_SEC_MIN * NSEC_PER_SEC)); return HRTIMER_RESTART; } /** * lpfc_calc_cmf_latency - latency from start of rxate timer interval * @phba: The Hba for which this call is being executed. * * The routine calculates the latency from the beginning of the CMF timer * interval to the current point in time. It is called from IO completion * when we exceed our Bandwidth limitation for the time interval. */ uint32_t lpfc_calc_cmf_latency(struct lpfc_hba *phba) { struct timespec64 cmpl_time; uint32_t msec = 0; ktime_get_real_ts64(&cmpl_time); /* This routine works on a ms granularity so sec and usec are * converted accordingly. */ if (cmpl_time.tv_sec == phba->cmf_latency.tv_sec) { msec = (cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC; } else { if (cmpl_time.tv_nsec >= phba->cmf_latency.tv_nsec) { msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec) * MSEC_PER_SEC; msec += ((cmpl_time.tv_nsec - phba->cmf_latency.tv_nsec) / NSEC_PER_MSEC); } else { msec = (cmpl_time.tv_sec - phba->cmf_latency.tv_sec - 1) * MSEC_PER_SEC; msec += (((NSEC_PER_SEC - phba->cmf_latency.tv_nsec) + cmpl_time.tv_nsec) / NSEC_PER_MSEC); } } return msec; } /** * lpfc_cmf_timer - This is the timer function for one congestion * rate interval. * @timer: Pointer to the high resolution timer that expired */ static enum hrtimer_restart lpfc_cmf_timer(struct hrtimer *timer) { struct lpfc_hba *phba = container_of(timer, struct lpfc_hba, cmf_timer); struct rx_info_entry entry; uint32_t io_cnt; uint32_t busy, max_read; uint64_t total, rcv, lat, mbpi, extra, cnt; int timer_interval = LPFC_CMF_INTERVAL; uint32_t ms; struct lpfc_cgn_stat *cgs; int cpu; /* Only restart the timer if congestion mgmt is on */ if (phba->cmf_active_mode == LPFC_CFG_OFF || !phba->cmf_latency.tv_sec) { lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6224 CMF timer exit: %d %lld\n", phba->cmf_active_mode, (uint64_t)phba->cmf_latency.tv_sec); return HRTIMER_NORESTART; } /* If pport is not ready yet, just exit and wait for * the next timer cycle to hit. */ if (!phba->pport) goto skip; /* Do not block SCSI IO while in the timer routine since * total_bytes will be cleared */ atomic_set(&phba->cmf_stop_io, 1); /* First we need to calculate the actual ms between * the last timer interrupt and this one. We ask for * LPFC_CMF_INTERVAL, however the actual time may * vary depending on system overhead. */ ms = lpfc_calc_cmf_latency(phba); /* Immediately after we calculate the time since the last * timer interrupt, set the start time for the next * interrupt */ ktime_get_real_ts64(&phba->cmf_latency); phba->cmf_link_byte_count = div_u64(phba->cmf_max_line_rate * LPFC_CMF_INTERVAL, 1000); /* Collect all the stats from the prior timer interval */ total = 0; io_cnt = 0; lat = 0; rcv = 0; for_each_present_cpu(cpu) { cgs = per_cpu_ptr(phba->cmf_stat, cpu); total += atomic64_xchg(&cgs->total_bytes, 0); io_cnt += atomic_xchg(&cgs->rx_io_cnt, 0); lat += atomic64_xchg(&cgs->rx_latency, 0); rcv += atomic64_xchg(&cgs->rcv_bytes, 0); } /* Before we issue another CMF_SYNC_WQE, retrieve the BW * returned from the last CMF_SYNC_WQE issued, from * cmf_last_sync_bw. This will be the target BW for * this next timer interval. */ if (phba->cmf_active_mode == LPFC_CFG_MANAGED && phba->link_state != LPFC_LINK_DOWN && test_bit(HBA_SETUP, &phba->hba_flag)) { mbpi = phba->cmf_last_sync_bw; phba->cmf_last_sync_bw = 0; extra = 0; /* Calculate any extra bytes needed to account for the * timer accuracy. If we are less than LPFC_CMF_INTERVAL * calculate the adjustment needed for total to reflect * a full LPFC_CMF_INTERVAL. */ if (ms && ms < LPFC_CMF_INTERVAL) { cnt = div_u64(total, ms); /* bytes per ms */ cnt *= LPFC_CMF_INTERVAL; /* what total should be */ extra = cnt - total; } lpfc_issue_cmf_sync_wqe(phba, LPFC_CMF_INTERVAL, total + extra); } else { /* For Monitor mode or link down we want mbpi * to be the full link speed */ mbpi = phba->cmf_link_byte_count; extra = 0; } phba->cmf_timer_cnt++; if (io_cnt) { /* Update congestion info buffer latency in us */ atomic_add(io_cnt, &phba->cgn_latency_evt_cnt); atomic64_add(lat, &phba->cgn_latency_evt); } busy = atomic_xchg(&phba->cmf_busy, 0); max_read = atomic_xchg(&phba->rx_max_read_cnt, 0); /* Calculate MBPI for the next timer interval */ if (mbpi) { if (mbpi > phba->cmf_link_byte_count || phba->cmf_active_mode == LPFC_CFG_MONITOR) mbpi = phba->cmf_link_byte_count; /* Change max_bytes_per_interval to what the prior * CMF_SYNC_WQE cmpl indicated. */ if (mbpi != phba->cmf_max_bytes_per_interval) phba->cmf_max_bytes_per_interval = mbpi; } /* Save rxmonitor information for debug */ if (phba->rx_monitor) { entry.total_bytes = total; entry.cmf_bytes = total + extra; entry.rcv_bytes = rcv; entry.cmf_busy = busy; entry.cmf_info = phba->cmf_active_info; if (io_cnt) { entry.avg_io_latency = div_u64(lat, io_cnt); entry.avg_io_size = div_u64(rcv, io_cnt); } else { entry.avg_io_latency = 0; entry.avg_io_size = 0; } entry.max_read_cnt = max_read; entry.io_cnt = io_cnt; entry.max_bytes_per_interval = mbpi; if (phba->cmf_active_mode == LPFC_CFG_MANAGED) entry.timer_utilization = phba->cmf_last_ts; else entry.timer_utilization = ms; entry.timer_interval = ms; phba->cmf_last_ts = 0; lpfc_rx_monitor_record(phba->rx_monitor, &entry); } if (phba->cmf_active_mode == LPFC_CFG_MONITOR) { /* If Monitor mode, check if we are oversubscribed * against the full line rate. */ if (mbpi && total > mbpi) atomic_inc(&phba->cgn_driver_evt_cnt); } phba->rx_block_cnt += div_u64(rcv, 512); /* save 512 byte block cnt */ /* Since total_bytes has already been zero'ed, its okay to unblock * after max_bytes_per_interval is setup. */ if (atomic_xchg(&phba->cmf_bw_wait, 0)) queue_work(phba->wq, &phba->unblock_request_work); /* SCSI IO is now unblocked */ atomic_set(&phba->cmf_stop_io, 0); skip: hrtimer_forward_now(timer, ktime_set(0, timer_interval * NSEC_PER_MSEC)); return HRTIMER_RESTART; } #define trunk_link_status(__idx)\ bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ ((phba->trunk_link.link##__idx.state == LPFC_LINK_UP) ?\ "Link up" : "Link down") : "NA" /* Did port __idx reported an error */ #define trunk_port_fault(__idx)\ bf_get(lpfc_acqe_fc_la_trunk_config_port##__idx, acqe_fc) ?\ (port_fault & (1 << __idx) ? "YES" : "NO") : "NA" static void lpfc_update_trunk_link_status(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc) { uint8_t port_fault = bf_get(lpfc_acqe_fc_la_trunk_linkmask, acqe_fc); uint8_t err = bf_get(lpfc_acqe_fc_la_trunk_fault, acqe_fc); u8 cnt = 0; phba->sli4_hba.link_state.speed = lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); phba->sli4_hba.link_state.logical_speed = bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; /* We got FC link speed, convert to fc_linkspeed (READ_TOPOLOGY) */ phba->fc_linkspeed = lpfc_async_link_speed_to_read_top( phba, bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); if (bf_get(lpfc_acqe_fc_la_trunk_config_port0, acqe_fc)) { phba->trunk_link.link0.state = bf_get(lpfc_acqe_fc_la_trunk_link_status_port0, acqe_fc) ? LPFC_LINK_UP : LPFC_LINK_DOWN; phba->trunk_link.link0.fault = port_fault & 0x1 ? err : 0; cnt++; } if (bf_get(lpfc_acqe_fc_la_trunk_config_port1, acqe_fc)) { phba->trunk_link.link1.state = bf_get(lpfc_acqe_fc_la_trunk_link_status_port1, acqe_fc) ? LPFC_LINK_UP : LPFC_LINK_DOWN; phba->trunk_link.link1.fault = port_fault & 0x2 ? err : 0; cnt++; } if (bf_get(lpfc_acqe_fc_la_trunk_config_port2, acqe_fc)) { phba->trunk_link.link2.state = bf_get(lpfc_acqe_fc_la_trunk_link_status_port2, acqe_fc) ? LPFC_LINK_UP : LPFC_LINK_DOWN; phba->trunk_link.link2.fault = port_fault & 0x4 ? err : 0; cnt++; } if (bf_get(lpfc_acqe_fc_la_trunk_config_port3, acqe_fc)) { phba->trunk_link.link3.state = bf_get(lpfc_acqe_fc_la_trunk_link_status_port3, acqe_fc) ? LPFC_LINK_UP : LPFC_LINK_DOWN; phba->trunk_link.link3.fault = port_fault & 0x8 ? err : 0; cnt++; } if (cnt) phba->trunk_link.phy_lnk_speed = phba->sli4_hba.link_state.logical_speed / (cnt * 1000); else phba->trunk_link.phy_lnk_speed = LPFC_LINK_SPEED_UNKNOWN; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2910 Async FC Trunking Event - Speed:%d\n" "\tLogical speed:%d " "port0: %s port1: %s port2: %s port3: %s\n", phba->sli4_hba.link_state.speed, phba->sli4_hba.link_state.logical_speed, trunk_link_status(0), trunk_link_status(1), trunk_link_status(2), trunk_link_status(3)); if (phba->cmf_active_mode != LPFC_CFG_OFF) lpfc_cmf_signal_init(phba); if (port_fault) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3202 trunk error:0x%x (%s) seen on port0:%s " /* * SLI-4: We have only 0xA error codes * defined as of now. print an appropriate * message in case driver needs to be updated. */ "port1:%s port2:%s port3:%s\n", err, err > 0xA ? "UNDEFINED. update driver." : trunk_errmsg[err], trunk_port_fault(0), trunk_port_fault(1), trunk_port_fault(2), trunk_port_fault(3)); } /** * lpfc_sli4_async_fc_evt - Process the asynchronous FC link event * @phba: pointer to lpfc hba data structure. * @acqe_fc: pointer to the async fc completion queue entry. * * This routine is to handle the SLI4 asynchronous FC event. It will simply log * that the event was received and then issue a read_topology mailbox command so * that the rest of the driver will treat it the same as SLI3. **/ static void lpfc_sli4_async_fc_evt(struct lpfc_hba *phba, struct lpfc_acqe_fc_la *acqe_fc) { LPFC_MBOXQ_t *pmb; MAILBOX_t *mb; struct lpfc_mbx_read_top *la; char *log_level; int rc; if (bf_get(lpfc_trailer_type, acqe_fc) != LPFC_FC_LA_EVENT_TYPE_FC_LINK) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2895 Non FC link Event detected.(%d)\n", bf_get(lpfc_trailer_type, acqe_fc)); return; } if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == LPFC_FC_LA_TYPE_TRUNKING_EVENT) { lpfc_update_trunk_link_status(phba, acqe_fc); return; } /* Keep the link status for extra SLI4 state machine reference */ phba->sli4_hba.link_state.speed = lpfc_sli4_port_speed_parse(phba, LPFC_TRAILER_CODE_FC, bf_get(lpfc_acqe_fc_la_speed, acqe_fc)); phba->sli4_hba.link_state.duplex = LPFC_ASYNC_LINK_DUPLEX_FULL; phba->sli4_hba.link_state.topology = bf_get(lpfc_acqe_fc_la_topology, acqe_fc); phba->sli4_hba.link_state.status = bf_get(lpfc_acqe_fc_la_att_type, acqe_fc); phba->sli4_hba.link_state.type = bf_get(lpfc_acqe_fc_la_port_type, acqe_fc); phba->sli4_hba.link_state.number = bf_get(lpfc_acqe_fc_la_port_number, acqe_fc); phba->sli4_hba.link_state.fault = bf_get(lpfc_acqe_link_fault, acqe_fc); phba->sli4_hba.link_state.link_status = bf_get(lpfc_acqe_fc_la_link_status, acqe_fc); /* * Only select attention types need logical speed modification to what * was previously set. */ if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_LINK_UP && phba->sli4_hba.link_state.status < LPFC_FC_LA_TYPE_ACTIVATE_FAIL) { if (bf_get(lpfc_acqe_fc_la_att_type, acqe_fc) == LPFC_FC_LA_TYPE_LINK_DOWN) phba->sli4_hba.link_state.logical_speed = 0; else if (!phba->sli4_hba.conf_trunk) phba->sli4_hba.link_state.logical_speed = bf_get(lpfc_acqe_fc_la_llink_spd, acqe_fc) * 10; } lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "2896 Async FC event - Speed:%dGBaud Topology:x%x " "LA Type:x%x Port Type:%d Port Number:%d Logical speed:" "%dMbps Fault:x%x Link Status:x%x\n", phba->sli4_hba.link_state.speed, phba->sli4_hba.link_state.topology, phba->sli4_hba.link_state.status, phba->sli4_hba.link_state.type, phba->sli4_hba.link_state.number, phba->sli4_hba.link_state.logical_speed, phba->sli4_hba.link_state.fault, phba->sli4_hba.link_state.link_status); /* * The following attention types are informational only, providing * further details about link status. Overwrite the value of * link_state.status appropriately. No further action is required. */ if (phba->sli4_hba.link_state.status >= LPFC_FC_LA_TYPE_ACTIVATE_FAIL) { switch (phba->sli4_hba.link_state.status) { case LPFC_FC_LA_TYPE_ACTIVATE_FAIL: log_level = KERN_WARNING; phba->sli4_hba.link_state.status = LPFC_FC_LA_TYPE_LINK_DOWN; break; case LPFC_FC_LA_TYPE_LINK_RESET_PRTCL_EVT: /* * During bb credit recovery establishment, receiving * this attention type is normal. Link Up attention * type is expected to occur before this informational * attention type so keep the Link Up status. */ log_level = KERN_INFO; phba->sli4_hba.link_state.status = LPFC_FC_LA_TYPE_LINK_UP; break; default: log_level = KERN_INFO; break; } lpfc_log_msg(phba, log_level, LOG_SLI, "2992 Async FC event - Informational Link " "Attention Type x%x\n", bf_get(lpfc_acqe_fc_la_att_type, acqe_fc)); return; } pmb = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2897 The mboxq allocation failed\n"); return; } rc = lpfc_mbox_rsrc_prep(phba, pmb); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2898 The mboxq prep failed\n"); goto out_free_pmb; } /* Cleanup any outstanding ELS commands */ lpfc_els_flush_all_cmd(phba); /* Block ELS IOCBs until we have done process link event */ phba->sli4_hba.els_wq->pring->flag |= LPFC_STOP_IOCB_EVENT; /* Update link event statistics */ phba->sli.slistat.link_event++; /* Create lpfc_handle_latt mailbox command from link ACQE */ lpfc_read_topology(phba, pmb, pmb->ctx_buf); pmb->mbox_cmpl = lpfc_mbx_cmpl_read_topology; pmb->vport = phba->pport; if (phba->sli4_hba.link_state.status != LPFC_FC_LA_TYPE_LINK_UP) { phba->link_flag &= ~(LS_MDS_LINK_DOWN | LS_MDS_LOOPBACK); switch (phba->sli4_hba.link_state.status) { case LPFC_FC_LA_TYPE_MDS_LINK_DOWN: phba->link_flag |= LS_MDS_LINK_DOWN; break; case LPFC_FC_LA_TYPE_MDS_LOOPBACK: phba->link_flag |= LS_MDS_LOOPBACK; break; default: break; } /* Initialize completion status */ mb = &pmb->u.mb; mb->mbxStatus = MBX_SUCCESS; /* Parse port fault information field */ lpfc_sli4_parse_latt_fault(phba, (void *)acqe_fc); /* Parse and translate link attention fields */ la = (struct lpfc_mbx_read_top *)&pmb->u.mb.un.varReadTop; la->eventTag = acqe_fc->event_tag; if (phba->sli4_hba.link_state.status == LPFC_FC_LA_TYPE_UNEXP_WWPN) { bf_set(lpfc_mbx_read_top_att_type, la, LPFC_FC_LA_TYPE_UNEXP_WWPN); } else { bf_set(lpfc_mbx_read_top_att_type, la, LPFC_FC_LA_TYPE_LINK_DOWN); } /* Invoke the mailbox command callback function */ lpfc_mbx_cmpl_read_topology(phba, pmb); return; } rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) goto out_free_pmb; return; out_free_pmb: lpfc_mbox_rsrc_cleanup(phba, pmb, MBOX_THD_UNLOCKED); } /** * lpfc_sli4_async_sli_evt - Process the asynchronous SLI link event * @phba: pointer to lpfc hba data structure. * @acqe_sli: pointer to the async SLI completion queue entry. * * This routine is to handle the SLI4 asynchronous SLI events. **/ static void lpfc_sli4_async_sli_evt(struct lpfc_hba *phba, struct lpfc_acqe_sli *acqe_sli) { char port_name; char message[128]; uint8_t status; uint8_t evt_type; uint8_t operational = 0; struct temp_event temp_event_data; struct lpfc_acqe_misconfigured_event *misconfigured; struct lpfc_acqe_cgn_signal *cgn_signal; struct Scsi_Host *shost; struct lpfc_vport **vports; int rc, i, cnt; evt_type = bf_get(lpfc_trailer_type, acqe_sli); lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "2901 Async SLI event - Type:%d, Event Data: x%08x " "x%08x x%08x x%08x\n", evt_type, acqe_sli->event_data1, acqe_sli->event_data2, acqe_sli->event_data3, acqe_sli->trailer); port_name = phba->Port[0]; if (port_name == 0x00) port_name = '?'; /* get port name is empty */ switch (evt_type) { case LPFC_SLI_EVENT_TYPE_OVER_TEMP: temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; temp_event_data.event_code = LPFC_THRESHOLD_TEMP; temp_event_data.data = (uint32_t)acqe_sli->event_data1; lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "3190 Over Temperature:%d Celsius- Port Name %c\n", acqe_sli->event_data1, port_name); phba->sfp_warning |= LPFC_TRANSGRESSION_HIGH_TEMPERATURE; shost = lpfc_shost_from_vport(phba->pport); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(temp_event_data), (char *)&temp_event_data, SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); break; case LPFC_SLI_EVENT_TYPE_NORM_TEMP: temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT; temp_event_data.event_code = LPFC_NORMAL_TEMP; temp_event_data.data = (uint32_t)acqe_sli->event_data1; lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LDS_EVENT, "3191 Normal Temperature:%d Celsius - Port Name %c\n", acqe_sli->event_data1, port_name); shost = lpfc_shost_from_vport(phba->pport); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(temp_event_data), (char *)&temp_event_data, SCSI_NL_VID_TYPE_PCI | PCI_VENDOR_ID_EMULEX); break; case LPFC_SLI_EVENT_TYPE_MISCONFIGURED: misconfigured = (struct lpfc_acqe_misconfigured_event *) &acqe_sli->event_data1; /* fetch the status for this port */ switch (phba->sli4_hba.lnk_info.lnk_no) { case LPFC_LINK_NUMBER_0: status = bf_get(lpfc_sli_misconfigured_port0_state, &misconfigured->theEvent); operational = bf_get(lpfc_sli_misconfigured_port0_op, &misconfigured->theEvent); break; case LPFC_LINK_NUMBER_1: status = bf_get(lpfc_sli_misconfigured_port1_state, &misconfigured->theEvent); operational = bf_get(lpfc_sli_misconfigured_port1_op, &misconfigured->theEvent); break; case LPFC_LINK_NUMBER_2: status = bf_get(lpfc_sli_misconfigured_port2_state, &misconfigured->theEvent); operational = bf_get(lpfc_sli_misconfigured_port2_op, &misconfigured->theEvent); break; case LPFC_LINK_NUMBER_3: status = bf_get(lpfc_sli_misconfigured_port3_state, &misconfigured->theEvent); operational = bf_get(lpfc_sli_misconfigured_port3_op, &misconfigured->theEvent); break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3296 " "LPFC_SLI_EVENT_TYPE_MISCONFIGURED " "event: Invalid link %d", phba->sli4_hba.lnk_info.lnk_no); return; } /* Skip if optic state unchanged */ if (phba->sli4_hba.lnk_info.optic_state == status) return; switch (status) { case LPFC_SLI_EVENT_STATUS_VALID: sprintf(message, "Physical Link is functional"); break; case LPFC_SLI_EVENT_STATUS_NOT_PRESENT: sprintf(message, "Optics faulted/incorrectly " "installed/not installed - Reseat optics, " "if issue not resolved, replace."); break; case LPFC_SLI_EVENT_STATUS_WRONG_TYPE: sprintf(message, "Optics of two types installed - Remove one " "optic or install matching pair of optics."); break; case LPFC_SLI_EVENT_STATUS_UNSUPPORTED: sprintf(message, "Incompatible optics - Replace with " "compatible optics for card to function."); break; case LPFC_SLI_EVENT_STATUS_UNQUALIFIED: sprintf(message, "Unqualified optics - Replace with " "Avago optics for Warranty and Technical " "Support - Link is%s operational", (operational) ? " not" : ""); break; case LPFC_SLI_EVENT_STATUS_UNCERTIFIED: sprintf(message, "Uncertified optics - Replace with " "Avago-certified optics to enable link " "operation - Link is%s operational", (operational) ? " not" : ""); break; default: /* firmware is reporting a status we don't know about */ sprintf(message, "Unknown event status x%02x", status); break; } /* Issue READ_CONFIG mbox command to refresh supported speeds */ rc = lpfc_sli4_read_config(phba); if (rc) { phba->lmt = 0; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3194 Unable to retrieve supported " "speeds, rc = 0x%x\n", rc); } rc = lpfc_sli4_refresh_params(phba); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_SLI, "3174 Unable to update pls support, " "rc x%x\n", rc); } vports = lpfc_create_vport_work_array(phba); if (vports != NULL) { for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { shost = lpfc_shost_from_vport(vports[i]); lpfc_host_supported_speeds_set(shost); } } lpfc_destroy_vport_work_array(phba, vports); phba->sli4_hba.lnk_info.optic_state = status; lpfc_printf_log(phba, KERN_ERR, LOG_SLI, "3176 Port Name %c %s\n", port_name, message); break; case LPFC_SLI_EVENT_TYPE_REMOTE_DPORT: lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3192 Remote DPort Test Initiated - " "Event Data1:x%08x Event Data2: x%08x\n", acqe_sli->event_data1, acqe_sli->event_data2); break; case LPFC_SLI_EVENT_TYPE_PORT_PARAMS_CHG: /* Call FW to obtain active parms */ lpfc_sli4_cgn_parm_chg_evt(phba); break; case LPFC_SLI_EVENT_TYPE_MISCONF_FAWWN: /* Misconfigured WWN. Reports that the SLI Port is configured * to use FA-WWN, but the attached device doesn’t support it. * Event Data1 - N.A, Event Data2 - N.A * This event only happens on the physical port. */ lpfc_log_msg(phba, KERN_WARNING, LOG_SLI | LOG_DISCOVERY, "2699 Misconfigured FA-PWWN - Attached device " "does not support FA-PWWN\n"); phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_FABRIC; memset(phba->pport->fc_portname.u.wwn, 0, sizeof(struct lpfc_name)); break; case LPFC_SLI_EVENT_TYPE_EEPROM_FAILURE: /* EEPROM failure. No driver action is required */ lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "2518 EEPROM failure - " "Event Data1: x%08x Event Data2: x%08x\n", acqe_sli->event_data1, acqe_sli->event_data2); break; case LPFC_SLI_EVENT_TYPE_CGN_SIGNAL: if (phba->cmf_active_mode == LPFC_CFG_OFF) break; cgn_signal = (struct lpfc_acqe_cgn_signal *) &acqe_sli->event_data1; phba->cgn_acqe_cnt++; cnt = bf_get(lpfc_warn_acqe, cgn_signal); atomic64_add(cnt, &phba->cgn_acqe_stat.warn); atomic64_add(cgn_signal->alarm_cnt, &phba->cgn_acqe_stat.alarm); /* no threshold for CMF, even 1 signal will trigger an event */ /* Alarm overrides warning, so check that first */ if (cgn_signal->alarm_cnt) { if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { /* Keep track of alarm cnt for CMF_SYNC_WQE */ atomic_add(cgn_signal->alarm_cnt, &phba->cgn_sync_alarm_cnt); } } else if (cnt) { /* signal action needs to be taken */ if (phba->cgn_reg_signal == EDC_CG_SIG_WARN_ONLY || phba->cgn_reg_signal == EDC_CG_SIG_WARN_ALARM) { /* Keep track of warning cnt for CMF_SYNC_WQE */ atomic_add(cnt, &phba->cgn_sync_warn_cnt); } } break; case LPFC_SLI_EVENT_TYPE_RD_SIGNAL: /* May be accompanied by a temperature event */ lpfc_printf_log(phba, KERN_INFO, LOG_SLI | LOG_LINK_EVENT | LOG_LDS_EVENT, "2902 Remote Degrade Signaling: x%08x x%08x " "x%08x\n", acqe_sli->event_data1, acqe_sli->event_data2, acqe_sli->event_data3); break; case LPFC_SLI_EVENT_TYPE_RESET_CM_STATS: lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "2905 Reset CM statistics\n"); lpfc_sli4_async_cmstat_evt(phba); break; default: lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3193 Unrecognized SLI event, type: 0x%x", evt_type); break; } } /** * lpfc_sli4_perform_vport_cvl - Perform clear virtual link on a vport * @vport: pointer to vport data structure. * * This routine is to perform Clear Virtual Link (CVL) on a vport in * response to a CVL event. * * Return the pointer to the ndlp with the vport if successful, otherwise * return NULL. **/ static struct lpfc_nodelist * lpfc_sli4_perform_vport_cvl(struct lpfc_vport *vport) { struct lpfc_nodelist *ndlp; struct Scsi_Host *shost; struct lpfc_hba *phba; if (!vport) return NULL; phba = vport->phba; if (!phba) return NULL; ndlp = lpfc_findnode_did(vport, Fabric_DID); if (!ndlp) { /* Cannot find existing Fabric ndlp, so allocate a new one */ ndlp = lpfc_nlp_init(vport, Fabric_DID); if (!ndlp) return NULL; /* Set the node type */ ndlp->nlp_type |= NLP_FABRIC; /* Put ndlp onto node list */ lpfc_enqueue_node(vport, ndlp); } if ((phba->pport->port_state < LPFC_FLOGI) && (phba->pport->port_state != LPFC_VPORT_FAILED)) return NULL; /* If virtual link is not yet instantiated ignore CVL */ if ((vport != phba->pport) && (vport->port_state < LPFC_FDISC) && (vport->port_state != LPFC_VPORT_FAILED)) return NULL; shost = lpfc_shost_from_vport(vport); if (!shost) return NULL; lpfc_linkdown_port(vport); lpfc_cleanup_pending_mbox(vport); set_bit(FC_VPORT_CVL_RCVD, &vport->fc_flag); return ndlp; } /** * lpfc_sli4_perform_all_vport_cvl - Perform clear virtual link on all vports * @phba: pointer to lpfc hba data structure. * * This routine is to perform Clear Virtual Link (CVL) on all vports in * response to a FCF dead event. **/ static void lpfc_sli4_perform_all_vport_cvl(struct lpfc_hba *phba) { struct lpfc_vport **vports; int i; vports = lpfc_create_vport_work_array(phba); if (vports) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) lpfc_sli4_perform_vport_cvl(vports[i]); lpfc_destroy_vport_work_array(phba, vports); } /** * lpfc_sli4_async_fip_evt - Process the asynchronous FCoE FIP event * @phba: pointer to lpfc hba data structure. * @acqe_fip: pointer to the async fcoe completion queue entry. * * This routine is to handle the SLI4 asynchronous fcoe event. **/ static void lpfc_sli4_async_fip_evt(struct lpfc_hba *phba, struct lpfc_acqe_fip *acqe_fip) { uint8_t event_type = bf_get(lpfc_trailer_type, acqe_fip); int rc; struct lpfc_vport *vport; struct lpfc_nodelist *ndlp; int active_vlink_present; struct lpfc_vport **vports; int i; phba->fc_eventTag = acqe_fip->event_tag; phba->fcoe_eventtag = acqe_fip->event_tag; switch (event_type) { case LPFC_FIP_EVENT_TYPE_NEW_FCF: case LPFC_FIP_EVENT_TYPE_FCF_PARAM_MOD: if (event_type == LPFC_FIP_EVENT_TYPE_NEW_FCF) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2546 New FCF event, evt_tag:x%x, " "index:x%x\n", acqe_fip->event_tag, acqe_fip->index); else lpfc_printf_log(phba, KERN_WARNING, LOG_FIP | LOG_DISCOVERY, "2788 FCF param modified event, " "evt_tag:x%x, index:x%x\n", acqe_fip->event_tag, acqe_fip->index); if (phba->fcf.fcf_flag & FCF_DISCOVERY) { /* * During period of FCF discovery, read the FCF * table record indexed by the event to update * FCF roundrobin failover eligible FCF bmask. */ lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, "2779 Read FCF (x%x) for updating " "roundrobin FCF failover bmask\n", acqe_fip->index); rc = lpfc_sli4_read_fcf_rec(phba, acqe_fip->index); } /* If the FCF discovery is in progress, do nothing. */ if (test_bit(FCF_TS_INPROG, &phba->hba_flag)) break; spin_lock_irq(&phba->hbalock); /* If fast FCF failover rescan event is pending, do nothing */ if (phba->fcf.fcf_flag & (FCF_REDISC_EVT | FCF_REDISC_PEND)) { spin_unlock_irq(&phba->hbalock); break; } /* If the FCF has been in discovered state, do nothing. */ if (phba->fcf.fcf_flag & FCF_SCAN_DONE) { spin_unlock_irq(&phba->hbalock); break; } spin_unlock_irq(&phba->hbalock); /* Otherwise, scan the entire FCF table and re-discover SAN */ lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, "2770 Start FCF table scan per async FCF " "event, evt_tag:x%x, index:x%x\n", acqe_fip->event_tag, acqe_fip->index); rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); if (rc) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2547 Issue FCF scan read FCF mailbox " "command failed (x%x)\n", rc); break; case LPFC_FIP_EVENT_TYPE_FCF_TABLE_FULL: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2548 FCF Table full count 0x%x tag 0x%x\n", bf_get(lpfc_acqe_fip_fcf_count, acqe_fip), acqe_fip->event_tag); break; case LPFC_FIP_EVENT_TYPE_FCF_DEAD: phba->fcoe_cvl_eventtag = acqe_fip->event_tag; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2549 FCF (x%x) disconnected from network, " "tag:x%x\n", acqe_fip->index, acqe_fip->event_tag); /* * If we are in the middle of FCF failover process, clear * the corresponding FCF bit in the roundrobin bitmap. */ spin_lock_irq(&phba->hbalock); if ((phba->fcf.fcf_flag & FCF_DISCOVERY) && (phba->fcf.current_rec.fcf_indx != acqe_fip->index)) { spin_unlock_irq(&phba->hbalock); /* Update FLOGI FCF failover eligible FCF bmask */ lpfc_sli4_fcf_rr_index_clear(phba, acqe_fip->index); break; } spin_unlock_irq(&phba->hbalock); /* If the event is not for currently used fcf do nothing */ if (phba->fcf.current_rec.fcf_indx != acqe_fip->index) break; /* * Otherwise, request the port to rediscover the entire FCF * table for a fast recovery from case that the current FCF * is no longer valid as we are not in the middle of FCF * failover process already. */ spin_lock_irq(&phba->hbalock); /* Mark the fast failover process in progress */ phba->fcf.fcf_flag |= FCF_DEAD_DISC; spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, "2771 Start FCF fast failover process due to " "FCF DEAD event: evt_tag:x%x, fcf_index:x%x " "\n", acqe_fip->event_tag, acqe_fip->index); rc = lpfc_sli4_redisc_fcf_table(phba); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_TRACE_EVENT, "2772 Issue FCF rediscover mailbox " "command failed, fail through to FCF " "dead event\n"); spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag &= ~FCF_DEAD_DISC; spin_unlock_irq(&phba->hbalock); /* * Last resort will fail over by treating this * as a link down to FCF registration. */ lpfc_sli4_fcf_dead_failthrough(phba); } else { /* Reset FCF roundrobin bmask for new discovery */ lpfc_sli4_clear_fcf_rr_bmask(phba); /* * Handling fast FCF failover to a DEAD FCF event is * considered equalivant to receiving CVL to all vports. */ lpfc_sli4_perform_all_vport_cvl(phba); } break; case LPFC_FIP_EVENT_TYPE_CVL: phba->fcoe_cvl_eventtag = acqe_fip->event_tag; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2718 Clear Virtual Link Received for VPI 0x%x" " tag 0x%x\n", acqe_fip->index, acqe_fip->event_tag); vport = lpfc_find_vport_by_vpid(phba, acqe_fip->index); ndlp = lpfc_sli4_perform_vport_cvl(vport); if (!ndlp) break; active_vlink_present = 0; vports = lpfc_create_vport_work_array(phba); if (vports) { for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { if (!test_bit(FC_VPORT_CVL_RCVD, &vports[i]->fc_flag) && vports[i]->port_state > LPFC_FDISC) { active_vlink_present = 1; break; } } lpfc_destroy_vport_work_array(phba, vports); } /* * Don't re-instantiate if vport is marked for deletion. * If we are here first then vport_delete is going to wait * for discovery to complete. */ if (!test_bit(FC_UNLOADING, &vport->load_flag) && active_vlink_present) { /* * If there are other active VLinks present, * re-instantiate the Vlink using FDISC. */ mod_timer(&ndlp->nlp_delayfunc, jiffies + msecs_to_jiffies(1000)); spin_lock_irq(&ndlp->lock); ndlp->nlp_flag |= NLP_DELAY_TMO; spin_unlock_irq(&ndlp->lock); ndlp->nlp_last_elscmd = ELS_CMD_FDISC; vport->port_state = LPFC_FDISC; } else { /* * Otherwise, we request port to rediscover * the entire FCF table for a fast recovery * from possible case that the current FCF * is no longer valid if we are not already * in the FCF failover process. */ spin_lock_irq(&phba->hbalock); if (phba->fcf.fcf_flag & FCF_DISCOVERY) { spin_unlock_irq(&phba->hbalock); break; } /* Mark the fast failover process in progress */ phba->fcf.fcf_flag |= FCF_ACVL_DISC; spin_unlock_irq(&phba->hbalock); lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, "2773 Start FCF failover per CVL, " "evt_tag:x%x\n", acqe_fip->event_tag); rc = lpfc_sli4_redisc_fcf_table(phba); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_TRACE_EVENT, "2774 Issue FCF rediscover " "mailbox command failed, " "through to CVL event\n"); spin_lock_irq(&phba->hbalock); phba->fcf.fcf_flag &= ~FCF_ACVL_DISC; spin_unlock_irq(&phba->hbalock); /* * Last resort will be re-try on the * the current registered FCF entry. */ lpfc_retry_pport_discovery(phba); } else /* * Reset FCF roundrobin bmask for new * discovery. */ lpfc_sli4_clear_fcf_rr_bmask(phba); } break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0288 Unknown FCoE event type 0x%x event tag " "0x%x\n", event_type, acqe_fip->event_tag); break; } } /** * lpfc_sli4_async_dcbx_evt - Process the asynchronous dcbx event * @phba: pointer to lpfc hba data structure. * @acqe_dcbx: pointer to the async dcbx completion queue entry. * * This routine is to handle the SLI4 asynchronous dcbx event. **/ static void lpfc_sli4_async_dcbx_evt(struct lpfc_hba *phba, struct lpfc_acqe_dcbx *acqe_dcbx) { phba->fc_eventTag = acqe_dcbx->event_tag; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0290 The SLI4 DCBX asynchronous event is not " "handled yet\n"); } /** * lpfc_sli4_async_grp5_evt - Process the asynchronous group5 event * @phba: pointer to lpfc hba data structure. * @acqe_grp5: pointer to the async grp5 completion queue entry. * * This routine is to handle the SLI4 asynchronous grp5 event. A grp5 event * is an asynchronous notified of a logical link speed change. The Port * reports the logical link speed in units of 10Mbps. **/ static void lpfc_sli4_async_grp5_evt(struct lpfc_hba *phba, struct lpfc_acqe_grp5 *acqe_grp5) { uint16_t prev_ll_spd; phba->fc_eventTag = acqe_grp5->event_tag; phba->fcoe_eventtag = acqe_grp5->event_tag; prev_ll_spd = phba->sli4_hba.link_state.logical_speed; phba->sli4_hba.link_state.logical_speed = (bf_get(lpfc_acqe_grp5_llink_spd, acqe_grp5)) * 10; lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "2789 GRP5 Async Event: Updating logical link speed " "from %dMbps to %dMbps\n", prev_ll_spd, phba->sli4_hba.link_state.logical_speed); } /** * lpfc_sli4_async_cmstat_evt - Process the asynchronous cmstat event * @phba: pointer to lpfc hba data structure. * * This routine is to handle the SLI4 asynchronous cmstat event. A cmstat event * is an asynchronous notification of a request to reset CM stats. **/ static void lpfc_sli4_async_cmstat_evt(struct lpfc_hba *phba) { if (!phba->cgn_i) return; lpfc_init_congestion_stat(phba); } /** * lpfc_cgn_params_val - Validate FW congestion parameters. * @phba: pointer to lpfc hba data structure. * @p_cfg_param: pointer to FW provided congestion parameters. * * This routine validates the congestion parameters passed * by the FW to the driver via an ACQE event. **/ static void lpfc_cgn_params_val(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cfg_param) { spin_lock_irq(&phba->hbalock); if (!lpfc_rangecheck(p_cfg_param->cgn_param_mode, LPFC_CFG_OFF, LPFC_CFG_MONITOR)) { lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT, "6225 CMF mode param out of range: %d\n", p_cfg_param->cgn_param_mode); p_cfg_param->cgn_param_mode = LPFC_CFG_OFF; } spin_unlock_irq(&phba->hbalock); } static const char * const lpfc_cmf_mode_to_str[] = { "OFF", "MANAGED", "MONITOR", }; /** * lpfc_cgn_params_parse - Process a FW cong parm change event * @phba: pointer to lpfc hba data structure. * @p_cgn_param: pointer to a data buffer with the FW cong params. * @len: the size of pdata in bytes. * * This routine validates the congestion management buffer signature * from the FW, validates the contents and makes corrections for * valid, in-range values. If the signature magic is correct and * after parameter validation, the contents are copied to the driver's * @phba structure. If the magic is incorrect, an error message is * logged. **/ static void lpfc_cgn_params_parse(struct lpfc_hba *phba, struct lpfc_cgn_param *p_cgn_param, uint32_t len) { struct lpfc_cgn_info *cp; uint32_t crc, oldmode; char acr_string[4] = {0}; /* Make sure the FW has encoded the correct magic number to * validate the congestion parameter in FW memory. */ if (p_cgn_param->cgn_param_magic == LPFC_CFG_PARAM_MAGIC_NUM) { lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, "4668 FW cgn parm buffer data: " "magic 0x%x version %d mode %d " "level0 %d level1 %d " "level2 %d byte13 %d " "byte14 %d byte15 %d " "byte11 %d byte12 %d activeMode %d\n", p_cgn_param->cgn_param_magic, p_cgn_param->cgn_param_version, p_cgn_param->cgn_param_mode, p_cgn_param->cgn_param_level0, p_cgn_param->cgn_param_level1, p_cgn_param->cgn_param_level2, p_cgn_param->byte13, p_cgn_param->byte14, p_cgn_param->byte15, p_cgn_param->byte11, p_cgn_param->byte12, phba->cmf_active_mode); oldmode = phba->cmf_active_mode; /* Any parameters out of range are corrected to defaults * by this routine. No need to fail. */ lpfc_cgn_params_val(phba, p_cgn_param); /* Parameters are verified, move them into driver storage */ spin_lock_irq(&phba->hbalock); memcpy(&phba->cgn_p, p_cgn_param, sizeof(struct lpfc_cgn_param)); /* Update parameters in congestion info buffer now */ if (phba->cgn_i) { cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); cp->cgn_info_crc = cpu_to_le32(crc); } spin_unlock_irq(&phba->hbalock); phba->cmf_active_mode = phba->cgn_p.cgn_param_mode; switch (oldmode) { case LPFC_CFG_OFF: if (phba->cgn_p.cgn_param_mode != LPFC_CFG_OFF) { /* Turning CMF on */ lpfc_cmf_start(phba); if (phba->link_state >= LPFC_LINK_UP) { phba->cgn_reg_fpin = phba->cgn_init_reg_fpin; phba->cgn_reg_signal = phba->cgn_init_reg_signal; lpfc_issue_els_edc(phba->pport, 0); } } break; case LPFC_CFG_MANAGED: switch (phba->cgn_p.cgn_param_mode) { case LPFC_CFG_OFF: /* Turning CMF off */ lpfc_cmf_stop(phba); if (phba->link_state >= LPFC_LINK_UP) lpfc_issue_els_edc(phba->pport, 0); break; case LPFC_CFG_MONITOR: phba->cmf_max_bytes_per_interval = phba->cmf_link_byte_count; /* Resume blocked IO - unblock on workqueue */ queue_work(phba->wq, &phba->unblock_request_work); break; } break; case LPFC_CFG_MONITOR: switch (phba->cgn_p.cgn_param_mode) { case LPFC_CFG_OFF: /* Turning CMF off */ lpfc_cmf_stop(phba); if (phba->link_state >= LPFC_LINK_UP) lpfc_issue_els_edc(phba->pport, 0); break; case LPFC_CFG_MANAGED: lpfc_cmf_signal_init(phba); break; } break; } if (oldmode != LPFC_CFG_OFF || oldmode != phba->cgn_p.cgn_param_mode) { if (phba->cgn_p.cgn_param_mode == LPFC_CFG_MANAGED) scnprintf(acr_string, sizeof(acr_string), "%u", phba->cgn_p.cgn_param_level0); else scnprintf(acr_string, sizeof(acr_string), "NA"); dev_info(&phba->pcidev->dev, "%d: " "4663 CMF: Mode %s acr %s\n", phba->brd_no, lpfc_cmf_mode_to_str [phba->cgn_p.cgn_param_mode], acr_string); } } else { lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, "4669 FW cgn parm buf wrong magic 0x%x " "version %d\n", p_cgn_param->cgn_param_magic, p_cgn_param->cgn_param_version); } } /** * lpfc_sli4_cgn_params_read - Read and Validate FW congestion parameters. * @phba: pointer to lpfc hba data structure. * * This routine issues a read_object mailbox command to * get the congestion management parameters from the FW * parses it and updates the driver maintained values. * * Returns * 0 if the object was empty * -Eval if an error was encountered * Count if bytes were read from object **/ int lpfc_sli4_cgn_params_read(struct lpfc_hba *phba) { int ret = 0; struct lpfc_cgn_param *p_cgn_param = NULL; u32 *pdata = NULL; u32 len = 0; /* Find out if the FW has a new set of congestion parameters. */ len = sizeof(struct lpfc_cgn_param); pdata = kzalloc(len, GFP_KERNEL); if (!pdata) return -ENOMEM; ret = lpfc_read_object(phba, (char *)LPFC_PORT_CFG_NAME, pdata, len); /* 0 means no data. A negative means error. A positive means * bytes were copied. */ if (!ret) { lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, "4670 CGN RD OBJ returns no data\n"); goto rd_obj_err; } else if (ret < 0) { /* Some error. Just exit and return it to the caller.