Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sumit Saxena | 3128 | 44.58% | 12 | 20.69% |
Adam Radford | 2118 | 30.18% | 7 | 12.07% |
Sasikumar Chandrasekaran | 640 | 9.12% | 3 | 5.17% |
Shivasharan S | 602 | 8.58% | 14 | 24.14% |
Chandrakanth Patil | 338 | 4.82% | 3 | 5.17% |
Sreenivas Bagalkote | 69 | 0.98% | 1 | 1.72% |
Kashyap Desai | 50 | 0.71% | 2 | 3.45% |
Bo Yang | 34 | 0.48% | 3 | 5.17% |
Jason Yan | 6 | 0.09% | 1 | 1.72% |
Sumant Patro | 6 | 0.09% | 2 | 3.45% |
Gustavo A. R. Silva | 5 | 0.07% | 1 | 1.72% |
Christoph Hellwig | 5 | 0.07% | 1 | 1.72% |
Damien Le Moal | 3 | 0.04% | 1 | 1.72% |
Al Viro | 3 | 0.04% | 1 | 1.72% |
Dan Carpenter | 2 | 0.03% | 1 | 1.72% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.72% |
Tejun Heo | 2 | 0.03% | 1 | 1.72% |
Qian Cai | 2 | 0.03% | 1 | 1.72% |
Tomas Henzl | 1 | 0.01% | 1 | 1.72% |
Kees Cook | 1 | 0.01% | 1 | 1.72% |
Total | 7017 | 58 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Linux MegaRAID driver for SAS based RAID controllers * * Copyright (c) 2009-2013 LSI Corporation * Copyright (c) 2013-2016 Avago Technologies * Copyright (c) 2016-2018 Broadcom Inc. * * FILE: megaraid_sas_fp.c * * Authors: Broadcom Inc. * Sumant Patro * Varad Talamacki * Manoj Jose * Kashyap Desai <kashyap.desai@broadcom.com> * Sumit Saxena <sumit.saxena@broadcom.com> * * Send feedback to: megaraidlinux.pdl@broadcom.com */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/list.h> #include <linux/moduleparam.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/uio.h> #include <linux/uaccess.h> #include <linux/fs.h> #include <linux/compat.h> #include <linux/blkdev.h> #include <linux/poll.h> #include <linux/irq_poll.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include "megaraid_sas_fusion.h" #include "megaraid_sas.h" #include <asm/div64.h> #define LB_PENDING_CMDS_DEFAULT 4 static unsigned int lb_pending_cmds = LB_PENDING_CMDS_DEFAULT; module_param(lb_pending_cmds, int, 0444); MODULE_PARM_DESC(lb_pending_cmds, "Change raid-1 load balancing outstanding " "threshold. Valid Values are 1-128. Default: 4"); #define ABS_DIFF(a, b) (((a) > (b)) ? ((a) - (b)) : ((b) - (a))) #define MR_LD_STATE_OPTIMAL 3 #define SPAN_ROW_SIZE(map, ld, index_) (MR_LdSpanPtrGet(ld, index_, map)->spanRowSize) #define SPAN_ROW_DATA_SIZE(map_, ld, index_) (MR_LdSpanPtrGet(ld, index_, map)->spanRowDataSize) #define SPAN_INVALID 0xff /* Prototypes */ static void mr_update_span_set(struct MR_DRV_RAID_MAP_ALL *map, PLD_SPAN_INFO ldSpanInfo); static u8 mr_spanset_get_phy_params(struct megasas_instance *instance, u32 ld, u64 stripRow, u16 stripRef, struct IO_REQUEST_INFO *io_info, struct RAID_CONTEXT *pRAID_Context, struct MR_DRV_RAID_MAP_ALL *map); static u64 get_row_from_strip(struct megasas_instance *instance, u32 ld, u64 strip, struct MR_DRV_RAID_MAP_ALL *map); u32 mega_mod64(u64 dividend, u32 divisor) { u64 d; u32 remainder; if (!divisor) printk(KERN_ERR "megasas : DIVISOR is zero, in div fn\n"); d = dividend; remainder = do_div(d, divisor); return remainder; } /** * mega_div64_32 - Do a 64-bit division * @dividend: Dividend * @divisor: Divisor * * @return quotient **/ static u64 mega_div64_32(uint64_t dividend, uint32_t divisor) { u64 d = dividend; if (!divisor) printk(KERN_ERR "megasas : DIVISOR is zero in mod fn\n"); do_div(d, divisor); return d; } struct MR_LD_RAID *MR_LdRaidGet(u32 ld, struct MR_DRV_RAID_MAP_ALL *map) { return &map->raidMap.ldSpanMap[ld].ldRaid; } static struct MR_SPAN_BLOCK_INFO *MR_LdSpanInfoGet(u32 ld, struct MR_DRV_RAID_MAP_ALL *map) { return &map->raidMap.ldSpanMap[ld].spanBlock[0]; } static u8 MR_LdDataArmGet(u32 ld, u32 armIdx, struct MR_DRV_RAID_MAP_ALL *map) { return map->raidMap.ldSpanMap[ld].dataArmMap[armIdx]; } u16 MR_ArPdGet(u32 ar, u32 arm, struct MR_DRV_RAID_MAP_ALL *map) { return le16_to_cpu(map->raidMap.arMapInfo[ar].pd[arm]); } u16 MR_LdSpanArrayGet(u32 ld, u32 span, struct MR_DRV_RAID_MAP_ALL *map) { return le16_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span].span.arrayRef); } __le16 MR_PdDevHandleGet(u32 pd, struct MR_DRV_RAID_MAP_ALL *map) { return map->raidMap.devHndlInfo[pd].curDevHdl; } static u8 MR_PdInterfaceTypeGet(u32 pd, struct MR_DRV_RAID_MAP_ALL *map) { return map->raidMap.devHndlInfo[pd].interfaceType; } u16 MR_GetLDTgtId(u32 ld, struct MR_DRV_RAID_MAP_ALL *map) { return le16_to_cpu(map->raidMap.ldSpanMap[ld].ldRaid.targetId); } u16 MR_TargetIdToLdGet(u32 ldTgtId, struct MR_DRV_RAID_MAP_ALL *map) { return map->raidMap.ldTgtIdToLd[ldTgtId]; } static struct MR_LD_SPAN *MR_LdSpanPtrGet(u32 ld, u32 span, struct MR_DRV_RAID_MAP_ALL *map) { return &map->raidMap.ldSpanMap[ld].spanBlock[span].span; } /* * This function will Populate Driver Map using firmware raid map */ static int MR_PopulateDrvRaidMap(struct megasas_instance *instance, u64 map_id) { struct fusion_context *fusion = instance->ctrl_context; struct MR_FW_RAID_MAP_ALL *fw_map_old = NULL; struct MR_FW_RAID_MAP *pFwRaidMap = NULL; int i, j; u16 ld_count; struct MR_FW_RAID_MAP_DYNAMIC *fw_map_dyn; struct MR_FW_RAID_MAP_EXT *fw_map_ext; struct