Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jack Wang | 2865 | 56.30% | 6 | 7.14% |
Mark Salyzyn | 479 | 9.41% | 4 | 4.76% |
John Garry | 364 | 7.15% | 13 | 15.48% |
Viswas G | 294 | 5.78% | 5 | 5.95% |
Sakthivel K | 272 | 5.34% | 5 | 5.95% |
Damien Le Moal | 144 | 2.83% | 7 | 8.33% |
Changyuan Lyu | 123 | 2.42% | 2 | 2.38% |
Deepak Ukey | 114 | 2.24% | 3 | 3.57% |
Ajish Koshy | 91 | 1.79% | 3 | 3.57% |
Joe Perches | 73 | 1.43% | 3 | 3.57% |
peter chang | 73 | 1.43% | 2 | 2.38% |
Dan J Williams | 37 | 0.73% | 3 | 3.57% |
Tomas Henzl | 35 | 0.69% | 2 | 2.38% |
Suresh Thiagarajan | 27 | 0.53% | 1 | 1.19% |
akshatzen | 16 | 0.31% | 1 | 1.19% |
Jason Yan | 15 | 0.29% | 1 | 1.19% |
Anand Kumar Santhanam | 9 | 0.18% | 2 | 2.38% |
Christoph Hellwig | 8 | 0.16% | 2 | 2.38% |
Dan Carpenter | 7 | 0.14% | 1 | 1.19% |
Ahmed S. Darwish | 6 | 0.12% | 2 | 2.38% |
James Bottomley | 6 | 0.12% | 1 | 1.19% |
Bradley Grove | 5 | 0.10% | 1 | 1.19% |
Randy Dunlap | 4 | 0.08% | 1 | 1.19% |
Hannes Reinecke | 4 | 0.08% | 1 | 1.19% |
Nikith Ganigarakoppal | 4 | 0.08% | 1 | 1.19% |
Igor Pylypiv | 3 | 0.06% | 1 | 1.19% |
Linus Torvalds (pre-git) | 2 | 0.04% | 1 | 1.19% |
Daniel Mack | 1 | 0.02% | 1 | 1.19% |
Colin Ian King | 1 | 0.02% | 1 | 1.19% |
Luis R. Rodriguez | 1 | 0.02% | 1 | 1.19% |
Zhen Lei | 1 | 0.02% | 1 | 1.19% |
Weitao Hou | 1 | 0.02% | 1 | 1.19% |
Linus Torvalds | 1 | 0.02% | 1 | 1.19% |
Baoyou Xie | 1 | 0.02% | 1 | 1.19% |
Lee Jones | 1 | 0.02% | 1 | 1.19% |
Julia Lawall | 1 | 0.02% | 1 | 1.19% |
Total | 5089 | 84 |
/* * PMC-Sierra PM8001/8081/8088/8089 SAS/SATA based host adapters driver * * Copyright (c) 2008-2009 USI Co., Ltd. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * 3. Neither the names of the above-listed copyright holders nor the names * of any contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * */ #include <linux/slab.h> #include "pm8001_sas.h" #include "pm80xx_tracepoints.h" /** * pm8001_find_tag - from sas task to find out tag that belongs to this task * @task: the task sent to the LLDD * @tag: the found tag associated with the task */ static int pm8001_find_tag(struct sas_task *task, u32 *tag) { if (task->lldd_task) { struct pm8001_ccb_info *ccb; ccb = task->lldd_task; *tag = ccb->ccb_tag; return 1; } return 0; } /** * pm8001_tag_free - free the no more needed tag * @pm8001_ha: our hba struct * @tag: the found tag associated with the task */ void pm8001_tag_free(struct pm8001_hba_info *pm8001_ha, u32 tag) { void *bitmap = pm8001_ha->rsvd_tags; unsigned long flags; if (tag >= PM8001_RESERVE_SLOT) return; spin_lock_irqsave(&pm8001_ha->bitmap_lock, flags); __clear_bit(tag, bitmap); spin_unlock_irqrestore(&pm8001_ha->bitmap_lock, flags); } /** * pm8001_tag_alloc - allocate a empty tag for task used. * @pm8001_ha: our hba struct * @tag_out: the found empty tag . */ int pm8001_tag_alloc(struct pm8001_hba_info *pm8001_ha, u32 *tag_out) { void *bitmap = pm8001_ha->rsvd_tags; unsigned long flags; unsigned int tag; spin_lock_irqsave(&pm8001_ha->bitmap_lock, flags); tag = find_first_zero_bit(bitmap, PM8001_RESERVE_SLOT); if (tag >= PM8001_RESERVE_SLOT) { spin_unlock_irqrestore(&pm8001_ha->bitmap_lock, flags); return -SAS_QUEUE_FULL; } __set_bit(tag, bitmap); spin_unlock_irqrestore(&pm8001_ha->bitmap_lock, flags); /* reserved tags are in the lower region of the tagset */ *tag_out = tag; return 0; } /** * pm8001_mem_alloc - allocate memory for pm8001. * @pdev: pci device. * @virt_addr: the allocated virtual address * @pphys_addr: DMA address for this