*/ goto rd_obj_err; } lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT | LOG_INIT, "6234 READ CGN PARAMS Successful %d\n", len); /* Parse data pointer over len and update the phba congestion * parameters with values passed back. The receive rate values * may have been altered in FW, but take no action here. */ p_cgn_param = (struct lpfc_cgn_param *)pdata; lpfc_cgn_params_parse(phba, p_cgn_param, len); rd_obj_err: kfree(pdata); return ret; } /** * lpfc_sli4_cgn_parm_chg_evt - Process a FW congestion param change event * @phba: pointer to lpfc hba data structure. * * The FW generated Async ACQE SLI event calls this routine when * the event type is an SLI Internal Port Event and the Event Code * indicates a change to the FW maintained congestion parameters. * * This routine executes a Read_Object mailbox call to obtain the * current congestion parameters maintained in FW and corrects * the driver's active congestion parameters. * * The acqe event is not passed because there is no further data * required. * * Returns nonzero error if event processing encountered an error. * Zero otherwise for success. **/ static int lpfc_sli4_cgn_parm_chg_evt(struct lpfc_hba *phba) { int ret = 0; if (!phba->sli4_hba.pc_sli4_params.cmf) { lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, "4664 Cgn Evt when E2E off. Drop event\n"); return -EACCES; } /* If the event is claiming an empty object, it's ok. A write * could have cleared it. Only error is a negative return * status. */ ret = lpfc_sli4_cgn_params_read(phba); if (ret < 0) { lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, "4667 Error reading Cgn Params (%d)\n", ret); } else if (!ret) { lpfc_printf_log(phba, KERN_ERR, LOG_CGN_MGMT | LOG_INIT, "4673 CGN Event empty object.\n"); } return ret; } /** * lpfc_sli4_async_event_proc - Process all the pending asynchronous event * @phba: pointer to lpfc hba data structure. * * This routine is invoked by the worker thread to process all the pending * SLI4 asynchronous events. **/ void lpfc_sli4_async_event_proc(struct lpfc_hba *phba) { struct lpfc_cq_event *cq_event; unsigned long iflags; /* First, declare the async event has been handled */ clear_bit(ASYNC_EVENT, &phba->hba_flag); /* Now, handle all the async events */ spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); while (!list_empty(&phba->sli4_hba.sp_asynce_work_queue)) { list_remove_head(&phba->sli4_hba.sp_asynce_work_queue, cq_event, struct lpfc_cq_event, list); spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); /* Process the asynchronous event */ switch (bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)) { case LPFC_TRAILER_CODE_LINK: lpfc_sli4_async_link_evt(phba, &cq_event->cqe.acqe_link); break; case LPFC_TRAILER_CODE_FCOE: lpfc_sli4_async_fip_evt(phba, &cq_event->cqe.acqe_fip); break; case LPFC_TRAILER_CODE_DCBX: lpfc_sli4_async_dcbx_evt(phba, &cq_event->cqe.acqe_dcbx); break; case LPFC_TRAILER_CODE_GRP5: lpfc_sli4_async_grp5_evt(phba, &cq_event->cqe.acqe_grp5); break; case LPFC_TRAILER_CODE_FC: lpfc_sli4_async_fc_evt(phba, &cq_event->cqe.acqe_fc); break; case LPFC_TRAILER_CODE_SLI: lpfc_sli4_async_sli_evt(phba, &cq_event->cqe.acqe_sli); break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1804 Invalid asynchronous event code: " "x%x\n", bf_get(lpfc_trailer_code, &cq_event->cqe.mcqe_cmpl)); break; } /* Free the completion event processed to the free pool */ lpfc_sli4_cq_event_release(phba, cq_event); spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); } spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); } /** * lpfc_sli4_fcf_redisc_event_proc - Process fcf table rediscovery event * @phba: pointer to lpfc hba data structure. * * This routine is invoked by the worker thread to process FCF table * rediscovery pending completion event. **/ void lpfc_sli4_fcf_redisc_event_proc(struct lpfc_hba *phba) { int rc; spin_lock_irq(&phba->hbalock); /* Clear FCF rediscovery timeout event */ phba->fcf.fcf_flag &= ~FCF_REDISC_EVT; /* Clear driver fast failover FCF record flag */ phba->fcf.failover_rec.flag = 0; /* Set state for FCF fast failover */ phba->fcf.fcf_flag |= FCF_REDISC_FOV; spin_unlock_irq(&phba->hbalock); /* Scan FCF table from the first entry to re-discover SAN */ lpfc_printf_log(phba, KERN_INFO, LOG_FIP | LOG_DISCOVERY, "2777 Start post-quiescent FCF table scan\n"); rc = lpfc_sli4_fcf_scan_read_fcf_rec(phba, LPFC_FCOE_FCF_GET_FIRST); if (rc) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2747 Issue FCF scan read FCF mailbox " "command failed 0x%x\n", rc); } /** * lpfc_api_table_setup - Set up per hba pci-device group func api jump table * @phba: pointer to lpfc hba data structure. * @dev_grp: The HBA PCI-Device group number. * * This routine is invoked to set up the per HBA PCI-Device group function * API jump table entries. * * Return: 0 if success, otherwise -ENODEV **/ int lpfc_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) { int rc; /* Set up lpfc PCI-device group */ phba->pci_dev_grp = dev_grp; /* The LPFC_PCI_DEV_OC uses SLI4 */ if (dev_grp == LPFC_PCI_DEV_OC) phba->sli_rev = LPFC_SLI_REV4; /* Set up device INIT API function jump table */ rc = lpfc_init_api_table_setup(phba, dev_grp); if (rc) return -ENODEV; /* Set up SCSI API function jump table */ rc = lpfc_scsi_api_table_setup(phba, dev_grp); if (rc) return -ENODEV; /* Set up SLI API function jump table */ rc = lpfc_sli_api_table_setup(phba, dev_grp); if (rc) return -ENODEV; /* Set up MBOX API function jump table */ rc = lpfc_mbox_api_table_setup(phba, dev_grp); if (rc) return -ENODEV; return 0; } /** * lpfc_log_intr_mode - Log the active interrupt mode * @phba: pointer to lpfc hba data structure. * @intr_mode: active interrupt mode adopted. * * This routine it invoked to log the currently used active interrupt mode * to the device. **/ static void lpfc_log_intr_mode(struct lpfc_hba *phba, uint32_t intr_mode) { switch (intr_mode) { case 0: lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0470 Enable INTx interrupt mode.\n"); break; case 1: lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0481 Enabled MSI interrupt mode.\n"); break; case 2: lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0480 Enabled MSI-X interrupt mode.\n"); break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0482 Illegal interrupt mode.\n"); break; } return; } /** * lpfc_enable_pci_dev - Enable a generic PCI device. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to enable the PCI device that is common to all * PCI devices. * * Return codes * 0 - successful * other values - error **/ static int lpfc_enable_pci_dev(struct lpfc_hba *phba) { struct pci_dev *pdev; /* Obtain PCI device reference */ if (!phba->pcidev) goto out_error; else pdev = phba->pcidev; /* Enable PCI device */ if (pci_enable_device_mem(pdev)) goto out_error; /* Request PCI resource for the device */ if (pci_request_mem_regions(pdev, LPFC_DRIVER_NAME)) goto out_disable_device; /* Set up device as PCI master and save state for EEH */ pci_set_master(pdev); pci_try_set_mwi(pdev); pci_save_state(pdev); /* PCIe EEH recovery on powerpc platforms needs fundamental reset */ if (pci_is_pcie(pdev)) pdev->needs_freset = 1; return 0; out_disable_device: pci_disable_device(pdev); out_error: lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1401 Failed to enable pci device\n"); return -ENODEV; } /** * lpfc_disable_pci_dev - Disable a generic PCI device. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to disable the PCI device that is common to all * PCI devices. **/ static void lpfc_disable_pci_dev(struct lpfc_hba *phba) { struct pci_dev *pdev; /* Obtain PCI device reference */ if (!phba->pcidev) return; else pdev = phba->pcidev; /* Release PCI resource and disable PCI device */ pci_release_mem_regions(pdev); pci_disable_device(pdev); return; } /** * lpfc_reset_hba - Reset a hba * @phba: pointer to lpfc hba data structure. * * This routine is invoked to reset a hba device. It brings the HBA * offline, performs a board restart, and then brings the board back * online. The lpfc_offline calls lpfc_sli_hba_down which will clean up * on outstanding mailbox commands. **/ void lpfc_reset_hba(struct lpfc_hba *phba) { int rc = 0; /* If resets are disabled then set error state and return. */ if (!phba->cfg_enable_hba_reset) { phba->link_state = LPFC_HBA_ERROR; return; } /* If not LPFC_SLI_ACTIVE, force all IO to be flushed */ if (phba->sli.sli_flag & LPFC_SLI_ACTIVE) { lpfc_offline_prep(phba, LPFC_MBX_WAIT); } else { if (test_bit(MBX_TMO_ERR, &phba->bit_flags)) { /* Perform a PCI function reset to start from clean */ rc = lpfc_pci_function_reset(phba); lpfc_els_flush_all_cmd(phba); } lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); lpfc_sli_flush_io_rings(phba); } lpfc_offline(phba); clear_bit(MBX_TMO_ERR, &phba->bit_flags); if (unlikely(rc)) { lpfc_printf_log(phba, KERN_ERR, LOG_SLI, "8888 PCI function reset failed rc %x\n", rc); } else { lpfc_sli_brdrestart(phba); lpfc_online(phba); lpfc_unblock_mgmt_io(phba); } } /** * lpfc_sli_sriov_nr_virtfn_get - Get the number of sr-iov virtual functions * @phba: pointer to lpfc hba data structure. * * This function enables the PCI SR-IOV virtual functions to a physical * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to * enable the number of virtual functions to the physical function. As * not all devices support SR-IOV, the return code from the pci_enable_sriov() * API call does not considered as an error condition for most of the device. **/ uint16_t lpfc_sli_sriov_nr_virtfn_get(struct lpfc_hba *phba) { struct pci_dev *pdev = phba->pcidev; uint16_t nr_virtfn; int pos; pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); if (pos == 0) return 0; pci_read_config_word(pdev, pos + PCI_SRIOV_TOTAL_VF, &nr_virtfn); return nr_virtfn; } /** * lpfc_sli_probe_sriov_nr_virtfn - Enable a number of sr-iov virtual functions * @phba: pointer to lpfc hba data structure. * @nr_vfn: number of virtual functions to be enabled. * * This function enables the PCI SR-IOV virtual functions to a physical * function. It invokes the PCI SR-IOV api with the @nr_vfn provided to * enable the number of virtual functions to the physical function. As * not all devices support SR-IOV, the return code from the pci_enable_sriov() * API call does not considered as an error condition for most of the device. **/ int lpfc_sli_probe_sriov_nr_virtfn(struct lpfc_hba *phba, int nr_vfn) { struct pci_dev *pdev = phba->pcidev; uint16_t max_nr_vfn; int rc; max_nr_vfn = lpfc_sli_sriov_nr_virtfn_get(phba); if (nr_vfn > max_nr_vfn) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3057 Requested vfs (%d) greater than " "supported vfs (%d)", nr_vfn, max_nr_vfn); return -EINVAL; } rc = pci_enable_sriov(pdev, nr_vfn); if (rc) { lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "2806 Failed to enable sriov on this device " "with vfn number nr_vf:%d, rc:%d\n", nr_vfn, rc); } else lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "2807 Successful enable sriov on this device " "with vfn number nr_vf:%d\n", nr_vfn); return rc; } static void lpfc_unblock_requests_work(struct work_struct *work) { struct lpfc_hba *phba = container_of(work, struct lpfc_hba, unblock_request_work); lpfc_unblock_requests(phba); } /** * lpfc_setup_driver_resource_phase1 - Phase1 etup driver internal resources. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to set up the driver internal resources before the * device specific resource setup to support the HBA device it attached to. * * Return codes * 0 - successful * other values - error **/ static int lpfc_setup_driver_resource_phase1(struct lpfc_hba *phba) { struct lpfc_sli *psli = &phba->sli; /* * Driver resources common to all SLI revisions */ atomic_set(&phba->fast_event_count, 0); atomic_set(&phba->dbg_log_idx, 0); atomic_set(&phba->dbg_log_cnt, 0); atomic_set(&phba->dbg_log_dmping, 0); spin_lock_init(&phba->hbalock); /* Initialize port_list spinlock */ spin_lock_init(&phba->port_list_lock); INIT_LIST_HEAD(&phba->port_list); INIT_LIST_HEAD(&phba->work_list); /* Initialize the wait queue head for the kernel thread */ init_waitqueue_head(&phba->work_waitq); lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "1403 Protocols supported %s %s %s\n", ((phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) ? "SCSI" : " "), ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) ? "NVME" : " "), (phba->nvmet_support ? "NVMET" : " ")); /* ras_fwlog state */ spin_lock_init(&phba->ras_fwlog_lock); /* Initialize the IO buffer list used by driver for SLI3 SCSI */ spin_lock_init(&phba->scsi_buf_list_get_lock); INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_get); spin_lock_init(&phba->scsi_buf_list_put_lock); INIT_LIST_HEAD(&phba->lpfc_scsi_buf_list_put); /* Initialize the fabric iocb list */ INIT_LIST_HEAD(&phba->fabric_iocb_list); /* Initialize list to save ELS buffers */ INIT_LIST_HEAD(&phba->elsbuf); /* Initialize FCF connection rec list */ INIT_LIST_HEAD(&phba->fcf_conn_rec_list); /* Initialize OAS configuration list */ spin_lock_init(&phba->devicelock); INIT_LIST_HEAD(&phba->luns); /* MBOX heartbeat timer */ timer_setup(&psli->mbox_tmo, lpfc_mbox_timeout, 0); /* Fabric block timer */ timer_setup(&phba->fabric_block_timer, lpfc_fabric_block_timeout, 0); /* EA polling mode timer */ timer_setup(&phba->eratt_poll, lpfc_poll_eratt, 0); /* Heartbeat timer */ timer_setup(&phba->hb_tmofunc, lpfc_hb_timeout, 0); INIT_DELAYED_WORK(&phba->eq_delay_work, lpfc_hb_eq_delay_work); INIT_DELAYED_WORK(&phba->idle_stat_delay_work, lpfc_idle_stat_delay_work); INIT_WORK(&phba->unblock_request_work, lpfc_unblock_requests_work); return 0; } /** * lpfc_sli_driver_resource_setup - Setup driver internal resources for SLI3 dev * @phba: pointer to lpfc hba data structure. * * This routine is invoked to set up the driver internal resources specific to * support the SLI-3 HBA device it attached to. * * Return codes * 0 - successful * other values - error **/ static int lpfc_sli_driver_resource_setup(struct lpfc_hba *phba) { int rc, entry_sz; /* * Initialize timers used by driver */ /* FCP polling mode timer */ timer_setup(&phba->fcp_poll_timer, lpfc_poll_timeout, 0); /* Host attention work mask setup */ phba->work_ha_mask = (HA_ERATT | HA_MBATT | HA_LATT); phba->work_ha_mask |= (HA_RXMASK << (LPFC_ELS_RING * 4)); /* Get all the module params for configuring this host */ lpfc_get_cfgparam(phba); /* Set up phase-1 common device driver resources */ rc = lpfc_setup_driver_resource_phase1(phba); if (rc) return -ENODEV; if (!phba->sli.sli3_ring) phba->sli.sli3_ring = kcalloc(LPFC_SLI3_MAX_RING, sizeof(struct lpfc_sli_ring), GFP_KERNEL); if (!phba->sli.sli3_ring) return -ENOMEM; /* * Since lpfc_sg_seg_cnt is module parameter, the sg_dma_buf_size * used to create the sg_dma_buf_pool must be dynamically calculated. */ if (phba->sli_rev == LPFC_SLI_REV4) entry_sz = sizeof(struct sli4_sge); else entry_sz = sizeof(struct ulp_bde64); /* There are going to be 2 reserved BDEs: 1 FCP cmnd + 1 FCP rsp */ if (phba->cfg_enable_bg) { /* * The scsi_buf for a T10-DIF I/O will hold the FCP cmnd, * the FCP rsp, and a BDE for each. Sice we have no control * over how many protection data segments the SCSI Layer * will hand us (ie: there could be one for every block * in the IO), we just allocate enough BDEs to accomidate * our max amount and we need to limit lpfc_sg_seg_cnt to * minimize the risk of running out. */ phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp) + (LPFC_MAX_SG_SEG_CNT * entry_sz); if (phba->cfg_sg_seg_cnt > LPFC_MAX_SG_SEG_CNT_DIF) phba->cfg_sg_seg_cnt = LPFC_MAX_SG_SEG_CNT_DIF; /* Total BDEs in BPL for scsi_sg_list and scsi_sg_prot_list */ phba->cfg_total_seg_cnt = LPFC_MAX_SG_SEG_CNT; } else { /* * The scsi_buf for a regular I/O will hold the FCP cmnd, * the FCP rsp, a BDE for each, and a BDE for up to * cfg_sg_seg_cnt data segments. */ phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp) + ((phba->cfg_sg_seg_cnt + 2) * entry_sz); /* Total BDEs in BPL for scsi_sg_list */ phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + 2; } lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, "9088 INIT sg_tablesize:%d dmabuf_size:%d total_bde:%d\n", phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, phba->cfg_total_seg_cnt); phba->max_vpi = LPFC_MAX_VPI; /* This will be set to correct value after config_port mbox */ phba->max_vports = 0; /* * Initialize the SLI Layer to run with lpfc HBAs. */ lpfc_sli_setup(phba); lpfc_sli_queue_init(phba); /* Allocate device driver memory */ if (lpfc_mem_alloc(phba, BPL_ALIGN_SZ)) return -ENOMEM; phba->lpfc_sg_dma_buf_pool = dma_pool_create("lpfc_sg_dma_buf_pool", &phba->pcidev->dev, phba->cfg_sg_dma_buf_size, BPL_ALIGN_SZ, 0); if (!phba->lpfc_sg_dma_buf_pool) goto fail_free_mem; phba->lpfc_cmd_rsp_buf_pool = dma_pool_create("lpfc_cmd_rsp_buf_pool", &phba->pcidev->dev, sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp), BPL_ALIGN_SZ, 0); if (!phba->lpfc_cmd_rsp_buf_pool) goto fail_free_dma_buf_pool; /* * Enable sr-iov virtual functions if supported and configured * through the module parameter. */ if (phba->cfg_sriov_nr_virtfn > 0) { rc = lpfc_sli_probe_sriov_nr_virtfn(phba, phba->cfg_sriov_nr_virtfn); if (rc) { lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "2808 Requested number of SR-IOV " "virtual functions (%d) is not " "supported\n", phba->cfg_sriov_nr_virtfn); phba->cfg_sriov_nr_virtfn = 0; } } return 0; fail_free_dma_buf_pool: dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); phba->lpfc_sg_dma_buf_pool = NULL; fail_free_mem: lpfc_mem_free(phba); return -ENOMEM; } /** * lpfc_sli_driver_resource_unset - Unset drvr internal resources for SLI3 dev * @phba: pointer to lpfc hba data structure. * * This routine is invoked to unset the driver internal resources set up * specific for supporting the SLI-3 HBA device it attached to. **/ static void lpfc_sli_driver_resource_unset(struct lpfc_hba *phba) { /* Free device driver memory allocated */ lpfc_mem_free_all(phba); return; } /** * lpfc_sli4_driver_resource_setup - Setup drvr internal resources for SLI4 dev * @phba: pointer to lpfc hba data structure. * * This routine is invoked to set up the driver internal resources specific to * support the SLI-4 HBA device it attached to. * * Return codes * 0 - successful * other values - error **/ static int lpfc_sli4_driver_resource_setup(struct lpfc_hba *phba) { LPFC_MBOXQ_t *mboxq; MAILBOX_t *mb; int rc, i, max_buf_size; int longs; int extra; uint64_t wwn; u32 if_type; u32 if_fam; phba->sli4_hba.num_present_cpu = lpfc_present_cpu; phba->sli4_hba.num_possible_cpu = cpumask_last(cpu_possible_mask) + 1; phba->sli4_hba.curr_disp_cpu = 0; /* Get all the module params for configuring this host */ lpfc_get_cfgparam(phba); /* Set up phase-1 common device driver resources */ rc = lpfc_setup_driver_resource_phase1(phba); if (rc) return -ENODEV; /* Before proceed, wait for POST done and device ready */ rc = lpfc_sli4_post_status_check(phba); if (rc) return -ENODEV; /* Allocate all driver workqueues here */ /* The lpfc_wq workqueue for deferred irq use */ phba->wq = alloc_workqueue("lpfc_wq", WQ_MEM_RECLAIM, 0); if (!phba->wq) return -ENOMEM; /* * Initialize timers used by driver */ timer_setup(&phba->rrq_tmr, lpfc_rrq_timeout, 0); /* FCF rediscover timer */ timer_setup(&phba->fcf.redisc_wait, lpfc_sli4_fcf_redisc_wait_tmo, 0); /* CMF congestion timer */ hrtimer_init(&phba->cmf_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); phba->cmf_timer.function = lpfc_cmf_timer; /* CMF 1 minute stats collection timer */ hrtimer_init(&phba->cmf_stats_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); phba->cmf_stats_timer.function = lpfc_cmf_stats_timer; /* * Control structure for handling external multi-buffer mailbox * command pass-through. */ memset((uint8_t *)&phba->mbox_ext_buf_ctx, 0, sizeof(struct lpfc_mbox_ext_buf_ctx)); INIT_LIST_HEAD(&phba->mbox_ext_buf_ctx.ext_dmabuf_list); phba->max_vpi = LPFC_MAX_VPI; /* This will be set to correct value after the read_config mbox */ phba->max_vports = 0; /* Program the default value of vlan_id and fc_map */ phba->valid_vlan = 0; phba->fc_map[0] = LPFC_FCOE_FCF_MAP0; phba->fc_map[1] = LPFC_FCOE_FCF_MAP1; phba->fc_map[2] = LPFC_FCOE_FCF_MAP2; /* * For SLI4, instead of using ring 0 (LPFC_FCP_RING) for FCP commands * we will associate a new ring, for each EQ/CQ/WQ tuple. * The WQ create will allocate the ring. */ /* Initialize buffer queue management fields */ INIT_LIST_HEAD(&phba->hbqs[LPFC_ELS_HBQ].hbq_buffer_list); phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_sli4_rb_alloc; phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_sli4_rb_free; /* for VMID idle timeout if VMID is enabled */ if (lpfc_is_vmid_enabled(phba)) timer_setup(&phba->inactive_vmid_poll, lpfc_vmid_poll, 0); /* * Initialize the SLI Layer to run with lpfc SLI4 HBAs. */ /* Initialize the Abort buffer list used by driver */ spin_lock_init(&phba->sli4_hba.abts_io_buf_list_lock); INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_io_buf_list); if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { /* Initialize the Abort nvme buffer list used by driver */ spin_lock_init(&phba->sli4_hba.abts_nvmet_buf_list_lock); INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_io_wait_list); spin_lock_init(&phba->sli4_hba.t_active_list_lock); INIT_LIST_HEAD(&phba->sli4_hba.t_active_ctx_list); } /* This abort list used by worker thread */ spin_lock_init(&phba->sli4_hba.sgl_list_lock); spin_lock_init(&phba->sli4_hba.nvmet_io_wait_lock); spin_lock_init(&phba->sli4_hba.asynce_list_lock); spin_lock_init(&phba->sli4_hba.els_xri_abrt_list_lock); /* * Initialize driver internal slow-path work queues */ /* Driver internel slow-path CQ Event pool */ INIT_LIST_HEAD(&phba->sli4_hba.sp_cqe_event_pool); /* Response IOCB work queue list */ INIT_LIST_HEAD(&phba->sli4_hba.sp_queue_event); /* Asynchronous event CQ Event work queue list */ INIT_LIST_HEAD(&phba->sli4_hba.sp_asynce_work_queue); /* Slow-path XRI aborted CQ Event work queue list */ INIT_LIST_HEAD(&phba->sli4_hba.sp_els_xri_aborted_work_queue); /* Receive queue CQ Event work queue list */ INIT_LIST_HEAD(&phba->sli4_hba.sp_unsol_work_queue); /* Initialize extent block lists. */ INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_blk_list); INIT_LIST_HEAD(&phba->sli4_hba.lpfc_xri_blk_list); INIT_LIST_HEAD(&phba->sli4_hba.lpfc_vfi_blk_list); INIT_LIST_HEAD(&phba->lpfc_vpi_blk_list); /* Initialize mboxq lists. If the early init routines fail * these lists need to be correctly initialized. */ INIT_LIST_HEAD(&phba->sli.mboxq); INIT_LIST_HEAD(&phba->sli.mboxq_cmpl); /* initialize optic_state to 0xFF */ phba->sli4_hba.lnk_info.optic_state = 0xff; /* Allocate device driver memory */ rc = lpfc_mem_alloc(phba, SGL_ALIGN_SZ); if (rc) goto out_destroy_workqueue; /* IF Type 2 ports get initialized now. */ if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) >= LPFC_SLI_INTF_IF_TYPE_2) { rc = lpfc_pci_function_reset(phba); if (unlikely(rc)) { rc = -ENODEV; goto out_free_mem; } phba->temp_sensor_support = 1; } /* Create the bootstrap mailbox command */ rc = lpfc_create_bootstrap_mbox(phba); if (unlikely(rc)) goto out_free_mem; /* Set up the host's endian order with the device. */ rc = lpfc_setup_endian_order(phba); if (unlikely(rc)) goto out_free_bsmbx; /* Set up the hba's configuration parameters. */ rc = lpfc_sli4_read_config(phba); if (unlikely(rc)) goto out_free_bsmbx; if (phba->sli4_hba.fawwpn_flag & LPFC_FAWWPN_CONFIG) { /* Right now the link is down, if FA-PWWN is configured the * firmware will try FLOGI before the driver gets a link up. * If it fails, the driver should get a MISCONFIGURED async * event which will clear this flag. The only notification * the driver gets is if it fails, if it succeeds there is no * notification given. Assume success. */ phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_FABRIC; } rc = lpfc_mem_alloc_active_rrq_pool_s4(phba); if (unlikely(rc)) goto out_free_bsmbx; /* IF Type 0 ports get initialized now. */ if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == LPFC_SLI_INTF_IF_TYPE_0) { rc = lpfc_pci_function_reset(phba); if (unlikely(rc)) goto out_free_bsmbx; } mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) { rc = -ENOMEM; goto out_free_bsmbx; } /* Check for NVMET being configured */ phba->nvmet_support = 0; if (lpfc_enable_nvmet_cnt) { /* First get WWN of HBA instance */ lpfc_read_nv(phba, mboxq); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6016 Mailbox failed , mbxCmd x%x " "READ_NV, mbxStatus x%x\n", bf_get(lpfc_mqe_command, &mboxq->u.mqe), bf_get(lpfc_mqe_status, &mboxq->u.mqe)); mempool_free(mboxq, phba->mbox_mem_pool); rc = -EIO; goto out_free_bsmbx; } mb = &mboxq->u.mb; memcpy(&wwn, (char *)mb->un.varRDnvp.nodename, sizeof(uint64_t)); wwn = cpu_to_be64(wwn); phba->sli4_hba.wwnn.u.name = wwn; memcpy(&wwn, (char *)mb->un.varRDnvp.portname, sizeof(uint64_t)); /* wwn is WWPN of HBA instance */ wwn = cpu_to_be64(wwn); phba->sli4_hba.wwpn.u.name = wwn; /* Check to see if it matches any module parameter */ for (i = 0; i < lpfc_enable_nvmet_cnt; i++) { if (wwn == lpfc_enable_nvmet[i]) { #if (IS_ENABLED(CONFIG_NVME_TARGET_FC)) if (lpfc_nvmet_mem_alloc(phba)) break; phba->nvmet_support = 1; /* a match */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6017 NVME Target %016llx\n", wwn); #else lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6021 Can't enable NVME Target." " NVME_TARGET_FC infrastructure" " is not in kernel\n"); #endif /* Not supported for NVMET */ phba->cfg_xri_rebalancing = 0; if (phba->irq_chann_mode == NHT_MODE) { phba->cfg_irq_chann = phba->sli4_hba.num_present_cpu; phba->cfg_hdw_queue = phba->sli4_hba.num_present_cpu; phba->irq_chann_mode = NORMAL_MODE; } break; } } } lpfc_nvme_mod_param_dep(phba); /* * Get sli4 parameters that override parameters from Port capabilities. * If this call fails, it isn't critical unless the SLI4 parameters come * back in conflict. */ rc = lpfc_get_sli4_parameters(phba, mboxq); if (rc) { if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); if_fam = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf); if (phba->sli4_hba.extents_in_use && phba->sli4_hba.rpi_hdrs_in_use) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2999 Unsupported SLI4 Parameters " "Extents and RPI headers enabled.\n"); if (if_type == LPFC_SLI_INTF_IF_TYPE_0 && if_fam == LPFC_SLI_INTF_FAMILY_BE2) { mempool_free(mboxq, phba->mbox_mem_pool); rc = -EIO; goto out_free_bsmbx; } } if (!(if_type == LPFC_SLI_INTF_IF_TYPE_0 && if_fam == LPFC_SLI_INTF_FAMILY_BE2)) { mempool_free(mboxq, phba->mbox_mem_pool); rc = -EIO; goto out_free_bsmbx; } } /* * 1 for cmd, 1 for rsp, NVME adds an extra one * for boundary conditions in its max_sgl_segment template. */ extra = 2; if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) extra++; /* * It doesn't matter what family our adapter is in, we are * limited to 2 Pages, 512 SGEs, for our SGL. * There are going to be 2 reserved SGEs: 1 FCP cmnd + 1 FCP rsp */ max_buf_size = (2 * SLI4_PAGE_SIZE); /* * Since lpfc_sg_seg_cnt is module param, the sg_dma_buf_size * used to create the sg_dma_buf_pool must be calculated. */ if (phba->sli3_options & LPFC_SLI3_BG_ENABLED) { /* Both cfg_enable_bg and cfg_external_dif code paths */ /* * The scsi_buf for a T10-DIF I/O holds the FCP cmnd, * the FCP rsp, and a SGE. Sice we have no control * over how many protection segments the SCSI Layer * will hand us (ie: there could be one for every block * in the IO), just allocate enough SGEs to accomidate * our max amount and we need to limit lpfc_sg_seg_cnt * to minimize the risk of running out. */ phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) + sizeof(struct fcp_rsp) + max_buf_size; /* Total SGEs for scsi_sg_list and scsi_sg_prot_list */ phba->cfg_total_seg_cnt = LPFC_MAX_SGL_SEG_CNT; /* * If supporting DIF, reduce the seg count for scsi to * allow room for the DIF sges. */ if (phba->cfg_enable_bg && phba->cfg_sg_seg_cnt > LPFC_MAX_BG_SLI4_SEG_CNT_DIF) phba->cfg_scsi_seg_cnt = LPFC_MAX_BG_SLI4_SEG_CNT_DIF; else phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; } else { /* * The scsi_buf for a regular I/O holds the FCP cmnd, * the FCP rsp, a SGE for each, and a SGE for up to * cfg_sg_seg_cnt data segments. */ phba->cfg_sg_dma_buf_size = sizeof(struct fcp_cmnd32) + sizeof(struct fcp_rsp) + ((phba->cfg_sg_seg_cnt + extra) * sizeof(struct sli4_sge)); /* Total SGEs for scsi_sg_list */ phba->cfg_total_seg_cnt = phba->cfg_sg_seg_cnt + extra; phba->cfg_scsi_seg_cnt = phba->cfg_sg_seg_cnt; /* * NOTE: if (phba->cfg_sg_seg_cnt + extra) <= 256 we only * need to post 1 page for the SGL. */ } if (phba->cfg_xpsgl && !phba->nvmet_support) phba->cfg_sg_dma_buf_size = LPFC_DEFAULT_XPSGL_SIZE; else if (phba->cfg_sg_dma_buf_size <= LPFC_MIN_SG_SLI4_BUF_SZ) phba->cfg_sg_dma_buf_size = LPFC_MIN_SG_SLI4_BUF_SZ; else phba->cfg_sg_dma_buf_size = SLI4_PAGE_ALIGN(phba->cfg_sg_dma_buf_size); phba->border_sge_num = phba->cfg_sg_dma_buf_size / sizeof(struct sli4_sge); /* Limit to LPFC_MAX_NVME_SEG_CNT for NVME. */ if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { if (phba->cfg_sg_seg_cnt > LPFC_MAX_NVME_SEG_CNT) { lpfc_printf_log(phba, KERN_INFO, LOG_NVME | LOG_INIT, "6300 Reducing NVME sg segment " "cnt to %d\n", LPFC_MAX_NVME_SEG_CNT); phba->cfg_nvme_seg_cnt = LPFC_MAX_NVME_SEG_CNT; } else phba->cfg_nvme_seg_cnt = phba->cfg_sg_seg_cnt; } lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_FCP, "9087 sg_seg_cnt:%d dmabuf_size:%d " "total:%d scsi:%d nvme:%d\n", phba->cfg_sg_seg_cnt, phba->cfg_sg_dma_buf_size, phba->cfg_total_seg_cnt, phba->cfg_scsi_seg_cnt, phba->cfg_nvme_seg_cnt); if (phba->cfg_sg_dma_buf_size < SLI4_PAGE_SIZE) i = phba->cfg_sg_dma_buf_size; else i = SLI4_PAGE_SIZE; phba->lpfc_sg_dma_buf_pool = dma_pool_create("lpfc_sg_dma_buf_pool", &phba->pcidev->dev, phba->cfg_sg_dma_buf_size, i, 0); if (!phba->lpfc_sg_dma_buf_pool) { rc = -ENOMEM; goto out_free_bsmbx; } phba->lpfc_cmd_rsp_buf_pool = dma_pool_create("lpfc_cmd_rsp_buf_pool", &phba->pcidev->dev, sizeof(struct fcp_cmnd32) + sizeof(struct fcp_rsp), i, 0); if (!phba->lpfc_cmd_rsp_buf_pool) { rc = -ENOMEM; goto out_free_sg_dma_buf; } mempool_free(mboxq, phba->mbox_mem_pool); /* Verify OAS is supported */ lpfc_sli4_oas_verify(phba); /* Verify RAS support on adapter */ lpfc_sli4_ras_init(phba); /* Verify all the SLI4 queues */ rc = lpfc_sli4_queue_verify(phba); if (rc) goto out_free_cmd_rsp_buf; /* Create driver internal CQE event pool */ rc = lpfc_sli4_cq_event_pool_create(phba); if (rc) goto out_free_cmd_rsp_buf; /* Initialize sgl lists per host */ lpfc_init_sgl_list(phba); /* Allocate and initialize active sgl array */ rc = lpfc_init_active_sgl_array(phba); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1430 Failed to initialize sgl list.