MR_RAID_MAP_DESC_TABLE *desc_table; struct MR_DRV_RAID_MAP_ALL *drv_map = fusion->ld_drv_map[(map_id & 1)]; struct MR_DRV_RAID_MAP *pDrvRaidMap = &drv_map->raidMap; void *raid_map_data = NULL; memset(drv_map, 0, fusion->drv_map_sz); memset(pDrvRaidMap->ldTgtIdToLd, 0xff, (sizeof(u16) * MAX_LOGICAL_DRIVES_DYN)); if (instance->max_raid_mapsize) { fw_map_dyn = fusion->ld_map[(map_id & 1)]; desc_table = (struct MR_RAID_MAP_DESC_TABLE *)((void *)fw_map_dyn + le32_to_cpu(fw_map_dyn->desc_table_offset)); if (desc_table != fw_map_dyn->raid_map_desc_table) dev_dbg(&instance->pdev->dev, "offsets of desc table are not matching desc %p original %p\n", desc_table, fw_map_dyn->raid_map_desc_table); ld_count = (u16)le16_to_cpu(fw_map_dyn->ld_count); pDrvRaidMap->ldCount = (__le16)cpu_to_le16(ld_count); pDrvRaidMap->fpPdIoTimeoutSec = fw_map_dyn->fp_pd_io_timeout_sec; pDrvRaidMap->totalSize = cpu_to_le32(sizeof(struct MR_DRV_RAID_MAP_ALL)); /* point to actual data starting point*/ raid_map_data = (void *)fw_map_dyn + le32_to_cpu(fw_map_dyn->desc_table_offset) + le32_to_cpu(fw_map_dyn->desc_table_size); for (i = 0; i < le32_to_cpu(fw_map_dyn->desc_table_num_elements); ++i) { switch (le32_to_cpu(desc_table->raid_map_desc_type)) { case RAID_MAP_DESC_TYPE_DEVHDL_INFO: fw_map_dyn->dev_hndl_info = (struct MR_DEV_HANDLE_INFO *)(raid_map_data + le32_to_cpu(desc_table->raid_map_desc_offset)); memcpy(pDrvRaidMap->devHndlInfo, fw_map_dyn->dev_hndl_info, sizeof(struct MR_DEV_HANDLE_INFO) * le32_to_cpu(desc_table->raid_map_desc_elements)); break; case RAID_MAP_DESC_TYPE_TGTID_INFO: fw_map_dyn->ld_tgt_id_to_ld = (u16 *)(raid_map_data + le32_to_cpu(desc_table->raid_map_desc_offset)); for (j = 0; j < le32_to_cpu(desc_table->raid_map_desc_elements); j++) { pDrvRaidMap->ldTgtIdToLd[j] = le16_to_cpu(fw_map_dyn->ld_tgt_id_to_ld[j]); } break; case RAID_MAP_DESC_TYPE_ARRAY_INFO: fw_map_dyn->ar_map_info = (struct MR_ARRAY_INFO *) (raid_map_data + le32_to_cpu(desc_table->raid_map_desc_offset)); memcpy(pDrvRaidMap->arMapInfo, fw_map_dyn->ar_map_info, sizeof(struct MR_ARRAY_INFO) * le32_to_cpu(desc_table->raid_map_desc_elements)); break; case RAID_MAP_DESC_TYPE_SPAN_INFO: fw_map_dyn->ld_span_map = (struct MR_LD_SPAN_MAP *) (raid_map_data + le32_to_cpu(desc_table->raid_map_desc_offset)); memcpy(pDrvRaidMap->ldSpanMap, fw_map_dyn->ld_span_map, sizeof(struct MR_LD_SPAN_MAP) * le32_to_cpu(desc_table->raid_map_desc_elements)); break; default: dev_dbg(&instance->pdev->dev, "wrong number of desctableElements %d\n", fw_map_dyn->desc_table_num_elements); } ++desc_table; } } else if (instance->supportmax256vd) { fw_map_ext = (struct MR_FW_RAID_MAP_EXT *)fusion->ld_map[(map_id & 1)]; ld_count = (u16)le16_to_cpu(fw_map_ext->ldCount); if (ld_count > MAX_LOGICAL_DRIVES_EXT) { dev_dbg(&instance->pdev->dev, "megaraid_sas: LD count exposed in RAID map in not valid\n"); return 1; } pDrvRaidMap->ldCount = (__le16)cpu_to_le16(ld_count); pDrvRaidMap->fpPdIoTimeoutSec = fw_map_ext->fpPdIoTimeoutSec; for (i = 0; i < (MAX_LOGICAL_DRIVES_EXT); i++) pDrvRaidMap->ldTgtIdToLd[i] = (u16)fw_map_ext->ldTgtIdToLd[i]; memcpy(pDrvRaidMap->ldSpanMap, fw_map_ext->ldSpanMap, sizeof(struct MR_LD_SPAN_MAP) * ld_count); memcpy(pDrvRaidMap->arMapInfo, fw_map_ext->arMapInfo, sizeof(struct MR_ARRAY_INFO) * MAX_API_ARRAYS_EXT); memcpy(pDrvRaidMap->devHndlInfo, fw_map_ext->devHndlInfo, sizeof(struct MR_DEV_HANDLE_INFO) * MAX_RAIDMAP_PHYSICAL_DEVICES); /* New Raid map will not set totalSize, so keep expected value * for legacy code in ValidateMapInfo */ pDrvRaidMap->totalSize = cpu_to_le32(sizeof(struct MR_FW_RAID_MAP_EXT)); } else { fw_map_old = (struct MR_FW_RAID_MAP_ALL *) fusion->ld_map[(map_id & 1)]; pFwRaidMap = &fw_map_old->raidMap; ld_count = (u16)le32_to_cpu(pFwRaidMap->ldCount); if (ld_count > MAX_LOGICAL_DRIVES) { dev_dbg(&instance->pdev->dev, "LD count exposed in RAID map in not valid\n"); return 1; } pDrvRaidMap->totalSize = pFwRaidMap->totalSize; pDrvRaidMap->ldCount = (__le16)cpu_to_le16(ld_count); pDrvRaidMap->fpPdIoTimeoutSec = pFwRaidMap->fpPdIoTimeoutSec; for (i = 0; i < MAX_RAIDMAP_LOGICAL_DRIVES + MAX_RAIDMAP_VIEWS; i++) pDrvRaidMap->ldTgtIdToLd[i] = (u8)pFwRaidMap->ldTgtIdToLd[i]; for (i = 0; i < ld_count; i++) { pDrvRaidMap->ldSpanMap[i] = pFwRaidMap->ldSpanMap[i]; } memcpy(pDrvRaidMap->arMapInfo, pFwRaidMap->arMapInfo, sizeof(struct MR_ARRAY_INFO) * MAX_RAIDMAP_ARRAYS); memcpy(pDrvRaidMap->devHndlInfo, pFwRaidMap->devHndlInfo, sizeof(struct MR_DEV_HANDLE_INFO) * MAX_RAIDMAP_PHYSICAL_DEVICES); } return 0; } /* * This function will validate Map info data provided by FW */ u8 MR_ValidateMapInfo(struct megasas_instance *instance, u64 map_id) { struct fusion_context *fusion; struct MR_DRV_RAID_MAP_ALL *drv_map; struct MR_DRV_RAID_MAP *pDrvRaidMap; struct LD_LOAD_BALANCE_INFO *lbInfo; PLD_SPAN_INFO ldSpanInfo; struct MR_LD_RAID *raid; u16 num_lds, i; u16 ld; u32 expected_size; if (MR_PopulateDrvRaidMap(instance, map_id)) return 0; fusion = instance->ctrl_context; drv_map = fusion->ld_drv_map[(map_id & 1)]; pDrvRaidMap = &drv_map->raidMap; lbInfo = fusion->load_balance_info; ldSpanInfo = fusion->log_to_span; if (instance->max_raid_mapsize) expected_size = sizeof(struct MR_DRV_RAID_MAP_ALL); else if (instance->supportmax256vd) expected_size = sizeof(struct MR_FW_RAID_MAP_EXT); else expected_size = struct_size_t(struct MR_FW_RAID_MAP, ldSpanMap, le16_to_cpu(pDrvRaidMap->ldCount)); if (le32_to_cpu(pDrvRaidMap->totalSize) != expected_size) { dev_dbg(&instance->pdev->dev, "megasas: map info structure size 0x%x", le32_to_cpu(pDrvRaidMap->totalSize)); dev_dbg(&instance->pdev->dev, "is not matching expected size 0x%x\n", (unsigned int)expected_size); dev_err(&instance->pdev->dev, "megasas: span map %x, pDrvRaidMap->totalSize : %x\n", (unsigned int)sizeof(struct MR_LD_SPAN_MAP), le32_to_cpu(pDrvRaidMap->totalSize)); return 0; } if (instance->UnevenSpanSupport) mr_update_span_set(drv_map, ldSpanInfo); if (lbInfo) mr_update_load_balance_params(drv_map, lbInfo); num_lds = le16_to_cpu(drv_map->raidMap.ldCount); memcpy(instance->ld_ids_prev, instance->ld_ids_from_raidmap, sizeof(instance->ld_ids_from_raidmap)); memset(instance->ld_ids_from_raidmap, 0xff, MEGASAS_MAX_LD_IDS); /*Convert Raid capability values to CPU arch */ for (i = 0; (num_lds > 0) && (i < MAX_LOGICAL_DRIVES_EXT); i++) { ld = MR_TargetIdToLdGet(i, drv_map); /* For non existing VDs, iterate to next VD*/ if (ld >= MEGASAS_MAX_SUPPORTED_LD_IDS) continue; raid = MR_LdRaidGet(ld, drv_map); le32_to_cpus((u32 *)&raid->capability); instance->ld_ids_from_raidmap[i] = i; num_lds--; } return 1; } static u32 MR_GetSpanBlock(u32 ld, u64 row, u64 *span_blk, struct MR_DRV_RAID_MAP_ALL *map) { struct MR_SPAN_BLOCK_INFO *pSpanBlock = MR_LdSpanInfoGet(ld, map); struct MR_QUAD_ELEMENT *quad; struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map); u32 span, j; for (span = 0; span < raid->spanDepth; span++, pSpanBlock++) { for (j = 0; j < le32_to_cpu(pSpanBlock->block_span_info.noElements); j++) { quad = &pSpanBlock->block_span_info.quad[j]; if (le32_to_cpu(quad->diff) == 0) return SPAN_INVALID; if (le64_to_cpu(quad->logStart) <= row && row <= le64_to_cpu(quad->logEnd) && (mega_mod64(row - le64_to_cpu(quad->logStart), le32_to_cpu(quad->diff))) == 0) { if (span_blk != NULL) { u64 blk; blk = mega_div64_32((row-le64_to_cpu(quad->logStart)), le32_to_cpu(quad->diff)); blk = (blk + le64_to_cpu(quad->offsetInSpan)) << raid->stripeShift; *span_blk = blk; } return span; } } } return SPAN_INVALID; } /* ****************************************************************************** * * This routine calculates the Span block for given row using spanset. * * Inputs : * instance - HBA instance * ld - Logical drive number * row - Row number * map - LD map * * Outputs : * * span - Span number * block - Absolute Block number in the physical disk * div_error - Devide error code. */ static u32 mr_spanset_get_span_block(struct megasas_instance *instance, u32 ld, u64 row, u64 *span_blk, struct MR_DRV_RAID_MAP_ALL *map) { struct fusion_context *fusion = instance->ctrl_context; struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map); LD_SPAN_SET *span_set; struct MR_QUAD_ELEMENT *quad; u32 span, info; PLD_SPAN_INFO ldSpanInfo = fusion->log_to_span; for (info = 0; info < MAX_QUAD_DEPTH; info++) { span_set = &(ldSpanInfo[ld].span_set[info]); if (span_set->span_row_data_width == 0) break; if (row > span_set->data_row_end) continue; for (span = 0; span < raid->spanDepth; span++) if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span]. block_span_info.noElements) >= info+1) { quad = &map->raidMap.ldSpanMap[ld]. spanBlock[span]. block_span_info.quad[info]; if (le32_to_cpu(quad->diff) == 0) return SPAN_INVALID; if (le64_to_cpu(quad->logStart) <= row && row <= le64_to_cpu(quad->logEnd) && (mega_mod64(row - le64_to_cpu(quad->logStart), le32_to_cpu(quad->diff))) == 0) { if (span_blk != NULL) { u64 blk; blk = mega_div64_32 ((row - le64_to_cpu(quad->logStart)), le32_to_cpu(quad->diff)); blk = (blk + le64_to_cpu(quad->offsetInSpan)) << raid->stripeShift; *span_blk = blk; } return span; } } } return SPAN_INVALID; } /* ****************************************************************************** * * This routine calculates the row for given strip using spanset. * * Inputs : * instance - HBA instance * ld - Logical drive number * Strip - Strip * map - LD map * * Outputs : * * row - row associated with strip */ static u64 get_row_from_strip(struct megasas_instance *instance, u32 ld, u64 strip, struct MR_DRV_RAID_MAP_ALL *map) { struct fusion_context *fusion = instance->ctrl_context; struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map); LD_SPAN_SET *span_set; PLD_SPAN_INFO ldSpanInfo = fusion->log_to_span; u32 info, strip_offset, span, span_offset; u64 span_set_Strip, span_set_Row, retval; for (info = 0; info < MAX_QUAD_DEPTH; info++) { span_set = &(ldSpanInfo[ld].span_set[info]); if (span_set->span_row_data_width == 0) break; if (strip > span_set->data_strip_end) continue; span_set_Strip = strip - span_set->data_strip_start; strip_offset = mega_mod64(span_set_Strip, span_set->span_row_data_width); span_set_Row = mega_div64_32(span_set_Strip, span_set->span_row_data_width) * span_set->diff; for (span = 0, span_offset = 0; span < raid->spanDepth; span++) if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span]. block_span_info.noElements) >= info+1) { if (strip_offset >= span_set->strip_offset[span]) span_offset++; else break; } retval = (span_set->data_row_start + span_set_Row + (span_offset - 1)); return retval; } return -1LLU; } /* ****************************************************************************** * * This routine calculates the Start Strip for given row using spanset. * * Inputs : * instance - HBA instance * ld - Logical drive number * row - Row number * map - LD map * * Outputs : * * Strip - Start strip associated with row */ static u64 get_strip_from_row(struct megasas_instance *instance, u32 ld, u64 row, struct MR_DRV_RAID_MAP_ALL *map) { struct fusion_context *fusion = instance->ctrl_context; struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map); LD_SPAN_SET *span_set; struct MR_QUAD_ELEMENT *quad; PLD_SPAN_INFO ldSpanInfo = fusion->log_to_span; u32 span, info; u64 strip; for (info = 0; info < MAX_QUAD_DEPTH; info++) { span_set = &(ldSpanInfo[ld].span_set[info]); if (span_set->span_row_data_width == 0) break; if (row > span_set->data_row_end) continue; for (span = 0; span < raid->spanDepth; span++) if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span]. block_span_info.noElements) >= info+1) { quad = &map->raidMap.ldSpanMap[ld]. spanBlock[span].block_span_info.quad[info]; if (le64_to_cpu(quad->logStart) <= row && row <= le64_to_cpu(quad->logEnd) && mega_mod64((row - le64_to_cpu(quad->logStart)), le32_to_cpu(quad->diff)) == 0) { strip = mega_div64_32 (((row - span_set->data_row_start) - le64_to_cpu(quad->logStart)), le32_to_cpu(quad->diff)); strip *= span_set->span_row_data_width; strip += span_set->data_strip_start; strip += span_set->strip_offset[span]; return strip; } } } dev_err(&instance->pdev->dev, "get_strip_from_row" "returns invalid strip for ld=%x, row=%lx\n", ld, (long unsigned int)row); return -1; } /* ****************************************************************************** * * This routine calculates the Physical Arm for given strip using spanset. * * Inputs : * instance - HBA instance * ld - Logical drive number * strip - Strip * map - LD map * * Outputs : * * Phys Arm - Phys Arm associated with strip */ static u32 get_arm_from_strip(struct megasas_instance *instance, u32 ld, u64 strip, struct MR_DRV_RAID_MAP_ALL *map) { struct fusion_context *fusion = instance->ctrl_context; struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map); LD_SPAN_SET *span_set; PLD_SPAN_INFO ldSpanInfo = fusion->log_to_span; u32 info, strip_offset, span, span_offset, retval; for (info = 0 ; info < MAX_QUAD_DEPTH; info++) { span_set = &(ldSpanInfo[ld].span_set[info]); if (span_set->span_row_data_width == 0) break; if (strip > span_set->data_strip_end) continue; strip_offset = (uint)mega_mod64 ((strip - span_set->data_strip_start), span_set->span_row_data_width); for (span = 0, span_offset = 0; span < raid->spanDepth; span++) if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span]. block_span_info.noElements) >= info+1) { if (strip_offset >= span_set->strip_offset[span]) span_offset = span_set->strip_offset[span]; else break; } retval = (strip_offset - span_offset); return retval; } dev_err(&instance->pdev->dev, "get_arm_from_strip" "returns invalid arm for ld=%x strip=%lx\n", ld, (long unsigned int)strip); return -1; } /* This Function will return Phys arm */ static u8 get_arm(struct megasas_instance *instance, u32 ld, u8 span, u64 stripe, struct MR_DRV_RAID_MAP_ALL *map) { struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map); /* Need to check correct default value */ u32 arm = 0; switch (raid->level) { case 0: case 5: case 6: arm = mega_mod64(stripe, SPAN_ROW_SIZE(map, ld, span)); break; case 1: /* start with logical arm */ arm = get_arm_from_strip(instance, ld, stripe, map); if (arm != -1U) arm *= 2; break; } return arm; } /* ****************************************************************************** * * This routine calculates the arm, span and block for the specified stripe and * reference in stripe using spanset * * Inputs : * * ld - Logical drive number * stripRow - Stripe number * stripRef - Reference in stripe * * Outputs : * * span - Span number * block - Absolute Block number in the physical disk */ static u8 mr_spanset_get_phy_params(struct megasas_instance *instance, u32 ld, u64 stripRow, u16 stripRef, struct IO_REQUEST_INFO *io_info, struct RAID_CONTEXT *pRAID_Context, struct MR_DRV_RAID_MAP_ALL *map) { struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map); u32 pd, arRef, r1_alt_pd; u8 physArm, span; u64 row; u8 retval = true; u64 *pdBlock = &io_info->pdBlock; __le16 *pDevHandle = &io_info->devHandle; u8 *pPdInterface = &io_info->pd_interface; u32 logArm, rowMod, armQ, arm; *pDevHandle = cpu_to_le16(MR_DEVHANDLE_INVALID); /*Get row and span from io_info for Uneven Span IO.