device * @pphys_addr_hi: the physical address high byte address. * @pphys_addr_lo: the physical address low byte address. * @mem_size: memory size. * @align: requested byte alignment */ int pm8001_mem_alloc(struct pci_dev *pdev, void **virt_addr, dma_addr_t *pphys_addr, u32 *pphys_addr_hi, u32 *pphys_addr_lo, u32 mem_size, u32 align) { caddr_t mem_virt_alloc; dma_addr_t mem_dma_handle; u64 phys_align; u64 align_offset = 0; if (align) align_offset = (dma_addr_t)align - 1; mem_virt_alloc = dma_alloc_coherent(&pdev->dev, mem_size + align, &mem_dma_handle, GFP_KERNEL); if (!mem_virt_alloc) return -ENOMEM; *pphys_addr = mem_dma_handle; phys_align = (*pphys_addr + align_offset) & ~align_offset; *virt_addr = (void *)mem_virt_alloc + phys_align - *pphys_addr; *pphys_addr_hi = upper_32_bits(phys_align); *pphys_addr_lo = lower_32_bits(phys_align); return 0; } /** * pm8001_find_ha_by_dev - from domain device which come from sas layer to * find out our hba struct. * @dev: the domain device which from sas layer. */ static struct pm8001_hba_info *pm8001_find_ha_by_dev(struct domain_device *dev) { struct sas_ha_struct *sha = dev->port->ha; struct pm8001_hba_info *pm8001_ha = sha->lldd_ha; return pm8001_ha; } /** * pm8001_phy_control - this function should be registered to * sas_domain_function_template to provide libsas used, note: this is just * control the HBA phy rather than other expander phy if you want control * other phy, you should use SMP command. * @sas_phy: which phy in HBA phys. * @func: the operation. * @funcdata: always NULL. */ int pm8001_phy_control(struct asd_sas_phy *sas_phy, enum phy_func func, void *funcdata) { int rc = 0, phy_id = sas_phy->id; struct pm8001_hba_info *pm8001_ha = NULL; struct sas_phy_linkrates *rates; struct pm8001_phy *phy; DECLARE_COMPLETION_ONSTACK(completion); unsigned long flags; pm8001_ha = sas_phy->ha->lldd_ha; phy = &pm8001_ha->phy[phy_id]; if (PM8001_CHIP_DISP->fatal_errors(pm8001_ha)) { /* * If the controller is in fatal error state, * we will not get a response from the controller */ pm8001_dbg(pm8001_ha, FAIL, "Phy control failed due to fatal errors\n"); return -EFAULT; } switch (func) { case PHY_FUNC_SET_LINK_RATE: rates = funcdata; if (rates->minimum_linkrate) { pm8001_ha->phy[phy_id].minimum_linkrate = rates->minimum_linkrate; } if (rates->maximum_linkrate) { pm8001_ha->phy[phy_id].maximum_linkrate = rates->maximum_linkrate; } if (pm8001_ha->phy[phy_id].phy_state == PHY_LINK_DISABLE) { pm8001_ha->phy[phy_id].enable_completion = &completion; PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); wait_for_completion(&completion); } PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, PHY_LINK_RESET); break; case PHY_FUNC_HARD_RESET: if (pm8001_ha->phy[phy_id].phy_state == PHY_LINK_DISABLE) { pm8001_ha->phy[phy_id].enable_completion = &completion; PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); wait_for_completion(&completion); } PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, PHY_HARD_RESET); break; case PHY_FUNC_LINK_RESET: if (pm8001_ha->phy[phy_id].phy_state == PHY_LINK_DISABLE) { pm8001_ha->phy[phy_id].enable_completion = &completion; PM8001_CHIP_DISP->phy_start_req(pm8001_ha, phy_id); wait_for_completion(&completion); } PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, PHY_LINK_RESET); break; case PHY_FUNC_RELEASE_SPINUP_HOLD: PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, PHY_LINK_RESET); break; case PHY_FUNC_DISABLE: if (pm8001_ha->chip_id != chip_8001) { if (pm8001_ha->phy[phy_id].phy_state == PHY_STATE_LINK_UP_SPCV) { sas_phy_disconnected(&phy->sas_phy); sas_notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL, GFP_KERNEL); phy->phy_attached = 0; } } else { if (pm8001_ha->phy[phy_id].phy_state == PHY_STATE_LINK_UP_SPC) { sas_phy_disconnected(&phy->sas_phy); sas_notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL, GFP_KERNEL); phy->phy_attached = 0; } } PM8001_CHIP_DISP->phy_stop_req(pm8001_ha, phy_id); break; case PHY_FUNC_GET_EVENTS: spin_lock_irqsave(&pm8001_ha->lock, flags); if (pm8001_ha->chip_id == chip_8001) { if (-1 == pm8001_bar4_shift(pm8001_ha, (phy_id < 4) ? 0x30000 : 0x40000)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); return -EINVAL; } } { struct sas_phy *phy = sas_phy->phy; u32 __iomem *qp = pm8001_ha->io_mem[2].memvirtaddr + 0x1034 + (0x4000 * (phy_id & 3)); phy->invalid_dword_count = readl(qp); phy->running_disparity_error_count = readl(&qp[1]); phy->loss_of_dword_sync_count = readl(&qp[3]); phy->phy_reset_problem_count = readl(&qp[4]); } if (pm8001_ha->chip_id == chip_8001) pm8001_bar4_shift(pm8001_ha, 0); spin_unlock_irqrestore(&pm8001_ha->lock, flags); return 0; default: pm8001_dbg(pm8001_ha, DEVIO, "func 0x%x\n", func); rc = -EOPNOTSUPP; } msleep(300); return rc; } /** * pm8001_scan_start - we should enable all HBA phys by sending the phy_start * command to HBA. * @shost: the scsi host data. */ void pm8001_scan_start(struct Scsi_Host *shost) { int i; struct pm8001_hba_info *pm8001_ha; struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost); DECLARE_COMPLETION_ONSTACK(completion); pm8001_ha = sha->lldd_ha; /* SAS_RE_INITIALIZATION not available in SPCv/ve */ if (pm8001_ha->chip_id == chip_8001) PM8001_CHIP_DISP->sas_re_init_req(pm8001_ha); for (i = 0; i < pm8001_ha->chip->n_phy; ++i) { pm8001_ha->phy[i].enable_completion = &completion; PM8001_CHIP_DISP->phy_start_req(pm8001_ha, i); wait_for_completion(&completion); msleep(300); } } int pm8001_scan_finished(struct Scsi_Host *shost, unsigned long time) { struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost); /* give the phy enabling interrupt event time to come in (1s * is empirically about all it takes) */ if (time < HZ) return 0; /* Wait for discovery to finish */ sas_drain_work(ha); return 1; } /** * pm8001_task_prep_smp - the dispatcher function, prepare data for smp task * @pm8001_ha: our hba card information * @ccb: the ccb which attached to smp task */ static int pm8001_task_prep_smp(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { return PM8001_CHIP_DISP->smp_req(pm8001_ha, ccb); } u32 pm8001_get_ncq_tag(struct sas_task *task, u32 *tag) { struct ata_queued_cmd *qc = task->uldd_task; if (qc && ata_is_ncq(qc->tf.protocol)) { *tag = qc->tag; return 1; } return 0; } /** * pm8001_task_prep_ata - the dispatcher function, prepare data for sata task * @pm8001_ha: our hba card information * @ccb: the ccb which attached to sata task */ static int pm8001_task_prep_ata(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { return PM8001_CHIP_DISP->sata_req(pm8001_ha, ccb); } /** * pm8001_task_prep_internal_abort - the dispatcher function, prepare data * for internal abort task * @pm8001_ha: our hba card information * @ccb: the ccb which attached to sata task */ static int pm8001_task_prep_internal_abort(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { return PM8001_CHIP_DISP->task_abort(pm8001_ha, ccb); } /** * pm8001_task_prep_ssp_tm - the dispatcher function, prepare task management data * @pm8001_ha: our hba card information * @ccb: the