\n"); goto out_destroy_cq_event_pool; } rc = lpfc_sli4_init_rpi_hdrs(phba); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1432 Failed to initialize rpi headers.\n"); goto out_free_active_sgl; } /* Allocate eligible FCF bmask memory for FCF roundrobin failover */ longs = (LPFC_SLI4_FCF_TBL_INDX_MAX + BITS_PER_LONG - 1)/BITS_PER_LONG; phba->fcf.fcf_rr_bmask = kcalloc(longs, sizeof(unsigned long), GFP_KERNEL); if (!phba->fcf.fcf_rr_bmask) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2759 Failed allocate memory for FCF round " "robin failover bmask\n"); rc = -ENOMEM; goto out_remove_rpi_hdrs; } phba->sli4_hba.hba_eq_hdl = kcalloc(phba->cfg_irq_chann, sizeof(struct lpfc_hba_eq_hdl), GFP_KERNEL); if (!phba->sli4_hba.hba_eq_hdl) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2572 Failed allocate memory for " "fast-path per-EQ handle array\n"); rc = -ENOMEM; goto out_free_fcf_rr_bmask; } phba->sli4_hba.cpu_map = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(struct lpfc_vector_map_info), GFP_KERNEL); if (!phba->sli4_hba.cpu_map) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3327 Failed allocate memory for msi-x " "interrupt vector mapping\n"); rc = -ENOMEM; goto out_free_hba_eq_hdl; } phba->sli4_hba.eq_info = alloc_percpu(struct lpfc_eq_intr_info); if (!phba->sli4_hba.eq_info) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3321 Failed allocation for per_cpu stats\n"); rc = -ENOMEM; goto out_free_hba_cpu_map; } phba->sli4_hba.idle_stat = kcalloc(phba->sli4_hba.num_possible_cpu, sizeof(*phba->sli4_hba.idle_stat), GFP_KERNEL); if (!phba->sli4_hba.idle_stat) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3390 Failed allocation for idle_stat\n"); rc = -ENOMEM; goto out_free_hba_eq_info; } #ifdef CONFIG_SCSI_LPFC_DEBUG_FS phba->sli4_hba.c_stat = alloc_percpu(struct lpfc_hdwq_stat); if (!phba->sli4_hba.c_stat) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3332 Failed allocating per cpu hdwq stats\n"); rc = -ENOMEM; goto out_free_hba_idle_stat; } #endif phba->cmf_stat = alloc_percpu(struct lpfc_cgn_stat); if (!phba->cmf_stat) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3331 Failed allocating per cpu cgn stats\n"); rc = -ENOMEM; goto out_free_hba_hdwq_info; } /* * Enable sr-iov virtual functions if supported and configured * through the module parameter. */ if (phba->cfg_sriov_nr_virtfn > 0) { rc = lpfc_sli_probe_sriov_nr_virtfn(phba, phba->cfg_sriov_nr_virtfn); if (rc) { lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "3020 Requested number of SR-IOV " "virtual functions (%d) is not " "supported\n", phba->cfg_sriov_nr_virtfn); phba->cfg_sriov_nr_virtfn = 0; } } return 0; out_free_hba_hdwq_info: #ifdef CONFIG_SCSI_LPFC_DEBUG_FS free_percpu(phba->sli4_hba.c_stat); out_free_hba_idle_stat: #endif kfree(phba->sli4_hba.idle_stat); out_free_hba_eq_info: free_percpu(phba->sli4_hba.eq_info); out_free_hba_cpu_map: kfree(phba->sli4_hba.cpu_map); out_free_hba_eq_hdl: kfree(phba->sli4_hba.hba_eq_hdl); out_free_fcf_rr_bmask: kfree(phba->fcf.fcf_rr_bmask); out_remove_rpi_hdrs: lpfc_sli4_remove_rpi_hdrs(phba); out_free_active_sgl: lpfc_free_active_sgl(phba); out_destroy_cq_event_pool: lpfc_sli4_cq_event_pool_destroy(phba); out_free_cmd_rsp_buf: dma_pool_destroy(phba->lpfc_cmd_rsp_buf_pool); phba->lpfc_cmd_rsp_buf_pool = NULL; out_free_sg_dma_buf: dma_pool_destroy(phba->lpfc_sg_dma_buf_pool); phba->lpfc_sg_dma_buf_pool = NULL; out_free_bsmbx: lpfc_destroy_bootstrap_mbox(phba); out_free_mem: lpfc_mem_free(phba); out_destroy_workqueue: destroy_workqueue(phba->wq); phba->wq = NULL; return rc; } /** * lpfc_sli4_driver_resource_unset - Unset drvr internal resources for SLI4 dev * @phba: pointer to lpfc hba data structure. * * This routine is invoked to unset the driver internal resources set up * specific for supporting the SLI-4 HBA device it attached to. **/ static void lpfc_sli4_driver_resource_unset(struct lpfc_hba *phba) { struct lpfc_fcf_conn_entry *conn_entry, *next_conn_entry; free_percpu(phba->sli4_hba.eq_info); #ifdef CONFIG_SCSI_LPFC_DEBUG_FS free_percpu(phba->sli4_hba.c_stat); #endif free_percpu(phba->cmf_stat); kfree(phba->sli4_hba.idle_stat); /* Free memory allocated for msi-x interrupt vector to CPU mapping */ kfree(phba->sli4_hba.cpu_map); phba->sli4_hba.num_possible_cpu = 0; phba->sli4_hba.num_present_cpu = 0; phba->sli4_hba.curr_disp_cpu = 0; cpumask_clear(&phba->sli4_hba.irq_aff_mask); /* Free memory allocated for fast-path work queue handles */ kfree(phba->sli4_hba.hba_eq_hdl); /* Free the allocated rpi headers. */ lpfc_sli4_remove_rpi_hdrs(phba); lpfc_sli4_remove_rpis(phba); /* Free eligible FCF index bmask */ kfree(phba->fcf.fcf_rr_bmask); /* Free the ELS sgl list */ lpfc_free_active_sgl(phba); lpfc_free_els_sgl_list(phba); lpfc_free_nvmet_sgl_list(phba); /* Free the completion queue EQ event pool */ lpfc_sli4_cq_event_release_all(phba); lpfc_sli4_cq_event_pool_destroy(phba); /* Release resource identifiers. */ lpfc_sli4_dealloc_resource_identifiers(phba); /* Free the bsmbx region. */ lpfc_destroy_bootstrap_mbox(phba); /* Free the SLI Layer memory with SLI4 HBAs */ lpfc_mem_free_all(phba); /* Free the current connect table */ list_for_each_entry_safe(conn_entry, next_conn_entry, &phba->fcf_conn_rec_list, list) { list_del_init(&conn_entry->list); kfree(conn_entry); } return; } /** * lpfc_init_api_table_setup - Set up init api function jump table * @phba: The hba struct for which this call is being executed. * @dev_grp: The HBA PCI-Device group number. * * This routine sets up the device INIT interface API function jump table * in @phba struct. * * Returns: 0 - success, -ENODEV - failure. **/ int lpfc_init_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp) { phba->lpfc_hba_init_link = lpfc_hba_init_link; phba->lpfc_hba_down_link = lpfc_hba_down_link; phba->lpfc_selective_reset = lpfc_selective_reset; switch (dev_grp) { case LPFC_PCI_DEV_LP: phba->lpfc_hba_down_post = lpfc_hba_down_post_s3; phba->lpfc_handle_eratt = lpfc_handle_eratt_s3; phba->lpfc_stop_port = lpfc_stop_port_s3; break; case LPFC_PCI_DEV_OC: phba->lpfc_hba_down_post = lpfc_hba_down_post_s4; phba->lpfc_handle_eratt = lpfc_handle_eratt_s4; phba->lpfc_stop_port = lpfc_stop_port_s4; break; default: lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1431 Invalid HBA PCI-device group: 0x%x\n", dev_grp); return -ENODEV; } return 0; } /** * lpfc_setup_driver_resource_phase2 - Phase2 setup driver internal resources. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to set up the driver internal resources after the * device specific resource setup to support the HBA device it attached to. * * Return codes * 0 - successful * other values - error **/ static int lpfc_setup_driver_resource_phase2(struct lpfc_hba *phba) { int error; /* Startup the kernel thread for this host adapter. */ phba->worker_thread = kthread_run(lpfc_do_work, phba, "lpfc_worker_%d", phba->brd_no); if (IS_ERR(phba->worker_thread)) { error = PTR_ERR(phba->worker_thread); return error; } return 0; } /** * lpfc_unset_driver_resource_phase2 - Phase2 unset driver internal resources. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to unset the driver internal resources set up after * the device specific resource setup for supporting the HBA device it * attached to. **/ static void lpfc_unset_driver_resource_phase2(struct lpfc_hba *phba) { if (phba->wq) { destroy_workqueue(phba->wq); phba->wq = NULL; } /* Stop kernel worker thread */ if (phba->worker_thread) kthread_stop(phba->worker_thread); } /** * lpfc_free_iocb_list - Free iocb list. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to free the driver's IOCB list and memory. **/ void lpfc_free_iocb_list(struct lpfc_hba *phba) { struct lpfc_iocbq *iocbq_entry = NULL, *iocbq_next = NULL; spin_lock_irq(&phba->hbalock); list_for_each_entry_safe(iocbq_entry, iocbq_next, &phba->lpfc_iocb_list, list) { list_del(&iocbq_entry->list); kfree(iocbq_entry); phba->total_iocbq_bufs--; } spin_unlock_irq(&phba->hbalock); return; } /** * lpfc_init_iocb_list - Allocate and initialize iocb list. * @phba: pointer to lpfc hba data structure. * @iocb_count: number of requested iocbs * * This routine is invoked to allocate and initizlize the driver's IOCB * list and set up the IOCB tag array accordingly. * * Return codes * 0 - successful * other values - error **/ int lpfc_init_iocb_list(struct lpfc_hba *phba, int iocb_count) { struct lpfc_iocbq *iocbq_entry = NULL; uint16_t iotag; int i; /* Initialize and populate the iocb list per host. */ INIT_LIST_HEAD(&phba->lpfc_iocb_list); for (i = 0; i < iocb_count; i++) { iocbq_entry = kzalloc(sizeof(struct lpfc_iocbq), GFP_KERNEL); if (iocbq_entry == NULL) { printk(KERN_ERR "%s: only allocated %d iocbs of " "expected %d count. Unloading driver.\n", __func__, i, iocb_count); goto out_free_iocbq; } iotag = lpfc_sli_next_iotag(phba, iocbq_entry); if (iotag == 0) { kfree(iocbq_entry); printk(KERN_ERR "%s: failed to allocate IOTAG. " "Unloading driver.\n", __func__); goto out_free_iocbq; } iocbq_entry->sli4_lxritag = NO_XRI; iocbq_entry->sli4_xritag = NO_XRI; spin_lock_irq(&phba->hbalock); list_add(&iocbq_entry->list, &phba->lpfc_iocb_list); phba->total_iocbq_bufs++; spin_unlock_irq(&phba->hbalock); } return 0; out_free_iocbq: lpfc_free_iocb_list(phba); return -ENOMEM; } /** * lpfc_free_sgl_list - Free a given sgl list. * @phba: pointer to lpfc hba data structure. * @sglq_list: pointer to the head of sgl list. * * This routine is invoked to free a give sgl list and memory. **/ void lpfc_free_sgl_list(struct lpfc_hba *phba, struct list_head *sglq_list) { struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; list_for_each_entry_safe(sglq_entry, sglq_next, sglq_list, list) { list_del(&sglq_entry->list); lpfc_mbuf_free(phba, sglq_entry->virt, sglq_entry->phys); kfree(sglq_entry); } } /** * lpfc_free_els_sgl_list - Free els sgl list. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to free the driver's els sgl list and memory. **/ static void lpfc_free_els_sgl_list(struct lpfc_hba *phba) { LIST_HEAD(sglq_list); /* Retrieve all els sgls from driver list */ spin_lock_irq(&phba->sli4_hba.sgl_list_lock); list_splice_init(&phba->sli4_hba.lpfc_els_sgl_list, &sglq_list); spin_unlock_irq(&phba->sli4_hba.sgl_list_lock); /* Now free the sgl list */ lpfc_free_sgl_list(phba, &sglq_list); } /** * lpfc_free_nvmet_sgl_list - Free nvmet sgl list. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to free the driver's nvmet sgl list and memory. **/ static void lpfc_free_nvmet_sgl_list(struct lpfc_hba *phba) { struct lpfc_sglq *sglq_entry = NULL, *sglq_next = NULL; LIST_HEAD(sglq_list); /* Retrieve all nvmet sgls from driver list */ spin_lock_irq(&phba->hbalock); spin_lock(&phba->sli4_hba.sgl_list_lock); list_splice_init(&phba->sli4_hba.lpfc_nvmet_sgl_list, &sglq_list); spin_unlock(&phba->sli4_hba.sgl_list_lock); spin_unlock_irq(&phba->hbalock); /* Now free the sgl list */ list_for_each_entry_safe(sglq_entry, sglq_next, &sglq_list, list) { list_del(&sglq_entry->list); lpfc_nvmet_buf_free(phba, sglq_entry->virt, sglq_entry->phys); kfree(sglq_entry); } /* Update the nvmet_xri_cnt to reflect no current sgls. * The next initialization cycle sets the count and allocates * the sgls over again. */ phba->sli4_hba.nvmet_xri_cnt = 0; } /** * lpfc_init_active_sgl_array - Allocate the buf to track active ELS XRIs. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to allocate the driver's active sgl memory. * This array will hold the sglq_entry's for active IOs. **/ static int lpfc_init_active_sgl_array(struct lpfc_hba *phba) { int size; size = sizeof(struct lpfc_sglq *); size *= phba->sli4_hba.max_cfg_param.max_xri; phba->sli4_hba.lpfc_sglq_active_list = kzalloc(size, GFP_KERNEL); if (!phba->sli4_hba.lpfc_sglq_active_list) return -ENOMEM; return 0; } /** * lpfc_free_active_sgl - Free the buf that tracks active ELS XRIs. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to walk through the array of active sglq entries * and free all of the resources. * This is just a place holder for now. **/ static void lpfc_free_active_sgl(struct lpfc_hba *phba) { kfree(phba->sli4_hba.lpfc_sglq_active_list); } /** * lpfc_init_sgl_list - Allocate and initialize sgl list. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to allocate and initizlize the driver's sgl * list and set up the sgl xritag tag array accordingly. * **/ static void lpfc_init_sgl_list(struct lpfc_hba *phba) { /* Initialize and populate the sglq list per host/VF. */ INIT_LIST_HEAD(&phba->sli4_hba.lpfc_els_sgl_list); INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_els_sgl_list); INIT_LIST_HEAD(&phba->sli4_hba.lpfc_nvmet_sgl_list); INIT_LIST_HEAD(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); /* els xri-sgl book keeping */ phba->sli4_hba.els_xri_cnt = 0; /* nvme xri-buffer book keeping */ phba->sli4_hba.io_xri_cnt = 0; } /** * lpfc_sli4_init_rpi_hdrs - Post the rpi header memory region to the port * @phba: pointer to lpfc hba data structure. * * This routine is invoked to post rpi header templates to the * port for those SLI4 ports that do not support extents. This routine * posts a PAGE_SIZE memory region to the port to hold up to * PAGE_SIZE modulo 64 rpi context headers. This is an initialization routine * and should be called only when interrupts are disabled. * * Return codes * 0 - successful * -ERROR - otherwise. **/ int lpfc_sli4_init_rpi_hdrs(struct lpfc_hba *phba) { int rc = 0; struct lpfc_rpi_hdr *rpi_hdr; INIT_LIST_HEAD(&phba->sli4_hba.lpfc_rpi_hdr_list); if (!phba->sli4_hba.rpi_hdrs_in_use) return rc; if (phba->sli4_hba.extents_in_use) return -EIO; rpi_hdr = lpfc_sli4_create_rpi_hdr(phba); if (!rpi_hdr) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0391 Error during rpi post operation\n"); lpfc_sli4_remove_rpis(phba); rc = -ENODEV; } return rc; } /** * lpfc_sli4_create_rpi_hdr - Allocate an rpi header memory region * @phba: pointer to lpfc hba data structure. * * This routine is invoked to allocate a single 4KB memory region to * support rpis and stores them in the phba. This single region * provides support for up to 64 rpis. The region is used globally * by the device. * * Returns: * A valid rpi hdr on success. * A NULL pointer on any failure. **/ struct lpfc_rpi_hdr * lpfc_sli4_create_rpi_hdr(struct lpfc_hba *phba) { uint16_t rpi_limit, curr_rpi_range; struct lpfc_dmabuf *dmabuf; struct lpfc_rpi_hdr *rpi_hdr; /* * If the SLI4 port supports extents, posting the rpi header isn't * required. Set the expected maximum count and let the actual value * get set when extents are fully allocated. */ if (!phba->sli4_hba.rpi_hdrs_in_use) return NULL; if (phba->sli4_hba.extents_in_use) return NULL; /* The limit on the logical index is just the max_rpi count. */ rpi_limit = phba->sli4_hba.max_cfg_param.max_rpi; spin_lock_irq(&phba->hbalock); /* * Establish the starting RPI in this header block. The starting * rpi is normalized to a zero base because the physical rpi is * port based. */ curr_rpi_range = phba->sli4_hba.next_rpi; spin_unlock_irq(&phba->hbalock); /* Reached full RPI range */ if (curr_rpi_range == rpi_limit) return NULL; /* * First allocate the protocol header region for the port. The * port expects a 4KB DMA-mapped memory region that is 4K aligned. */ dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); if (!dmabuf) return NULL; dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE, &dmabuf->phys, GFP_KERNEL); if (!dmabuf->virt) { rpi_hdr = NULL; goto err_free_dmabuf; } if (!IS_ALIGNED(dmabuf->phys, LPFC_HDR_TEMPLATE_SIZE)) { rpi_hdr = NULL; goto err_free_coherent; } /* Save the rpi header data for cleanup later. */ rpi_hdr = kzalloc(sizeof(struct lpfc_rpi_hdr), GFP_KERNEL); if (!rpi_hdr) goto err_free_coherent; rpi_hdr->dmabuf = dmabuf; rpi_hdr->len = LPFC_HDR_TEMPLATE_SIZE; rpi_hdr->page_count = 1; spin_lock_irq(&phba->hbalock); /* The rpi_hdr stores the logical index only. */ rpi_hdr->start_rpi = curr_rpi_range; rpi_hdr->next_rpi = phba->sli4_hba.next_rpi + LPFC_RPI_HDR_COUNT; list_add_tail(&rpi_hdr->list, &phba->sli4_hba.lpfc_rpi_hdr_list); spin_unlock_irq(&phba->hbalock); return rpi_hdr; err_free_coherent: dma_free_coherent(&phba->pcidev->dev, LPFC_HDR_TEMPLATE_SIZE, dmabuf->virt, dmabuf->phys); err_free_dmabuf: kfree(dmabuf); return NULL; } /** * lpfc_sli4_remove_rpi_hdrs - Remove all rpi header memory regions * @phba: pointer to lpfc hba data structure. * * This routine is invoked to remove all memory resources allocated * to support rpis for SLI4 ports not supporting extents. This routine * presumes the caller has released all rpis consumed by fabric or port * logins and is prepared to have the header pages removed. **/ void lpfc_sli4_remove_rpi_hdrs(struct lpfc_hba *phba) { struct lpfc_rpi_hdr *rpi_hdr, *next_rpi_hdr; if (!phba->sli4_hba.rpi_hdrs_in_use) goto exit; list_for_each_entry_safe(rpi_hdr, next_rpi_hdr, &phba->sli4_hba.lpfc_rpi_hdr_list, list) { list_del(&rpi_hdr->list); dma_free_coherent(&phba->pcidev->dev, rpi_hdr->len, rpi_hdr->dmabuf->virt, rpi_hdr->dmabuf->phys); kfree(rpi_hdr->dmabuf); kfree(rpi_hdr); } exit: /* There are no rpis available to the port now. */ phba->sli4_hba.next_rpi = 0; } /** * lpfc_hba_alloc - Allocate driver hba data structure for a device. * @pdev: pointer to pci device data structure. * * This routine is invoked to allocate the driver hba data structure for an * HBA device. If the allocation is successful, the phba reference to the * PCI device data structure is set. * * Return codes * pointer to @phba - successful * NULL - error **/ static struct lpfc_hba * lpfc_hba_alloc(struct pci_dev *pdev) { struct lpfc_hba *phba; /* Allocate memory for HBA structure */ phba = kzalloc(sizeof(struct lpfc_hba), GFP_KERNEL); if (!phba) { dev_err(&pdev->dev, "failed to allocate hba struct\n"); return NULL; } /* Set reference to PCI device in HBA structure */ phba->pcidev = pdev; /* Assign an unused board number */ phba->brd_no = lpfc_get_instance(); if (phba->brd_no < 0) { kfree(phba); return NULL; } phba->eratt_poll_interval = LPFC_ERATT_POLL_INTERVAL; spin_lock_init(&phba->ct_ev_lock); INIT_LIST_HEAD(&phba->ct_ev_waiters); return phba; } /** * lpfc_hba_free - Free driver hba data structure with a device. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to free the driver hba data structure with an * HBA device. **/ static void lpfc_hba_free(struct lpfc_hba *phba) { if (phba->sli_rev == LPFC_SLI_REV4) kfree(phba->sli4_hba.hdwq); /* Release the driver assigned board number */ idr_remove(&lpfc_hba_index, phba->brd_no); /* Free memory allocated with sli3 rings */ kfree(phba->sli.sli3_ring); phba->sli.sli3_ring = NULL; kfree(phba); return; } /** * lpfc_setup_fdmi_mask - Setup initial FDMI mask for HBA and Port attributes * @vport: pointer to lpfc vport data structure. * * This routine is will setup initial FDMI attribute masks for * FDMI2 or SmartSAN depending on module parameters. The driver will attempt * to get these attributes first before falling back, the attribute * fallback hierarchy is SmartSAN -> FDMI2 -> FMDI1 **/ void lpfc_setup_fdmi_mask(struct lpfc_vport *vport) { struct lpfc_hba *phba = vport->phba; set_bit(FC_ALLOW_FDMI, &vport->load_flag); if (phba->cfg_enable_SmartSAN || phba->cfg_fdmi_on == LPFC_FDMI_SUPPORT) { /* Setup appropriate attribute masks */ vport->fdmi_hba_mask = LPFC_FDMI2_HBA_ATTR; if (phba->cfg_enable_SmartSAN) vport->fdmi_port_mask = LPFC_FDMI2_SMART_ATTR; else vport->fdmi_port_mask = LPFC_FDMI2_PORT_ATTR; } lpfc_printf_log(phba, KERN_INFO, LOG_DISCOVERY, "6077 Setup FDMI mask: hba x%x port x%x\n", vport->fdmi_hba_mask, vport->fdmi_port_mask); } /** * lpfc_create_shost - Create hba physical port with associated scsi host. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to create HBA physical port and associate a SCSI * host with it. * * Return codes * 0 - successful * other values - error **/ static int lpfc_create_shost(struct lpfc_hba *phba) { struct lpfc_vport *vport; struct Scsi_Host *shost; /* Initialize HBA FC structure */ phba->fc_edtov = FF_DEF_EDTOV; phba->fc_ratov = FF_DEF_RATOV; phba->fc_altov = FF_DEF_ALTOV; phba->fc_arbtov = FF_DEF_ARBTOV; atomic_set(&phba->sdev_cnt, 0); vport = lpfc_create_port(phba, phba->brd_no, &phba->pcidev->dev); if (!vport) return -ENODEV; shost = lpfc_shost_from_vport(vport); phba->pport = vport; if (phba->nvmet_support) { /* Only 1 vport (pport) will support NVME target */ phba->targetport = NULL; phba->cfg_enable_fc4_type = LPFC_ENABLE_NVME; lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME_DISC, "6076 NVME Target Found\n"); } lpfc_debugfs_initialize(vport); /* Put reference to SCSI host to driver's device private data */ pci_set_drvdata(phba->pcidev, shost); lpfc_setup_fdmi_mask(vport); /* * At this point we are fully registered with PSA. In addition, * any initial discovery should be completed. */ return 0; } /** * lpfc_destroy_shost - Destroy hba physical port with associated scsi host. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to destroy HBA physical port and the associated * SCSI host. **/ static void lpfc_destroy_shost(struct lpfc_hba *phba) { struct lpfc_vport *vport = phba->pport; /* Destroy physical port that associated with the SCSI host */ destroy_port(vport); return; } /** * lpfc_setup_bg - Setup Block guard structures and debug areas. * @phba: pointer to lpfc hba data structure. * @shost: the shost to be used to detect Block guard settings. * * This routine sets up the local Block guard protocol settings for @shost. * This routine also allocates memory for debugging bg buffers. **/ static void lpfc_setup_bg(struct lpfc_hba *phba, struct Scsi_Host *shost) { uint32_t old_mask; uint32_t old_guard; if (phba->cfg_prot_mask && phba->cfg_prot_guard) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "1478 Registering BlockGuard with the " "SCSI layer\n"); old_mask = phba->cfg_prot_mask; old_guard = phba->cfg_prot_guard; /* Only allow supported values */ phba->cfg_prot_mask &= (SHOST_DIF_TYPE1_PROTECTION | SHOST_DIX_TYPE0_PROTECTION | SHOST_DIX_TYPE1_PROTECTION); phba->cfg_prot_guard &= (SHOST_DIX_GUARD_IP | SHOST_DIX_GUARD_CRC); /* DIF Type 1 protection for profiles AST1/C1 is end to end */ if (phba->cfg_prot_mask == SHOST_DIX_TYPE1_PROTECTION) phba->cfg_prot_mask |= SHOST_DIF_TYPE1_PROTECTION; if (phba->cfg_prot_mask && phba->cfg_prot_guard) { if ((old_mask != phba->cfg_prot_mask) || (old_guard != phba->cfg_prot_guard)) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1475 Registering BlockGuard with the " "SCSI layer: mask %d guard %d\n", phba->cfg_prot_mask, phba->cfg_prot_guard); scsi_host_set_prot(shost, phba->cfg_prot_mask); scsi_host_set_guard(shost, phba->cfg_prot_guard); } else lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1479 Not Registering BlockGuard with the SCSI " "layer, Bad protection parameters: %d %d\n", old_mask, old_guard); } } /** * lpfc_post_init_setup - Perform necessary device post initialization setup. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to perform all the necessary post initialization * setup for the device. **/ static void lpfc_post_init_setup(struct lpfc_hba *phba) { struct Scsi_Host *shost; struct lpfc_adapter_event_header adapter_event; /* Get the default values for Model Name and Description */ lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); /* * hba setup may have changed the hba_queue_depth so we need to * adjust the value of can_queue. */ shost = pci_get_drvdata(phba->pcidev); shost->can_queue = phba->cfg_hba_queue_depth - 10; lpfc_host_attrib_init(shost); if (phba->cfg_poll & DISABLE_FCP_RING_INT) { spin_lock_irq(shost->host_lock); lpfc_poll_start_timer(phba); spin_unlock_irq(shost->host_lock); } lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0428 Perform SCSI scan\n"); /* Send board arrival event to upper layer */ adapter_event.event_type = FC_REG_ADAPTER_EVENT; adapter_event.subcategory = LPFC_EVENT_ARRIVAL; fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(adapter_event), (char *) &adapter_event, LPFC_NL_VENDOR_ID); return; } /** * lpfc_sli_pci_mem_setup - Setup SLI3 HBA PCI memory space. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to set up the PCI device memory space for device * with SLI-3 interface spec. * * Return codes * 0 - successful * other values - error **/ static int lpfc_sli_pci_mem_setup(struct lpfc_hba *phba) { struct pci_dev *pdev = phba->pcidev; unsigned long bar0map_len, bar2map_len; int i, hbq_count; void *ptr; int error; if (!pdev) return -ENODEV; /* Set the device DMA mask size */ error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (error) error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (error) return error; error = -ENODEV; /* Get the bus address of Bar0 and Bar2 and the number of bytes * required by each mapping. */ phba->pci_bar0_map = pci_resource_start(pdev, 0); bar0map_len = pci_resource_len(pdev, 0); phba->pci_bar2_map = pci_resource_start(pdev, 2); bar2map_len = pci_resource_len(pdev, 2); /* Map HBA SLIM to a kernel virtual address. */ phba->slim_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len); if (!phba->slim_memmap_p) { dev_printk(KERN_ERR, &pdev->dev, "ioremap failed for SLIM memory.\n"); goto out; } /* Map HBA Control Registers to a kernel virtual address. */ phba->ctrl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len); if (!phba->ctrl_regs_memmap_p) { dev_printk(KERN_ERR, &pdev->dev, "ioremap failed for HBA control registers.\n"); goto out_iounmap_slim; } /* Allocate memory for SLI-2 structures */ phba->slim2p.virt = dma_alloc_coherent(&pdev->dev, SLI2_SLIM_SIZE, &phba->slim2p.phys, GFP_KERNEL); if (!phba->slim2p.virt) goto out_iounmap; phba->mbox = phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx); phba->mbox_ext = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, mbx_ext_words)); phba->pcb = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, pcb)); phba->IOCBs = (phba->slim2p.virt + offsetof(struct lpfc_sli2_slim, IOCBs)); phba->hbqslimp.virt = dma_alloc_coherent(&pdev->dev, lpfc_sli_hbq_size(), &phba->hbqslimp.phys, GFP_KERNEL); if (!phba->hbqslimp.virt) goto out_free_slim; hbq_count = lpfc_sli_hbq_count(); ptr = phba->hbqslimp.virt; for (i = 0; i < hbq_count; ++i) { phba->hbqs[i].hbq_virt = ptr; INIT_LIST_HEAD(&phba->hbqs[i].hbq_buffer_list); ptr += (lpfc_hbq_defs[i]->entry_count * sizeof(struct lpfc_hbq_entry)); } phba->hbqs[LPFC_ELS_HBQ].hbq_alloc_buffer = lpfc_els_hbq_alloc; phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer = lpfc_els_hbq_free; memset(phba->hbqslimp.virt, 0, lpfc_sli_hbq_size()); phba->MBslimaddr = phba->slim_memmap_p; phba->HAregaddr = phba->ctrl_regs_memmap_p + HA_REG_OFFSET; phba->CAregaddr = phba->ctrl_regs_memmap_p + CA_REG_OFFSET; phba->HSregaddr = phba->ctrl_regs_memmap_p + HS_REG_OFFSET; phba->HCregaddr = phba->ctrl_regs_memmap_p + HC_REG_OFFSET; return 0; out_free_slim: dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, phba->slim2p.virt, phba->slim2p.phys); out_iounmap: iounmap(phba->ctrl_regs_memmap_p); out_iounmap_slim: iounmap(phba->slim_memmap_p); out: return error; } /** * lpfc_sli_pci_mem_unset - Unset SLI3 HBA PCI memory space. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to unset the PCI device memory space for device * with SLI-3 interface spec. **/ static void lpfc_sli_pci_mem_unset(struct lpfc_hba *phba) { struct pci_dev *pdev; /* Obtain PCI device reference */ if (!phba->pcidev) return; else pdev = phba->pcidev; /* Free coherent DMA memory allocated */ dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), phba->hbqslimp.virt, phba->hbqslimp.phys); dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, phba->slim2p.virt, phba->slim2p.phys); /* I/O memory unmap */ iounmap(phba->ctrl_regs_memmap_p); iounmap(phba->slim_memmap_p); return; } /** * lpfc_sli4_post_status_check - Wait for SLI4 POST done and check status * @phba: pointer to lpfc hba data structure. * * This routine is invoked to wait for SLI4 device Power On Self Test (POST) * done and check status. * * Return 0 if successful, otherwise -ENODEV. **/ int lpfc_sli4_post_status_check(struct lpfc_hba *phba) { struct lpfc_register portsmphr_reg, uerrlo_reg, uerrhi_reg; struct lpfc_register reg_data; int i, port_error = 0; uint32_t if_type; memset(&portsmphr_reg, 0, sizeof(portsmphr_reg)); memset(®_data, 0, sizeof(reg_data)); if (!phba->sli4_hba.PSMPHRregaddr) return -ENODEV; /* Wait up to 30 seconds for the SLI Port POST done and ready */ for (i = 0; i < 3000; i++) { if (lpfc_readl(phba->sli4_hba.PSMPHRregaddr, &portsmphr_reg.word0) || (bf_get(lpfc_port_smphr_perr, &portsmphr_reg))) { /* Port has a fatal POST error, break out */ port_error = -ENODEV; break; } if (LPFC_POST_STAGE_PORT_READY == bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)) break; msleep(10); } /* * If there was a port error during POST, then don't proceed with * other register reads as the data may not be valid. Just exit. */ if (port_error) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1408 Port Failed POST - portsmphr=0x%x, " "perr=x%x, sfi=x%x, nip=x%x, ipc=x%x, scr1=x%x, " "scr2=x%x, hscratch=x%x, pstatus=x%x\n", portsmphr_reg.word0, bf_get(lpfc_port_smphr_perr, &portsmphr_reg), bf_get(lpfc_port_smphr_sfi, &portsmphr_reg), bf_get(lpfc_port_smphr_nip, &portsmphr_reg), bf_get(lpfc_port_smphr_ipc, &portsmphr_reg), bf_get(lpfc_port_smphr_scr1, &portsmphr_reg), bf_get(lpfc_port_smphr_scr2, &portsmphr_reg), bf_get(lpfc_port_smphr_host_scratch, &portsmphr_reg), bf_get(lpfc_port_smphr_port_status, &portsmphr_reg)); } else { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2534 Device Info: SLIFamily=0x%x, " "SLIRev=0x%x, IFType=0x%x, SLIHint_1=0x%x, " "SLIHint_2=0x%x, FT=0x%x\n", bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf), bf_get(lpfc_sli_intf_slirev, &phba->sli4_hba.sli_intf), bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf), bf_get(lpfc_sli_intf_sli_hint1, &phba->sli4_hba.sli_intf), bf_get(lpfc_sli_intf_sli_hint2, &phba->sli4_hba.sli_intf), bf_get(lpfc_sli_intf_func_type, &phba->sli4_hba.sli_intf)); /* * Check for other Port errors during the initialization * process. Fail the load if the port did not come up * correctly. */ if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); switch (if_type) { case LPFC_SLI_INTF_IF_TYPE_0: phba->sli4_hba.ue_mask_lo = readl(phba->sli4_hba.u.if_type0.UEMASKLOregaddr); phba->sli4_hba.ue_mask_hi = readl(phba->sli4_hba.u.if_type0.UEMASKHIregaddr); uerrlo_reg.word0 = readl(phba->sli4_hba.u.if_type0.UERRLOregaddr); uerrhi_reg.word0 = readl(phba->sli4_hba.u.if_type0.UERRHIregaddr); if ((~phba->sli4_hba.ue_mask_lo & uerrlo_reg.word0) || (~phba->sli4_hba.ue_mask_hi & uerrhi_reg.word0)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1422 Unrecoverable Error " "Detected during POST " "uerr_lo_reg=0x%x, " "uerr_hi_reg=0x%x, " "ue_mask_lo_reg=0x%x, " "ue_mask_hi_reg=0x%x\n", uerrlo_reg.word0, uerrhi_reg.word0, phba->sli4_hba.ue_mask_lo, phba->sli4_hba.ue_mask_hi); port_error = -ENODEV; } break; case LPFC_SLI_INTF_IF_TYPE_2: case LPFC_SLI_INTF_IF_TYPE_6: /* Final checks. The port status should be clean. */ if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr, ®_data.word0) || lpfc_sli4_unrecoverable_port(®_data)) { phba->work_status[0] = readl(phba->sli4_hba.u.if_type2. ERR1regaddr); phba->work_status[1] = readl(phba->sli4_hba.u.if_type2. ERR2regaddr); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2888 Unrecoverable port error " "following POST: port status reg " "0x%x, port_smphr reg 0x%x, " "error 1=0x%x, error 2=0x%x\n", reg_data.word0, portsmphr_reg.word0, phba->work_status[0], phba->work_status[1]); port_error = -ENODEV; break; } if (lpfc_pldv_detect && bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == LPFC_SLI_INTF_FAMILY_G6) pci_write_config_byte(phba->pcidev, LPFC_SLI_INTF, CFG_PLD); break; case LPFC_SLI_INTF_IF_TYPE_1: default: break; } } return port_error; } /** * lpfc_sli4_bar0_register_memmap - Set up SLI4 BAR0 register memory map. * @phba: pointer to lpfc hba data structure. * @if_type: The SLI4 interface type getting configured. * * This routine is invoked to set up SLI4 BAR0 PCI config space register * memory map. **/ static void lpfc_sli4_bar0_register_memmap(struct lpfc_hba *phba, uint32_t if_type) { switch (if_type) { case LPFC_SLI_INTF_IF_TYPE_0: phba->sli4_hba.u.if_type0.UERRLOregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_LO; phba->sli4_hba.u.if_type0.UERRHIregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_UERR_STATUS_HI; phba->sli4_hba.u.if_type0.UEMASKLOregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_LO; phba->sli4_hba.u.if_type0.UEMASKHIregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_UE_MASK_HI; phba->sli4_hba.SLIINTFregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; break; case LPFC_SLI_INTF_IF_TYPE_2: phba->sli4_hba.u.if_type2.EQDregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_EQ_DELAY_OFFSET; phba->sli4_hba.u.if_type2.ERR1regaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_ER1_OFFSET; phba->sli4_hba.u.if_type2.ERR2regaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_ER2_OFFSET; phba->sli4_hba.u.if_type2.CTRLregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_CTL_OFFSET; phba->sli4_hba.u.if_type2.STATUSregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_STA_OFFSET; phba->sli4_hba.SLIINTFregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_SLI_INTF; phba->sli4_hba.PSMPHRregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_SEM_OFFSET; phba->sli4_hba.RQDBregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_ULP0_RQ_DOORBELL; phba->sli4_hba.WQDBregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_ULP0_WQ_DOORBELL; phba->sli4_hba.CQDBregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_EQCQ_DOORBELL; phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; phba->sli4_hba.MQDBregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_MQ_DOORBELL; phba->sli4_hba.BMBXregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; break; case LPFC_SLI_INTF_IF_TYPE_6: phba->sli4_hba.u.if_type2.EQDregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_EQ_DELAY_OFFSET; phba->sli4_hba.u.if_type2.ERR1regaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_ER1_OFFSET; phba->sli4_hba.u.if_type2.ERR2regaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_ER2_OFFSET; phba->sli4_hba.u.if_type2.CTRLregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_CTL_OFFSET; phba->sli4_hba.u.if_type2.STATUSregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_STA_OFFSET; phba->sli4_hba.PSMPHRregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_CTL_PORT_SEM_OFFSET; phba->sli4_hba.BMBXregaddr = phba->sli4_hba.conf_regs_memmap_p + LPFC_BMBX; break; case LPFC_SLI_INTF_IF_TYPE_1: default: dev_printk(KERN_ERR, &phba->pcidev->dev, "FATAL - unsupported SLI4 interface type - %d\n", if_type); break; } } /** * lpfc_sli4_bar1_register_memmap - Set up SLI4 BAR1 register memory map. * @phba: pointer to lpfc hba data structure. * @if_type: sli if type to operate on. * * This routine is invoked to set up SLI4 BAR1 register memory map. **/ static void lpfc_sli4_bar1_register_memmap(struct lpfc_hba *phba, uint32_t if_type) { switch (if_type) { case LPFC_SLI_INTF_IF_TYPE_0: phba->sli4_hba.PSMPHRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + LPFC_SLIPORT_IF0_SMPHR; phba->sli4_hba.ISRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + LPFC_HST_ISR0; phba->sli4_hba.IMRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + LPFC_HST_IMR0; phba->sli4_hba.ISCRregaddr = phba->sli4_hba.ctrl_regs_memmap_p + LPFC_HST_ISCR0; break; case LPFC_SLI_INTF_IF_TYPE_6: phba->sli4_hba.RQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + LPFC_IF6_RQ_DOORBELL; phba->sli4_hba.WQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + LPFC_IF6_WQ_DOORBELL; phba->sli4_hba.CQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + LPFC_IF6_CQ_DOORBELL; phba->sli4_hba.EQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + LPFC_IF6_EQ_DOORBELL; phba->sli4_hba.MQDBregaddr = phba->sli4_hba.drbl_regs_memmap_p + LPFC_IF6_MQ_DOORBELL; break; case LPFC_SLI_INTF_IF_TYPE_2: case LPFC_SLI_INTF_IF_TYPE_1: default: dev_err(&phba->pcidev->dev, "FATAL - unsupported SLI4 interface type - %d\n", if_type); break; } } /** * lpfc_sli4_bar2_register_memmap - Set up SLI4 BAR2 register memory map. * @phba: pointer to lpfc hba data structure. * @vf: virtual function number * * This routine is invoked to set up SLI4 BAR2 doorbell register memory map * based on the given viftual function number, @vf. * * Return 0 if successful, otherwise -ENODEV. **/ static int lpfc_sli4_bar2_register_memmap(struct lpfc_hba *phba, uint32_t vf) { if (vf > LPFC_VIR_FUNC_MAX) return -ENODEV; phba->sli4_hba.RQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + vf * LPFC_VFR_PAGE_SIZE + LPFC_ULP0_RQ_DOORBELL); phba->sli4_hba.WQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + vf * LPFC_VFR_PAGE_SIZE + LPFC_ULP0_WQ_DOORBELL); phba->sli4_hba.CQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + vf * LPFC_VFR_PAGE_SIZE + LPFC_EQCQ_DOORBELL); phba->sli4_hba.EQDBregaddr = phba->sli4_hba.CQDBregaddr; phba->sli4_hba.MQDBregaddr = (phba->sli4_hba.drbl_regs_memmap_p + vf * LPFC_VFR_PAGE_SIZE + LPFC_MQ_DOORBELL); phba->sli4_hba.BMBXregaddr = (phba->sli4_hba.drbl_regs_memmap_p + vf * LPFC_VFR_PAGE_SIZE + LPFC_BMBX); return 0; } /** * lpfc_create_bootstrap_mbox - Create the bootstrap mailbox * @phba: pointer to lpfc hba data structure. * * This routine is invoked to create the bootstrap mailbox * region consistent with the SLI-4 interface spec. This * routine allocates all memory necessary to communicate * mailbox commands to the port and sets up all alignment * needs. No locks are expected to be held when calling * this routine. * * Return codes * 0 - successful * -ENOMEM - could not allocated memory. **/ static int lpfc_create_bootstrap_mbox(struct lpfc_hba *phba) { uint32_t bmbx_size; struct lpfc_dmabuf *dmabuf; struct dma_address *dma_address; uint32_t pa_addr; uint64_t phys_addr; dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); if (!dmabuf) return -ENOMEM; /* * The bootstrap mailbox region is comprised of 2 parts * plus an alignment restriction of 16 bytes. */ bmbx_size = sizeof(struct lpfc_bmbx_create) + (LPFC_ALIGN_16_BYTE - 1); dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, bmbx_size, &dmabuf->phys, GFP_KERNEL); if (!dmabuf->virt) { kfree(dmabuf); return -ENOMEM; } /* * Initialize the bootstrap mailbox pointers now so that the register * operations are simple later. The mailbox dma address is required * to be 16-byte aligned. Also align the virtual memory as each * maibox is copied into the bmbx mailbox region before issuing the * command to the port. */ phba->sli4_hba.bmbx.dmabuf = dmabuf; phba->sli4_hba.bmbx.bmbx_size = bmbx_size; phba->sli4_hba.bmbx.avirt = PTR_ALIGN(dmabuf->virt, LPFC_ALIGN_16_BYTE); phba->sli4_hba.bmbx.aphys = ALIGN(dmabuf->phys, LPFC_ALIGN_16_BYTE); /* * Set the high and low physical addresses now. The SLI4 alignment * requirement is 16 bytes and the mailbox is posted to the port * as two 30-bit addresses. The other data is a bit marking whether * the 30-bit address is the high or low address. * Upcast bmbx aphys to 64bits so shift instruction compiles * clean on 32 bit machines. */ dma_address = &phba->sli4_hba.bmbx.dma_address; phys_addr = (uint64_t)phba->sli4_hba.bmbx.aphys; pa_addr = (uint32_t) ((phys_addr >> 34) & 0x3fffffff); dma_address->addr_hi = (uint32_t) ((pa_addr << 2) | LPFC_BMBX_BIT1_ADDR_HI); pa_addr = (uint32_t) ((phba->sli4_hba.bmbx.aphys >> 4) & 0x3fffffff); dma_address->addr_lo = (uint32_t) ((pa_addr << 2) | LPFC_BMBX_BIT1_ADDR_LO); return 0; } /** * lpfc_destroy_bootstrap_mbox - Destroy all bootstrap mailbox resources * @phba: pointer to lpfc hba data structure. * * This routine is invoked to teardown the bootstrap mailbox * region and release all host resources. This routine requires * the caller to ensure all mailbox commands recovered, no * additional mailbox comands are sent, and interrupts are disabled * before calling this routine. * **/ static void lpfc_destroy_bootstrap_mbox(struct lpfc_hba *phba) { dma_free_coherent(&phba->pcidev->dev, phba->sli4_hba.bmbx.bmbx_size, phba->sli4_hba.bmbx.dmabuf->virt, phba->sli4_hba.bmbx.dmabuf->phys); kfree(phba->sli4_hba.bmbx.dmabuf); memset(&phba->sli4_hba.bmbx, 0, sizeof(struct lpfc_bmbx)); } static const char * const lpfc_topo_to_str[] = { "Loop then P2P", "Loopback", "P2P Only", "Unsupported", "Loop Only", "Unsupported", "P2P then Loop", }; #define LINK_FLAGS_DEF 0x0 #define LINK_FLAGS_P2P 0x1 #define LINK_FLAGS_LOOP 0x2 /** * lpfc_map_topology - Map the topology read from READ_CONFIG * @phba: pointer to lpfc hba data structure. * @rd_config: pointer to read config data * * This routine is invoked to map the topology values as read * from the read config mailbox command. If the persistent * topology feature is supported, the firmware will provide the * saved topology information to be used in INIT_LINK **/ static void lpfc_map_topology(struct lpfc_hba *phba, struct lpfc_mbx_read_config *rd_config) { u8 ptv, tf, pt; ptv = bf_get(lpfc_mbx_rd_conf_ptv, rd_config); tf = bf_get(lpfc_mbx_rd_conf_tf, rd_config); pt = bf_get(lpfc_mbx_rd_conf_pt, rd_config); lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "2027 Read Config Data : ptv:0x%x, tf:0x%x pt:0x%x", ptv, tf, pt); if (!ptv) { lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "2019 FW does not support persistent topology " "Using driver parameter defined value [%s]", lpfc_topo_to_str[phba->cfg_topology]); return; } /* FW supports persistent topology - override module parameter value */ set_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag); /* if ASIC_GEN_NUM >= 0xC) */ if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == LPFC_SLI_INTF_IF_TYPE_6) || (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == LPFC_SLI_INTF_FAMILY_G6)) { if (!tf) phba->cfg_topology = ((pt == LINK_FLAGS_LOOP) ? FLAGS_TOPOLOGY_MODE_LOOP : FLAGS_TOPOLOGY_MODE_PT_PT); else clear_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag); } else { /* G5 */ if (tf) /* If topology failover set - pt is '0' or '1' */ phba->cfg_topology = (pt ? FLAGS_TOPOLOGY_MODE_PT_LOOP : FLAGS_TOPOLOGY_MODE_LOOP_PT); else phba->cfg_topology = ((pt == LINK_FLAGS_P2P) ? FLAGS_TOPOLOGY_MODE_PT_PT : FLAGS_TOPOLOGY_MODE_LOOP); } if (test_bit(HBA_PERSISTENT_TOPO, &phba->hba_flag)) lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "2020 Using persistent topology value [%s]", lpfc_topo_to_str[phba->cfg_topology]); else lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "2021 Invalid topology values from FW " "Using driver parameter defined value [%s]", lpfc_topo_to_str[phba->cfg_topology]); } /** * lpfc_sli4_read_config - Get the config parameters. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to read the configuration parameters from the HBA. * The configuration parameters are used to set the base and maximum values * for RPI's XRI's VPI's VFI's and FCFIs. These values also affect the resource * allocation for the port. * * Return codes * 0 - successful * -ENOMEM - No available memory * -EIO - The mailbox failed to complete successfully. **/ int lpfc_sli4_read_config(struct lpfc_hba *phba) { LPFC_MBOXQ_t *pmb; struct lpfc_mbx_read_config *rd_config; union lpfc_sli4_cfg_shdr *shdr; uint32_t shdr_status, shdr_add_status; struct lpfc_mbx_get_func_cfg *get_func_cfg; struct lpfc_rsrc_desc_fcfcoe *desc; char *pdesc_0; uint16_t forced_link_speed; uint32_t if_type, qmin, fawwpn; int length, i, rc = 0, rc2; pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2011 Unable to allocate memory for issuing " "SLI_CONFIG_SPECIAL mailbox command\n"); return -ENOMEM; } lpfc_read_config(phba, pmb); rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2012 Mailbox failed , mbxCmd x%x " "READ_CONFIG, mbxStatus x%x\n", bf_get(lpfc_mqe_command, &pmb->u.mqe), bf_get(lpfc_mqe_status, &pmb->u.mqe)); rc = -EIO; } else { rd_config = &pmb->u.mqe.un.rd_config; if (bf_get(lpfc_mbx_rd_conf_lnk_ldv, rd_config)) { phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL; phba->sli4_hba.lnk_info.lnk_tp = bf_get(lpfc_mbx_rd_conf_lnk_type, rd_config); phba->sli4_hba.lnk_info.lnk_no = bf_get(lpfc_mbx_rd_conf_lnk_numb, rd_config); lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3081 lnk_type:%d, lnk_numb:%d\n", phba->sli4_hba.lnk_info.lnk_tp, phba->sli4_hba.lnk_info.lnk_no); } else lpfc_printf_log(phba, KERN_WARNING, LOG_SLI, "3082 Mailbox (x%x) returned ldv:x0\n", bf_get(lpfc_mqe_command, &pmb->u.mqe)); if (bf_get(lpfc_mbx_rd_conf_bbscn_def, rd_config)) { phba->bbcredit_support = 1; phba->sli4_hba.bbscn_params.word0 = rd_config->word8; } fawwpn = bf_get(lpfc_mbx_rd_conf_fawwpn, rd_config); if (fawwpn) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_DISCOVERY, "2702 READ_CONFIG: FA-PWWN is " "configured on\n"); phba->sli4_hba.fawwpn_flag |= LPFC_FAWWPN_CONFIG; } else { /* Clear FW configured flag, preserve driver flag */ phba->sli4_hba.fawwpn_flag &= ~LPFC_FAWWPN_CONFIG; } phba->sli4_hba.conf_trunk = bf_get(lpfc_mbx_rd_conf_trunk, rd_config); phba->sli4_hba.extents_in_use = bf_get(lpfc_mbx_rd_conf_extnts_inuse, rd_config); phba->sli4_hba.max_cfg_param.max_xri = bf_get(lpfc_mbx_rd_conf_xri_count, rd_config); /* Reduce resource usage in kdump environment */ if (is_kdump_kernel() && phba->sli4_hba.max_cfg_param.max_xri > 512) phba->sli4_hba.max_cfg_param.max_xri = 512; phba->sli4_hba.max_cfg_param.xri_base = bf_get(lpfc_mbx_rd_conf_xri_base, rd_config); phba->sli4_hba.max_cfg_param.max_vpi = bf_get(lpfc_mbx_rd_conf_vpi_count, rd_config); /* Limit the max we support */ if (phba->sli4_hba.max_cfg_param.max_vpi > LPFC_MAX_VPORTS) phba->sli4_hba.max_cfg_param.max_vpi = LPFC_MAX_VPORTS; phba->sli4_hba.max_cfg_param.vpi_base = bf_get(lpfc_mbx_rd_conf_vpi_base, rd_config); phba->sli4_hba.max_cfg_param.max_rpi = bf_get(lpfc_mbx_rd_conf_rpi_count, rd_config); phba->sli4_hba.max_cfg_param.rpi_base = bf_get(lpfc_mbx_rd_conf_rpi_base, rd_config); phba->sli4_hba.max_cfg_param.max_vfi = bf_get(lpfc_mbx_rd_conf_vfi_count, rd_config); phba->sli4_hba.max_cfg_param.vfi_base = bf_get(lpfc_mbx_rd_conf_vfi_base, rd_config); phba->sli4_hba.max_cfg_param.max_fcfi = bf_get(lpfc_mbx_rd_conf_fcfi_count, rd_config); phba->sli4_hba.max_cfg_param.max_eq = bf_get(lpfc_mbx_rd_conf_eq_count, rd_config); phba->sli4_hba.max_cfg_param.max_rq = bf_get(lpfc_mbx_rd_conf_rq_count, rd_config); phba->sli4_hba.max_cfg_param.max_wq = bf_get(lpfc_mbx_rd_conf_wq_count, rd_config); phba->sli4_hba.max_cfg_param.max_cq = bf_get(lpfc_mbx_rd_conf_cq_count, rd_config); phba->lmt = bf_get(lpfc_mbx_rd_conf_lmt, rd_config); phba->sli4_hba.next_xri = phba->sli4_hba.max_cfg_param.xri_base; phba->vpi_base = phba->sli4_hba.max_cfg_param.vpi_base; phba->vfi_base = phba->sli4_hba.max_cfg_param.vfi_base; phba->max_vpi = (phba->sli4_hba.max_cfg_param.max_vpi > 0) ? (phba->sli4_hba.max_cfg_param.max_vpi - 1) : 0; phba->max_vports = phba->max_vpi; /* Next decide on FPIN or Signal E2E CGN support * For congestion alarms and warnings valid combination are: * 1. FPIN alarms / FPIN warnings * 2. Signal alarms / Signal warnings * 3. FPIN alarms / Signal warnings * 4. Signal alarms / FPIN warnings * * Initialize the adapter frequency to 100 mSecs */ phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; phba->cgn_sig_freq = lpfc_fabric_cgn_frequency; if (lpfc_use_cgn_signal) { if (bf_get(lpfc_mbx_rd_conf_wcs, rd_config)) { phba->cgn_reg_signal = EDC_CG_SIG_WARN_ONLY; phba->cgn_reg_fpin &= ~LPFC_CGN_FPIN_WARN; } if (bf_get(lpfc_mbx_rd_conf_acs, rd_config)) { /* MUST support both alarm and warning * because EDC does not support alarm alone. */ if (phba->cgn_reg_signal != EDC_CG_SIG_WARN_ONLY) { /* Must support both or none */ phba->cgn_reg_fpin = LPFC_CGN_FPIN_BOTH; phba->cgn_reg_signal = EDC_CG_SIG_NOTSUPPORTED; } else { phba->cgn_reg_signal = EDC_CG_SIG_WARN_ALARM; phba->cgn_reg_fpin = LPFC_CGN_FPIN_NONE; } } } /* Set the congestion initial signal and fpin values. */ phba->cgn_init_reg_fpin = phba->cgn_reg_fpin; phba->cgn_init_reg_signal = phba->cgn_reg_signal; lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6446 READ_CONFIG reg_sig x%x reg_fpin:x%x\n", phba->cgn_reg_signal, phba->cgn_reg_fpin); lpfc_map_topology(phba, rd_config); lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "2003 cfg params Extents? %d " "XRI(B:%d M:%d), " "VPI(B:%d M:%d) " "VFI(B:%d M:%d) " "RPI(B:%d M:%d) " "FCFI:%d EQ:%d CQ:%d WQ:%d RQ:%d lmt:x%x\n", phba->sli4_hba.extents_in_use, phba->sli4_hba.max_cfg_param.xri_base, phba->sli4_hba.max_cfg_param.max_xri, phba->sli4_hba.max_cfg_param.vpi_base, phba->sli4_hba.max_cfg_param.max_vpi, phba->sli4_hba.max_cfg_param.vfi_base, phba->sli4_hba.max_cfg_param.max_vfi, phba->sli4_hba.max_cfg_param.rpi_base, phba->sli4_hba.max_cfg_param.max_rpi, phba->sli4_hba.max_cfg_param.max_fcfi, phba->sli4_hba.max_cfg_param.max_eq, phba->sli4_hba.max_cfg_param.max_cq, phba->sli4_hba.max_cfg_param.max_wq, phba->sli4_hba.max_cfg_param.max_rq, phba->lmt); /* * Calculate queue resources based on how * many WQ/CQ/EQs are available. */ qmin = phba->sli4_hba.max_cfg_param.max_wq; if (phba->sli4_hba.max_cfg_param.max_cq < qmin) qmin = phba->sli4_hba.max_cfg_param.max_cq; /* * Reserve 4 (ELS, NVME LS, MBOX, plus one extra) and * the remainder can be used for NVME / FCP. */ qmin -= 4; if (phba->sli4_hba.max_cfg_param.max_eq < qmin) qmin = phba->sli4_hba.max_cfg_param.max_eq; /* Check to see if there is enough for default cfg */ if ((phba->cfg_irq_chann > qmin) || (phba->cfg_hdw_queue > qmin)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2005 Reducing Queues - " "FW resource limitation: " "WQ %d CQ %d EQ %d: min %d: " "IRQ %d HDWQ %d\n", phba->sli4_hba.max_cfg_param.max_wq, phba->sli4_hba.max_cfg_param.max_cq, phba->sli4_hba.max_cfg_param.max_eq, qmin, phba->cfg_irq_chann, phba->cfg_hdw_queue); if (phba->cfg_irq_chann > qmin) phba->cfg_irq_chann = qmin; if (phba->cfg_hdw_queue > qmin) phba->cfg_hdw_queue = qmin; } } if (rc) goto read_cfg_out; /* Update link speed if forced link speed is supported */ if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { forced_link_speed = bf_get(lpfc_mbx_rd_conf_link_speed, rd_config); if (forced_link_speed) { set_bit(HBA_FORCED_LINK_SPEED, &phba->hba_flag); switch (forced_link_speed) { case LINK_SPEED_1G: phba->cfg_link_speed = LPFC_USER_LINK_SPEED_1G; break; case LINK_SPEED_2G: phba->cfg_link_speed = LPFC_USER_LINK_SPEED_2G; break; case LINK_SPEED_4G: phba->cfg_link_speed = LPFC_USER_LINK_SPEED_4G; break; case LINK_SPEED_8G: phba->cfg_link_speed = LPFC_USER_LINK_SPEED_8G; break; case LINK_SPEED_10G: phba->cfg_link_speed = LPFC_USER_LINK_SPEED_10G; break; case LINK_SPEED_16G: phba->cfg_link_speed = LPFC_USER_LINK_SPEED_16G; break; case LINK_SPEED_32G: phba->cfg_link_speed = LPFC_USER_LINK_SPEED_32G; break; case LINK_SPEED_64G: phba->cfg_link_speed = LPFC_USER_LINK_SPEED_64G; break; case 0xffff: phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO; break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0047 Unrecognized link " "speed : %d\n", forced_link_speed); phba->cfg_link_speed = LPFC_USER_LINK_SPEED_AUTO; } } } /* Reset the DFT_HBA_Q_DEPTH to the max xri */ length = phba->sli4_hba.max_cfg_param.max_xri - lpfc_sli4_get_els_iocb_cnt(phba); if (phba->cfg_hba_queue_depth > length) { lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "3361 HBA queue depth changed from %d to %d\n", phba->cfg_hba_queue_depth, length); phba->cfg_hba_queue_depth = length; } if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < LPFC_SLI_INTF_IF_TYPE_2) goto read_cfg_out; /* get the pf# and vf# for SLI4 if_type 2 port */ length = (sizeof(struct lpfc_mbx_get_func_cfg) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, pmb, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_GET_FUNCTION_CONFIG, length, LPFC_SLI4_MBX_EMBED); rc2 = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); shdr = (union lpfc_sli4_cfg_shdr *) &pmb->u.mqe.un.sli4_config.header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (rc2 || shdr_status || shdr_add_status) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3026 Mailbox failed , mbxCmd x%x " "GET_FUNCTION_CONFIG, mbxStatus x%x\n", bf_get(lpfc_mqe_command, &pmb->u.mqe), bf_get(lpfc_mqe_status, &pmb->u.mqe)); goto read_cfg_out; } /* search for fc_fcoe resrouce descriptor */ get_func_cfg = &pmb->u.mqe.un.get_func_cfg; pdesc_0 = (char *)&get_func_cfg->func_cfg.desc[0]; desc = (struct lpfc_rsrc_desc_fcfcoe *)pdesc_0; length = bf_get(lpfc_rsrc_desc_fcfcoe_length, desc); if (length == LPFC_RSRC_DESC_TYPE_FCFCOE_V0_RSVD) length = LPFC_RSRC_DESC_TYPE_FCFCOE_V0_LENGTH; else if (length != LPFC_RSRC_DESC_TYPE_FCFCOE_V1_LENGTH) goto read_cfg_out; for (i = 0; i < LPFC_RSRC_DESC_MAX_NUM; i++) { desc = (struct lpfc_rsrc_desc_fcfcoe *)(pdesc_0 + length * i); if (LPFC_RSRC_DESC_TYPE_FCFCOE == bf_get(lpfc_rsrc_desc_fcfcoe_type, desc)) { phba->sli4_hba.iov.pf_number = bf_get(lpfc_rsrc_desc_fcfcoe_pfnum, desc); phba->sli4_hba.iov.vf_number = bf_get(lpfc_rsrc_desc_fcfcoe_vfnum, desc); break; } } if (i < LPFC_RSRC_DESC_MAX_NUM) lpfc_printf_log(phba, KERN_INFO, LOG_SLI, "3027 GET_FUNCTION_CONFIG: pf_number:%d, " "vf_number:%d\n", phba->sli4_hba.iov.pf_number, phba->sli4_hba.iov.vf_number); else lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3028 GET_FUNCTION_CONFIG: failed to find " "Resource Descriptor:x%x\n", LPFC_RSRC_DESC_TYPE_FCFCOE); read_cfg_out: mempool_free(pmb, phba->mbox_mem_pool); return rc; } /** * lpfc_setup_endian_order - Write endian order to an SLI4 if_type 0 port. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to setup the port-side endian order when * the port if_type is 0. This routine has no function for other * if_types. * * Return codes * 0 - successful * -ENOMEM - No available memory * -EIO - The mailbox failed to complete successfully. **/ static int lpfc_setup_endian_order(struct lpfc_hba *phba) { LPFC_MBOXQ_t *mboxq; uint32_t if_type, rc = 0; uint32_t endian_mb_data[2] = {HOST_ENDIAN_LOW_WORD0, HOST_ENDIAN_HIGH_WORD1}; if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); switch (if_type) { case LPFC_SLI_INTF_IF_TYPE_0: mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0492 Unable to allocate memory for " "issuing SLI_CONFIG_SPECIAL mailbox " "command\n"); return -ENOMEM; } /* * The SLI4_CONFIG_SPECIAL mailbox command requires the first * two words to contain special data values and no other data. */ memset(mboxq, 0, sizeof(LPFC_MBOXQ_t)); memcpy(&mboxq->u.mqe, &endian_mb_data, sizeof(endian_mb_data)); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0493 SLI_CONFIG_SPECIAL mailbox " "failed with status x%x\n", rc); rc = -EIO; } mempool_free(mboxq, phba->mbox_mem_pool); break; case LPFC_SLI_INTF_IF_TYPE_6: case LPFC_SLI_INTF_IF_TYPE_2: case LPFC_SLI_INTF_IF_TYPE_1: default: break; } return rc; } /** * lpfc_sli4_queue_verify - Verify and update EQ counts * @phba: pointer to lpfc hba data structure. * * This routine is invoked to check the user settable queue counts for EQs. * After this routine is called the counts will be set to valid values that * adhere to the constraints of the system's interrupt vectors and the port's * queue resources. * * Return codes * 0 - successful * -ENOMEM - No available memory **/ static int lpfc_sli4_queue_verify(struct lpfc_hba *phba) { /* * Sanity check for configured queue parameters against the run-time * device parameters */ if (phba->nvmet_support) { if (phba->cfg_hdw_queue < phba->cfg_nvmet_mrq) phba->cfg_nvmet_mrq = phba->cfg_hdw_queue; if (phba->cfg_nvmet_mrq > LPFC_NVMET_MRQ_MAX) phba->cfg_nvmet_mrq = LPFC_NVMET_MRQ_MAX; } lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "2574 IO channels: hdwQ %d IRQ %d MRQ: %d\n", phba->cfg_hdw_queue, phba->cfg_irq_chann, phba->cfg_nvmet_mrq); /* Get EQ depth from module parameter, fake the default for now */ phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; /* Get CQ depth from module parameter, fake the default for now */ phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; return 0; } static int lpfc_alloc_io_wq_cq(struct lpfc_hba *phba, int idx) { struct lpfc_queue *qdesc; u32 wqesize; int cpu; cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ); /* Create Fast Path IO CQs */ if (phba->enab_exp_wqcq_pages) /* Increase the CQ size when WQEs contain an embedded cdb */ qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, phba->sli4_hba.cq_esize, LPFC_CQE_EXP_COUNT, cpu); else qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, phba->sli4_hba.cq_esize, phba->sli4_hba.cq_ecount, cpu); if (!qdesc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0499 Failed allocate fast-path IO CQ (%d)\n", idx); return 1; } qdesc->qe_valid = 1; qdesc->hdwq = idx; qdesc->chann = cpu; phba->sli4_hba.hdwq[idx].io_cq = qdesc; /* Create Fast Path IO WQs */ if (phba->enab_exp_wqcq_pages) { /* Increase the WQ size when WQEs contain an embedded cdb */ wqesize = (phba->fcp_embed_io) ? LPFC_WQE128_SIZE : phba->sli4_hba.wq_esize; qdesc = lpfc_sli4_queue_alloc(phba, LPFC_EXPANDED_PAGE_SIZE, wqesize, LPFC_WQE_EXP_COUNT, cpu); } else qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, phba->sli4_hba.wq_esize, phba->sli4_hba.wq_ecount, cpu); if (!qdesc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0503 Failed allocate fast-path IO WQ (%d)\n", idx); return 1; } qdesc->hdwq = idx; qdesc->chann = cpu; phba->sli4_hba.hdwq[idx].io_wq = qdesc; list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); return 0; } /** * lpfc_sli4_queue_create - Create all the SLI4 queues * @phba: pointer to lpfc hba data structure. * * This routine is invoked to allocate all the SLI4 queues for the FCoE HBA * operation. For each SLI4 queue type, the parameters such as queue entry * count (queue depth) shall be taken from the module parameter. For now, * we just use some constant number as place holder. * * Return codes * 0 - successful * -ENOMEM - No availble memory * -EIO - The mailbox failed to complete successfully. **/ int lpfc_sli4_queue_create(struct lpfc_hba *phba) { struct lpfc_queue *qdesc; int idx, cpu, eqcpu; struct lpfc_sli4_hdw_queue *qp; struct lpfc_vector_map_info *cpup; struct lpfc_vector_map_info *eqcpup; struct lpfc_eq_intr_info *eqi; /* * Create HBA Record arrays. * Both NVME and FCP will share that same vectors / EQs */ phba->sli4_hba.mq_esize = LPFC_MQE_SIZE; phba->sli4_hba.mq_ecount = LPFC_MQE_DEF_COUNT; phba->sli4_hba.wq_esize = LPFC_WQE_SIZE; phba->sli4_hba.wq_ecount = LPFC_WQE_DEF_COUNT; phba->sli4_hba.rq_esize = LPFC_RQE_SIZE; phba->sli4_hba.rq_ecount = LPFC_RQE_DEF_COUNT; phba->sli4_hba.eq_esize = LPFC_EQE_SIZE_4B; phba->sli4_hba.eq_ecount = LPFC_EQE_DEF_COUNT; phba->sli4_hba.cq_esize = LPFC_CQE_SIZE; phba->sli4_hba.cq_ecount = LPFC_CQE_DEF_COUNT; if (!phba->sli4_hba.hdwq) { phba->sli4_hba.hdwq = kcalloc( phba->cfg_hdw_queue, sizeof(struct lpfc_sli4_hdw_queue), GFP_KERNEL); if (!phba->sli4_hba.hdwq) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6427 Failed allocate memory for " "fast-path Hardware Queue array\n"); goto out_error; } /* Prepare hardware queues to take IO buffers */ for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { qp = &phba->sli4_hba.hdwq[idx]; spin_lock_init(&qp->io_buf_list_get_lock); spin_lock_init(&qp->io_buf_list_put_lock); INIT_LIST_HEAD(&qp->lpfc_io_buf_list_get); INIT_LIST_HEAD(&qp->lpfc_io_buf_list_put); qp->get_io_bufs = 0; qp->put_io_bufs = 0; qp->total_io_bufs = 0; spin_lock_init(&qp->abts_io_buf_list_lock); INIT_LIST_HEAD(&qp->lpfc_abts_io_buf_list); qp->abts_scsi_io_bufs = 0; qp->abts_nvme_io_bufs = 0; INIT_LIST_HEAD(&qp->sgl_list); INIT_LIST_HEAD(&qp->cmd_rsp_buf_list); spin_lock_init(&qp->hdwq_lock); } } if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { if (phba->nvmet_support) { phba->sli4_hba.nvmet_cqset = kcalloc( phba->cfg_nvmet_mrq, sizeof(struct lpfc_queue *), GFP_KERNEL); if (!phba->sli4_hba.nvmet_cqset) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3121 Fail allocate memory for " "fast-path CQ set array\n"); goto out_error; } phba->sli4_hba.nvmet_mrq_hdr = kcalloc( phba->cfg_nvmet_mrq, sizeof(struct lpfc_queue *), GFP_KERNEL); if (!phba->sli4_hba.nvmet_mrq_hdr) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3122 Fail allocate memory for " "fast-path RQ set hdr array\n"); goto out_error; } phba->sli4_hba.nvmet_mrq_data = kcalloc( phba->cfg_nvmet_mrq, sizeof(struct lpfc_queue *), GFP_KERNEL); if (!phba->sli4_hba.nvmet_mrq_data) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3124 Fail allocate memory for " "fast-path RQ set data array\n"); goto out_error; } } } INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); /* Create HBA Event Queues (EQs) */ for_each_present_cpu(cpu) { /* We only want to create 1 EQ per vector, even though * multiple CPUs might be using that vector. so only * selects the CPUs that are LPFC_CPU_FIRST_IRQ. */ cpup = &phba->sli4_hba.cpu_map[cpu]; if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) continue; /* Get a ptr to the Hardware Queue associated with this CPU */ qp = &phba->sli4_hba.hdwq[cpup->hdwq]; /* Allocate an EQ */ qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, phba->sli4_hba.eq_esize, phba->sli4_hba.eq_ecount, cpu); if (!qdesc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0497 Failed allocate EQ (%d)\n", cpup->hdwq); goto out_error; } qdesc->qe_valid = 1; qdesc->hdwq = cpup->hdwq; qdesc->chann = cpu; /* First CPU this EQ is affinitized to */ qdesc->last_cpu = qdesc->chann; /* Save the allocated EQ in the Hardware Queue */ qp->hba_eq = qdesc; eqi = per_cpu_ptr(phba->sli4_hba.eq_info, qdesc->last_cpu); list_add(&qdesc->cpu_list, &eqi->list); } /* Now we need to populate the other Hardware Queues, that share * an IRQ vector, with the associated EQ ptr. */ for_each_present_cpu(cpu) { cpup = &phba->sli4_hba.cpu_map[cpu]; /* Check for EQ already allocated in previous loop */ if (cpup->flag & LPFC_CPU_FIRST_IRQ) continue; /* Check for multiple CPUs per hdwq */ qp = &phba->sli4_hba.hdwq[cpup->hdwq]; if (qp->hba_eq) continue; /* We need to share an EQ for this hdwq */ eqcpu = lpfc_find_cpu_handle(phba, cpup->eq, LPFC_FIND_BY_EQ); eqcpup = &phba->sli4_hba.cpu_map[eqcpu]; qp->hba_eq = phba->sli4_hba.hdwq[eqcpup->hdwq].hba_eq; } /* Allocate IO Path SLI4 CQ/WQs */ for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { if (lpfc_alloc_io_wq_cq(phba, idx)) goto out_error; } if (phba->nvmet_support) { for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ); qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, phba->sli4_hba.cq_esize, phba->sli4_hba.cq_ecount, cpu); if (!qdesc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3142 Failed allocate NVME " "CQ Set (%d)\n", idx); goto out_error; } qdesc->qe_valid = 1; qdesc->hdwq = idx; qdesc->chann = cpu; phba->sli4_hba.nvmet_cqset[idx] = qdesc; } } /* * Create Slow Path Completion Queues (CQs) */ cpu = lpfc_find_cpu_handle(phba, 0, LPFC_FIND_BY_EQ); /* Create slow-path Mailbox Command Complete Queue */ qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, phba->sli4_hba.cq_esize, phba->sli4_hba.cq_ecount, cpu); if (!qdesc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0500 Failed allocate slow-path mailbox CQ\n"); goto out_error; } qdesc->qe_valid = 1; phba->sli4_hba.mbx_cq = qdesc; /* Create slow-path ELS Complete Queue */ qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, phba->sli4_hba.cq_esize, phba->sli4_hba.cq_ecount, cpu); if (!qdesc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0501 Failed allocate slow-path ELS CQ\n"); goto out_error; } qdesc->qe_valid = 1; qdesc->chann = cpu; phba->sli4_hba.els_cq = qdesc; /* * Create Slow Path Work Queues (WQs) */ /* Create Mailbox Command Queue */ qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, phba->sli4_hba.mq_esize, phba->sli4_hba.mq_ecount, cpu); if (!qdesc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0505 Failed allocate slow-path MQ\n"); goto out_error; } qdesc->chann = cpu; phba->sli4_hba.mbx_wq = qdesc; /* * Create ELS Work Queues */ /* Create slow-path ELS Work Queue */ qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, phba->sli4_hba.wq_esize, phba->sli4_hba.wq_ecount, cpu); if (!qdesc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0504 Failed allocate slow-path ELS WQ\n"); goto out_error; } qdesc->chann = cpu; phba->sli4_hba.els_wq = qdesc; list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { /* Create NVME LS Complete Queue */ qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, phba->sli4_hba.cq_esize, phba->sli4_hba.cq_ecount, cpu); if (!qdesc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6079 Failed allocate NVME LS CQ\n"); goto out_error; } qdesc->chann = cpu; qdesc->qe_valid = 1; phba->sli4_hba.nvmels_cq = qdesc; /* Create NVME LS Work Queue */ qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, phba->sli4_hba.wq_esize, phba->sli4_hba.wq_ecount, cpu); if (!qdesc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6080 Failed allocate NVME LS WQ\n"); goto out_error; } qdesc->chann = cpu; phba->sli4_hba.nvmels_wq = qdesc; list_add_tail(&qdesc->wq_list, &phba->sli4_hba.lpfc_wq_list); } /* * Create Receive Queue (RQ) */ /* Create Receive Queue for header */ qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, phba->sli4_hba.rq_esize, phba->sli4_hba.rq_ecount, cpu); if (!qdesc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0506 Failed allocate receive HRQ\n"); goto out_error; } phba->sli4_hba.hdr_rq = qdesc; /* Create Receive Queue for data */ qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, phba->sli4_hba.rq_esize, phba->sli4_hba.rq_ecount, cpu); if (!qdesc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0507 Failed allocate receive DRQ\n"); goto out_error; } phba->sli4_hba.dat_rq = qdesc; if ((phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) && phba->nvmet_support) { for (idx = 0; idx < phba->cfg_nvmet_mrq; idx++) { cpu = lpfc_find_cpu_handle(phba, idx, LPFC_FIND_BY_HDWQ); /* Create NVMET Receive Queue for header */ qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, phba->sli4_hba.rq_esize, LPFC_NVMET_RQE_DEF_COUNT, cpu); if (!qdesc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3146 Failed allocate " "receive HRQ\n"); goto out_error; } qdesc->hdwq = idx; phba->sli4_hba.nvmet_mrq_hdr[idx] = qdesc; /* Only needed for header of RQ pair */ qdesc->rqbp = kzalloc_node(sizeof(*qdesc->rqbp), GFP_KERNEL, cpu_to_node(cpu)); if (qdesc->rqbp == NULL) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6131 Failed allocate " "Header RQBP\n"); goto out_error; } /* Put list in known state in case driver load fails. */ INIT_LIST_HEAD(&qdesc->rqbp->rqb_buffer_list); /* Create NVMET Receive Queue for data */ qdesc = lpfc_sli4_queue_alloc(phba, LPFC_DEFAULT_PAGE_SIZE, phba->sli4_hba.rq_esize, LPFC_NVMET_RQE_DEF_COUNT, cpu); if (!qdesc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3156 Failed allocate " "receive DRQ\n"); goto out_error; } qdesc->hdwq = idx; phba->sli4_hba.nvmet_mrq_data[idx] = qdesc; } } /* Clear NVME stats */ if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { memset(&phba->sli4_hba.hdwq[idx].nvme_cstat, 0, sizeof(phba->sli4_hba.hdwq[idx].nvme_cstat)); } } /* Clear SCSI stats */ if (phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP) { for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { memset(&phba->sli4_hba.hdwq[idx].scsi_cstat, 0, sizeof(phba->sli4_hba.hdwq[idx].scsi_cstat)); } } return 0; out_error: lpfc_sli4_queue_destroy(phba); return -ENOMEM; } static inline void __lpfc_sli4_release_queue(struct lpfc_queue **qp) { if (*qp != NULL) { lpfc_sli4_queue_free(*qp); *qp = NULL; } } static inline void lpfc_sli4_release_queues(struct lpfc_queue ***qs, int max) { int idx; if (*qs == NULL) return; for (idx = 0; idx < max; idx++) __lpfc_sli4_release_queue(&(*qs)[idx]); kfree(*qs); *qs = NULL; } static inline void lpfc_sli4_release_hdwq(struct lpfc_hba *phba) { struct lpfc_sli4_hdw_queue *hdwq; struct lpfc_queue *eq; uint32_t idx; hdwq = phba->sli4_hba.hdwq; /* Loop thru all Hardware Queues */ for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { /* Free the CQ/WQ corresponding to the Hardware Queue */ lpfc_sli4_queue_free(hdwq[idx].io_cq); lpfc_sli4_queue_free(hdwq[idx].io_wq); hdwq[idx].hba_eq = NULL; hdwq[idx].io_cq = NULL; hdwq[idx].io_wq = NULL; if (phba->cfg_xpsgl && !phba->nvmet_support) lpfc_free_sgl_per_hdwq(phba, &hdwq[idx]); lpfc_free_cmd_rsp_buf_per_hdwq(phba, &hdwq[idx]); } /* Loop thru all IRQ vectors */ for (idx = 0; idx < phba->cfg_irq_chann; idx++) { /* Free the