*/ row = io_info->start_row; span = io_info->start_span; if (raid->level == 6) { logArm = get_arm_from_strip(instance, ld, stripRow, map); if (logArm == -1U) return false; rowMod = mega_mod64(row, SPAN_ROW_SIZE(map, ld, span)); armQ = SPAN_ROW_SIZE(map, ld, span) - 1 - rowMod; arm = armQ + 1 + logArm; if (arm >= SPAN_ROW_SIZE(map, ld, span)) arm -= SPAN_ROW_SIZE(map, ld, span); physArm = (u8)arm; } else /* Calculate the arm */ physArm = get_arm(instance, ld, span, stripRow, map); if (physArm == 0xFF) return false; arRef = MR_LdSpanArrayGet(ld, span, map); pd = MR_ArPdGet(arRef, physArm, map); if (pd != MR_PD_INVALID) { *pDevHandle = MR_PdDevHandleGet(pd, map); *pPdInterface = MR_PdInterfaceTypeGet(pd, map); /* get second pd also for raid 1/10 fast path writes*/ if ((instance->adapter_type >= VENTURA_SERIES) && (raid->level == 1) && !io_info->isRead) { r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map); if (r1_alt_pd != MR_PD_INVALID) io_info->r1_alt_dev_handle = MR_PdDevHandleGet(r1_alt_pd, map); } } else { if ((raid->level >= 5) && ((instance->adapter_type == THUNDERBOLT_SERIES) || ((instance->adapter_type == INVADER_SERIES) && (raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))) pRAID_Context->reg_lock_flags = REGION_TYPE_EXCLUSIVE; else if (raid->level == 1) { physArm = physArm + 1; pd = MR_ArPdGet(arRef, physArm, map); if (pd != MR_PD_INVALID) { *pDevHandle = MR_PdDevHandleGet(pd, map); *pPdInterface = MR_PdInterfaceTypeGet(pd, map); } } } *pdBlock += stripRef + le64_to_cpu(MR_LdSpanPtrGet(ld, span, map)->startBlk); if (instance->adapter_type >= VENTURA_SERIES) { ((struct RAID_CONTEXT_G35 *)pRAID_Context)->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm; io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm; } else { pRAID_Context->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm; io_info->span_arm = pRAID_Context->span_arm; } io_info->pd_after_lb = pd; return retval; } /* ****************************************************************************** * * This routine calculates the arm, span and block for the specified stripe and * reference in stripe. * * Inputs : * * ld - Logical drive number * stripRow - Stripe number * stripRef - Reference in stripe * * Outputs : * * span - Span number * block - Absolute Block number in the physical disk */ static u8 MR_GetPhyParams(struct megasas_instance *instance, u32 ld, u64 stripRow, u16 stripRef, struct IO_REQUEST_INFO *io_info, struct RAID_CONTEXT *pRAID_Context, struct MR_DRV_RAID_MAP_ALL *map) { struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map); u32 pd, arRef, r1_alt_pd; u8 physArm, span; u64 row; u8 retval = true; u64 *pdBlock = &io_info->pdBlock; __le16 *pDevHandle = &io_info->devHandle; u8 *pPdInterface = &io_info->pd_interface; *pDevHandle = cpu_to_le16(MR_DEVHANDLE_INVALID); row = mega_div64_32(stripRow, raid->rowDataSize); if (raid->level == 6) { /* logical arm within row */ u32 logArm = mega_mod64(stripRow, raid->rowDataSize); u32 rowMod, armQ, arm; if (raid->rowSize == 0) return false; /* get logical row mod */ rowMod = mega_mod64(row, raid->rowSize); armQ = raid->rowSize-1-rowMod; /* index of Q drive */ arm = armQ+1+logArm; /* data always logically follows Q */ if (arm >= raid->rowSize) /* handle wrap condition */ arm -= raid->rowSize; physArm = (u8)arm; } else { if (raid->modFactor == 0) return false; physArm = MR_LdDataArmGet(ld, mega_mod64(stripRow, raid->modFactor), map); } if (raid->spanDepth == 1) { span = 0; *pdBlock = row << raid->stripeShift; } else { span = (u8)MR_GetSpanBlock(ld, row, pdBlock, map); if (span == SPAN_INVALID) return false; } /* Get the array on which this span is present */ arRef = MR_LdSpanArrayGet(ld, span, map); pd = MR_ArPdGet(arRef, physArm, map); /* Get the pd */ if (pd != MR_PD_INVALID) { /* Get dev handle from Pd. */ *pDevHandle = MR_PdDevHandleGet(pd, map); *pPdInterface = MR_PdInterfaceTypeGet(pd, map); /* get second pd also for raid 1/10 fast path writes*/ if ((instance->adapter_type >= VENTURA_SERIES) && (raid->level == 1) && !io_info->isRead) { r1_alt_pd = MR_ArPdGet(arRef, physArm + 1, map); if (r1_alt_pd != MR_PD_INVALID) io_info->r1_alt_dev_handle = MR_PdDevHandleGet(r1_alt_pd, map); } } else { if ((raid->level >= 5) && ((instance->adapter_type == THUNDERBOLT_SERIES) || ((instance->adapter_type == INVADER_SERIES) && (raid->regTypeReqOnRead != REGION_TYPE_UNUSED)))) pRAID_Context->reg_lock_flags = REGION_TYPE_EXCLUSIVE; else if (raid->level == 1) { /* Get alternate Pd. */ physArm = physArm + 1; pd = MR_ArPdGet(arRef, physArm, map); if (pd != MR_PD_INVALID) { /* Get dev handle from Pd */ *pDevHandle = MR_PdDevHandleGet(pd, map); *pPdInterface = MR_PdInterfaceTypeGet(pd, map); } } } *pdBlock += stripRef + le64_to_cpu(MR_LdSpanPtrGet(ld, span, map)->startBlk); if (instance->adapter_type >= VENTURA_SERIES) { ((struct RAID_CONTEXT_G35 *)pRAID_Context)->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm; io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm; } else { pRAID_Context->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | physArm; io_info->span_arm = pRAID_Context->span_arm; } io_info->pd_after_lb = pd; return retval; } /* * mr_get_phy_params_r56_rmw - Calculate parameters for R56 CTIO write operation * @instance: Adapter soft state * @ld: LD index * @stripNo: Strip Number * @io_info: IO info structure pointer * pRAID_Context: RAID context pointer * map: RAID map pointer * * This routine calculates the logical arm, data Arm, row number and parity arm * for R56 CTIO write operation. */ static void mr_get_phy_params_r56_rmw(struct megasas_instance *instance, u32 ld, u64 stripNo, struct IO_REQUEST_INFO *io_info, struct RAID_CONTEXT_G35 *pRAID_Context, struct MR_DRV_RAID_MAP_ALL *map) { struct MR_LD_RAID *raid = MR_LdRaidGet(ld, map); u8 span, dataArms, arms, dataArm, logArm; s8 rightmostParityArm, PParityArm; u64 rowNum; u64 *pdBlock = &io_info->pdBlock; dataArms = raid->rowDataSize; arms = raid->rowSize; rowNum = mega_div64_32(stripNo, dataArms); /* parity disk arm, first arm is 0 */ rightmostParityArm = (arms - 1) - mega_mod64(rowNum, arms); /* logical arm within row */ logArm = mega_mod64(stripNo, dataArms); /* physical arm for data */ dataArm = mega_mod64((rightmostParityArm + 1 + logArm), arms); if (raid->spanDepth == 1) { span = 0; } else { span = (u8)MR_GetSpanBlock(ld, rowNum, pdBlock, map); if (span == SPAN_INVALID) return; } if (raid->level == 6) { /* P Parity arm, note this can go negative adjust if negative */ PParityArm = (arms - 2) - mega_mod64(rowNum, arms); if (PParityArm < 0) PParityArm += arms; /* rightmostParityArm is P-Parity for RAID 5 and Q-Parity for RAID */ pRAID_Context->flow_specific.r56_arm_map = rightmostParityArm; pRAID_Context->flow_specific.r56_arm_map |= (u16)(PParityArm << RAID_CTX_R56_P_ARM_SHIFT); } else { pRAID_Context->flow_specific.r56_arm_map |= (u16)(rightmostParityArm << RAID_CTX_R56_P_ARM_SHIFT); } pRAID_Context->reg_lock_row_lba = cpu_to_le64(rowNum); pRAID_Context->flow_specific.r56_arm_map |= (u16)(logArm << RAID_CTX_R56_LOG_ARM_SHIFT); cpu_to_le16s(&pRAID_Context->flow_specific.r56_arm_map); pRAID_Context->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | dataArm; pRAID_Context->raid_flags = (MR_RAID_FLAGS_IO_SUB_TYPE_R56_DIV_OFFLOAD << MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT); return; } /* ****************************************************************************** * * MR_BuildRaidContext function * * This function will initiate command processing. The start/end row and strip * information is calculated then the lock is acquired. * This function will return 0 if region lock was acquired OR return num strips */ u8 MR_BuildRaidContext(struct megasas_instance *instance, struct IO_REQUEST_INFO *io_info, struct RAID_CONTEXT *pRAID_Context, struct MR_DRV_RAID_MAP_ALL *map, u8 **raidLUN) { struct fusion_context *fusion; struct MR_LD_RAID *raid; u32 stripSize, stripe_mask; u64 endLba, endStrip, endRow, start_row, start_strip; u64 regStart; u32 regSize; u8 num_strips, numRows; u16 ref_in_start_stripe, ref_in_end_stripe; u64 ldStartBlock; u32 numBlocks, ldTgtId; u8 isRead; u8 retval = 0; u8 startlba_span = SPAN_INVALID; u64 *pdBlock = &io_info->pdBlock; u16 ld; ldStartBlock = io_info->ldStartBlock; numBlocks = io_info->numBlocks; ldTgtId = io_info->ldTgtId; isRead = io_info->isRead; io_info->IoforUnevenSpan = 0; io_info->start_span = SPAN_INVALID; fusion = instance->ctrl_context; ld = MR_TargetIdToLdGet(ldTgtId, map); raid = MR_LdRaidGet(ld, map); /*check read ahead bit*/ io_info->ra_capable = raid->capability.ra_capable; /* * if rowDataSize @RAID map and spanRowDataSize @SPAN INFO are zero * return FALSE */ if (raid->rowDataSize == 0) { if (MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize == 0) return false; else if (instance->UnevenSpanSupport) { io_info->IoforUnevenSpan = 1; } else { dev_info(&instance->pdev->dev, "raid->rowDataSize is 0, but has SPAN[0]" "rowDataSize = 0x%0x," "but there is _NO_ UnevenSpanSupport\n", MR_LdSpanPtrGet(ld, 0, map)->spanRowDataSize); return false; } } stripSize = 1 << raid->stripeShift; stripe_mask = stripSize-1; io_info->data_arms = raid->rowDataSize; /* * calculate starting row and stripe, and number of strips and rows */ start_strip = ldStartBlock >> raid->stripeShift; ref_in_start_stripe = (u16)(ldStartBlock & stripe_mask); endLba = ldStartBlock + numBlocks - 1; ref_in_end_stripe = (u16)(endLba & stripe_mask); endStrip = endLba >> raid->stripeShift; num_strips = (u8)(endStrip - start_strip + 1); /* End strip */ if (io_info->IoforUnevenSpan) { start_row = get_row_from_strip(instance, ld, start_strip, map); endRow = get_row_from_strip(instance, ld, endStrip, map); if (start_row == -1ULL || endRow == -1ULL) { dev_info(&instance->pdev->dev, "return from %s %d." "Send IO w/o region lock.