ccb which attached to TM * @tmf: the task management IU */ static int pm8001_task_prep_ssp_tm(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb, struct sas_tmf_task *tmf) { return PM8001_CHIP_DISP->ssp_tm_req(pm8001_ha, ccb, tmf); } /** * pm8001_task_prep_ssp - the dispatcher function, prepare ssp data for ssp task * @pm8001_ha: our hba card information * @ccb: the ccb which attached to ssp task */ static int pm8001_task_prep_ssp(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { return PM8001_CHIP_DISP->ssp_io_req(pm8001_ha, ccb); } /* Find the local port id that's attached to this device */ static int sas_find_local_port_id(struct domain_device *dev) { struct domain_device *pdev = dev->parent; /* Directly attached device */ if (!pdev) return dev->port->id; while (pdev) { struct domain_device *pdev_p = pdev->parent; if (!pdev_p) return pdev->port->id; pdev = pdev->parent; } return 0; } #define DEV_IS_GONE(pm8001_dev) \ ((!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED))) static int pm8001_deliver_command(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { struct sas_task *task = ccb->task; enum sas_protocol task_proto = task->task_proto; struct sas_tmf_task *tmf = task->tmf; int is_tmf = !!tmf; switch (task_proto) { case SAS_PROTOCOL_SMP: return pm8001_task_prep_smp(pm8001_ha, ccb); case SAS_PROTOCOL_SSP: if (is_tmf) return pm8001_task_prep_ssp_tm(pm8001_ha, ccb, tmf); return pm8001_task_prep_ssp(pm8001_ha, ccb); case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: return pm8001_task_prep_ata(pm8001_ha, ccb); case SAS_PROTOCOL_INTERNAL_ABORT: return pm8001_task_prep_internal_abort(pm8001_ha, ccb); default: dev_err(pm8001_ha->dev, "unknown sas_task proto: 0x%x\n", task_proto); } return -EINVAL; } /** * pm8001_queue_command - register for upper layer used, all IO commands sent * to HBA are from this interface. * @task: the task to be execute. * @gfp_flags: gfp_flags */ int pm8001_queue_command(struct sas_task *task, gfp_t gfp_flags) { struct task_status_struct *ts = &task->task_status; enum sas_protocol task_proto = task->task_proto; struct domain_device *dev = task->dev; struct pm8001_device *pm8001_dev = dev->lldd_dev; bool internal_abort = sas_is_internal_abort(task); struct pm8001_hba_info *pm8001_ha; struct pm8001_port *port = NULL; struct pm8001_ccb_info *ccb; unsigned long flags; u32 n_elem = 0; int rc = 0; if (!internal_abort && !dev->port) { ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_PHY_DOWN; if (dev->dev_type != SAS_SATA_DEV) task->task_done(task); return 0; } pm8001_ha = pm8001_find_ha_by_dev(dev); if (pm8001_ha->controller_fatal_error) { ts->resp = SAS_TASK_UNDELIVERED; task->task_done(task); return 0; } pm8001_dbg(pm8001_ha, IO, "pm8001_task_exec device\n"); spin_lock_irqsave(&pm8001_ha->lock, flags); pm8001_dev = dev->lldd_dev; port = &pm8001_ha->port[sas_find_local_port_id(dev)]; if (!internal_abort && (DEV_IS_GONE(pm8001_dev) || !port->port_attached)) { ts->resp = SAS_TASK_UNDELIVERED; ts->stat = SAS_PHY_DOWN; if (sas_protocol_ata(task_proto)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); task->task_done(task); spin_lock_irqsave(&pm8001_ha->lock, flags); } else { task->task_done(task); } rc = -ENODEV; goto err_out; } ccb = pm8001_ccb_alloc(pm8001_ha, pm8001_dev, task); if (!ccb) { rc = -SAS_QUEUE_FULL; goto err_out; } if (!sas_protocol_ata(task_proto)) { if (task->num_scatter) { n_elem = dma_map_sg(pm8001_ha->dev, task->scatter, task->num_scatter, task->data_dir); if (!n_elem) { rc = -ENOMEM; goto err_out_ccb; } } } else { n_elem = task->num_scatter; } task->lldd_task = ccb; ccb->n_elem = n_elem; atomic_inc(&pm8001_dev->running_req); rc = pm8001_deliver_command(pm8001_ha, ccb); if (rc) { atomic_dec(&pm8001_dev->running_req); if (!sas_protocol_ata(task_proto) && n_elem) dma_unmap_sg(pm8001_ha->dev, task->scatter, task->num_scatter, task->data_dir); err_out_ccb: pm8001_ccb_free(pm8001_ha, ccb); err_out: pm8001_dbg(pm8001_ha, IO, "pm8001_task_exec failed[%d]!