EQ corresponding to the IRQ vector */ eq = phba->sli4_hba.hba_eq_hdl[idx].eq; lpfc_sli4_queue_free(eq); phba->sli4_hba.hba_eq_hdl[idx].eq = NULL; } } /** * lpfc_sli4_queue_destroy - Destroy all the SLI4 queues * @phba: pointer to lpfc hba data structure. * * This routine is invoked to release all the SLI4 queues with the FCoE HBA * operation. * * Return codes * 0 - successful * -ENOMEM - No available memory * -EIO - The mailbox failed to complete successfully. **/ void lpfc_sli4_queue_destroy(struct lpfc_hba *phba) { /* * Set FREE_INIT before beginning to free the queues. * Wait until the users of queues to acknowledge to * release queues by clearing FREE_WAIT. */ spin_lock_irq(&phba->hbalock); phba->sli.sli_flag |= LPFC_QUEUE_FREE_INIT; while (phba->sli.sli_flag & LPFC_QUEUE_FREE_WAIT) { spin_unlock_irq(&phba->hbalock); msleep(20); spin_lock_irq(&phba->hbalock); } spin_unlock_irq(&phba->hbalock); lpfc_sli4_cleanup_poll_list(phba); /* Release HBA eqs */ if (phba->sli4_hba.hdwq) lpfc_sli4_release_hdwq(phba); if (phba->nvmet_support) { lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_cqset, phba->cfg_nvmet_mrq); lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_hdr, phba->cfg_nvmet_mrq); lpfc_sli4_release_queues(&phba->sli4_hba.nvmet_mrq_data, phba->cfg_nvmet_mrq); } /* Release mailbox command work queue */ __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_wq); /* Release ELS work queue */ __lpfc_sli4_release_queue(&phba->sli4_hba.els_wq); /* Release ELS work queue */ __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_wq); /* Release unsolicited receive queue */ __lpfc_sli4_release_queue(&phba->sli4_hba.hdr_rq); __lpfc_sli4_release_queue(&phba->sli4_hba.dat_rq); /* Release ELS complete queue */ __lpfc_sli4_release_queue(&phba->sli4_hba.els_cq); /* Release NVME LS complete queue */ __lpfc_sli4_release_queue(&phba->sli4_hba.nvmels_cq); /* Release mailbox command complete queue */ __lpfc_sli4_release_queue(&phba->sli4_hba.mbx_cq); /* Everything on this list has been freed */ INIT_LIST_HEAD(&phba->sli4_hba.lpfc_wq_list); /* Done with freeing the queues */ spin_lock_irq(&phba->hbalock); phba->sli.sli_flag &= ~LPFC_QUEUE_FREE_INIT; spin_unlock_irq(&phba->hbalock); } int lpfc_free_rq_buffer(struct lpfc_hba *phba, struct lpfc_queue *rq) { struct lpfc_rqb *rqbp; struct lpfc_dmabuf *h_buf; struct rqb_dmabuf *rqb_buffer; rqbp = rq->rqbp; while (!list_empty(&rqbp->rqb_buffer_list)) { list_remove_head(&rqbp->rqb_buffer_list, h_buf, struct lpfc_dmabuf, list); rqb_buffer = container_of(h_buf, struct rqb_dmabuf, hbuf); (rqbp->rqb_free_buffer)(phba, rqb_buffer); rqbp->buffer_count--; } return 1; } static int lpfc_create_wq_cq(struct lpfc_hba *phba, struct lpfc_queue *eq, struct lpfc_queue *cq, struct lpfc_queue *wq, uint16_t *cq_map, int qidx, uint32_t qtype) { struct lpfc_sli_ring *pring; int rc; if (!eq || !cq || !wq) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6085 Fast-path %s (%d) not allocated\n", ((eq) ? ((cq) ? "WQ" : "CQ") : "EQ"), qidx); return -ENOMEM; } /* create the Cq first */ rc = lpfc_cq_create(phba, cq, eq, (qtype == LPFC_MBOX) ? LPFC_MCQ : LPFC_WCQ, qtype); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6086 Failed setup of CQ (%d), rc = 0x%x\n", qidx, (uint32_t)rc); return rc; } if (qtype != LPFC_MBOX) { /* Setup cq_map for fast lookup */ if (cq_map) *cq_map = cq->queue_id; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "6087 CQ setup: cq[%d]-id=%d, parent eq[%d]-id=%d\n", qidx, cq->queue_id, qidx, eq->queue_id); /* create the wq */ rc = lpfc_wq_create(phba, wq, cq, qtype); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "4618 Fail setup fastpath WQ (%d), rc = 0x%x\n", qidx, (uint32_t)rc); /* no need to tear down cq - caller will do so */ return rc; } /* Bind this CQ/WQ to the NVME ring */ pring = wq->pring; pring->sli.sli4.wqp = (void *)wq; cq->pring = pring; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2593 WQ setup: wq[%d]-id=%d assoc=%d, cq[%d]-id=%d\n", qidx, wq->queue_id, wq->assoc_qid, qidx, cq->queue_id); } else { rc = lpfc_mq_create(phba, wq, cq, LPFC_MBOX); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0539 Failed setup of slow-path MQ: " "rc = 0x%x\n", rc); /* no need to tear down cq - caller will do so */ return rc; } lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2589 MBX MQ setup: wq-id=%d, parent cq-id=%d\n", phba->sli4_hba.mbx_wq->queue_id, phba->sli4_hba.mbx_cq->queue_id); } return 0; } /** * lpfc_setup_cq_lookup - Setup the CQ lookup table * @phba: pointer to lpfc hba data structure. * * This routine will populate the cq_lookup table by all * available CQ queue_id's. **/ static void lpfc_setup_cq_lookup(struct lpfc_hba *phba) { struct lpfc_queue *eq, *childq; int qidx; memset(phba->sli4_hba.cq_lookup, 0, (sizeof(struct lpfc_queue *) * (phba->sli4_hba.cq_max + 1))); /* Loop thru all IRQ vectors */ for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { /* Get the EQ corresponding to the IRQ vector */ eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; if (!eq) continue; /* Loop through all CQs associated with that EQ */ list_for_each_entry(childq, &eq->child_list, list) { if (childq->queue_id > phba->sli4_hba.cq_max) continue; if (childq->subtype == LPFC_IO) phba->sli4_hba.cq_lookup[childq->queue_id] = childq; } } } /** * lpfc_sli4_queue_setup - Set up all the SLI4 queues * @phba: pointer to lpfc hba data structure. * * This routine is invoked to set up all the SLI4 queues for the FCoE HBA * operation. * * Return codes * 0 - successful * -ENOMEM - No available memory * -EIO - The mailbox failed to complete successfully. **/ int lpfc_sli4_queue_setup(struct lpfc_hba *phba) { uint32_t shdr_status, shdr_add_status; union lpfc_sli4_cfg_shdr *shdr; struct lpfc_vector_map_info *cpup; struct lpfc_sli4_hdw_queue *qp; LPFC_MBOXQ_t *mboxq; int qidx, cpu; uint32_t length, usdelay; int rc = -ENOMEM; /* Check for dual-ULP support */ mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3249 Unable to allocate memory for " "QUERY_FW_CFG mailbox command\n"); return -ENOMEM; } length = (sizeof(struct lpfc_mbx_query_fw_config) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_QUERY_FW_CFG, length, LPFC_SLI4_MBX_EMBED); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); shdr = (union lpfc_sli4_cfg_shdr *) &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3250 QUERY_FW_CFG mailbox failed with status " "x%x add_status x%x, mbx status x%x\n", shdr_status, shdr_add_status, rc); mempool_free(mboxq, phba->mbox_mem_pool); rc = -ENXIO; goto out_error; } phba->sli4_hba.fw_func_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.function_mode; phba->sli4_hba.ulp0_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp0_mode; phba->sli4_hba.ulp1_mode = mboxq->u.mqe.un.query_fw_cfg.rsp.ulp1_mode; phba->sli4_hba.physical_port = mboxq->u.mqe.un.query_fw_cfg.rsp.physical_port; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "3251 QUERY_FW_CFG: func_mode:x%x, ulp0_mode:x%x, " "ulp1_mode:x%x\n", phba->sli4_hba.fw_func_mode, phba->sli4_hba.ulp0_mode, phba->sli4_hba.ulp1_mode); mempool_free(mboxq, phba->mbox_mem_pool); /* * Set up HBA Event Queues (EQs) */ qp = phba->sli4_hba.hdwq; /* Set up HBA event queue */ if (!qp) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3147 Fast-path EQs not allocated\n"); rc = -ENOMEM; goto out_error; } /* Loop thru all IRQ vectors */ for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { /* Create HBA Event Queues (EQs) in order */ for_each_present_cpu(cpu) { cpup = &phba->sli4_hba.cpu_map[cpu]; /* Look for the CPU thats using that vector with * LPFC_CPU_FIRST_IRQ set. */ if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) continue; if (qidx != cpup->eq) continue; /* Create an EQ for that vector */ rc = lpfc_eq_create(phba, qp[cpup->hdwq].hba_eq, phba->cfg_fcp_imax); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0523 Failed setup of fast-path" " EQ (%d), rc = 0x%x\n", cpup->eq, (uint32_t)rc); goto out_destroy; } /* Save the EQ for that vector in the hba_eq_hdl */ phba->sli4_hba.hba_eq_hdl[cpup->eq].eq = qp[cpup->hdwq].hba_eq; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2584 HBA EQ setup: queue[%d]-id=%d\n", cpup->eq, qp[cpup->hdwq].hba_eq->queue_id); } } /* Loop thru all Hardware Queues */ for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { cpu = lpfc_find_cpu_handle(phba, qidx, LPFC_FIND_BY_HDWQ); cpup = &phba->sli4_hba.cpu_map[cpu]; /* Create the CQ/WQ corresponding to the Hardware Queue */ rc = lpfc_create_wq_cq(phba, phba->sli4_hba.hdwq[cpup->hdwq].hba_eq, qp[qidx].io_cq, qp[qidx].io_wq, &phba->sli4_hba.hdwq[qidx].io_cq_map, qidx, LPFC_IO); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0535 Failed to setup fastpath " "IO WQ/CQ (%d), rc = 0x%x\n", qidx, (uint32_t)rc); goto out_destroy; } } /* * Set up Slow Path Complete Queues (CQs) */ /* Set up slow-path MBOX CQ/MQ */ if (!phba->sli4_hba.mbx_cq || !phba->sli4_hba.mbx_wq) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0528 %s not allocated\n", phba->sli4_hba.mbx_cq ? "Mailbox WQ" : "Mailbox CQ"); rc = -ENOMEM; goto out_destroy; } rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, phba->sli4_hba.mbx_cq, phba->sli4_hba.mbx_wq, NULL, 0, LPFC_MBOX); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0529 Failed setup of mailbox WQ/CQ: rc = 0x%x\n", (uint32_t)rc); goto out_destroy; } if (phba->nvmet_support) { if (!phba->sli4_hba.nvmet_cqset) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3165 Fast-path NVME CQ Set " "array not allocated\n"); rc = -ENOMEM; goto out_destroy; } if (phba->cfg_nvmet_mrq > 1) { rc = lpfc_cq_create_set(phba, phba->sli4_hba.nvmet_cqset, qp, LPFC_WCQ, LPFC_NVMET); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3164 Failed setup of NVME CQ " "Set, rc = 0x%x\n", (uint32_t)rc); goto out_destroy; } } else { /* Set up NVMET Receive Complete Queue */ rc = lpfc_cq_create(phba, phba->sli4_hba.nvmet_cqset[0], qp[0].hba_eq, LPFC_WCQ, LPFC_NVMET); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6089 Failed setup NVMET CQ: " "rc = 0x%x\n", (uint32_t)rc); goto out_destroy; } phba->sli4_hba.nvmet_cqset[0]->chann = 0; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "6090 NVMET CQ setup: cq-id=%d, " "parent eq-id=%d\n", phba->sli4_hba.nvmet_cqset[0]->queue_id, qp[0].hba_eq->queue_id); } } /* Set up slow-path ELS WQ/CQ */ if (!phba->sli4_hba.els_cq || !phba->sli4_hba.els_wq) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0530 ELS %s not allocated\n", phba->sli4_hba.els_cq ? "WQ" : "CQ"); rc = -ENOMEM; goto out_destroy; } rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, phba->sli4_hba.els_cq, phba->sli4_hba.els_wq, NULL, 0, LPFC_ELS); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0525 Failed setup of ELS WQ/CQ: rc = 0x%x\n", (uint32_t)rc); goto out_destroy; } lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2590 ELS WQ setup: wq-id=%d, parent cq-id=%d\n", phba->sli4_hba.els_wq->queue_id, phba->sli4_hba.els_cq->queue_id); if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { /* Set up NVME LS Complete Queue */ if (!phba->sli4_hba.nvmels_cq || !phba->sli4_hba.nvmels_wq) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6091 LS %s not allocated\n", phba->sli4_hba.nvmels_cq ? "WQ" : "CQ"); rc = -ENOMEM; goto out_destroy; } rc = lpfc_create_wq_cq(phba, qp[0].hba_eq, phba->sli4_hba.nvmels_cq, phba->sli4_hba.nvmels_wq, NULL, 0, LPFC_NVME_LS); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0526 Failed setup of NVVME LS WQ/CQ: " "rc = 0x%x\n", (uint32_t)rc); goto out_destroy; } lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "6096 ELS WQ setup: wq-id=%d, " "parent cq-id=%d\n", phba->sli4_hba.nvmels_wq->queue_id, phba->sli4_hba.nvmels_cq->queue_id); } /* * Create NVMET Receive Queue (RQ) */ if (phba->nvmet_support) { if ((!phba->sli4_hba.nvmet_cqset) || (!phba->sli4_hba.nvmet_mrq_hdr) || (!phba->sli4_hba.nvmet_mrq_data)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6130 MRQ CQ Queues not " "allocated\n"); rc = -ENOMEM; goto out_destroy; } if (phba->cfg_nvmet_mrq > 1) { rc = lpfc_mrq_create(phba, phba->sli4_hba.nvmet_mrq_hdr, phba->sli4_hba.nvmet_mrq_data, phba->sli4_hba.nvmet_cqset, LPFC_NVMET); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6098 Failed setup of NVMET " "MRQ: rc = 0x%x\n", (uint32_t)rc); goto out_destroy; } } else { rc = lpfc_rq_create(phba, phba->sli4_hba.nvmet_mrq_hdr[0], phba->sli4_hba.nvmet_mrq_data[0], phba->sli4_hba.nvmet_cqset[0], LPFC_NVMET); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6057 Failed setup of NVMET " "Receive Queue: rc = 0x%x\n", (uint32_t)rc); goto out_destroy; } lpfc_printf_log( phba, KERN_INFO, LOG_INIT, "6099 NVMET RQ setup: hdr-rq-id=%d, " "dat-rq-id=%d parent cq-id=%d\n", phba->sli4_hba.nvmet_mrq_hdr[0]->queue_id, phba->sli4_hba.nvmet_mrq_data[0]->queue_id, phba->sli4_hba.nvmet_cqset[0]->queue_id); } } if (!phba->sli4_hba.hdr_rq || !phba->sli4_hba.dat_rq) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0540 Receive Queue not allocated\n"); rc = -ENOMEM; goto out_destroy; } rc = lpfc_rq_create(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq, phba->sli4_hba.els_cq, LPFC_USOL); if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0541 Failed setup of Receive Queue: " "rc = 0x%x\n", (uint32_t)rc); goto out_destroy; } lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2592 USL RQ setup: hdr-rq-id=%d, dat-rq-id=%d " "parent cq-id=%d\n", phba->sli4_hba.hdr_rq->queue_id, phba->sli4_hba.dat_rq->queue_id, phba->sli4_hba.els_cq->queue_id); if (phba->cfg_fcp_imax) usdelay = LPFC_SEC_TO_USEC / phba->cfg_fcp_imax; else usdelay = 0; for (qidx = 0; qidx < phba->cfg_irq_chann; qidx += LPFC_MAX_EQ_DELAY_EQID_CNT) lpfc_modify_hba_eq_delay(phba, qidx, LPFC_MAX_EQ_DELAY_EQID_CNT, usdelay); if (phba->sli4_hba.cq_max) { kfree(phba->sli4_hba.cq_lookup); phba->sli4_hba.cq_lookup = kcalloc((phba->sli4_hba.cq_max + 1), sizeof(struct lpfc_queue *), GFP_KERNEL); if (!phba->sli4_hba.cq_lookup) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0549 Failed setup of CQ Lookup table: " "size 0x%x\n", phba->sli4_hba.cq_max); rc = -ENOMEM; goto out_destroy; } lpfc_setup_cq_lookup(phba); } return 0; out_destroy: lpfc_sli4_queue_unset(phba); out_error: return rc; } /** * lpfc_sli4_queue_unset - Unset all the SLI4 queues * @phba: pointer to lpfc hba data structure. * * This routine is invoked to unset all the SLI4 queues with the FCoE HBA * operation. * * Return codes * 0 - successful * -ENOMEM - No available memory * -EIO - The mailbox failed to complete successfully. **/ void lpfc_sli4_queue_unset(struct lpfc_hba *phba) { struct lpfc_sli4_hdw_queue *qp; struct lpfc_queue *eq; int qidx; /* Unset mailbox command work queue */ if (phba->sli4_hba.mbx_wq) lpfc_mq_destroy(phba, phba->sli4_hba.mbx_wq); /* Unset NVME LS work queue */ if (phba->sli4_hba.nvmels_wq) lpfc_wq_destroy(phba, phba->sli4_hba.nvmels_wq); /* Unset ELS work queue */ if (phba->sli4_hba.els_wq) lpfc_wq_destroy(phba, phba->sli4_hba.els_wq); /* Unset unsolicited receive queue */ if (phba->sli4_hba.hdr_rq) lpfc_rq_destroy(phba, phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq); /* Unset mailbox command complete queue */ if (phba->sli4_hba.mbx_cq) lpfc_cq_destroy(phba, phba->sli4_hba.mbx_cq); /* Unset ELS complete queue */ if (phba->sli4_hba.els_cq) lpfc_cq_destroy(phba, phba->sli4_hba.els_cq); /* Unset NVME LS complete queue */ if (phba->sli4_hba.nvmels_cq) lpfc_cq_destroy(phba, phba->sli4_hba.nvmels_cq); if (phba->nvmet_support) { /* Unset NVMET MRQ queue */ if (phba->sli4_hba.nvmet_mrq_hdr) { for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) lpfc_rq_destroy( phba, phba->sli4_hba.nvmet_mrq_hdr[qidx], phba->sli4_hba.nvmet_mrq_data[qidx]); } /* Unset NVMET CQ Set complete queue */ if (phba->sli4_hba.nvmet_cqset) { for (qidx = 0; qidx < phba->cfg_nvmet_mrq; qidx++) lpfc_cq_destroy( phba, phba->sli4_hba.nvmet_cqset[qidx]); } } /* Unset fast-path SLI4 queues */ if (phba->sli4_hba.hdwq) { /* Loop thru all Hardware Queues */ for (qidx = 0; qidx < phba->cfg_hdw_queue; qidx++) { /* Destroy the CQ/WQ corresponding to Hardware Queue */ qp = &phba->sli4_hba.hdwq[qidx]; lpfc_wq_destroy(phba, qp->io_wq); lpfc_cq_destroy(phba, qp->io_cq); } /* Loop thru all IRQ vectors */ for (qidx = 0; qidx < phba->cfg_irq_chann; qidx++) { /* Destroy the EQ corresponding to the IRQ vector */ eq = phba->sli4_hba.hba_eq_hdl[qidx].eq; lpfc_eq_destroy(phba, eq); } } kfree(phba->sli4_hba.cq_lookup); phba->sli4_hba.cq_lookup = NULL; phba->sli4_hba.cq_max = 0; } /** * lpfc_sli4_cq_event_pool_create - Create completion-queue event free pool * @phba: pointer to lpfc hba data structure. * * This routine is invoked to allocate and set up a pool of completion queue * events. The body of the completion queue event is a completion queue entry * CQE. For now, this pool is used for the interrupt service routine to queue * the following HBA completion queue events for the worker thread to process: * - Mailbox asynchronous events * - Receive queue completion unsolicited events * Later, this can be used for all the slow-path events. * * Return codes * 0 - successful * -ENOMEM - No available memory **/ static int lpfc_sli4_cq_event_pool_create(struct lpfc_hba *phba) { struct lpfc_cq_event *cq_event; int i; for (i = 0; i < (4 * phba->sli4_hba.cq_ecount); i++) { cq_event = kmalloc(sizeof(struct lpfc_cq_event), GFP_KERNEL); if (!cq_event) goto out_pool_create_fail; list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool); } return 0; out_pool_create_fail: lpfc_sli4_cq_event_pool_destroy(phba); return -ENOMEM; } /** * lpfc_sli4_cq_event_pool_destroy - Free completion-queue event free pool * @phba: pointer to lpfc hba data structure. * * This routine is invoked to free the pool of completion queue events at * driver unload time. Note that, it is the responsibility of the driver * cleanup routine to free all the outstanding completion-queue events * allocated from this pool back into the pool before invoking this routine * to destroy the pool. **/ static void lpfc_sli4_cq_event_pool_destroy(struct lpfc_hba *phba) { struct lpfc_cq_event *cq_event, *next_cq_event; list_for_each_entry_safe(cq_event, next_cq_event, &phba->sli4_hba.sp_cqe_event_pool, list) { list_del(&cq_event->list); kfree(cq_event); } } /** * __lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool * @phba: pointer to lpfc hba data structure. * * This routine is the lock free version of the API invoked to allocate a * completion-queue event from the free pool. * * Return: Pointer to the newly allocated completion-queue event if successful * NULL otherwise. **/ struct lpfc_cq_event * __lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) { struct lpfc_cq_event *cq_event = NULL; list_remove_head(&phba->sli4_hba.sp_cqe_event_pool, cq_event, struct lpfc_cq_event, list); return cq_event; } /** * lpfc_sli4_cq_event_alloc - Allocate a completion-queue event from free pool * @phba: pointer to lpfc hba data structure. * * This routine is the lock version of the API invoked to allocate a * completion-queue event from the free pool. * * Return: Pointer to the newly allocated completion-queue event if successful * NULL otherwise. **/ struct lpfc_cq_event * lpfc_sli4_cq_event_alloc(struct lpfc_hba *phba) { struct lpfc_cq_event *cq_event; unsigned long iflags; spin_lock_irqsave(&phba->hbalock, iflags); cq_event = __lpfc_sli4_cq_event_alloc(phba); spin_unlock_irqrestore(&phba->hbalock, iflags); return cq_event; } /** * __lpfc_sli4_cq_event_release - Release a completion-queue event to free pool * @phba: pointer to lpfc hba data structure. * @cq_event: pointer to the completion queue event to be freed. * * This routine is the lock free version of the API invoked to release a * completion-queue event back into the free pool. **/ void __lpfc_sli4_cq_event_release(struct lpfc_hba *phba, struct lpfc_cq_event *cq_event) { list_add_tail(&cq_event->list, &phba->sli4_hba.sp_cqe_event_pool); } /** * lpfc_sli4_cq_event_release - Release a completion-queue event to free pool * @phba: pointer to lpfc hba data structure. * @cq_event: pointer to the completion queue event to be freed. * * This routine is the lock version of the API invoked to release a * completion-queue event back into the free pool. **/ void lpfc_sli4_cq_event_release(struct lpfc_hba *phba, struct lpfc_cq_event *cq_event) { unsigned long iflags; spin_lock_irqsave(&phba->hbalock, iflags); __lpfc_sli4_cq_event_release(phba, cq_event); spin_unlock_irqrestore(&phba->hbalock, iflags); } /** * lpfc_sli4_cq_event_release_all - Release all cq events to the free pool * @phba: pointer to lpfc hba data structure. * * This routine is to free all the pending completion-queue events to the * back into the free pool for device reset. **/ static void lpfc_sli4_cq_event_release_all(struct lpfc_hba *phba) { LIST_HEAD(cq_event_list); struct lpfc_cq_event *cq_event; unsigned long iflags; /* Retrieve all the pending WCQEs from pending WCQE lists */ /* Pending ELS XRI abort events */ spin_lock_irqsave(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); list_splice_init(&phba->sli4_hba.sp_els_xri_aborted_work_queue, &cq_event_list); spin_unlock_irqrestore(&phba->sli4_hba.els_xri_abrt_list_lock, iflags); /* Pending asynnc events */ spin_lock_irqsave(&phba->sli4_hba.asynce_list_lock, iflags); list_splice_init(&phba->sli4_hba.sp_asynce_work_queue, &cq_event_list); spin_unlock_irqrestore(&phba->sli4_hba.asynce_list_lock, iflags); while (!list_empty(&cq_event_list)) { list_remove_head(&cq_event_list, cq_event, struct lpfc_cq_event, list); lpfc_sli4_cq_event_release(phba, cq_event); } } /** * lpfc_pci_function_reset - Reset pci function. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to request a PCI function reset. It will destroys * all resources assigned to the PCI function which originates this request. * * Return codes * 0 - successful * -ENOMEM - No available memory * -EIO - The mailbox failed to complete successfully. **/ int lpfc_pci_function_reset(struct lpfc_hba *phba) { LPFC_MBOXQ_t *mboxq; uint32_t rc = 0, if_type; uint32_t shdr_status, shdr_add_status; uint32_t rdy_chk; uint32_t port_reset = 0; union lpfc_sli4_cfg_shdr *shdr; struct lpfc_register reg_data; uint16_t devid; if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); switch (if_type) { case LPFC_SLI_INTF_IF_TYPE_0: mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0494 Unable to allocate memory for " "issuing SLI_FUNCTION_RESET mailbox " "command\n"); return -ENOMEM; } /* Setup PCI function reset mailbox-ioctl command */ lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_FUNCTION_RESET, 0, LPFC_SLI4_MBX_EMBED); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); shdr = (union lpfc_sli4_cfg_shdr *) &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); mempool_free(mboxq, phba->mbox_mem_pool); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0495 SLI_FUNCTION_RESET mailbox " "failed with status x%x add_status x%x," " mbx status x%x\n", shdr_status, shdr_add_status, rc); rc = -ENXIO; } break; case LPFC_SLI_INTF_IF_TYPE_2: case LPFC_SLI_INTF_IF_TYPE_6: wait: /* * Poll the Port Status Register and wait for RDY for * up to 30 seconds. If the port doesn't respond, treat * it as an error. */ for (rdy_chk = 0; rdy_chk < 1500; rdy_chk++) { if (lpfc_readl(phba->sli4_hba.u.if_type2. STATUSregaddr, ®_data.word0)) { rc = -ENODEV; goto out; } if (bf_get(lpfc_sliport_status_rdy, ®_data)) break; msleep(20); } if (!bf_get(lpfc_sliport_status_rdy, ®_data)) { phba->work_status[0] = readl( phba->sli4_hba.u.if_type2.ERR1regaddr); phba->work_status[1] = readl( phba->sli4_hba.u.if_type2.ERR2regaddr); lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2890 Port not ready, port status reg " "0x%x error 1=0x%x, error 2=0x%x\n", reg_data.word0, phba->work_status[0], phba->work_status[1]); rc = -ENODEV; goto out; } if (bf_get(lpfc_sliport_status_pldv, ®_data)) lpfc_pldv_detect = true; if (!port_reset) { /* * Reset the port now */ reg_data.word0 = 0; bf_set(lpfc_sliport_ctrl_end, ®_data, LPFC_SLIPORT_LITTLE_ENDIAN); bf_set(lpfc_sliport_ctrl_ip, ®_data, LPFC_SLIPORT_INIT_PORT); writel(reg_data.word0, phba->sli4_hba.u.if_type2. CTRLregaddr); /* flush */ pci_read_config_word(phba->pcidev, PCI_DEVICE_ID, &devid); port_reset = 1; msleep(20); goto wait; } else if (bf_get(lpfc_sliport_status_rn, ®_data)) { rc = -ENODEV; goto out; } break; case LPFC_SLI_INTF_IF_TYPE_1: default: break; } out: /* Catch the not-ready port failure after a port reset. */ if (rc) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3317 HBA not functional: IP Reset Failed " "try: echo fw_reset > board_mode\n"); rc = -ENODEV; } return rc; } /** * lpfc_sli4_pci_mem_setup - Setup SLI4 HBA PCI memory space. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to set up the PCI device memory space for device * with SLI-4 interface spec. * * Return codes * 0 - successful * other values - error **/ static int lpfc_sli4_pci_mem_setup(struct lpfc_hba *phba) { struct pci_dev *pdev = phba->pcidev; unsigned long bar0map_len, bar1map_len, bar2map_len; int error; uint32_t if_type; if (!pdev) return -ENODEV; /* Set the device DMA mask size */ error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (error) error = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (error) return error; /* * The BARs and register set definitions and offset locations are * dependent on the if_type. */ if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &phba->sli4_hba.sli_intf.word0)) { return -ENODEV; } /* There is no SLI3 failback for SLI4 devices. */ if (bf_get(lpfc_sli_intf_valid, &phba->sli4_hba.sli_intf) != LPFC_SLI_INTF_VALID) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "2894 SLI_INTF reg contents invalid " "sli_intf reg 0x%x\n", phba->sli4_hba.sli_intf.word0); return -ENODEV; } if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); /* * Get the bus address of SLI4 device Bar regions and the * number of bytes required by each mapping. The mapping of the * particular PCI BARs regions is dependent on the type of * SLI4 device. */ if (pci_resource_start(pdev, PCI_64BIT_BAR0)) { phba->pci_bar0_map = pci_resource_start(pdev, PCI_64BIT_BAR0); bar0map_len = pci_resource_len(pdev, PCI_64BIT_BAR0); /* * Map SLI4 PCI Config Space Register base to a kernel virtual * addr */ phba->sli4_hba.conf_regs_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len); if (!phba->sli4_hba.conf_regs_memmap_p) { dev_printk(KERN_ERR, &pdev->dev, "ioremap failed for SLI4 PCI config " "registers.\n"); return -ENODEV; } phba->pci_bar0_memmap_p = phba->sli4_hba.conf_regs_memmap_p; /* Set up BAR0 PCI config space register memory map */ lpfc_sli4_bar0_register_memmap(phba, if_type); } else { phba->pci_bar0_map = pci_resource_start(pdev, 1); bar0map_len = pci_resource_len(pdev, 1); if (if_type >= LPFC_SLI_INTF_IF_TYPE_2) { dev_printk(KERN_ERR, &pdev->dev, "FATAL - No BAR0 mapping for SLI4, if_type 2\n"); return -ENODEV; } phba->sli4_hba.conf_regs_memmap_p = ioremap(phba->pci_bar0_map, bar0map_len); if (!phba->sli4_hba.conf_regs_memmap_p) { dev_printk(KERN_ERR, &pdev->dev, "ioremap failed for SLI4 PCI config " "registers.\n"); return -ENODEV; } lpfc_sli4_bar0_register_memmap(phba, if_type); } if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { if (pci_resource_start(pdev, PCI_64BIT_BAR2)) { /* * Map SLI4 if type 0 HBA Control Register base to a * kernel virtual address and setup the registers. */ phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2); bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); phba->sli4_hba.ctrl_regs_memmap_p = ioremap(phba->pci_bar1_map, bar1map_len); if (!phba->sli4_hba.ctrl_regs_memmap_p) { dev_err(&pdev->dev, "ioremap failed for SLI4 HBA " "control registers.\n"); error = -ENOMEM; goto out_iounmap_conf; } phba->pci_bar2_memmap_p = phba->sli4_hba.ctrl_regs_memmap_p; lpfc_sli4_bar1_register_memmap(phba, if_type); } else { error = -ENOMEM; goto out_iounmap_conf; } } if ((if_type == LPFC_SLI_INTF_IF_TYPE_6) && (pci_resource_start(pdev, PCI_64BIT_BAR2))) { /* * Map SLI4 if type 6 HBA Doorbell Register base to a kernel * virtual address and setup the registers. */ phba->pci_bar1_map = pci_resource_start(pdev, PCI_64BIT_BAR2); bar1map_len = pci_resource_len(pdev, PCI_64BIT_BAR2); phba->sli4_hba.drbl_regs_memmap_p = ioremap(phba->pci_bar1_map, bar1map_len); if (!phba->sli4_hba.drbl_regs_memmap_p) { dev_err(&pdev->dev, "ioremap failed for SLI4 HBA doorbell registers.\n"); error = -ENOMEM; goto out_iounmap_conf; } phba->pci_bar2_memmap_p = phba->sli4_hba.drbl_regs_memmap_p; lpfc_sli4_bar1_register_memmap(phba, if_type); } if (if_type == LPFC_SLI_INTF_IF_TYPE_0) { if (pci_resource_start(pdev, PCI_64BIT_BAR4)) { /* * Map SLI4 if type 0 HBA Doorbell Register base to * a kernel virtual address and setup the registers. */ phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4); bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); phba->sli4_hba.drbl_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len); if (!phba->sli4_hba.drbl_regs_memmap_p) { dev_err(&pdev->dev, "ioremap failed for SLI4 HBA" " doorbell registers.\n"); error = -ENOMEM; goto out_iounmap_ctrl; } phba->pci_bar4_memmap_p = phba->sli4_hba.drbl_regs_memmap_p; error = lpfc_sli4_bar2_register_memmap(phba, LPFC_VF0); if (error) goto out_iounmap_all; } else { error = -ENOMEM; goto out_iounmap_ctrl; } } if (if_type == LPFC_SLI_INTF_IF_TYPE_6 && pci_resource_start(pdev, PCI_64BIT_BAR4)) { /* * Map SLI4 if type 6 HBA DPP Register base to a kernel * virtual address and setup the registers. */ phba->pci_bar2_map = pci_resource_start(pdev, PCI_64BIT_BAR4); bar2map_len = pci_resource_len(pdev, PCI_64BIT_BAR4); phba->sli4_hba.dpp_regs_memmap_p = ioremap(phba->pci_bar2_map, bar2map_len); if (!phba->sli4_hba.dpp_regs_memmap_p) { dev_err(&pdev->dev, "ioremap failed for SLI4 HBA dpp registers.\n"); error = -ENOMEM; goto out_iounmap_all; } phba->pci_bar4_memmap_p = phba->sli4_hba.dpp_regs_memmap_p; } /* Set up the EQ/CQ register handeling functions now */ switch (if_type) { case LPFC_SLI_INTF_IF_TYPE_0: case LPFC_SLI_INTF_IF_TYPE_2: phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_eq_clr_intr; phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_write_eq_db; phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_write_cq_db; break; case LPFC_SLI_INTF_IF_TYPE_6: phba->sli4_hba.sli4_eq_clr_intr = lpfc_sli4_if6_eq_clr_intr; phba->sli4_hba.sli4_write_eq_db = lpfc_sli4_if6_write_eq_db; phba->sli4_hba.sli4_write_cq_db = lpfc_sli4_if6_write_cq_db; break; default: break; } return 0; out_iounmap_all: if (phba->sli4_hba.drbl_regs_memmap_p) iounmap(phba->sli4_hba.drbl_regs_memmap_p); out_iounmap_ctrl: if (phba->sli4_hba.ctrl_regs_memmap_p) iounmap(phba->sli4_hba.ctrl_regs_memmap_p); out_iounmap_conf: iounmap(phba->sli4_hba.conf_regs_memmap_p); return error; } /** * lpfc_sli4_pci_mem_unset - Unset SLI4 HBA PCI memory space. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to unset the PCI device memory space for device * with SLI-4 interface spec. **/ static void lpfc_sli4_pci_mem_unset(struct lpfc_hba *phba) { uint32_t if_type; if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf); switch (if_type) { case LPFC_SLI_INTF_IF_TYPE_0: iounmap(phba->sli4_hba.drbl_regs_memmap_p); iounmap(phba->sli4_hba.ctrl_regs_memmap_p); iounmap(phba->sli4_hba.conf_regs_memmap_p); break; case LPFC_SLI_INTF_IF_TYPE_2: iounmap(phba->sli4_hba.conf_regs_memmap_p); break; case LPFC_SLI_INTF_IF_TYPE_6: iounmap(phba->sli4_hba.drbl_regs_memmap_p); iounmap(phba->sli4_hba.conf_regs_memmap_p); if (phba->sli4_hba.dpp_regs_memmap_p) iounmap(phba->sli4_hba.dpp_regs_memmap_p); break; case LPFC_SLI_INTF_IF_TYPE_1: break; default: dev_printk(KERN_ERR, &phba->pcidev->dev, "FATAL - unsupported SLI4 interface type - %d\n", if_type); break; } } /** * lpfc_sli_enable_msix - Enable MSI-X interrupt mode on SLI-3 device * @phba: pointer to lpfc hba data structure. * * This routine is invoked to enable the MSI-X interrupt vectors to device * with SLI-3 interface specs. * * Return codes * 0 - successful * other values - error **/ static int lpfc_sli_enable_msix(struct lpfc_hba *phba) { int rc; LPFC_MBOXQ_t *pmb; /* Set up MSI-X multi-message vectors */ rc = pci_alloc_irq_vectors(phba->pcidev, LPFC_MSIX_VECTORS, LPFC_MSIX_VECTORS, PCI_IRQ_MSIX); if (rc < 0) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0420 PCI enable MSI-X failed (%d)\n", rc); goto vec_fail_out; } /* * Assign MSI-X vectors to interrupt handlers */ /* vector-0 is associated to slow-path handler */ rc = request_irq(pci_irq_vector(phba->pcidev, 0), &lpfc_sli_sp_intr_handler, 0, LPFC_SP_DRIVER_HANDLER_NAME, phba); if (rc) { lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "0421 MSI-X slow-path request_irq failed " "(%d)\n", rc); goto msi_fail_out; } /* vector-1 is associated to fast-path handler */ rc = request_irq(pci_irq_vector(phba->pcidev, 1), &lpfc_sli_fp_intr_handler, 0, LPFC_FP_DRIVER_HANDLER_NAME, phba); if (rc) { lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "0429 MSI-X fast-path request_irq failed " "(%d)\n", rc); goto irq_fail_out; } /* * Configure HBA MSI-X attention conditions to messages */ pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!pmb) { rc = -ENOMEM; lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0474 Unable to allocate memory for issuing " "MBOX_CONFIG_MSI command\n"); goto mem_fail_out; } rc = lpfc_config_msi(phba, pmb); if (rc) goto mbx_fail_out; rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL); if (rc != MBX_SUCCESS) { lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX, "0351 Config MSI mailbox command failed, " "mbxCmd x%x, mbxStatus x%x\n", pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus); goto mbx_fail_out; } /* Free memory allocated for mailbox command */ mempool_free(pmb, phba->mbox_mem_pool); return rc; mbx_fail_out: /* Free memory allocated for mailbox command */ mempool_free(pmb, phba->mbox_mem_pool); mem_fail_out: /* free the irq already requested */ free_irq(pci_irq_vector(phba->pcidev, 1), phba); irq_fail_out: /* free the irq already requested */ free_irq(pci_irq_vector(phba->pcidev, 0), phba); msi_fail_out: /* Unconfigure MSI-X capability structure */ pci_free_irq_vectors(phba->pcidev); vec_fail_out: return rc; } /** * lpfc_sli_enable_msi - Enable MSI interrupt mode on SLI-3 device. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to enable the MSI interrupt mode to device with * SLI-3 interface spec. The kernel function pci_enable_msi() is called to * enable the MSI vector. The device driver is responsible for calling the * request_irq() to register MSI vector with a interrupt the handler, which * is done in this function. * * Return codes * 0 - successful * other values - error */ static int lpfc_sli_enable_msi(struct lpfc_hba *phba) { int rc; rc = pci_enable_msi(phba->pcidev); if (!rc) lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0012 PCI enable MSI mode success.\n"); else { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0471 PCI enable MSI mode failed (%d)\n", rc); return rc; } rc = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, 0, LPFC_DRIVER_NAME, phba); if (rc) { pci_disable_msi(phba->pcidev); lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "0478 MSI request_irq failed (%d)\n", rc); } return rc; } /** * lpfc_sli_enable_intr - Enable device interrupt to SLI-3 device. * @phba: pointer to lpfc hba data structure. * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). * * This routine is invoked to enable device interrupt and associate driver's * interrupt handler(s) to interrupt vector(s) to device with SLI-3 interface * spec. Depends on the interrupt mode configured to the driver, the driver * will try to fallback from the configured interrupt mode to an interrupt * mode which is supported by the platform, kernel, and device in the order * of: * MSI-X -> MSI -> IRQ. * * Return codes * 0 - successful * other values - error **/ static uint32_t lpfc_sli_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) { uint32_t intr_mode = LPFC_INTR_ERROR; int retval; /* Need to issue conf_port mbox cmd before conf_msi mbox cmd */ retval = lpfc_sli_config_port(phba, LPFC_SLI_REV3); if (retval) return intr_mode; clear_bit(HBA_NEEDS_CFG_PORT, &phba->hba_flag); if (cfg_mode == 2) { /* Now, try to enable MSI-X interrupt mode */ retval = lpfc_sli_enable_msix(phba); if (!retval) { /* Indicate initialization to MSI-X mode */ phba->intr_type = MSIX; intr_mode = 2; } } /* Fallback to MSI if MSI-X initialization failed */ if (cfg_mode >= 1 && phba->intr_type == NONE) { retval = lpfc_sli_enable_msi(phba); if (!retval) { /* Indicate initialization to MSI mode */ phba->intr_type = MSI; intr_mode = 1; } } /* Fallback to INTx if both MSI-X/MSI initalization failed */ if (phba->intr_type == NONE) { retval = request_irq(phba->pcidev->irq, lpfc_sli_intr_handler, IRQF_SHARED, LPFC_DRIVER_NAME, phba); if (!retval) { /* Indicate initialization to INTx mode */ phba->intr_type = INTx; intr_mode = 0; } } return intr_mode; } /** * lpfc_sli_disable_intr - Disable device interrupt to SLI-3 device. * @phba: pointer to lpfc hba data structure. * * This routine is invoked to disable device interrupt and disassociate the * driver's interrupt handler(s) from interrupt vector(s) to device with * SLI-3 interface spec. Depending on the interrupt mode, the driver will * release the interrupt vector(s) for the message signaled interrupt. **/ static void lpfc_sli_disable_intr(struct lpfc_hba *phba) { int nr_irqs, i; if (phba->intr_type == MSIX) nr_irqs = LPFC_MSIX_VECTORS; else nr_irqs = 1; for (i = 0; i < nr_irqs; i++) free_irq(pci_irq_vector(phba->pcidev, i), phba); pci_free_irq_vectors(phba->pcidev); /* Reset interrupt management states */ phba->intr_type = NONE; phba->sli.slistat.sli_intr = 0; } /** * lpfc_find_cpu_handle - Find the CPU that corresponds to the specified Queue * @phba: pointer to lpfc hba data structure. * @id: EQ vector index or Hardware Queue index * @match: LPFC_FIND_BY_EQ = match by EQ * LPFC_FIND_BY_HDWQ = match by Hardware Queue * Return the CPU that matches the selection criteria */ static uint16_t lpfc_find_cpu_handle(struct lpfc_hba *phba, uint16_t id, int match) { struct lpfc_vector_map_info *cpup; int cpu; /* Loop through all CPUs */ for_each_present_cpu(cpu) { cpup = &phba->sli4_hba.cpu_map[cpu]; /* If we are matching by EQ, there may be multiple CPUs using * using the same vector, so select the one with * LPFC_CPU_FIRST_IRQ set. */ if ((match == LPFC_FIND_BY_EQ) && (cpup->flag & LPFC_CPU_FIRST_IRQ) && (cpup->eq == id)) return cpu; /* If matching by HDWQ, select the first CPU that matches */ if ((match == LPFC_FIND_BY_HDWQ) && (cpup->hdwq == id)) return cpu; } return 0; } #ifdef CONFIG_X86 /** * lpfc_find_hyper - Determine if the CPU map entry is hyper-threaded * @phba: pointer to lpfc hba data structure. * @cpu: CPU map index * @phys_id: CPU package physical id * @core_id: CPU core id */ static int lpfc_find_hyper(struct lpfc_hba *phba, int cpu, uint16_t phys_id, uint16_t core_id) { struct lpfc_vector_map_info *cpup; int idx; for_each_present_cpu(idx) { cpup = &phba->sli4_hba.cpu_map[idx]; /* Does the cpup match the one we are looking for */ if ((cpup->phys_id == phys_id) && (cpup->core_id == core_id) && (cpu != idx)) return 1; } return 0; } #endif /* * lpfc_assign_eq_map_info - Assigns eq for vector_map structure * @phba: pointer to lpfc hba data structure. * @eqidx: index for eq and irq vector * @flag: flags to set for vector_map structure * @cpu: cpu used to index vector_map structure * * The routine assigns eq info into vector_map structure */ static inline void lpfc_assign_eq_map_info(struct lpfc_hba *phba, uint16_t eqidx, uint16_t flag, unsigned int cpu) { struct lpfc_vector_map_info *cpup = &phba->sli4_hba.cpu_map[cpu]; struct lpfc_hba_eq_hdl *eqhdl = lpfc_get_eq_hdl(eqidx); cpup->eq = eqidx; cpup->flag |= flag; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "3336 Set Affinity: CPU %d irq %d eq %d flag x%x\n", cpu, eqhdl->irq, cpup->eq, cpup->flag); } /** * lpfc_cpu_map_array_init - Initialize cpu_map structure * @phba: pointer to lpfc hba data structure. * * The routine initializes the cpu_map array structure */ static void lpfc_cpu_map_array_init(struct lpfc_hba *phba) { struct lpfc_vector_map_info *cpup; struct lpfc_eq_intr_info *eqi; int cpu; for_each_possible_cpu(cpu) { cpup = &phba->sli4_hba.cpu_map[cpu]; cpup->phys_id = LPFC_VECTOR_MAP_EMPTY; cpup->core_id = LPFC_VECTOR_MAP_EMPTY; cpup->hdwq = LPFC_VECTOR_MAP_EMPTY; cpup->eq = LPFC_VECTOR_MAP_EMPTY; cpup->flag = 0; eqi = per_cpu_ptr(phba->sli4_hba.eq_info, cpu); INIT_LIST_HEAD(&eqi->list); eqi->icnt = 0; } } /** * lpfc_hba_eq_hdl_array_init - Initialize hba_eq_hdl structure * @phba: pointer to lpfc hba data structure. * * The routine initializes the hba_eq_hdl array structure */ static void lpfc_hba_eq_hdl_array_init(struct lpfc_hba *phba) { struct lpfc_hba_eq_hdl *eqhdl; int i; for (i = 0; i < phba->cfg_irq_chann; i++) { eqhdl = lpfc_get_eq_hdl(i); eqhdl->irq = LPFC_IRQ_EMPTY; eqhdl->phba = phba; } } /** * lpfc_cpu_affinity_check - Check vector CPU affinity mappings * @phba: pointer to lpfc hba data structure. * @vectors: number of msix vectors allocated. * * The routine will figure out the CPU affinity assignment for every * MSI-X vector allocated for the HBA. * In addition, the CPU to IO channel mapping will be calculated * and the phba->sli4_hba.cpu_map array will reflect this. */ static void lpfc_cpu_affinity_check(struct lpfc_hba *phba, int vectors) { int i, cpu, idx, next_idx, new_cpu, start_cpu, first_cpu; int max_phys_id, min_phys_id; int max_core_id, min_core_id; struct lpfc_vector_map_info *cpup; struct lpfc_vector_map_info *new_cpup; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS struct lpfc_hdwq_stat *c_stat; #endif max_phys_id = 0; min_phys_id = LPFC_VECTOR_MAP_EMPTY; max_core_id = 0; min_core_id = LPFC_VECTOR_MAP_EMPTY; /* Update CPU map with physical id and core id of each CPU */ for_each_present_cpu(cpu) { cpup = &phba->sli4_hba.cpu_map[cpu]; #ifdef CONFIG_X86 cpup->phys_id = topology_physical_package_id(cpu); cpup->core_id = topology_core_id(cpu); if (lpfc_find_hyper(phba, cpu, cpup->phys_id, cpup->core_id)) cpup->flag |= LPFC_CPU_MAP_HYPER; #else /* No distinction between CPUs for other platforms */ cpup->phys_id = 0; cpup->core_id = cpu; #endif lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "3328 CPU %d physid %d coreid %d flag x%x\n", cpu, cpup->phys_id, cpup->core_id, cpup->flag); if (cpup->phys_id > max_phys_id) max_phys_id = cpup->phys_id; if (cpup->phys_id < min_phys_id) min_phys_id = cpup->phys_id; if (cpup->core_id > max_core_id) max_core_id = cpup->core_id; if (cpup->core_id < min_core_id) min_core_id = cpup->core_id; } /* After looking at each irq vector assigned to this pcidev, its * possible to see that not ALL CPUs have been accounted for. * Next we will set any unassigned (unaffinitized) cpu map * entries to a IRQ on the same phys_id. */ first_cpu = cpumask_first(cpu_present_mask); start_cpu = first_cpu; for_each_present_cpu(cpu) { cpup = &phba->sli4_hba.cpu_map[cpu]; /* Is this CPU entry unassigned */ if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { /* Mark CPU as IRQ not assigned by the kernel */ cpup->flag |= LPFC_CPU_MAP_UNASSIGN; /* If so, find a new_cpup that is on the SAME * phys_id as cpup. start_cpu will start where we * left off so all unassigned entries don't get assgined * the IRQ of the first entry. */ new_cpu = start_cpu; for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY) && (new_cpup->phys_id == cpup->phys_id)) goto found_same; new_cpu = lpfc_next_present_cpu(new_cpu); } /* At this point, we leave the CPU as unassigned */ continue; found_same: /* We found a matching phys_id, so copy the IRQ info */ cpup->eq = new_cpup->eq; /* Bump start_cpu to the next slot to minmize the * chance of having multiple unassigned CPU entries * selecting the same IRQ. */ start_cpu = lpfc_next_present_cpu(new_cpu); lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "3337 Set Affinity: CPU %d " "eq %d from peer cpu %d same " "phys_id (%d)\n", cpu, cpup->eq, new_cpu, cpup->phys_id); } } /* Set any unassigned cpu map entries to a IRQ on any phys_id */ start_cpu = first_cpu; for_each_present_cpu(cpu) { cpup = &phba->sli4_hba.cpu_map[cpu]; /* Is this entry unassigned */ if (cpup->eq == LPFC_VECTOR_MAP_EMPTY) { /* Mark it as IRQ not assigned by the kernel */ cpup->flag |= LPFC_CPU_MAP_UNASSIGN; /* If so, find a new_cpup thats on ANY phys_id * as the cpup. start_cpu will start where we * left off so all unassigned entries don't get * assigned the IRQ of the first entry. */ new_cpu = start_cpu; for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; if (!(new_cpup->flag & LPFC_CPU_MAP_UNASSIGN) && (new_cpup->eq != LPFC_VECTOR_MAP_EMPTY)) goto found_any; new_cpu = lpfc_next_present_cpu(new_cpu); } /* We should never leave an entry unassigned */ lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "3339 Set Affinity: CPU %d " "eq %d UNASSIGNED\n", cpup->hdwq, cpup->eq); continue; found_any: /* We found an available entry, copy the IRQ info */ cpup->eq = new_cpup->eq; /* Bump start_cpu to the next slot to minmize the * chance of having multiple unassigned CPU entries * selecting the same IRQ. */ start_cpu = lpfc_next_present_cpu(new_cpu); lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "3338 Set Affinity: CPU %d " "eq %d from peer cpu %d (%d/%d)\n", cpu, cpup->eq, new_cpu, new_cpup->phys_id, new_cpup->core_id); } } /* Assign hdwq indices that are unique across all cpus in the map * that are also FIRST_CPUs. */ idx = 0; for_each_present_cpu(cpu) { cpup = &phba->sli4_hba.cpu_map[cpu]; /* Only FIRST IRQs get a hdwq index assignment. */ if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) continue; /* 1 to 1, the first LPFC_CPU_FIRST_IRQ cpus to a unique hdwq */ cpup->hdwq = idx; idx++; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "3333 Set Affinity: CPU %d (phys %d core %d): " "hdwq %d eq %d flg x%x\n", cpu, cpup->phys_id, cpup->core_id, cpup->hdwq, cpup->eq, cpup->flag); } /* Associate a hdwq with each cpu_map entry * This will be 1 to 1 - hdwq to cpu, unless there are less * hardware queues then CPUs. For that case we will just round-robin * the available hardware queues as they get assigned to CPUs. * The next_idx is the idx from the FIRST_CPU loop above to account * for irq_chann < hdwq. The idx is used for round-robin assignments * and needs to start at 0. */ next_idx = idx; start_cpu = 0; idx = 0; for_each_present_cpu(cpu) { cpup = &phba->sli4_hba.cpu_map[cpu]; /* FIRST cpus are already mapped. */ if (cpup->flag & LPFC_CPU_FIRST_IRQ) continue; /* If the cfg_irq_chann < cfg_hdw_queue, set the hdwq * of the unassigned cpus to the next idx so that all * hdw queues are fully utilized. */ if (next_idx < phba->cfg_hdw_queue) { cpup->hdwq = next_idx; next_idx++; continue; } /* Not a First CPU and all hdw_queues are used. Reuse a * Hardware Queue for another CPU, so be smart about it * and pick one that has its IRQ/EQ mapped to the same phys_id * (CPU package) and core_id. */ new_cpu = start_cpu; for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && new_cpup->phys_id == cpup->phys_id && new_cpup->core_id == cpup->core_id) { goto found_hdwq; } new_cpu = lpfc_next_present_cpu(new_cpu); } /* If we can't match both phys_id and core_id, * settle for just a phys_id match. */ new_cpu = start_cpu; for (i = 0; i < phba->sli4_hba.num_present_cpu; i++) { new_cpup = &phba->sli4_hba.cpu_map[new_cpu]; if (new_cpup->hdwq != LPFC_VECTOR_MAP_EMPTY && new_cpup->phys_id == cpup->phys_id) goto found_hdwq; new_cpu = lpfc_next_present_cpu(new_cpu); } /* Otherwise just round robin on cfg_hdw_queue */ cpup->hdwq = idx % phba->cfg_hdw_queue; idx++; goto logit; found_hdwq: /* We found an available entry, copy the IRQ info */ start_cpu = lpfc_next_present_cpu(new_cpu); cpup->hdwq = new_cpup->hdwq; logit: lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "3335 Set Affinity: CPU %d (phys %d core %d): " "hdwq %d eq %d flg x%x\n", cpu, cpup->phys_id, cpup->core_id, cpup->hdwq, cpup->eq, cpup->flag); } /* * Initialize the cpu_map slots for not-present cpus in case * a cpu is hot-added. Perform a simple hdwq round robin assignment. */ idx = 0; for_each_possible_cpu(cpu) { cpup = &phba->sli4_hba.cpu_map[cpu]; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS c_stat = per_cpu_ptr(phba->sli4_hba.c_stat, cpu); c_stat->hdwq_no = cpup->hdwq; #endif if (cpup->hdwq != LPFC_VECTOR_MAP_EMPTY) continue; cpup->hdwq = idx++ % phba->cfg_hdw_queue; #ifdef CONFIG_SCSI_LPFC_DEBUG_FS c_stat->hdwq_no = cpup->hdwq; #endif lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "3340 Set Affinity: not present " "CPU %d hdwq %d\n", cpu, cpup->hdwq); } /* The cpu_map array will be used later during initialization * when EQ / CQ / WQs are allocated and configured. */ return; } /** * lpfc_cpuhp_get_eq * * @phba: pointer to lpfc hba data structure. * @cpu: cpu going offline * @eqlist: eq list to append to */ static int lpfc_cpuhp_get_eq(struct lpfc_hba *phba, unsigned int cpu, struct list_head *eqlist) { const struct cpumask *maskp; struct lpfc_queue *eq; struct cpumask *tmp; u16 idx; tmp = kzalloc(cpumask_size(), GFP_KERNEL); if (!tmp) return -ENOMEM; for (idx = 0; idx < phba->cfg_irq_chann; idx++) { maskp = pci_irq_get_affinity(phba->pcidev, idx); if (!maskp) continue; /* * if irq is not affinitized to the cpu going * then we don't need to poll the eq attached * to it. */ if (!cpumask_and(tmp, maskp, cpumask_of(cpu))) continue; /* get the cpus that are online and are affini- * tized to this irq vector. If the count is * more than 1 then cpuhp is not going to shut- * down this vector. Since this cpu has not * gone offline yet, we need >1. */ cpumask_and(tmp, maskp, cpu_online_mask); if (cpumask_weight(tmp) > 1) continue; /* Now that we have an irq to shutdown, get the eq * mapped to this irq. Note: multiple hdwq's in * the software can share an eq, but eventually * only eq will be mapped to this vector */ eq = phba->sli4_hba.hba_eq_hdl[idx].eq; list_add(&eq->_poll_list, eqlist); } kfree(tmp); return 0; } static void __lpfc_cpuhp_remove(struct lpfc_hba *phba) { if (phba->sli_rev != LPFC_SLI_REV4) return; cpuhp_state_remove_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp); /* * unregistering the instance doesn't stop the polling * timer. Wait for the poll timer to retire. */ synchronize_rcu(); del_timer_sync(&phba->cpuhp_poll_timer); } static void lpfc_cpuhp_remove(struct lpfc_hba *phba) { if (phba->pport && test_bit(FC_OFFLINE_MODE, &phba->pport->fc_flag)) return; __lpfc_cpuhp_remove(phba); } static void lpfc_cpuhp_add(struct lpfc_hba *phba) { if (phba->sli_rev != LPFC_SLI_REV4) return; rcu_read_lock(); if (!list_empty(&phba->poll_list)) mod_timer(&phba->cpuhp_poll_timer, jiffies + msecs_to_jiffies(LPFC_POLL_HB)); rcu_read_unlock(); cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp); } static int __lpfc_cpuhp_checks(struct lpfc_hba *phba, int *retval) { if (test_bit(FC_UNLOADING, &phba->pport->load_flag)) { *retval = -EAGAIN; return true; } if (phba->sli_rev != LPFC_SLI_REV4) { *retval = 0; return true; } /* proceed with the hotplug */ return false; } /** * lpfc_irq_set_aff - set IRQ affinity * @eqhdl: EQ handle * @cpu: cpu to set affinity * **/ static inline void lpfc_irq_set_aff(struct lpfc_hba_eq_hdl *eqhdl, unsigned int cpu) { cpumask_clear(&eqhdl->aff_mask); cpumask_set_cpu(cpu, &eqhdl->aff_mask); irq_set_status_flags(eqhdl->irq, IRQ_NO_BALANCING); irq_set_affinity(eqhdl->irq, &eqhdl->aff_mask); } /** * lpfc_irq_clear_aff - clear IRQ affinity * @eqhdl: EQ handle * **/ static inline void lpfc_irq_clear_aff(struct lpfc_hba_eq_hdl *eqhdl) { cpumask_clear(&eqhdl->aff_mask); irq_clear_status_flags(eqhdl->irq, IRQ_NO_BALANCING); } /** * lpfc_irq_rebalance - rebalances IRQ affinity according to cpuhp event * @phba: pointer to HBA context object. * @cpu: cpu going offline/online * @offline: true, cpu is going offline. false, cpu is coming online. * * If cpu is going offline, we'll try our best effort to find the next * online cpu on the phba's original_mask and migrate all offlining IRQ * affinities. * * If cpu is coming online, reaffinitize the IRQ back to the onlining cpu. * * Note: Call only if NUMA or NHT mode is enabled, otherwise rely on * PCI_IRQ_AFFINITY to auto-manage IRQ affinity. * **/ static void lpfc_irq_rebalance(struct lpfc_hba *phba, unsigned int cpu, bool offline) { struct lpfc_vector_map_info *cpup; struct cpumask *aff_mask; unsigned int cpu_select, cpu_next, idx; const struct cpumask *orig_mask; if (phba->irq_chann_mode == NORMAL_MODE) return; orig_mask = &phba->sli4_hba.irq_aff_mask; if (!cpumask_test_cpu(cpu, orig_mask)) return; cpup = &phba->sli4_hba.cpu_map[cpu]; if (!(cpup->flag & LPFC_CPU_FIRST_IRQ)) return; if (offline) { /* Find next online CPU on original mask */ cpu_next = cpumask_next_wrap(cpu, orig_mask, cpu, true); cpu_select = lpfc_next_online_cpu(orig_mask, cpu_next); /* Found a valid CPU */ if ((cpu_select < nr_cpu_ids) && (cpu_select != cpu)) { /* Go through each eqhdl and ensure offlining * cpu aff_mask is migrated */ for (idx = 0; idx < phba->cfg_irq_chann; idx++) { aff_mask = lpfc_get_aff_mask(idx); /* Migrate affinity */ if (cpumask_test_cpu(cpu, aff_mask)) lpfc_irq_set_aff(lpfc_get_eq_hdl(idx), cpu_select); } } else { /* Rely on irqbalance if no online CPUs left on NUMA */ for (idx = 0; idx < phba->cfg_irq_chann; idx++) lpfc_irq_clear_aff(lpfc_get_eq_hdl(idx)); } } else { /* Migrate affinity back to this CPU */ lpfc_irq_set_aff(lpfc_get_eq_hdl(cpup->eq), cpu); } } static int lpfc_cpu_offline(unsigned int cpu, struct hlist_node *node) { struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); struct lpfc_queue *eq, *next; LIST_HEAD(eqlist); int retval; if (!phba) { WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); return 0; } if (__lpfc_cpuhp_checks(phba, &retval)) return retval; lpfc_irq_rebalance(phba, cpu, true); retval = lpfc_cpuhp_get_eq(phba, cpu, &eqlist); if (retval) return retval; /* start polling on these eq's */ list_for_each_entry_safe(eq, next, &eqlist, _poll_list) { list_del_init(&eq->_poll_list); lpfc_sli4_start_polling(eq); } return 0; } static int lpfc_cpu_online(unsigned int cpu, struct hlist_node *node) { struct lpfc_hba *phba = hlist_entry_safe(node, struct lpfc_hba, cpuhp); struct lpfc_queue *eq, *next; unsigned int n; int retval; if (!phba) { WARN_ONCE(!phba, "cpu: %u. phba:NULL", raw_smp_processor_id()); return 0; } if (__lpfc_cpuhp_checks(phba, &retval)) return retval; lpfc_irq_rebalance(phba, cpu, false); list_for_each_entry_safe(eq, next, &phba->poll_list, _poll_list) { n = lpfc_find_cpu_handle(phba, eq->hdwq, LPFC_FIND_BY_HDWQ); if (n == cpu) lpfc_sli4_stop_polling(eq); } return 0; } /** * lpfc_sli4_enable_msix - Enable MSI-X interrupt mode to SLI-4 device * @phba: pointer to lpfc hba data structure. * * This routine is invoked to enable the MSI-X interrupt vectors to device * with SLI-4 interface spec. It also allocates MSI-X vectors and maps them * to cpus on the system. * * When cfg_irq_numa is enabled, the adapter will only allocate vectors for * the number of cpus on the same numa node as this adapter. The vectors are * allocated without requesting OS affinity mapping. A vector will be * allocated and assigned to each online and offline cpu. If the cpu is * online, then affinity will be set to that cpu. If the cpu is offline, then * affinity will be set to the nearest peer cpu within the numa node that is * online. If there are no online cpus within the numa node, affinity is not * assigned and the OS may do as it pleases. Note: cpu vector affinity mapping * is consistent with the way cpu online/offline is handled when cfg_irq_numa is * configured. * * If numa mode is not enabled and there is more than 1 vector allocated, then * the driver relies on the managed irq interface where the OS assigns vector to * cpu affinity. The driver will then use that affinity mapping to setup its * cpu mapping table. * * Return codes * 0 - successful * other values - error **/ static int lpfc_sli4_enable_msix(struct lpfc_hba *phba) { int vectors, rc, index; char *name; const struct cpumask *aff_mask = NULL; unsigned int cpu = 0, cpu_cnt = 0, cpu_select = nr_cpu_ids; struct lpfc_vector_map_info *cpup; struct lpfc_hba_eq_hdl *eqhdl; const struct cpumask *maskp; unsigned int flags = PCI_IRQ_MSIX; /* Set up MSI-X multi-message vectors */ vectors = phba->cfg_irq_chann; if (phba->irq_chann_mode != NORMAL_MODE) aff_mask = &phba->sli4_hba.irq_aff_mask; if (aff_mask) { cpu_cnt = cpumask_weight(aff_mask); vectors = min(phba->cfg_irq_chann, cpu_cnt); /* cpu: iterates over aff_mask including offline or online * cpu_select: iterates over online aff_mask to set affinity */ cpu = cpumask_first(aff_mask); cpu_select = lpfc_next_online_cpu(aff_mask, cpu); } else { flags |= PCI_IRQ_AFFINITY; } rc = pci_alloc_irq_vectors(phba->pcidev, 1, vectors, flags); if (rc < 0) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0484 PCI enable MSI-X failed (%d)\n", rc); goto vec_fail_out; } vectors = rc; /* Assign MSI-X vectors to interrupt handlers */ for (index = 0; index < vectors; index++) { eqhdl = lpfc_get_eq_hdl(index); name = eqhdl->handler_name; memset(name, 0, LPFC_SLI4_HANDLER_NAME_SZ); snprintf(name, LPFC_SLI4_HANDLER_NAME_SZ, LPFC_DRIVER_HANDLER_NAME"%d", index); eqhdl->idx = index; rc = pci_irq_vector(phba->pcidev, index); if (rc < 0) { lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "0489 MSI-X fast-path (%d) " "pci_irq_vec failed (%d)\n", index, rc); goto cfg_fail_out; } eqhdl->irq = rc; rc = request_threaded_irq(eqhdl->irq, &lpfc_sli4_hba_intr_handler, &lpfc_sli4_hba_intr_handler_th, 0, name, eqhdl); if (rc) { lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "0486 MSI-X fast-path (%d) " "request_irq failed (%d)\n", index, rc); goto cfg_fail_out; } if (aff_mask) { /* If found a neighboring online cpu, set affinity */ if (cpu_select < nr_cpu_ids) lpfc_irq_set_aff(eqhdl, cpu_select); /* Assign EQ to cpu_map */ lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ, cpu); /* Iterate to next offline or online cpu in aff_mask */ cpu = cpumask_next(cpu, aff_mask); /* Find next online cpu in aff_mask to set affinity */ cpu_select = lpfc_next_online_cpu(aff_mask, cpu); } else if (vectors == 1) { cpu = cpumask_first(cpu_present_mask); lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ, cpu); } else { maskp = pci_irq_get_affinity(phba->pcidev, index); /* Loop through all CPUs associated with vector index */ for_each_cpu_and(cpu, maskp, cpu_present_mask) { cpup = &phba->sli4_hba.cpu_map[cpu]; /* If this is the first CPU thats assigned to * this vector, set LPFC_CPU_FIRST_IRQ. * * With certain platforms its possible that irq * vectors are affinitized to all the cpu's. * This can result in each cpu_map.eq to be set * to the last vector, resulting in overwrite * of all the previous cpu_map.eq. Ensure that * each vector receives a place in cpu_map. * Later call to lpfc_cpu_affinity_check will * ensure we are nicely balanced out. */ if (cpup->eq != LPFC_VECTOR_MAP_EMPTY) continue; lpfc_assign_eq_map_info(phba, index, LPFC_CPU_FIRST_IRQ, cpu); break; } } } if (vectors != phba->cfg_irq_chann) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3238 Reducing IO channels to match number of " "MSI-X vectors, requested %d got %d\n", phba->cfg_irq_chann, vectors); if (phba->cfg_irq_chann > vectors) phba->cfg_irq_chann = vectors; } return rc; cfg_fail_out: /* free the irq already requested */ for (--index; index >= 0; index--) { eqhdl = lpfc_get_eq_hdl(index); lpfc_irq_clear_aff(eqhdl); free_irq(eqhdl->irq, eqhdl); } /* Unconfigure MSI-X capability structure */ pci_free_irq_vectors(phba->pcidev); vec_fail_out: return rc; } /** * lpfc_sli4_enable_msi - Enable MSI interrupt mode to SLI-4 device * @phba: pointer to lpfc hba data structure. * * This routine is invoked to enable the MSI interrupt mode to device with * SLI-4 interface spec. The kernel function pci_alloc_irq_vectors() is * called to enable the MSI vector. The device driver is responsible for * calling the request_irq() to register MSI vector with a interrupt the * handler, which is done in this function. * * Return codes * 0 - successful * other values - error **/ static int lpfc_sli4_enable_msi(struct lpfc_hba *phba) { int rc, index; unsigned int cpu; struct lpfc_hba_eq_hdl *eqhdl; rc = pci_alloc_irq_vectors(phba->pcidev, 1, 1, PCI_IRQ_MSI | PCI_IRQ_AFFINITY); if (rc > 0) lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0487 PCI enable MSI mode success.\n"); else { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0488 PCI enable MSI mode failed (%d)\n", rc); return rc ? rc : -1; } rc = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, 0, LPFC_DRIVER_NAME, phba); if (rc) { pci_free_irq_vectors(phba->pcidev); lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "0490 MSI request_irq failed (%d)\n", rc); return rc; } eqhdl = lpfc_get_eq_hdl(0); rc = pci_irq_vector(phba->pcidev, 0); if (rc < 0) { pci_free_irq_vectors(phba->pcidev); lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "0496 MSI pci_irq_vec failed (%d)\n", rc); return rc; } eqhdl->irq = rc; cpu = cpumask_first(cpu_present_mask); lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu); for (index = 0; index < phba->cfg_irq_chann; index++) { eqhdl = lpfc_get_eq_hdl(index); eqhdl->idx = index; } return 0; } /** * lpfc_sli4_enable_intr - Enable device interrupt to SLI-4 device * @phba: pointer to lpfc hba data structure. * @cfg_mode: Interrupt configuration mode (INTx, MSI or MSI-X). * * This routine is invoked to enable device interrupt and associate driver's * interrupt handler(s) to interrupt vector(s) to device with SLI-4 * interface spec. Depends on the interrupt mode configured to the driver, * the driver will try to fallback from the configured interrupt mode to an * interrupt mode which is supported by the platform, kernel, and device in * the order of: * MSI-X -> MSI -> IRQ. * * Return codes * Interrupt mode (2, 1, 0) - successful * LPFC_INTR_ERROR - error **/ static uint32_t lpfc_sli4_enable_intr(struct lpfc_hba *phba, uint32_t cfg_mode) { uint32_t intr_mode = LPFC_INTR_ERROR; int retval, idx; if (cfg_mode == 2) { /* Preparation before conf_msi mbox cmd */ retval = 0; if (!retval) { /* Now, try to enable MSI-X interrupt mode */ retval = lpfc_sli4_enable_msix(phba); if (!retval) { /* Indicate initialization to MSI-X mode */ phba->intr_type = MSIX; intr_mode = 2; } } } /* Fallback to MSI if MSI-X initialization failed */ if (cfg_mode >= 1 && phba->intr_type == NONE) { retval = lpfc_sli4_enable_msi(phba); if (!retval) { /* Indicate initialization to MSI mode */ phba->intr_type = MSI; intr_mode = 1; } } /* Fallback to INTx if both MSI-X/MSI initalization failed */ if (phba->intr_type == NONE) { retval = request_irq(phba->pcidev->irq, lpfc_sli4_intr_handler, IRQF_SHARED, LPFC_DRIVER_NAME, phba); if (!retval) { struct lpfc_hba_eq_hdl *eqhdl; unsigned int cpu; /* Indicate initialization to INTx mode */ phba->intr_type = INTx; intr_mode = 0; eqhdl = lpfc_get_eq_hdl(0); retval = pci_irq_vector(phba->pcidev, 0); if (retval < 0) { lpfc_printf_log(phba, KERN_WARNING, LOG_INIT, "0502 INTR pci_irq_vec failed (%d)\n", retval); return LPFC_INTR_ERROR; } eqhdl->irq = retval; cpu = cpumask_first(cpu_present_mask); lpfc_assign_eq_map_info(phba, 0, LPFC_CPU_FIRST_IRQ, cpu); for (idx = 0; idx < phba->cfg_irq_chann; idx++) { eqhdl = lpfc_get_eq_hdl(idx); eqhdl->idx = idx; } } } return intr_mode; } /** * lpfc_sli4_disable_intr - Disable device interrupt to SLI-4 device * @phba: pointer to lpfc hba data structure. * * This routine is invoked to disable device interrupt and disassociate * the driver's interrupt handler(s) from interrupt vector(s) to device * with SLI-4 interface spec. Depending on the interrupt mode, the driver * will release the interrupt vector(s) for the message signaled interrupt. **/ static void lpfc_sli4_disable_intr(struct lpfc_hba *phba) { /* Disable the currently initialized interrupt mode */ if (phba->intr_type == MSIX) { int index; struct lpfc_hba_eq_hdl *eqhdl; /* Free up MSI-X multi-message vectors */ for (index = 0; index < phba->cfg_irq_chann; index++) { eqhdl = lpfc_get_eq_hdl(index); lpfc_irq_clear_aff(eqhdl); free_irq(eqhdl->irq, eqhdl); } } else { free_irq(phba->pcidev->irq, phba); } pci_free_irq_vectors(phba->pcidev); /* Reset interrupt management states */ phba->intr_type = NONE; phba->sli.slistat.sli_intr = 0; } /** * lpfc_unset_hba - Unset SLI3 hba device initialization * @phba: pointer to lpfc hba data structure. * * This routine is invoked to unset the HBA device initialization steps to * a device with SLI-3 interface spec. **/ static void lpfc_unset_hba(struct lpfc_hba *phba) { set_bit(FC_UNLOADING, &phba->pport->load_flag); kfree(phba->vpi_bmask); kfree(phba->vpi_ids); lpfc_stop_hba_timers(phba); phba->pport->work_port_events = 0; lpfc_sli_hba_down(phba); lpfc_sli_brdrestart(phba); lpfc_sli_disable_intr(phba); return; } /** * lpfc_sli4_xri_exchange_busy_wait - Wait for device XRI exchange busy * @phba: Pointer to HBA context object. * * This function is called in the SLI4 code path to wait for completion * of device's XRIs exchange busy. It will check the XRI exchange busy * on outstanding FCP and ELS I/Os every 10ms for up to 10 seconds; after * that, it will check the XRI exchange busy on outstanding FCP and ELS * I/Os every 30 seconds, log error message, and wait forever. Only when * all XRI exchange busy complete, the driver unload shall proceed with * invoking the function reset ioctl mailbox command to the CNA and the * the rest of the driver unload resource release. **/ static void lpfc_sli4_xri_exchange_busy_wait(struct lpfc_hba *phba) { struct lpfc_sli4_hdw_queue *qp; int idx, ccnt; int wait_time = 0; int io_xri_cmpl = 1; int nvmet_xri_cmpl = 1; int els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); /* Driver just aborted IOs during the hba_unset process. Pause * here to give the HBA time to complete the IO and get entries * into the abts lists. */ msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1 * 5); /* Wait for NVME pending IO to flush back to transport. */ if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) lpfc_nvme_wait_for_io_drain(phba); ccnt = 0; for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { qp = &phba->sli4_hba.hdwq[idx]; io_xri_cmpl = list_empty(&qp->lpfc_abts_io_buf_list); if (!io_xri_cmpl) /* if list is NOT empty */ ccnt++; } if (ccnt) io_xri_cmpl = 0; if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { nvmet_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_nvmet_ctx_list); } while (!els_xri_cmpl || !io_xri_cmpl || !nvmet_xri_cmpl) { if (wait_time > LPFC_XRI_EXCH_BUSY_WAIT_TMO) { if (!nvmet_xri_cmpl) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6424 NVMET XRI exchange busy " "wait time: %d seconds.\n", wait_time/1000); if (!io_xri_cmpl) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6100 IO XRI exchange busy " "wait time: %d seconds.\n", wait_time/1000); if (!els_xri_cmpl) lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2878 ELS XRI exchange busy " "wait time: %d seconds.