\n", __func__, __LINE__); return false; } if (raid->spanDepth == 1) { startlba_span = 0; *pdBlock = start_row << raid->stripeShift; } else startlba_span = (u8)mr_spanset_get_span_block(instance, ld, start_row, pdBlock, map); if (startlba_span == SPAN_INVALID) { dev_info(&instance->pdev->dev, "return from %s %d" "for row 0x%llx,start strip %llx" "endSrip %llx\n", __func__, __LINE__, (unsigned long long)start_row, (unsigned long long)start_strip, (unsigned long long)endStrip); return false; } io_info->start_span = startlba_span; io_info->start_row = start_row; } else { start_row = mega_div64_32(start_strip, raid->rowDataSize); endRow = mega_div64_32(endStrip, raid->rowDataSize); } numRows = (u8)(endRow - start_row + 1); /* * calculate region info. */ /* assume region is at the start of the first row */ regStart = start_row << raid->stripeShift; /* assume this IO needs the full row - we'll adjust if not true */ regSize = stripSize; io_info->do_fp_rlbypass = raid->capability.fpBypassRegionLock; /* Check if we can send this I/O via FastPath */ if (raid->capability.fpCapable) { if (isRead) io_info->fpOkForIo = (raid->capability.fpReadCapable && ((num_strips == 1) || raid->capability. fpReadAcrossStripe)); else io_info->fpOkForIo = (raid->capability.fpWriteCapable && ((num_strips == 1) || raid->capability. fpWriteAcrossStripe)); } else io_info->fpOkForIo = false; if (numRows == 1) { /* single-strip IOs can always lock only the data needed */ if (num_strips == 1) { regStart += ref_in_start_stripe; regSize = numBlocks; } /* multi-strip IOs always need to full stripe locked */ } else if (io_info->IoforUnevenSpan == 0) { /* * For Even span region lock optimization. * If the start strip is the last in the start row */ if (start_strip == (start_row + 1) * raid->rowDataSize - 1) { regStart += ref_in_start_stripe; /* initialize count to sectors from startref to end of strip */ regSize = stripSize - ref_in_start_stripe; } /* add complete rows in the middle of the transfer */ if (numRows > 2) regSize += (numRows-2) << raid->stripeShift; /* if IO ends within first strip of last row*/ if (endStrip == endRow*raid->rowDataSize) regSize += ref_in_end_stripe+1; else regSize += stripSize; } else { /* * For Uneven span region lock optimization. * If the start strip is the last in the start row */ if (start_strip == (get_strip_from_row(instance, ld, start_row, map) + SPAN_ROW_DATA_SIZE(map, ld, startlba_span) - 1)) { regStart += ref_in_start_stripe; /* initialize count to sectors from * startRef to end of strip */ regSize = stripSize - ref_in_start_stripe; } /* Add complete rows in the middle of the transfer*/ if (numRows > 2) /* Add complete rows in the middle of the transfer*/ regSize += (numRows-2) << raid->stripeShift; /* if IO ends within first strip of last row */ if (endStrip == get_strip_from_row(instance, ld, endRow, map)) regSize += ref_in_end_stripe + 1; else regSize += stripSize; } pRAID_Context->timeout_value = cpu_to_le16(raid->fpIoTimeoutForLd ? raid->fpIoTimeoutForLd : map->raidMap.fpPdIoTimeoutSec); if (instance->adapter_type == INVADER_SERIES) pRAID_Context->reg_lock_flags = (isRead) ? raid->regTypeReqOnRead : raid->regTypeReqOnWrite; else if (instance->adapter_type == THUNDERBOLT_SERIES) pRAID_Context->reg_lock_flags = (isRead) ? REGION_TYPE_SHARED_READ : raid->regTypeReqOnWrite; pRAID_Context->virtual_disk_tgt_id = raid->targetId; pRAID_Context->reg_lock_row_lba = cpu_to_le64(regStart); pRAID_Context->reg_lock_length = cpu_to_le32(regSize); pRAID_Context->config_seq_num = raid->seqNum; /* save pointer to raid->LUN array */ *raidLUN = raid->LUN; /* Aero R5/6 Division Offload for WRITE */ if (fusion->r56_div_offload && (raid->level >= 5) && !isRead) { mr_get_phy_params_r56_rmw(instance, ld, start_strip, io_info, (struct RAID_CONTEXT_G35 *)pRAID_Context, map); return true; } /*Get Phy Params only if FP capable, or else leave it to MR firmware to do the calculation.*/ if (io_info->fpOkForIo) { retval = io_info->IoforUnevenSpan ? mr_spanset_get_phy_params(instance, ld, start_strip, ref_in_start_stripe, io_info, pRAID_Context, map) : MR_GetPhyParams(instance, ld, start_strip, ref_in_start_stripe, io_info, pRAID_Context, map); /* If IO on an invalid Pd, then FP is not possible.*/ if (io_info->devHandle == MR_DEVHANDLE_INVALID) io_info->fpOkForIo = false; return retval; } else if (isRead) { uint stripIdx; for (stripIdx = 0; stripIdx < num_strips; stripIdx++) { retval = io_info->IoforUnevenSpan ? mr_spanset_get_phy_params(instance, ld, start_strip + stripIdx, ref_in_start_stripe, io_info, pRAID_Context, map) : MR_GetPhyParams(instance, ld, start_strip + stripIdx, ref_in_start_stripe, io_info, pRAID_Context, map); if (!retval) return true; } } return true; } /* ****************************************************************************** * * This routine pepare spanset info from Valid Raid map and store it into * local copy of ldSpanInfo per instance data structure. * * Inputs : * map - LD map * ldSpanInfo - ldSpanInfo per HBA instance * */ void mr_update_span_set(struct MR_DRV_RAID_MAP_ALL *map, PLD_SPAN_INFO ldSpanInfo) { u8 span, count; u32 element, span_row_width; u64 span_row; struct MR_LD_RAID *raid; LD_SPAN_SET *span_set, *span_set_prev; struct MR_QUAD_ELEMENT *quad; int ldCount; u16 ld; for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) { ld = MR_TargetIdToLdGet(ldCount, map); if (ld >= (MAX_LOGICAL_DRIVES_EXT - 1)) continue; raid = MR_LdRaidGet(ld, map); for (element = 0; element < MAX_QUAD_DEPTH; element++) { for (span = 0; span < raid->spanDepth; span++) { if (le32_to_cpu(map->raidMap.ldSpanMap[ld].spanBlock[span]. block_span_info.noElements) < element + 1) continue; span_set = &(ldSpanInfo[ld].span_set[element]); quad = &map->raidMap.ldSpanMap[ld]. spanBlock[span].block_span_info. quad[element]; span_set->diff = le32_to_cpu(quad->diff); for (count = 0, span_row_width = 0; count < raid->spanDepth; count++) { if (le32_to_cpu(map->raidMap.ldSpanMap[ld]. spanBlock[count]. block_span_info. noElements) >= element + 1) { span_set->strip_offset[count] = span_row_width; span_row_width += MR_LdSpanPtrGet (ld, count, map)->spanRowDataSize; } } span_set->span_row_data_width = span_row_width; span_row = mega_div64_32(((le64_to_cpu(quad->logEnd) - le64_to_cpu(quad->logStart)) + le32_to_cpu(quad->diff)), le32_to_cpu(quad->diff)); if (element == 0) { span_set->log_start_lba = 0; span_set->log_end_lba = ((span_row << raid->stripeShift) * span_row_width) - 1; span_set->span_row_start = 0; span_set->span_row_end = span_row - 1; span_set->data_strip_start = 0; span_set->data_strip_end = (span_row * span_row_width) - 1; span_set->data_row_start = 0; span_set->data_row_end = (span_row * le32_to_cpu(quad->diff)) - 1; } else { span_set_prev = &(ldSpanInfo[ld]. span_set[element - 1]); span_set->log_start_lba = span_set_prev->log_end_lba + 1; span_set->log_end_lba = span_set->log_start_lba + ((span_row << raid->stripeShift) * span_row_width) - 1; span_set->span_row_start = span_set_prev->span_row_end + 1; span_set->span_row_end = span_set->span_row_start + span_row - 1; span_set->data_strip_start = span_set_prev->data_strip_end + 1; span_set->data_strip_end = span_set->data_strip_start + (span_row * span_row_width) - 1; span_set->data_row_start = span_set_prev->data_row_end + 1; span_set->data_row_end = span_set->data_row_start + (span_row * le32_to_cpu(quad->diff)) - 1; } break; } if (span == raid->spanDepth) break; } } } void mr_update_load_balance_params(struct MR_DRV_RAID_MAP_ALL *drv_map, struct LD_LOAD_BALANCE_INFO *lbInfo) { int ldCount; u16 ld; struct MR_LD_RAID *raid; if (lb_pending_cmds > 128 || lb_pending_cmds < 1) lb_pending_cmds = LB_PENDING_CMDS_DEFAULT; for (ldCount = 0; ldCount < MAX_LOGICAL_DRIVES_EXT; ldCount++) { ld = MR_TargetIdToLdGet(ldCount, drv_map); if (ld >= MAX_LOGICAL_DRIVES_EXT - 1) { lbInfo[ldCount].loadBalanceFlag = 0; continue; } raid = MR_LdRaidGet(ld, drv_map); if ((raid->level != 1) || (raid->ldState != MR_LD_STATE_OPTIMAL)) { lbInfo[ldCount].loadBalanceFlag = 0; continue; } lbInfo[ldCount].loadBalanceFlag = 1; } } static u8 megasas_get_best_arm_pd(struct megasas_instance *instance, struct LD_LOAD_BALANCE_INFO *lbInfo, struct IO_REQUEST_INFO *io_info, struct MR_DRV_RAID_MAP_ALL *drv_map) { struct MR_LD_RAID *raid; u16 pd1_dev_handle; u16 pend0, pend1, ld; u64 diff0, diff1; u8 bestArm, pd0, pd1, span, arm; u32 arRef, span_row_size; u64 block = io_info->ldStartBlock; u32 count = io_info->numBlocks; span = ((io_info->span_arm & RAID_CTX_SPANARM_SPAN_MASK) >> RAID_CTX_SPANARM_SPAN_SHIFT); arm = (io_info->span_arm & RAID_CTX_SPANARM_ARM_MASK); ld = MR_TargetIdToLdGet(io_info->ldTgtId, drv_map); raid = MR_LdRaidGet(ld, drv_map); span_row_size = instance->UnevenSpanSupport ? SPAN_ROW_SIZE(drv_map, ld, span) : raid->rowSize; arRef = MR_LdSpanArrayGet(ld, span, drv_map); pd0 = MR_ArPdGet(arRef, arm, drv_map); pd1 = MR_ArPdGet(arRef, (arm + 1) >= span_row_size ? (arm + 1 - span_row_size) : arm + 1, drv_map); /* Get PD1 Dev Handle */ pd1_dev_handle = MR_PdDevHandleGet(pd1, drv_map); if (pd1_dev_handle == MR_DEVHANDLE_INVALID) { bestArm = arm; } else { /* get the pending cmds for the data and mirror arms */ pend0 = atomic_read(&lbInfo->scsi_pending_cmds[pd0]); pend1 = atomic_read(&lbInfo->scsi_pending_cmds[pd1]); /* Determine the disk whose head is nearer to the req. block */ diff0 = ABS_DIFF(block, lbInfo->last_accessed_block[pd0]); diff1 = ABS_DIFF(block, lbInfo->last_accessed_block[pd1]); bestArm = (diff0 <= diff1 ? arm : arm ^ 1); /* Make balance count from 16 to 4 to * keep driver in sync with Firmware */ if ((bestArm == arm && pend0 > pend1 + lb_pending_cmds) || (bestArm != arm && pend1 > pend0 + lb_pending_cmds)) bestArm ^= 1; /* Update the last accessed block on the correct pd */ io_info->span_arm = (span << RAID_CTX_SPANARM_SPAN_SHIFT) | bestArm; io_info->pd_after_lb = (bestArm == arm) ? pd0 : pd1; } lbInfo->last_accessed_block[io_info->pd_after_lb] = block + count - 1; return io_info->pd_after_lb; } __le16 get_updated_dev_handle(struct megasas_instance *instance, struct LD_LOAD_BALANCE_INFO *lbInfo, struct IO_REQUEST_INFO *io_info, struct MR_DRV_RAID_MAP_ALL *drv_map) { u8 arm_pd; __le16 devHandle; /* get best new arm (PD ID) */ arm_pd = megasas_get_best_arm_pd(instance, lbInfo, io_info, drv_map); devHandle = MR_PdDevHandleGet(arm_pd, drv_map); io_info->pd_interface = MR_PdInterfaceTypeGet(arm_pd, drv_map); atomic_inc(&lbInfo->scsi_pending_cmds[arm_pd]); return devHandle; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1