\n", rc); } spin_unlock_irqrestore(&pm8001_ha->lock, flags); return rc; } /** * pm8001_ccb_task_free - free the sg for ssp and smp command, free the ccb. * @pm8001_ha: our hba card information * @ccb: the ccb which attached to ssp task to free */ void pm8001_ccb_task_free(struct pm8001_hba_info *pm8001_ha, struct pm8001_ccb_info *ccb) { struct sas_task *task = ccb->task; struct ata_queued_cmd *qc; struct pm8001_device *pm8001_dev; if (!task) return; if (!sas_protocol_ata(task->task_proto) && ccb->n_elem) dma_unmap_sg(pm8001_ha->dev, task->scatter, task->num_scatter, task->data_dir); switch (task->task_proto) { case SAS_PROTOCOL_SMP: dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_resp, 1, DMA_FROM_DEVICE); dma_unmap_sg(pm8001_ha->dev, &task->smp_task.smp_req, 1, DMA_TO_DEVICE); break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SSP: default: /* do nothing */ break; } if (sas_protocol_ata(task->task_proto)) { /* For SCSI/ATA commands uldd_task points to ata_queued_cmd */ qc = task->uldd_task; pm8001_dev = ccb->device; trace_pm80xx_request_complete(pm8001_ha->id, pm8001_dev ? pm8001_dev->attached_phy : PM8001_MAX_PHYS, ccb->ccb_tag, 0 /* ctlr_opcode not known */, qc ? qc->tf.command : 0, // ata opcode pm8001_dev ? atomic_read(&pm8001_dev->running_req) : -1); } task->lldd_task = NULL; pm8001_ccb_free(pm8001_ha, ccb); } /** * pm8001_alloc_dev - find a empty pm8001_device * @pm8001_ha: our hba card information */ static struct pm8001_device *pm8001_alloc_dev(struct pm8001_hba_info *pm8001_ha) { u32 dev; for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { if (pm8001_ha->devices[dev].dev_type == SAS_PHY_UNUSED) { pm8001_ha->devices[dev].id = dev; return &pm8001_ha->devices[dev]; } } if (dev == PM8001_MAX_DEVICES) { pm8001_dbg(pm8001_ha, FAIL, "max support %d devices, ignore ..\n", PM8001_MAX_DEVICES); } return NULL; } /** * pm8001_find_dev - find a matching pm8001_device * @pm8001_ha: our hba card information * @device_id: device ID to match against */ struct pm8001_device *pm8001_find_dev(struct pm8001_hba_info *pm8001_ha, u32 device_id) { u32 dev; for (dev = 0; dev < PM8001_MAX_DEVICES; dev++) { if (pm8001_ha->devices[dev].device_id == device_id) return &pm8001_ha->devices[dev]; } if (dev == PM8001_MAX_DEVICES) { pm8001_dbg(pm8001_ha, FAIL, "NO MATCHING DEVICE FOUND !!!\n"); } return NULL; } void pm8001_free_dev(struct pm8001_device *pm8001_dev) { u32 id = pm8001_dev->id; memset(pm8001_dev, 0, sizeof(*pm8001_dev)); pm8001_dev->id = id; pm8001_dev->dev_type = SAS_PHY_UNUSED; pm8001_dev->device_id = PM8001_MAX_DEVICES; pm8001_dev->sas_device = NULL; } /** * pm8001_dev_found_notify - libsas notify a device is found. * @dev: the device structure which sas layer used. * * when libsas find a sas domain device, it should tell the LLDD that * device is found, and then LLDD register this device to HBA firmware * by the command "OPC_INB_REG_DEV", after that the HBA will assign a * device ID(according to device's sas address) and returned it to LLDD. From * now on, we communicate with HBA FW with the device ID