\n", wait_time/1000); msleep(LPFC_XRI_EXCH_BUSY_WAIT_T2); wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T2; } else { msleep(LPFC_XRI_EXCH_BUSY_WAIT_T1); wait_time += LPFC_XRI_EXCH_BUSY_WAIT_T1; } ccnt = 0; for (idx = 0; idx < phba->cfg_hdw_queue; idx++) { qp = &phba->sli4_hba.hdwq[idx]; io_xri_cmpl = list_empty( &qp->lpfc_abts_io_buf_list); if (!io_xri_cmpl) /* if list is NOT empty */ ccnt++; } if (ccnt) io_xri_cmpl = 0; if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { nvmet_xri_cmpl = list_empty( &phba->sli4_hba.lpfc_abts_nvmet_ctx_list); } els_xri_cmpl = list_empty(&phba->sli4_hba.lpfc_abts_els_sgl_list); } } /** * lpfc_sli4_hba_unset - Unset the fcoe hba * @phba: Pointer to HBA context object. * * This function is called in the SLI4 code path to reset the HBA's FCoE * function. The caller is not required to hold any lock. This routine * issues PCI function reset mailbox command to reset the FCoE function. * At the end of the function, it calls lpfc_hba_down_post function to * free any pending commands. **/ static void lpfc_sli4_hba_unset(struct lpfc_hba *phba) { int wait_cnt = 0; LPFC_MBOXQ_t *mboxq; struct pci_dev *pdev = phba->pcidev; lpfc_stop_hba_timers(phba); hrtimer_cancel(&phba->cmf_stats_timer); hrtimer_cancel(&phba->cmf_timer); if (phba->pport) phba->sli4_hba.intr_enable = 0; /* * Gracefully wait out the potential current outstanding asynchronous * mailbox command. */ /* First, block any pending async mailbox command from posted */ spin_lock_irq(&phba->hbalock); phba->sli.sli_flag |= LPFC_SLI_ASYNC_MBX_BLK; spin_unlock_irq(&phba->hbalock); /* Now, trying to wait it out if we can */ while (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { msleep(10); if (++wait_cnt > LPFC_ACTIVE_MBOX_WAIT_CNT) break; } /* Forcefully release the outstanding mailbox command if timed out */ if (phba->sli.sli_flag & LPFC_SLI_MBOX_ACTIVE) { spin_lock_irq(&phba->hbalock); mboxq = phba->sli.mbox_active; mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED; __lpfc_mbox_cmpl_put(phba, mboxq); phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE; phba->sli.mbox_active = NULL; spin_unlock_irq(&phba->hbalock); } /* Abort all iocbs associated with the hba */ lpfc_sli_hba_iocb_abort(phba); if (!pci_channel_offline(phba->pcidev)) /* Wait for completion of device XRI exchange busy */ lpfc_sli4_xri_exchange_busy_wait(phba); /* per-phba callback de-registration for hotplug event */ if (phba->pport) lpfc_cpuhp_remove(phba); /* Disable PCI subsystem interrupt */ lpfc_sli4_disable_intr(phba); /* Disable SR-IOV if enabled */ if (phba->cfg_sriov_nr_virtfn) pci_disable_sriov(pdev); /* Stop kthread signal shall trigger work_done one more time */ kthread_stop(phba->worker_thread); /* Disable FW logging to host memory */ lpfc_ras_stop_fwlog(phba); /* Reset SLI4 HBA FCoE function */ lpfc_pci_function_reset(phba); /* release all queue allocated resources. */ lpfc_sli4_queue_destroy(phba); /* Free RAS DMA memory */ if (phba->ras_fwlog.ras_enabled) lpfc_sli4_ras_dma_free(phba); /* Stop the SLI4 device port */ if (phba->pport) phba->pport->work_port_events = 0; } static uint32_t lpfc_cgn_crc32(uint32_t crc, u8 byte) { uint32_t msb = 0; uint32_t bit; for (bit = 0; bit < 8; bit++) { msb = (crc >> 31) & 1; crc <<= 1; if (msb ^ (byte & 1)) { crc ^= LPFC_CGN_CRC32_MAGIC_NUMBER; crc |= 1; } byte >>= 1; } return crc; } static uint32_t lpfc_cgn_reverse_bits(uint32_t wd) { uint32_t result = 0; uint32_t i; for (i = 0; i < 32; i++) { result <<= 1; result |= (1 & (wd >> i)); } return result; } /* * The routine corresponds with the algorithm the HBA firmware * uses to validate the data integrity. */ uint32_t lpfc_cgn_calc_crc32(void *ptr, uint32_t byteLen, uint32_t crc) { uint32_t i; uint32_t result; uint8_t *data = (uint8_t *)ptr; for (i = 0; i < byteLen; ++i) crc = lpfc_cgn_crc32(crc, data[i]); result = ~lpfc_cgn_reverse_bits(crc); return result; } void lpfc_init_congestion_buf(struct lpfc_hba *phba) { struct lpfc_cgn_info *cp; uint16_t size; uint32_t crc; lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6235 INIT Congestion Buffer %p\n", phba->cgn_i); if (!phba->cgn_i) return; cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; atomic_set(&phba->cgn_fabric_warn_cnt, 0); atomic_set(&phba->cgn_fabric_alarm_cnt, 0); atomic_set(&phba->cgn_sync_alarm_cnt, 0); atomic_set(&phba->cgn_sync_warn_cnt, 0); atomic_set(&phba->cgn_driver_evt_cnt, 0); atomic_set(&phba->cgn_latency_evt_cnt, 0); atomic64_set(&phba->cgn_latency_evt, 0); phba->cgn_evt_minute = 0; memset(cp, 0xff, offsetof(struct lpfc_cgn_info, cgn_stat)); cp->cgn_info_size = cpu_to_le16(LPFC_CGN_INFO_SZ); cp->cgn_info_version = LPFC_CGN_INFO_V4; /* cgn parameters */ cp->cgn_info_mode = phba->cgn_p.cgn_param_mode; cp->cgn_info_level0 = phba->cgn_p.cgn_param_level0; cp->cgn_info_level1 = phba->cgn_p.cgn_param_level1; cp->cgn_info_level2 = phba->cgn_p.cgn_param_level2; lpfc_cgn_update_tstamp(phba, &cp->base_time); /* Fill in default LUN qdepth */ if (phba->pport) { size = (uint16_t)(phba->pport->cfg_lun_queue_depth); cp->cgn_lunq = cpu_to_le16(size); } /* last used Index initialized to 0xff already */ cp->cgn_warn_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ); cp->cgn_alarm_freq = cpu_to_le16(LPFC_FPIN_INIT_FREQ); crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); cp->cgn_info_crc = cpu_to_le32(crc); phba->cgn_evt_timestamp = jiffies + msecs_to_jiffies(LPFC_CGN_TIMER_TO_MIN); } void lpfc_init_congestion_stat(struct lpfc_hba *phba) { struct lpfc_cgn_info *cp; uint32_t crc; lpfc_printf_log(phba, KERN_INFO, LOG_CGN_MGMT, "6236 INIT Congestion Stat %p\n", phba->cgn_i); if (!phba->cgn_i) return; cp = (struct lpfc_cgn_info *)phba->cgn_i->virt; memset(&cp->cgn_stat, 0, sizeof(cp->cgn_stat)); lpfc_cgn_update_tstamp(phba, &cp->stat_start); crc = lpfc_cgn_calc_crc32(cp, LPFC_CGN_INFO_SZ, LPFC_CGN_CRC32_SEED); cp->cgn_info_crc = cpu_to_le32(crc); } /** * __lpfc_reg_congestion_buf - register congestion info buffer with HBA * @phba: Pointer to hba context object. * @reg: flag to determine register or unregister. */ static int __lpfc_reg_congestion_buf(struct lpfc_hba *phba, int reg) { struct lpfc_mbx_reg_congestion_buf *reg_congestion_buf; union lpfc_sli4_cfg_shdr *shdr; uint32_t shdr_status, shdr_add_status; LPFC_MBOXQ_t *mboxq; int length, rc; if (!phba->cgn_i) return -ENXIO; mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (!mboxq) { lpfc_printf_log(phba, KERN_ERR, LOG_MBOX, "2641 REG_CONGESTION_BUF mbox allocation fail: " "HBA state x%x reg %d\n", phba->pport->port_state, reg); return -ENOMEM; } length = (sizeof(struct lpfc_mbx_reg_congestion_buf) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_REG_CONGESTION_BUF, length, LPFC_SLI4_MBX_EMBED); reg_congestion_buf = &mboxq->u.mqe.un.reg_congestion_buf; bf_set(lpfc_mbx_reg_cgn_buf_type, reg_congestion_buf, 1); if (reg > 0) bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 1); else bf_set(lpfc_mbx_reg_cgn_buf_cnt, reg_congestion_buf, 0); reg_congestion_buf->length = sizeof(struct lpfc_cgn_info); reg_congestion_buf->addr_lo = putPaddrLow(phba->cgn_i->phys); reg_congestion_buf->addr_hi = putPaddrHigh(phba->cgn_i->phys); rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); shdr = (union lpfc_sli4_cfg_shdr *) &mboxq->u.mqe.un.sli4_config.header.cfg_shdr; shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response); shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response); mempool_free(mboxq, phba->mbox_mem_pool); if (shdr_status || shdr_add_status || rc) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "2642 REG_CONGESTION_BUF mailbox " "failed with status x%x add_status x%x," " mbx status x%x reg %d\n", shdr_status, shdr_add_status, rc, reg); return -ENXIO; } return 0; } int lpfc_unreg_congestion_buf(struct lpfc_hba *phba) { lpfc_cmf_stop(phba); return __lpfc_reg_congestion_buf(phba, 0); } int lpfc_reg_congestion_buf(struct lpfc_hba *phba) { return __lpfc_reg_congestion_buf(phba, 1); } /** * lpfc_get_sli4_parameters - Get the SLI4 Config PARAMETERS. * @phba: Pointer to HBA context object. * @mboxq: Pointer to the mailboxq memory for the mailbox command response. * * This function is called in the SLI4 code path to read the port's * sli4 capabilities. * * This function may be be called from any context that can block-wait * for the completion. The expectation is that this routine is called * typically from probe_one or from the online routine. **/ int lpfc_get_sli4_parameters(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq) { int rc; struct lpfc_mqe *mqe = &mboxq->u.mqe; struct lpfc_pc_sli4_params *sli4_params; uint32_t mbox_tmo; int length; bool exp_wqcq_pages = true; struct lpfc_sli4_parameters *mbx_sli4_parameters; /* * By default, the driver assumes the SLI4 port requires RPI * header postings. The SLI4_PARAM response will correct this * assumption. */ phba->sli4_hba.rpi_hdrs_in_use = 1; /* Read the port's SLI4 Config Parameters */ length = (sizeof(struct lpfc_mbx_get_sli4_parameters) - sizeof(struct lpfc_sli4_cfg_mhdr)); lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON, LPFC_MBOX_OPCODE_GET_SLI4_PARAMETERS, length, LPFC_SLI4_MBX_EMBED); if (!phba->sli4_hba.intr_enable) rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL); else { mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq); rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo); } if (unlikely(rc)) return rc; sli4_params = &phba->sli4_hba.pc_sli4_params; mbx_sli4_parameters = &mqe->un.get_sli4_parameters.sli4_parameters; sli4_params->if_type = bf_get(cfg_if_type, mbx_sli4_parameters); sli4_params->sli_rev = bf_get(cfg_sli_rev, mbx_sli4_parameters); sli4_params->sli_family = bf_get(cfg_sli_family, mbx_sli4_parameters); sli4_params->featurelevel_1 = bf_get(cfg_sli_hint_1, mbx_sli4_parameters); sli4_params->featurelevel_2 = bf_get(cfg_sli_hint_2, mbx_sli4_parameters); if (bf_get(cfg_phwq, mbx_sli4_parameters)) phba->sli3_options |= LPFC_SLI4_PHWQ_ENABLED; else phba->sli3_options &= ~LPFC_SLI4_PHWQ_ENABLED; sli4_params->sge_supp_len = mbx_sli4_parameters->sge_supp_len; sli4_params->loopbk_scope = bf_get(cfg_loopbk_scope, mbx_sli4_parameters); sli4_params->oas_supported = bf_get(cfg_oas, mbx_sli4_parameters); sli4_params->cqv = bf_get(cfg_cqv, mbx_sli4_parameters); sli4_params->mqv = bf_get(cfg_mqv, mbx_sli4_parameters); sli4_params->wqv = bf_get(cfg_wqv, mbx_sli4_parameters); sli4_params->rqv = bf_get(cfg_rqv, mbx_sli4_parameters); sli4_params->eqav = bf_get(cfg_eqav, mbx_sli4_parameters); sli4_params->cqav = bf_get(cfg_cqav, mbx_sli4_parameters); sli4_params->wqsize = bf_get(cfg_wqsize, mbx_sli4_parameters); sli4_params->bv1s = bf_get(cfg_bv1s, mbx_sli4_parameters); sli4_params->pls = bf_get(cfg_pvl, mbx_sli4_parameters); sli4_params->sgl_pages_max = bf_get(cfg_sgl_page_cnt, mbx_sli4_parameters); sli4_params->wqpcnt = bf_get(cfg_wqpcnt, mbx_sli4_parameters); sli4_params->sgl_pp_align = bf_get(cfg_sgl_pp_align, mbx_sli4_parameters); phba->sli4_hba.extents_in_use = bf_get(cfg_ext, mbx_sli4_parameters); phba->sli4_hba.rpi_hdrs_in_use = bf_get(cfg_hdrr, mbx_sli4_parameters); sli4_params->mi_cap = bf_get(cfg_mi_ver, mbx_sli4_parameters); /* Check for Extended Pre-Registered SGL support */ phba->cfg_xpsgl = bf_get(cfg_xpsgl, mbx_sli4_parameters); /* Check for firmware nvme support */ rc = (bf_get(cfg_nvme, mbx_sli4_parameters) && bf_get(cfg_xib, mbx_sli4_parameters)); if (rc) { /* Save this to indicate the Firmware supports NVME */ sli4_params->nvme = 1; /* Firmware NVME support, check driver FC4 NVME support */ if (phba->cfg_enable_fc4_type == LPFC_ENABLE_FCP) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, "6133 Disabling NVME support: " "FC4 type not supported: x%x\n", phba->cfg_enable_fc4_type); goto fcponly; } } else { /* No firmware NVME support, check driver FC4 NVME support */ sli4_params->nvme = 0; if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_NVME, "6101 Disabling NVME support: Not " "supported by firmware (%d %d) x%x\n", bf_get(cfg_nvme, mbx_sli4_parameters), bf_get(cfg_xib, mbx_sli4_parameters), phba->cfg_enable_fc4_type); fcponly: phba->nvmet_support = 0; phba->cfg_nvmet_mrq = 0; phba->cfg_nvme_seg_cnt = 0; /* If no FC4 type support, move to just SCSI support */ if (!(phba->cfg_enable_fc4_type & LPFC_ENABLE_FCP)) return -ENODEV; phba->cfg_enable_fc4_type = LPFC_ENABLE_FCP; } } /* If the NVME FC4 type is enabled, scale the sg_seg_cnt to * accommodate 512K and 1M IOs in a single nvme buf. */ if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) phba->cfg_sg_seg_cnt = LPFC_MAX_NVME_SEG_CNT; /* Enable embedded Payload BDE if support is indicated */ if (bf_get(cfg_pbde, mbx_sli4_parameters)) phba->cfg_enable_pbde = 1; else phba->cfg_enable_pbde = 0; /* * To support Suppress Response feature we must satisfy 3 conditions. * lpfc_suppress_rsp module parameter must be set (default). * In SLI4-Parameters Descriptor: * Extended Inline Buffers (XIB) must be supported. * Suppress Response IU Not Supported (SRIUNS) must NOT be supported * (double negative). */ if (phba->cfg_suppress_rsp && bf_get(cfg_xib, mbx_sli4_parameters) && !(bf_get(cfg_nosr, mbx_sli4_parameters))) phba->sli.sli_flag |= LPFC_SLI_SUPPRESS_RSP; else phba->cfg_suppress_rsp = 0; if (bf_get(cfg_eqdr, mbx_sli4_parameters)) phba->sli.sli_flag |= LPFC_SLI_USE_EQDR; /* Make sure that sge_supp_len can be handled by the driver */ if (sli4_params->sge_supp_len > LPFC_MAX_SGE_SIZE) sli4_params->sge_supp_len = LPFC_MAX_SGE_SIZE; rc = dma_set_max_seg_size(&phba->pcidev->dev, sli4_params->sge_supp_len); if (unlikely(rc)) { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "6400 Can't set dma maximum segment size\n"); return rc; } /* * Check whether the adapter supports an embedded copy of the * FCP CMD IU within the WQE for FCP_Ixxx commands. In order * to use this option, 128-byte WQEs must be used. */ if (bf_get(cfg_ext_embed_cb, mbx_sli4_parameters)) phba->fcp_embed_io = 1; else phba->fcp_embed_io = 0; lpfc_printf_log(phba, KERN_INFO, LOG_INIT | LOG_NVME, "6422 XIB %d PBDE %d: FCP %d NVME %d %d %d\n", bf_get(cfg_xib, mbx_sli4_parameters), phba->cfg_enable_pbde, phba->fcp_embed_io, sli4_params->nvme, phba->cfg_nvme_embed_cmd, phba->cfg_suppress_rsp); if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == LPFC_SLI_INTF_IF_TYPE_2) && (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == LPFC_SLI_INTF_FAMILY_LNCR_A0)) exp_wqcq_pages = false; if ((bf_get(cfg_cqpsize, mbx_sli4_parameters) & LPFC_CQ_16K_PAGE_SZ) && (bf_get(cfg_wqpsize, mbx_sli4_parameters) & LPFC_WQ_16K_PAGE_SZ) && exp_wqcq_pages && (sli4_params->wqsize & LPFC_WQ_SZ128_SUPPORT)) phba->enab_exp_wqcq_pages = 1; else phba->enab_exp_wqcq_pages = 0; /* * Check if the SLI port supports MDS Diagnostics */ if (bf_get(cfg_mds_diags, mbx_sli4_parameters)) phba->mds_diags_support = 1; else phba->mds_diags_support = 0; /* * Check if the SLI port supports NSLER */ if (bf_get(cfg_nsler, mbx_sli4_parameters)) phba->nsler = 1; else phba->nsler = 0; return 0; } /** * lpfc_pci_probe_one_s3 - PCI probe func to reg SLI-3 device to PCI subsystem. * @pdev: pointer to PCI device * @pid: pointer to PCI device identifier * * This routine is to be called to attach a device with SLI-3 interface spec * to the PCI subsystem. When an Emulex HBA with SLI-3 interface spec is * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific * information of the device and driver to see if the driver state that it can * support this kind of device. If the match is successful, the driver core * invokes this routine. If this routine determines it can claim the HBA, it * does all the initialization that it needs to do to handle the HBA properly. * * Return code * 0 - driver can claim the device * negative value - driver can not claim the device **/ static int lpfc_pci_probe_one_s3(struct pci_dev *pdev, const struct pci_device_id *pid) { struct lpfc_hba *phba; struct lpfc_vport *vport = NULL; struct Scsi_Host *shost = NULL; int error; uint32_t cfg_mode, intr_mode; /* Allocate memory for HBA structure */ phba = lpfc_hba_alloc(pdev); if (!phba) return -ENOMEM; /* Perform generic PCI device enabling operation */ error = lpfc_enable_pci_dev(phba); if (error) goto out_free_phba; /* Set up SLI API function jump table for PCI-device group-0 HBAs */ error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_LP); if (error) goto out_disable_pci_dev; /* Set up SLI-3 specific device PCI memory space */ error = lpfc_sli_pci_mem_setup(phba); if (error) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1402 Failed to set up pci memory space.\n"); goto out_disable_pci_dev; } /* Set up SLI-3 specific device driver resources */ error = lpfc_sli_driver_resource_setup(phba); if (error) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1404 Failed to set up driver resource.\n"); goto out_unset_pci_mem_s3; } /* Initialize and populate the iocb list per host */ error = lpfc_init_iocb_list(phba, LPFC_IOCB_LIST_CNT); if (error) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1405 Failed to initialize iocb list.\n"); goto out_unset_driver_resource_s3; } /* Set up common device driver resources */ error = lpfc_setup_driver_resource_phase2(phba); if (error) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1406 Failed to set up driver resource.\n"); goto out_free_iocb_list; } /* Get the default values for Model Name and Description */ lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); /* Create SCSI host to the physical port */ error = lpfc_create_shost(phba); if (error) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1407 Failed to create scsi host.\n"); goto out_unset_driver_resource; } /* Configure sysfs attributes */ vport = phba->pport; error = lpfc_alloc_sysfs_attr(vport); if (error) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1476 Failed to allocate sysfs attr\n"); goto out_destroy_shost; } shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ /* Now, trying to enable interrupt and bring up the device */ cfg_mode = phba->cfg_use_msi; while (true) { /* Put device to a known state before enabling interrupt */ lpfc_stop_port(phba); /* Configure and enable interrupt */ intr_mode = lpfc_sli_enable_intr(phba, cfg_mode); if (intr_mode == LPFC_INTR_ERROR) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0431 Failed to enable interrupt.\n"); error = -ENODEV; goto out_free_sysfs_attr; } /* SLI-3 HBA setup */ if (lpfc_sli_hba_setup(phba)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1477 Failed to set up hba\n"); error = -ENODEV; goto out_remove_device; } /* Wait 50ms for the interrupts of previous mailbox commands */ msleep(50); /* Check active interrupts on message signaled interrupts */ if (intr_mode == 0 || phba->sli.slistat.sli_intr > LPFC_MSIX_VECTORS) { /* Log the current active interrupt mode */ phba->intr_mode = intr_mode; lpfc_log_intr_mode(phba, intr_mode); break; } else { lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0447 Configure interrupt mode (%d) " "failed active interrupt test.\n", intr_mode); /* Disable the current interrupt mode */ lpfc_sli_disable_intr(phba); /* Try next level of interrupt mode */ cfg_mode = --intr_mode; } } /* Perform post initialization setup */ lpfc_post_init_setup(phba); /* Check if there are static vports to be created. */ lpfc_create_static_vport(phba); return 0; out_remove_device: lpfc_unset_hba(phba); out_free_sysfs_attr: lpfc_free_sysfs_attr(vport); out_destroy_shost: lpfc_destroy_shost(phba); out_unset_driver_resource: lpfc_unset_driver_resource_phase2(phba); out_free_iocb_list: lpfc_free_iocb_list(phba); out_unset_driver_resource_s3: lpfc_sli_driver_resource_unset(phba); out_unset_pci_mem_s3: lpfc_sli_pci_mem_unset(phba); out_disable_pci_dev: lpfc_disable_pci_dev(phba); if (shost) scsi_host_put(shost); out_free_phba: lpfc_hba_free(phba); return error; } /** * lpfc_pci_remove_one_s3 - PCI func to unreg SLI-3 device from PCI subsystem. * @pdev: pointer to PCI device * * This routine is to be called to disattach a device with SLI-3 interface * spec from PCI subsystem. When an Emulex HBA with SLI-3 interface spec is * removed from PCI bus, it performs all the necessary cleanup for the HBA * device to be removed from the PCI subsystem properly. **/ static void lpfc_pci_remove_one_s3(struct pci_dev *pdev) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_vport **vports; struct lpfc_hba *phba = vport->phba; int i; set_bit(FC_UNLOADING, &vport->load_flag); lpfc_free_sysfs_attr(vport); /* Release all the vports against this physical port */ vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { if (vports[i]->port_type == LPFC_PHYSICAL_PORT) continue; fc_vport_terminate(vports[i]->fc_vport); } lpfc_destroy_vport_work_array(phba, vports); /* Remove FC host with the physical port */ fc_remove_host(shost); scsi_remove_host(shost); /* Clean up all nodes, mailboxes and IOs. */ lpfc_cleanup(vport); /* * Bring down the SLI Layer. This step disable all interrupts, * clears the rings, discards all mailbox commands, and resets * the HBA. */ /* HBA interrupt will be disabled after this call */ lpfc_sli_hba_down(phba); /* Stop kthread signal shall trigger work_done one more time */ kthread_stop(phba->worker_thread); /* Final cleanup of txcmplq and reset the HBA */ lpfc_sli_brdrestart(phba); kfree(phba->vpi_bmask); kfree(phba->vpi_ids); lpfc_stop_hba_timers(phba); spin_lock_irq(&phba->port_list_lock); list_del_init(&vport->listentry); spin_unlock_irq(&phba->port_list_lock); lpfc_debugfs_terminate(vport); /* Disable SR-IOV if enabled */ if (phba->cfg_sriov_nr_virtfn) pci_disable_sriov(pdev); /* Disable interrupt */ lpfc_sli_disable_intr(phba); scsi_host_put(shost); /* * Call scsi_free before mem_free since scsi bufs are released to their * corresponding pools here. */ lpfc_scsi_free(phba); lpfc_free_iocb_list(phba); lpfc_mem_free_all(phba); dma_free_coherent(&pdev->dev, lpfc_sli_hbq_size(), phba->hbqslimp.virt, phba->hbqslimp.phys); /* Free resources associated with SLI2 interface */ dma_free_coherent(&pdev->dev, SLI2_SLIM_SIZE, phba->slim2p.virt, phba->slim2p.phys); /* unmap adapter SLIM and Control Registers */ iounmap(phba->ctrl_regs_memmap_p); iounmap(phba->slim_memmap_p); lpfc_hba_free(phba); pci_release_mem_regions(pdev); pci_disable_device(pdev); } /** * lpfc_pci_suspend_one_s3 - PCI func to suspend SLI-3 device for power mgmnt * @dev_d: pointer to device * * This routine is to be called from the kernel's PCI subsystem to support * system Power Management (PM) to device with SLI-3 interface spec. When * PM invokes this method, it quiesces the device by stopping the driver's * worker thread for the device, turning off device's interrupt and DMA, * and bring the device offline. Note that as the driver implements the * minimum PM requirements to a power-aware driver's PM support for the * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) * to the suspend() method call will be treated as SUSPEND and the driver will * fully reinitialize its device during resume() method call, the driver will * set device to PCI_D3hot state in PCI config space instead of setting it * according to the @msg provided by the PM. * * Return code * 0 - driver suspended the device * Error otherwise **/ static int __maybe_unused lpfc_pci_suspend_one_s3(struct device *dev_d) { struct Scsi_Host *shost = dev_get_drvdata(dev_d); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0473 PCI device Power Management suspend.\n"); /* Bring down the device */ lpfc_offline_prep(phba, LPFC_MBX_WAIT); lpfc_offline(phba); kthread_stop(phba->worker_thread); /* Disable interrupt from device */ lpfc_sli_disable_intr(phba); return 0; } /** * lpfc_pci_resume_one_s3 - PCI func to resume SLI-3 device for power mgmnt * @dev_d: pointer to device * * This routine is to be called from the kernel's PCI subsystem to support * system Power Management (PM) to device with SLI-3 interface spec. When PM * invokes this method, it restores the device's PCI config space state and * fully reinitializes the device and brings it online. Note that as the * driver implements the minimum PM requirements to a power-aware driver's * PM for suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, * FREEZE) to the suspend() method call will be treated as SUSPEND and the * driver will fully reinitialize its device during resume() method call, * the device will be set to PCI_D0 directly in PCI config space before * restoring the state. * * Return code * 0 - driver suspended the device * Error otherwise **/ static int __maybe_unused lpfc_pci_resume_one_s3(struct device *dev_d) { struct Scsi_Host *shost = dev_get_drvdata(dev_d); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; uint32_t intr_mode; int error; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0452 PCI device Power Management resume.\n"); /* Startup the kernel thread for this host adapter. */ phba->worker_thread = kthread_run(lpfc_do_work, phba, "lpfc_worker_%d", phba->brd_no); if (IS_ERR(phba->worker_thread)) { error = PTR_ERR(phba->worker_thread); lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0434 PM resume failed to start worker " "thread: error=x%x.\n", error); return error; } /* Init cpu_map array */ lpfc_cpu_map_array_init(phba); /* Init hba_eq_hdl array */ lpfc_hba_eq_hdl_array_init(phba); /* Configure and enable interrupt */ intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); if (intr_mode == LPFC_INTR_ERROR) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0430 PM resume Failed to enable interrupt\n"); return -EIO; } else phba->intr_mode = intr_mode; /* Restart HBA and bring it online */ lpfc_sli_brdrestart(phba); lpfc_online(phba); /* Log the current active interrupt mode */ lpfc_log_intr_mode(phba, phba->intr_mode); return 0; } /** * lpfc_sli_prep_dev_for_recover - Prepare SLI3 device for pci slot recover * @phba: pointer to lpfc hba data structure. * * This routine is called to prepare the SLI3 device for PCI slot recover. It * aborts all the outstanding SCSI I/Os to the pci device. **/ static void lpfc_sli_prep_dev_for_recover(struct lpfc_hba *phba) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2723 PCI channel I/O abort preparing for recovery\n"); /* * There may be errored I/Os through HBA, abort all I/Os on txcmplq * and let the SCSI mid-layer to retry them to recover. */ lpfc_sli_abort_fcp_rings(phba); } /** * lpfc_sli_prep_dev_for_reset - Prepare SLI3 device for pci slot reset * @phba: pointer to lpfc hba data structure. * * This routine is called to prepare the SLI3 device for PCI slot reset. It * disables the device interrupt and pci device, and aborts the internal FCP * pending I/Os. **/ static void lpfc_sli_prep_dev_for_reset(struct lpfc_hba *phba) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2710 PCI channel disable preparing for reset\n"); /* Block any management I/Os to the device */ lpfc_block_mgmt_io(phba, LPFC_MBX_WAIT); /* Block all SCSI devices' I/Os on the host */ lpfc_scsi_dev_block(phba); /* Flush all driver's outstanding SCSI I/Os as we are to reset */ lpfc_sli_flush_io_rings(phba); /* stop all timers */ lpfc_stop_hba_timers(phba); /* Disable interrupt and pci device */ lpfc_sli_disable_intr(phba); pci_disable_device(phba->pcidev); } /** * lpfc_sli_prep_dev_for_perm_failure - Prepare SLI3 dev for pci slot disable * @phba: pointer to lpfc hba data structure. * * This routine is called to prepare the SLI3 device for PCI slot permanently * disabling. It blocks the SCSI transport layer traffic and flushes the FCP * pending I/Os. **/ static void lpfc_sli_prep_dev_for_perm_failure(struct lpfc_hba *phba) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2711 PCI channel permanent disable for failure\n"); /* Block all SCSI devices' I/Os on the host */ lpfc_scsi_dev_block(phba); lpfc_sli4_prep_dev_for_reset(phba); /* stop all timers */ lpfc_stop_hba_timers(phba); /* Clean up all driver's outstanding SCSI I/Os */ lpfc_sli_flush_io_rings(phba); } /** * lpfc_io_error_detected_s3 - Method for handling SLI-3 device PCI I/O error * @pdev: pointer to PCI device. * @state: the current PCI connection state. * * This routine is called from the PCI subsystem for I/O error handling to * device with SLI-3 interface spec. This function is called by the PCI * subsystem after a PCI bus error affecting this device has been detected. * When this function is invoked, it will need to stop all the I/Os and * interrupt(s) to the device. Once that is done, it will return * PCI_ERS_RESULT_NEED_RESET for the PCI subsystem to perform proper recovery * as desired. * * Return codes * PCI_ERS_RESULT_CAN_RECOVER - can be recovered with reset_link * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery * PCI_ERS_RESULT_DISCONNECT - device could not be recovered **/ static pci_ers_result_t lpfc_io_error_detected_s3(struct pci_dev *pdev, pci_channel_state_t state) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; switch (state) { case pci_channel_io_normal: /* Non-fatal error, prepare for recovery */ lpfc_sli_prep_dev_for_recover(phba); return PCI_ERS_RESULT_CAN_RECOVER; case pci_channel_io_frozen: /* Fatal error, prepare for slot reset */ lpfc_sli_prep_dev_for_reset(phba); return PCI_ERS_RESULT_NEED_RESET; case pci_channel_io_perm_failure: /* Permanent failure, prepare for device down */ lpfc_sli_prep_dev_for_perm_failure(phba); return PCI_ERS_RESULT_DISCONNECT; default: /* Unknown state, prepare and request slot reset */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0472 Unknown PCI error state: x%x\n", state); lpfc_sli_prep_dev_for_reset(phba); return PCI_ERS_RESULT_NEED_RESET; } } /** * lpfc_io_slot_reset_s3 - Method for restarting PCI SLI-3 device from scratch. * @pdev: pointer to PCI device. * * This routine is called from the PCI subsystem for error handling to * device with SLI-3 interface spec. This is called after PCI bus has been * reset to restart the PCI card from scratch, as if from a cold-boot. * During the PCI subsystem error recovery, after driver returns * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error * recovery and then call this routine before calling the .resume method * to recover the device. This function will initialize the HBA device, * enable the interrupt, but it will just put the HBA to offline state * without passing any I/O traffic. * * Return codes * PCI_ERS_RESULT_RECOVERED - the device has been recovered * PCI_ERS_RESULT_DISCONNECT - device could not be recovered */ static pci_ers_result_t lpfc_io_slot_reset_s3(struct pci_dev *pdev) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; struct lpfc_sli *psli = &phba->sli; uint32_t intr_mode; dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); if (pci_enable_device_mem(pdev)) { printk(KERN_ERR "lpfc: Cannot re-enable " "PCI device after reset.\n"); return PCI_ERS_RESULT_DISCONNECT; } pci_restore_state(pdev); /* * As the new kernel behavior of pci_restore_state() API call clears * device saved_state flag, need to save the restored state again. */ pci_save_state(pdev); if (pdev->is_busmaster) pci_set_master(pdev); spin_lock_irq(&phba->hbalock); psli->sli_flag &= ~LPFC_SLI_ACTIVE; spin_unlock_irq(&phba->hbalock); /* Configure and enable interrupt */ intr_mode = lpfc_sli_enable_intr(phba, phba->intr_mode); if (intr_mode == LPFC_INTR_ERROR) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0427 Cannot re-enable interrupt after " "slot reset.\n"); return PCI_ERS_RESULT_DISCONNECT; } else phba->intr_mode = intr_mode; /* Take device offline, it will perform cleanup */ lpfc_offline_prep(phba, LPFC_MBX_WAIT); lpfc_offline(phba); lpfc_sli_brdrestart(phba); /* Log the current active interrupt mode */ lpfc_log_intr_mode(phba, phba->intr_mode); return PCI_ERS_RESULT_RECOVERED; } /** * lpfc_io_resume_s3 - Method for resuming PCI I/O operation on SLI-3 device. * @pdev: pointer to PCI device * * This routine is called from the PCI subsystem for error handling to device * with SLI-3 interface spec. It is called when kernel error recovery tells * the lpfc driver that it is ok to resume normal PCI operation after PCI bus * error recovery. After this call, traffic can start to flow from this device * again. */ static void lpfc_io_resume_s3(struct pci_dev *pdev) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; /* Bring device online, it will be no-op for non-fatal error resume */ lpfc_online(phba); } /** * lpfc_sli4_get_els_iocb_cnt - Calculate the # of ELS IOCBs to reserve * @phba: pointer to lpfc hba data structure. * * returns the number of ELS/CT IOCBs to reserve **/ int lpfc_sli4_get_els_iocb_cnt(struct lpfc_hba *phba) { int max_xri = phba->sli4_hba.max_cfg_param.max_xri; if (phba->sli_rev == LPFC_SLI_REV4) { if (max_xri <= 100) return 10; else if (max_xri <= 256) return 25; else if (max_xri <= 512) return 50; else if (max_xri <= 1024) return 100; else if (max_xri <= 1536) return 150; else if (max_xri <= 2048) return 200; else return 250; } else return 0; } /** * lpfc_sli4_get_iocb_cnt - Calculate the # of total IOCBs to reserve * @phba: pointer to lpfc hba data structure. * * returns the number of ELS/CT + NVMET IOCBs to reserve **/ int lpfc_sli4_get_iocb_cnt(struct lpfc_hba *phba) { int max_xri = lpfc_sli4_get_els_iocb_cnt(phba); if (phba->nvmet_support) max_xri += LPFC_NVMET_BUF_POST; return max_xri; } static int lpfc_log_write_firmware_error(struct lpfc_hba *phba, uint32_t offset, uint32_t magic_number, uint32_t ftype, uint32_t fid, uint32_t fsize, const struct firmware *fw) { int rc; u8 sli_family; sli_family = bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf); /* Three cases: (1) FW was not supported on the detected adapter. * (2) FW update has been locked out administratively. * (3) Some other error during FW update. * In each case, an unmaskable message is written to the console * for admin diagnosis. */ if (offset == ADD_STATUS_FW_NOT_SUPPORTED || (sli_family == LPFC_SLI_INTF_FAMILY_G6 && magic_number != MAGIC_NUMBER_G6) || (sli_family == LPFC_SLI_INTF_FAMILY_G7 && magic_number != MAGIC_NUMBER_G7) || (sli_family == LPFC_SLI_INTF_FAMILY_G7P && magic_number != MAGIC_NUMBER_G7P)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3030 This firmware version is not supported on" " this HBA model. Device:%x Magic:%x Type:%x " "ID:%x Size %d %zd\n", phba->pcidev->device, magic_number, ftype, fid, fsize, fw->size); rc = -EINVAL; } else if (offset == ADD_STATUS_FW_DOWNLOAD_HW_DISABLED) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3021 Firmware downloads have been prohibited " "by a system configuration setting on " "Device:%x Magic:%x Type:%x ID:%x Size %d " "%zd\n", phba->pcidev->device, magic_number, ftype, fid, fsize, fw->size); rc = -EACCES; } else { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "3022 FW Download failed. Add Status x%x " "Device:%x Magic:%x Type:%x ID:%x Size %d " "%zd\n", offset, phba->pcidev->device, magic_number, ftype, fid, fsize, fw->size); rc = -EIO; } return rc; } /** * lpfc_write_firmware - attempt to write a firmware image to the port * @fw: pointer to firmware image returned from request_firmware. * @context: pointer to firmware image returned from request_firmware. * **/ static void lpfc_write_firmware(const struct firmware *fw, void *context) { struct lpfc_hba *phba = (struct lpfc_hba *)context; char fwrev[FW_REV_STR_SIZE]; struct lpfc_grp_hdr *image; struct list_head dma_buffer_list; int i, rc = 0; struct lpfc_dmabuf *dmabuf, *next; uint32_t offset = 0, temp_offset = 0; uint32_t magic_number, ftype, fid, fsize; /* It can be null in no-wait mode, sanity check */ if (!fw) { rc = -ENXIO; goto out; } image = (struct lpfc_grp_hdr *)fw->data; magic_number = be32_to_cpu(image->magic_number); ftype = bf_get_be32(lpfc_grp_hdr_file_type, image); fid = bf_get_be32(lpfc_grp_hdr_id, image); fsize = be32_to_cpu(image->size); INIT_LIST_HEAD(&dma_buffer_list); lpfc_decode_firmware_rev(phba, fwrev, 1); if (strncmp(fwrev, image->revision, strnlen(image->revision, 16))) { lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, "3023 Updating Firmware, Current Version:%s " "New Version:%s\n", fwrev, image->revision); for (i = 0; i < LPFC_MBX_WR_CONFIG_MAX_BDE; i++) { dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL); if (!dmabuf) { rc = -ENOMEM; goto release_out; } dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE, &dmabuf->phys, GFP_KERNEL); if (!dmabuf->virt) { kfree(dmabuf); rc = -ENOMEM; goto release_out; } list_add_tail(&dmabuf->list, &dma_buffer_list); } while (offset < fw->size) { temp_offset = offset; list_for_each_entry(dmabuf, &dma_buffer_list, list) { if (temp_offset + SLI4_PAGE_SIZE > fw->size) { memcpy(dmabuf->virt, fw->data + temp_offset, fw->size - temp_offset); temp_offset = fw->size; break; } memcpy(dmabuf->virt, fw->data + temp_offset, SLI4_PAGE_SIZE); temp_offset += SLI4_PAGE_SIZE; } rc = lpfc_wr_object(phba, &dma_buffer_list, (fw->size - offset), &offset); if (rc) { rc = lpfc_log_write_firmware_error(phba, offset, magic_number, ftype, fid, fsize, fw); goto release_out; } } rc = offset; } else lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, "3029 Skipped Firmware update, Current " "Version:%s New Version:%s\n", fwrev, image->revision); release_out: list_for_each_entry_safe(dmabuf, next, &dma_buffer_list, list) { list_del(&dmabuf->list); dma_free_coherent(&phba->pcidev->dev, SLI4_PAGE_SIZE, dmabuf->virt, dmabuf->phys); kfree(dmabuf); } release_firmware(fw); out: if (rc < 0) lpfc_log_msg(phba, KERN_ERR, LOG_INIT | LOG_SLI, "3062 Firmware update error, status %d.\n", rc); else lpfc_log_msg(phba, KERN_NOTICE, LOG_INIT | LOG_SLI, "3024 Firmware update success: size %d.\n", rc); } /** * lpfc_sli4_request_firmware_update - Request linux generic firmware upgrade * @phba: pointer to lpfc hba data structure. * @fw_upgrade: which firmware to update. * * This routine is called to perform Linux generic firmware upgrade on device * that supports such feature. **/ int lpfc_sli4_request_firmware_update(struct lpfc_hba *phba, uint8_t fw_upgrade) { char file_name[ELX_FW_NAME_SIZE] = {0}; int ret; const struct firmware *fw; /* Only supported on SLI4 interface type 2 for now */ if (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) < LPFC_SLI_INTF_IF_TYPE_2) return -EPERM; scnprintf(file_name, sizeof(file_name), "%s.grp", phba->ModelName); if (fw_upgrade == INT_FW_UPGRADE) { ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT, file_name, &phba->pcidev->dev, GFP_KERNEL, (void *)phba, lpfc_write_firmware); } else if (fw_upgrade == RUN_FW_UPGRADE) { ret = request_firmware(&fw, file_name, &phba->pcidev->dev); if (!ret) lpfc_write_firmware(fw, (void *)phba); } else { ret = -EINVAL; } return ret; } /** * lpfc_pci_probe_one_s4 - PCI probe func to reg SLI-4 device to PCI subsys * @pdev: pointer to PCI device * @pid: pointer to PCI device identifier * * This routine is called from the kernel's PCI subsystem to device with * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is * presented on PCI bus, the kernel PCI subsystem looks at PCI device-specific * information of the device and driver to see if the driver state that it * can support this kind of device. If the match is successful, the driver * core invokes this routine. If this routine determines it can claim the HBA, * it does all the initialization that it needs to do to handle the HBA * properly. * * Return code * 0 - driver can claim the device * negative value - driver can not claim the device **/ static int lpfc_pci_probe_one_s4(struct pci_dev *pdev, const struct pci_device_id *pid) { struct lpfc_hba *phba; struct lpfc_vport *vport = NULL; struct Scsi_Host *shost = NULL; int error; uint32_t cfg_mode, intr_mode; /* Allocate memory for HBA structure */ phba = lpfc_hba_alloc(pdev); if (!phba) return -ENOMEM; INIT_LIST_HEAD(&phba->poll_list); /* Perform generic PCI device enabling operation */ error = lpfc_enable_pci_dev(phba); if (error) goto out_free_phba; /* Set up SLI API function jump table for PCI-device group-1 HBAs */ error = lpfc_api_table_setup(phba, LPFC_PCI_DEV_OC); if (error) goto out_disable_pci_dev; /* Set up SLI-4 specific device PCI memory space */ error = lpfc_sli4_pci_mem_setup(phba); if (error) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1410 Failed to set up pci memory space.\n"); goto out_disable_pci_dev; } /* Set up SLI-4 Specific device driver resources */ error = lpfc_sli4_driver_resource_setup(phba); if (error) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1412 Failed to set up driver resource.\n"); goto out_unset_pci_mem_s4; } spin_lock_init(&phba->rrq_list_lock); INIT_LIST_HEAD(&phba->active_rrq_list); INIT_LIST_HEAD(&phba->fcf.fcf_pri_list); /* Set up common device driver resources */ error = lpfc_setup_driver_resource_phase2(phba); if (error) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1414 Failed to set up driver resource.\n"); goto out_unset_driver_resource_s4; } /* Get the default values for Model Name and Description */ lpfc_get_hba_model_desc(phba, phba->ModelName, phba->ModelDesc); /* Now, trying to enable interrupt and bring up the device */ cfg_mode = phba->cfg_use_msi; /* Put device to a known state before enabling interrupt */ phba->pport = NULL; lpfc_stop_port(phba); /* Init cpu_map array */ lpfc_cpu_map_array_init(phba); /* Init hba_eq_hdl array */ lpfc_hba_eq_hdl_array_init(phba); /* Configure and enable interrupt */ intr_mode = lpfc_sli4_enable_intr(phba, cfg_mode); if (intr_mode == LPFC_INTR_ERROR) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0426 Failed to enable interrupt.\n"); error = -ENODEV; goto out_unset_driver_resource; } /* Default to single EQ for non-MSI-X */ if (phba->intr_type != MSIX) { phba->cfg_irq_chann = 1; if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { if (phba->nvmet_support) phba->cfg_nvmet_mrq = 1; } } lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); /* Create SCSI host to the physical port */ error = lpfc_create_shost(phba); if (error) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1415 Failed to create scsi host.\n"); goto out_disable_intr; } vport = phba->pport; shost = lpfc_shost_from_vport(vport); /* save shost for error cleanup */ /* Configure sysfs attributes */ error = lpfc_alloc_sysfs_attr(vport); if (error) { lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "1416 Failed to allocate sysfs attr\n"); goto out_destroy_shost; } /* Set up SLI-4 HBA */ if (lpfc_sli4_hba_setup(phba)) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1421 Failed to set up hba\n"); error = -ENODEV; goto out_free_sysfs_attr; } /* Log the current active interrupt mode */ phba->intr_mode = intr_mode; lpfc_log_intr_mode(phba, intr_mode); /* Perform post initialization setup */ lpfc_post_init_setup(phba); /* NVME support in FW earlier in the driver load corrects the * FC4 type making a check for nvme_support unnecessary. */ if (phba->nvmet_support == 0) { if (phba->cfg_enable_fc4_type & LPFC_ENABLE_NVME) { /* Create NVME binding with nvme_fc_transport. This * ensures the vport is initialized. If the localport * create fails, it should not unload the driver to * support field issues. */ error = lpfc_nvme_create_localport(vport); if (error) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "6004 NVME registration " "failed, error x%x\n", error); } } } /* check for firmware upgrade or downgrade */ if (phba->cfg_request_firmware_upgrade) lpfc_sli4_request_firmware_update(phba, INT_FW_UPGRADE); /* Check if there are static vports to be created. */ lpfc_create_static_vport(phba); timer_setup(&phba->cpuhp_poll_timer, lpfc_sli4_poll_hbtimer, 0); cpuhp_state_add_instance_nocalls(lpfc_cpuhp_state, &phba->cpuhp); return 0; out_free_sysfs_attr: lpfc_free_sysfs_attr(vport); out_destroy_shost: lpfc_destroy_shost(phba); out_disable_intr: lpfc_sli4_disable_intr(phba); out_unset_driver_resource: lpfc_unset_driver_resource_phase2(phba); out_unset_driver_resource_s4: lpfc_sli4_driver_resource_unset(phba); out_unset_pci_mem_s4: lpfc_sli4_pci_mem_unset(phba); out_disable_pci_dev: lpfc_disable_pci_dev(phba); if (shost) scsi_host_put(shost); out_free_phba: lpfc_hba_free(phba); return error; } /** * lpfc_pci_remove_one_s4 - PCI func to unreg SLI-4 device from PCI subsystem * @pdev: pointer to PCI device * * This routine is called from the kernel's PCI subsystem to device with * SLI-4 interface spec. When an Emulex HBA with SLI-4 interface spec is * removed from PCI bus, it performs all the necessary cleanup for the HBA * device to be removed from the PCI subsystem properly. **/ static void lpfc_pci_remove_one_s4(struct pci_dev *pdev) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_vport **vports; struct lpfc_hba *phba = vport->phba; int i; /* Mark the device unloading flag */ set_bit(FC_UNLOADING, &vport->load_flag); if (phba->cgn_i) lpfc_unreg_congestion_buf(phba); lpfc_free_sysfs_attr(vport); /* Release all the vports against this physical port */ vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) { if (vports[i]->port_type == LPFC_PHYSICAL_PORT) continue; fc_vport_terminate(vports[i]->fc_vport); } lpfc_destroy_vport_work_array(phba, vports); /* Remove FC host with the physical port */ fc_remove_host(shost); scsi_remove_host(shost); /* Perform ndlp cleanup on the physical port. The nvme and nvmet * localports are destroyed after to cleanup all transport memory. */ lpfc_cleanup(vport); lpfc_nvmet_destroy_targetport(phba); lpfc_nvme_destroy_localport(vport); /* De-allocate multi-XRI pools */ if (phba->cfg_xri_rebalancing) lpfc_destroy_multixri_pools(phba); /* * Bring down the SLI Layer. This step disables all interrupts, * clears the rings, discards all mailbox commands, and resets * the HBA FCoE function. */ lpfc_debugfs_terminate(vport); lpfc_stop_hba_timers(phba); spin_lock_irq(&phba->port_list_lock); list_del_init(&vport->listentry); spin_unlock_irq(&phba->port_list_lock); /* Perform scsi free before driver resource_unset since scsi * buffers are released to their corresponding pools here. */ lpfc_io_free(phba); lpfc_free_iocb_list(phba); lpfc_sli4_hba_unset(phba); lpfc_unset_driver_resource_phase2(phba); lpfc_sli4_driver_resource_unset(phba); /* Unmap adapter Control and Doorbell registers */ lpfc_sli4_pci_mem_unset(phba); /* Release PCI resources and disable device's PCI function */ scsi_host_put(shost); lpfc_disable_pci_dev(phba); /* Finally, free the driver's device data structure */ lpfc_hba_free(phba); return; } /** * lpfc_pci_suspend_one_s4 - PCI func to suspend SLI-4 device for power mgmnt * @dev_d: pointer to device * * This routine is called from the kernel's PCI subsystem to support system * Power Management (PM) to device with SLI-4 interface spec. When PM invokes * this method, it quiesces the device by stopping the driver's worker * thread for the device, turning off device's interrupt and DMA, and bring * the device offline. Note that as the driver implements the minimum PM * requirements to a power-aware driver's PM support for suspend/resume -- all * the possible PM messages (SUSPEND, HIBERNATE, FREEZE) to the suspend() * method call will be treated as SUSPEND and the driver will fully * reinitialize its device during resume() method call, the driver will set * device to PCI_D3hot state in PCI config space instead of setting it * according to the @msg provided by the PM. * * Return code * 0 - driver suspended the device * Error otherwise **/ static int __maybe_unused lpfc_pci_suspend_one_s4(struct device *dev_d) { struct Scsi_Host *shost = dev_get_drvdata(dev_d); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "2843 PCI device Power Management suspend.\n"); /* Bring down the device */ lpfc_offline_prep(phba, LPFC_MBX_WAIT); lpfc_offline(phba); kthread_stop(phba->worker_thread); /* Disable interrupt from device */ lpfc_sli4_disable_intr(phba); lpfc_sli4_queue_destroy(phba); return 0; } /** * lpfc_pci_resume_one_s4 - PCI func to resume SLI-4 device for power mgmnt * @dev_d: pointer to device * * This routine is called from the kernel's PCI subsystem to support system * Power Management (PM) to device with SLI-4 interface spac. When PM invokes * this method, it restores the device's PCI config space state and fully * reinitializes the device and brings it online. Note that as the driver * implements the minimum PM requirements to a power-aware driver's PM for * suspend/resume -- all the possible PM messages (SUSPEND, HIBERNATE, FREEZE) * to the suspend() method call will be treated as SUSPEND and the driver * will fully reinitialize its device during resume() method call, the device * will be set to PCI_D0 directly in PCI config space before restoring the * state. * * Return code * 0 - driver suspended the device * Error otherwise **/ static int __maybe_unused lpfc_pci_resume_one_s4(struct device *dev_d) { struct Scsi_Host *shost = dev_get_drvdata(dev_d); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; uint32_t intr_mode; int error; lpfc_printf_log(phba, KERN_INFO, LOG_INIT, "0292 PCI device Power Management resume.\n"); /* Startup the kernel thread for this host adapter. */ phba->worker_thread = kthread_run(lpfc_do_work, phba, "lpfc_worker_%d", phba->brd_no); if (IS_ERR(phba->worker_thread)) { error = PTR_ERR(phba->worker_thread); lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "0293 PM resume failed to start worker " "thread: error=x%x.\n", error); return error; } /* Configure and enable interrupt */ intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); if (intr_mode == LPFC_INTR_ERROR) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "0294 PM resume Failed to enable interrupt\n"); return -EIO; } else phba->intr_mode = intr_mode; /* Restart HBA and bring it online */ lpfc_sli_brdrestart(phba); lpfc_online(phba); /* Log the current active interrupt mode */ lpfc_log_intr_mode(phba, phba->intr_mode); return 0; } /** * lpfc_sli4_prep_dev_for_recover - Prepare SLI4 device for pci slot recover * @phba: pointer to lpfc hba data structure. * * This routine is called to prepare the SLI4 device for PCI slot recover. It * aborts all the outstanding SCSI I/Os to the pci device. **/ static void lpfc_sli4_prep_dev_for_recover(struct lpfc_hba *phba) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2828 PCI channel I/O abort preparing for recovery\n"); /* * There may be errored I/Os through HBA, abort all I/Os on txcmplq * and let the SCSI mid-layer to retry them to recover. */ lpfc_sli_abort_fcp_rings(phba); } /** * lpfc_sli4_prep_dev_for_reset - Prepare SLI4 device for pci slot reset * @phba: pointer to lpfc hba data structure. * * This routine is called to prepare the SLI4 device for PCI slot reset. It * disables the device interrupt and pci device, and aborts the internal FCP * pending I/Os. **/ static void lpfc_sli4_prep_dev_for_reset(struct lpfc_hba *phba) { int offline = pci_channel_offline(phba->pcidev); lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "2826 PCI channel disable preparing for reset offline" " %d\n", offline); /* Block any management I/Os to the device */ lpfc_block_mgmt_io(phba, LPFC_MBX_NO_WAIT); /* HBA_PCI_ERR was set in io_error_detect */ lpfc_offline_prep(phba, LPFC_MBX_NO_WAIT); /* Flush all driver's outstanding I/Os as we are to reset */ lpfc_sli_flush_io_rings(phba); lpfc_offline(phba); /* stop all timers */ lpfc_stop_hba_timers(phba); lpfc_sli4_queue_destroy(phba); /* Disable interrupt and pci device */ lpfc_sli4_disable_intr(phba); pci_disable_device(phba->pcidev); } /** * lpfc_sli4_prep_dev_for_perm_failure - Prepare SLI4 dev for pci slot disable * @phba: pointer to lpfc hba data structure. * * This routine is called to prepare the SLI4 device for PCI slot permanently * disabling. It blocks the SCSI transport layer traffic and flushes the FCP * pending I/Os. **/ static void lpfc_sli4_prep_dev_for_perm_failure(struct lpfc_hba *phba) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2827 PCI channel permanent disable for failure\n"); /* Block all SCSI devices' I/Os on the host */ lpfc_scsi_dev_block(phba); /* stop all timers */ lpfc_stop_hba_timers(phba); /* Clean up all driver's outstanding I/Os */ lpfc_sli_flush_io_rings(phba); } /** * lpfc_io_error_detected_s4 - Method for handling PCI I/O error to SLI-4 device * @pdev: pointer to PCI device. * @state: the current PCI connection state. * * This routine is called from the PCI subsystem for error handling to device * with SLI-4 interface spec. This function is called by the PCI subsystem * after a PCI bus error affecting this device has been detected. When this * function is invoked, it will need to stop all the I/Os and interrupt(s) * to the device. Once that is done, it will return PCI_ERS_RESULT_NEED_RESET * for the PCI subsystem to perform proper recovery as desired. * * Return codes * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery * PCI_ERS_RESULT_DISCONNECT - device could not be recovered **/ static pci_ers_result_t lpfc_io_error_detected_s4(struct pci_dev *pdev, pci_channel_state_t state) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; bool hba_pci_err; switch (state) { case pci_channel_io_normal: /* Non-fatal error, prepare for recovery */ lpfc_sli4_prep_dev_for_recover(phba); return PCI_ERS_RESULT_CAN_RECOVER; case pci_channel_io_frozen: hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags); /* Fatal error, prepare for slot reset */ if (!hba_pci_err) lpfc_sli4_prep_dev_for_reset(phba); else lpfc_printf_log(phba, KERN_ERR, LOG_INIT, "2832 Already handling PCI error " "state: x%x\n", state); return PCI_ERS_RESULT_NEED_RESET; case pci_channel_io_perm_failure: set_bit(HBA_PCI_ERR, &phba->bit_flags); /* Permanent failure, prepare for device down */ lpfc_sli4_prep_dev_for_perm_failure(phba); return PCI_ERS_RESULT_DISCONNECT; default: hba_pci_err = test_and_set_bit(HBA_PCI_ERR, &phba->bit_flags); if (!hba_pci_err) lpfc_sli4_prep_dev_for_reset(phba); /* Unknown state, prepare and request slot reset */ lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2825 Unknown PCI error state: x%x\n", state); lpfc_sli4_prep_dev_for_reset(phba); return PCI_ERS_RESULT_NEED_RESET; } } /** * lpfc_io_slot_reset_s4 - Method for restart PCI SLI-4 device from scratch * @pdev: pointer to PCI device. * * This routine is called from the PCI subsystem for error handling to device * with SLI-4 interface spec. It is called after PCI bus has been reset to * restart the PCI card from scratch, as if from a cold-boot. During the * PCI subsystem error recovery, after the driver returns * PCI_ERS_RESULT_NEED_RESET, the PCI subsystem will perform proper error * recovery and then call this routine before calling the .resume method to * recover the device. This function will initialize the HBA device, enable * the interrupt, but it will just put the HBA to offline state without * passing any I/O traffic. * * Return codes * PCI_ERS_RESULT_RECOVERED - the device has been recovered * PCI_ERS_RESULT_DISCONNECT - device could not be recovered */ static pci_ers_result_t lpfc_io_slot_reset_s4(struct pci_dev *pdev) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; struct lpfc_sli *psli = &phba->sli; uint32_t intr_mode; bool hba_pci_err; dev_printk(KERN_INFO, &pdev->dev, "recovering from a slot reset.\n"); if (pci_enable_device_mem(pdev)) { printk(KERN_ERR "lpfc: Cannot re-enable " "PCI device after reset.\n"); return PCI_ERS_RESULT_DISCONNECT; } pci_restore_state(pdev); hba_pci_err = test_and_clear_bit(HBA_PCI_ERR, &phba->bit_flags); if (!hba_pci_err) dev_info(&pdev->dev, "hba_pci_err was not set, recovering slot reset.\n"); /* * As the new kernel behavior of pci_restore_state() API call clears * device saved_state flag, need to save the restored state again. */ pci_save_state(pdev); if (pdev->is_busmaster) pci_set_master(pdev); spin_lock_irq(&phba->hbalock); psli->sli_flag &= ~LPFC_SLI_ACTIVE; spin_unlock_irq(&phba->hbalock); /* Init cpu_map array */ lpfc_cpu_map_array_init(phba); /* Configure and enable interrupt */ intr_mode = lpfc_sli4_enable_intr(phba, phba->intr_mode); if (intr_mode == LPFC_INTR_ERROR) { lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "2824 Cannot re-enable interrupt after " "slot reset.\n"); return PCI_ERS_RESULT_DISCONNECT; } else phba->intr_mode = intr_mode; lpfc_cpu_affinity_check(phba, phba->cfg_irq_chann); /* Log the current active interrupt mode */ lpfc_log_intr_mode(phba, phba->intr_mode); return PCI_ERS_RESULT_RECOVERED; } /** * lpfc_io_resume_s4 - Method for resuming PCI I/O operation to SLI-4 device * @pdev: pointer to PCI device * * This routine is called from the PCI subsystem for error handling to device * with SLI-4 interface spec. It is called when kernel error recovery tells * the lpfc driver that it is ok to resume normal PCI operation after PCI bus * error recovery. After this call, traffic can start to flow from this device * again. **/ static void lpfc_io_resume_s4(struct pci_dev *pdev) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; /* * In case of slot reset, as function reset is performed through * mailbox command which needs DMA to be enabled, this operation * has to be moved to the io resume phase. Taking device offline * will perform the necessary cleanup. */ if (!(phba->sli.sli_flag & LPFC_SLI_ACTIVE)) { /* Perform device reset */ lpfc_sli_brdrestart(phba); /* Bring the device back online */ lpfc_online(phba); } } /** * lpfc_pci_probe_one - lpfc PCI probe func to reg dev to PCI subsystem * @pdev: pointer to PCI device * @pid: pointer to PCI device identifier * * This routine is to be registered to the kernel's PCI subsystem. When an * Emulex HBA device is presented on PCI bus, the kernel PCI subsystem looks * at PCI device-specific information of the device and driver to see if the * driver state that it can support this kind of device. If the match is * successful, the driver core invokes this routine. This routine dispatches * the action to the proper SLI-3 or SLI-4 device probing routine, which will * do all the initialization that it needs to do to handle the HBA device * properly. * * Return code * 0 - driver can claim the device * negative value - driver can not claim the device **/ static int lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid) { int rc; struct lpfc_sli_intf intf; if (pci_read_config_dword(pdev, LPFC_SLI_INTF, &intf.word0)) return -ENODEV; if ((bf_get(lpfc_sli_intf_valid, &intf) == LPFC_SLI_INTF_VALID) && (bf_get(lpfc_sli_intf_slirev, &intf) == LPFC_SLI_INTF_REV_SLI4)) rc = lpfc_pci_probe_one_s4(pdev, pid); else rc = lpfc_pci_probe_one_s3(pdev, pid); return rc; } /** * lpfc_pci_remove_one - lpfc PCI func to unreg dev from PCI subsystem * @pdev: pointer to PCI device * * This routine is to be registered to the kernel's PCI subsystem. When an * Emulex HBA is removed from PCI bus, the driver core invokes this routine. * This routine dispatches the action to the proper SLI-3 or SLI-4 device * remove routine, which will perform all the necessary cleanup for the * device to be removed from the PCI subsystem properly. **/ static void lpfc_pci_remove_one(struct pci_dev *pdev) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; switch (phba->pci_dev_grp) { case LPFC_PCI_DEV_LP: lpfc_pci_remove_one_s3(pdev); break; case LPFC_PCI_DEV_OC: lpfc_pci_remove_one_s4(pdev); break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1424 Invalid PCI device group: 0x%x\n", phba->pci_dev_grp); break; } return; } /** * lpfc_pci_suspend_one - lpfc PCI func to suspend dev for power management * @dev: pointer to device * * This routine is to be registered to the kernel's PCI subsystem to support * system Power Management (PM). When PM invokes this method, it dispatches * the action to the proper SLI-3 or SLI-4 device suspend routine, which will * suspend the device. * * Return code * 0 - driver suspended the device * Error otherwise **/ static int __maybe_unused lpfc_pci_suspend_one(struct device *dev) { struct Scsi_Host *shost = dev_get_drvdata(dev); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; int rc = -ENODEV; switch (phba->pci_dev_grp) { case LPFC_PCI_DEV_LP: rc = lpfc_pci_suspend_one_s3(dev); break; case LPFC_PCI_DEV_OC: rc = lpfc_pci_suspend_one_s4(dev); break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1425 Invalid PCI device group: 0x%x\n", phba->pci_dev_grp); break; } return rc; } /** * lpfc_pci_resume_one - lpfc PCI func to resume dev for power management * @dev: pointer to device * * This routine is to be registered to the kernel's PCI subsystem to support * system Power Management (PM). When PM invokes this method, it dispatches * the action to the proper SLI-3 or SLI-4 device resume routine, which will * resume the device. * * Return code * 0 - driver suspended the device * Error otherwise **/ static int __maybe_unused lpfc_pci_resume_one(struct device *dev) { struct Scsi_Host *shost = dev_get_drvdata(dev); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; int rc = -ENODEV; switch (phba->pci_dev_grp) { case LPFC_PCI_DEV_LP: rc = lpfc_pci_resume_one_s3(dev); break; case LPFC_PCI_DEV_OC: rc = lpfc_pci_resume_one_s4(dev); break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1426 Invalid PCI device group: 0x%x\n", phba->pci_dev_grp); break; } return rc; } /** * lpfc_io_error_detected - lpfc method for handling PCI I/O error * @pdev: pointer to PCI device. * @state: the current PCI connection state. * * This routine is registered to the PCI subsystem for error handling. This * function is called by the PCI subsystem after a PCI bus error affecting * this device has been detected. When this routine is invoked, it dispatches * the action to the proper SLI-3 or SLI-4 device error detected handling * routine, which will perform the proper error detected operation. * * Return codes * PCI_ERS_RESULT_NEED_RESET - need to reset before recovery * PCI_ERS_RESULT_DISCONNECT - device could not be recovered **/ static pci_ers_result_t lpfc_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; if (phba->link_state == LPFC_HBA_ERROR && test_bit(HBA_IOQ_FLUSH, &phba->hba_flag)) return PCI_ERS_RESULT_NEED_RESET; switch (phba->pci_dev_grp) { case LPFC_PCI_DEV_LP: rc = lpfc_io_error_detected_s3(pdev, state); break; case LPFC_PCI_DEV_OC: rc = lpfc_io_error_detected_s4(pdev, state); break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1427 Invalid PCI device group: 0x%x\n", phba->pci_dev_grp); break; } return rc; } /** * lpfc_io_slot_reset - lpfc method for restart PCI dev from scratch * @pdev: pointer to PCI device. * * This routine is registered to the PCI subsystem for error handling. This * function is called after PCI bus has been reset to restart the PCI card * from scratch, as if from a cold-boot. When this routine is invoked, it * dispatches the action to the proper SLI-3 or SLI-4 device reset handling * routine, which will perform the proper device reset. * * Return codes * PCI_ERS_RESULT_RECOVERED - the device has been recovered * PCI_ERS_RESULT_DISCONNECT - device could not be recovered **/ static pci_ers_result_t lpfc_io_slot_reset(struct pci_dev *pdev) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; pci_ers_result_t rc = PCI_ERS_RESULT_DISCONNECT; switch (phba->pci_dev_grp) { case LPFC_PCI_DEV_LP: rc = lpfc_io_slot_reset_s3(pdev); break; case LPFC_PCI_DEV_OC: rc = lpfc_io_slot_reset_s4(pdev); break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1428 Invalid PCI device group: 0x%x\n", phba->pci_dev_grp); break; } return rc; } /** * lpfc_io_resume - lpfc method for resuming PCI I/O operation * @pdev: pointer to PCI device * * This routine is registered to the PCI subsystem for error handling. It * is called when kernel error recovery tells the lpfc driver that it is * OK to resume normal PCI operation after PCI bus error recovery. When * this routine is invoked, it dispatches the action to the proper SLI-3 * or SLI-4 device io_resume routine, which will resume the device operation. **/ static void lpfc_io_resume(struct pci_dev *pdev) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct lpfc_hba *phba = ((struct lpfc_vport *)shost->hostdata)->phba; switch (phba->pci_dev_grp) { case LPFC_PCI_DEV_LP: lpfc_io_resume_s3(pdev); break; case LPFC_PCI_DEV_OC: lpfc_io_resume_s4(pdev); break; default: lpfc_printf_log(phba, KERN_ERR, LOG_TRACE_EVENT, "1429 Invalid PCI device group: 0x%x\n", phba->pci_dev_grp); break; } return; } /** * lpfc_sli4_oas_verify - Verify OAS is supported by this adapter * @phba: pointer to lpfc hba data structure. * * This routine checks to see if OAS is supported for this adapter. If * supported, the configure Flash Optimized Fabric flag is set. Otherwise, * the enable oas flag is cleared and the pool created for OAS device data * is destroyed. * **/ static void lpfc_sli4_oas_verify(struct lpfc_hba *phba) { if (!phba->cfg_EnableXLane) return; if (phba->sli4_hba.pc_sli4_params.oas_supported) { phba->cfg_fof = 1; } else { phba->cfg_fof = 0; mempool_destroy(phba->device_data_mem_pool); phba->device_data_mem_pool = NULL; } return; } /** * lpfc_sli4_ras_init - Verify RAS-FW log is supported by this adapter * @phba: pointer to lpfc hba data structure. * * This routine checks to see if RAS is supported by the adapter. Check the * function through which RAS support enablement is to be done. **/ void lpfc_sli4_ras_init(struct lpfc_hba *phba) { /* if ASIC_GEN_NUM >= 0xC) */ if ((bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == LPFC_SLI_INTF_IF_TYPE_6) || (bf_get(lpfc_sli_intf_sli_family, &phba->sli4_hba.sli_intf) == LPFC_SLI_INTF_FAMILY_G6)) { phba->ras_fwlog.ras_hwsupport = true; if (phba->cfg_ras_fwlog_func == PCI_FUNC(phba->pcidev->devfn) && phba->cfg_ras_fwlog_buffsize) phba->ras_fwlog.ras_enabled = true; else phba->ras_fwlog.ras_enabled = false; } else { phba->ras_fwlog.ras_hwsupport = false; } } MODULE_DEVICE_TABLE(pci, lpfc_id_table); static const struct pci_error_handlers lpfc_err_handler = { .error_detected = lpfc_io_error_detected, .slot_reset = lpfc_io_slot_reset, .resume = lpfc_io_resume, }; static SIMPLE_DEV_PM_OPS(lpfc_pci_pm_ops_one, lpfc_pci_suspend_one, lpfc_pci_resume_one); static struct pci_driver lpfc_driver = { .name = LPFC_DRIVER_NAME, .id_table = lpfc_id_table, .probe = lpfc_pci_probe_one, .remove = lpfc_pci_remove_one, .shutdown = lpfc_pci_remove_one, .driver.pm = &lpfc_pci_pm_ops_one, .err_handler = &lpfc_err_handler, }; static const struct file_operations lpfc_mgmt_fop = { .owner = THIS_MODULE, }; static struct miscdevice lpfc_mgmt_dev = { .minor = MISC_DYNAMIC_MINOR, .name = "lpfcmgmt", .fops = &lpfc_mgmt_fop, }; /** * lpfc_init - lpfc module initialization routine * * This routine is to be invoked when the lpfc module is loaded into the * kernel. The special kernel macro module_init() is used to indicate the * role of this routine to the kernel as lpfc module entry point. * * Return codes * 0 - successful * -ENOMEM - FC attach transport failed * all others - failed */ static int __init lpfc_init(void) { int error = 0; pr_info(LPFC_MODULE_DESC "\n"); pr_info(LPFC_COPYRIGHT "\n"); error = misc_register(&lpfc_mgmt_dev); if (error) printk(KERN_ERR "Could not register lpfcmgmt device, " "misc_register returned with status %d", error); error = -ENOMEM; lpfc_transport_functions.vport_create = lpfc_vport_create; lpfc_transport_functions.vport_delete = lpfc_vport_delete; lpfc_transport_template = fc_attach_transport(&lpfc_transport_functions); if (lpfc_transport_template == NULL) goto unregister; lpfc_vport_transport_template = fc_attach_transport(&lpfc_vport_transport_functions); if (lpfc_vport_transport_template == NULL) { fc_release_transport(lpfc_transport_template); goto unregister; } lpfc_wqe_cmd_template(); lpfc_nvmet_cmd_template(); /* Initialize in case vector mapping is needed */ lpfc_present_cpu = num_present_cpus(); lpfc_pldv_detect = false; error = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "lpfc/sli4:online", lpfc_cpu_online, lpfc_cpu_offline); if (error < 0) goto cpuhp_failure; lpfc_cpuhp_state = error; error = pci_register_driver(&lpfc_driver); if (error) goto unwind; return error; unwind: cpuhp_remove_multi_state(lpfc_cpuhp_state); cpuhp_failure: fc_release_transport(lpfc_transport_template); fc_release_transport(lpfc_vport_transport_template); unregister: misc_deregister(&lpfc_mgmt_dev); return error; } void lpfc_dmp_dbg(struct lpfc_hba *phba) { unsigned int start_idx; unsigned int dbg_cnt; unsigned int temp_idx; int i; int j = 0; unsigned long rem_nsec; if (atomic_cmpxchg(&phba->dbg_log_dmping, 0, 1) != 0) return; start_idx = (unsigned int)atomic_read(&phba->dbg_log_idx) % DBG_LOG_SZ; dbg_cnt = (unsigned int)atomic_read(&phba->dbg_log_cnt); if (!dbg_cnt) goto out; temp_idx = start_idx; if (dbg_cnt >= DBG_LOG_SZ) { dbg_cnt = DBG_LOG_SZ; temp_idx -= 1; } else { if ((start_idx + dbg_cnt) > (DBG_LOG_SZ - 1)) { temp_idx = (start_idx + dbg_cnt) % DBG_LOG_SZ; } else { if (start_idx < dbg_cnt) start_idx = DBG_LOG_SZ - (dbg_cnt - start_idx); else start_idx -= dbg_cnt; } } dev_info(&phba->pcidev->dev, "start %d end %d cnt %d\n", start_idx, temp_idx, dbg_cnt); for (i = 0; i < dbg_cnt; i++) { if ((start_idx + i) < DBG_LOG_SZ) temp_idx = (start_idx + i) % DBG_LOG_SZ; else temp_idx = j++; rem_nsec = do_div(phba->dbg_log[temp_idx].t_ns, NSEC_PER_SEC); dev_info(&phba->pcidev->dev, "%d: [%5lu.%06lu] %s", temp_idx, (unsigned long)phba->dbg_log[temp_idx].t_ns, rem_nsec / 1000, phba->dbg_log[temp_idx].log); } out: atomic_set(&phba->dbg_log_cnt, 0); atomic_set(&phba->dbg_log_dmping, 0); } __printf(2, 3) void lpfc_dbg_print(struct lpfc_hba *phba, const char *fmt, ...) { unsigned int idx; va_list args; int dbg_dmping = atomic_read(&phba->dbg_log_dmping); struct va_format vaf; va_start(args, fmt); if (unlikely(dbg_dmping)) { vaf.fmt = fmt; vaf.va = &args; dev_info(&phba->pcidev->dev, "%pV", &vaf); va_end(args); return; } idx = (unsigned int)atomic_fetch_add(1, &phba->dbg_log_idx) % DBG_LOG_SZ; atomic_inc(&phba->dbg_log_cnt); vscnprintf(phba->dbg_log[idx].log, sizeof(phba->dbg_log[idx].log), fmt, args); va_end(args); phba->dbg_log[idx].t_ns = local_clock(); } /** * lpfc_exit - lpfc module removal routine * * This routine is invoked when the lpfc module is removed from the kernel. * The special kernel macro module_exit() is used to indicate the role of * this routine to the kernel as lpfc module exit point. */ static void __exit lpfc_exit(void) { misc_deregister(&lpfc_mgmt_dev); pci_unregister_driver(&lpfc_driver); cpuhp_remove_multi_state(lpfc_cpuhp_state); fc_release_transport(lpfc_transport_template); fc_release_transport(lpfc_vport_transport_template); idr_destroy(&lpfc_hba_index); } module_init(lpfc_init); module_exit(lpfc_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION(LPFC_MODULE_DESC); MODULE_AUTHOR("Broadcom"); MODULE_VERSION("0:" LPFC_DRIVER_VERSION);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1