which HBA assigned * rather than sas address. it is the necessary step for our HBA but it is * the optional for other HBA driver. */ static int pm8001_dev_found_notify(struct domain_device *dev) { unsigned long flags = 0; int res = 0; struct pm8001_hba_info *pm8001_ha = NULL; struct domain_device *parent_dev = dev->parent; struct pm8001_device *pm8001_device; DECLARE_COMPLETION_ONSTACK(completion); u32 flag = 0; pm8001_ha = pm8001_find_ha_by_dev(dev); spin_lock_irqsave(&pm8001_ha->lock, flags); pm8001_device = pm8001_alloc_dev(pm8001_ha); if (!pm8001_device) { res = -1; goto found_out; } pm8001_device->sas_device = dev; dev->lldd_dev = pm8001_device; pm8001_device->dev_type = dev->dev_type; pm8001_device->dcompletion = &completion; if (parent_dev && dev_is_expander(parent_dev->dev_type)) { int phy_id; phy_id = sas_find_attached_phy_id(&parent_dev->ex_dev, dev); if (phy_id < 0) { pm8001_dbg(pm8001_ha, FAIL, "Error: no attached dev:%016llx at ex:%016llx.\n", SAS_ADDR(dev->sas_addr), SAS_ADDR(parent_dev->sas_addr)); res = phy_id; } else { pm8001_device->attached_phy = phy_id; } } else { if (dev->dev_type == SAS_SATA_DEV) { pm8001_device->attached_phy = dev->rphy->identify.phy_identifier; flag = 1; /* directly sata */ } } /*register this device to HBA*/ pm8001_dbg(pm8001_ha, DISC, "Found device\n"); PM8001_CHIP_DISP->reg_dev_req(pm8001_ha, pm8001_device, flag); spin_unlock_irqrestore(&pm8001_ha->lock, flags); wait_for_completion(&completion); if (dev->dev_type == SAS_END_DEVICE) msleep(50); pm8001_ha->flags = PM8001F_RUN_TIME; return 0; found_out: spin_unlock_irqrestore(&pm8001_ha->lock, flags); return res; } int pm8001_dev_found(struct domain_device *dev) { return pm8001_dev_found_notify(dev); } #define PM8001_TASK_TIMEOUT 20 /** * pm8001_dev_gone_notify - see the comments for "pm8001_dev_found_notify" * @dev: the device structure which sas layer used. */ static void pm8001_dev_gone_notify(struct domain_device *dev) { unsigned long flags = 0; struct pm8001_hba_info *pm8001_ha; struct pm8001_device *pm8001_dev = dev->lldd_dev; pm8001_ha = pm8001_find_ha_by_dev(dev); spin_lock_irqsave(&pm8001_ha->lock, flags); if (pm8001_dev) { u32 device_id = pm8001_dev->device_id; pm8001_dbg(pm8001_ha, DISC, "found dev[%d:%x] is gone.\n", pm8001_dev->device_id, pm8001_dev->dev_type); if (atomic_read(&pm8001_dev->running_req)) { spin_unlock_irqrestore(&pm8001_ha->lock, flags); sas_execute_internal_abort_dev(dev, 0, NULL); while (atomic_read(&pm8001_dev->running_req)) msleep(20); spin_lock_irqsave(&pm8001_ha->lock, flags); } PM8001_CHIP_DISP->dereg_dev_req(pm8001_ha, device_id); pm8001_free_dev(pm8001_dev); } else { pm8001_dbg(pm8001_ha, DISC, "Found dev has gone.\n"); } dev->lldd_dev = NULL; spin_unlock_irqrestore(&pm8001_ha->lock, flags); } void pm8001_dev_gone(struct domain_device *dev) { pm8001_dev_gone_notify(dev); } /* retry commands by ha, by task and/or by device */ void pm8001_open_reject_retry( struct pm8001_hba_info *pm8001_ha, struct sas_task *task_to_close, struct pm8001_device *device_to_close) { int i; unsigned long flags; if (pm8001_ha == NULL) return; spin_lock_irqsave(&pm8001_ha->lock, flags); for (i = 0; i < PM8001_MAX_CCB; i++) { struct sas_task *task; struct task_status_struct *ts; struct pm8001_device *pm8001_dev; unsigned long flags1; struct pm8001_ccb_info *ccb = &pm8001_ha->ccb_info[i]; if (ccb->ccb_tag == PM8001_INVALID_TAG) continue; pm8001_dev = ccb->device; if (!pm8001_dev || (pm8001_dev->dev_type == SAS_PHY_UNUSED)) continue; if (!device_to_close) { uintptr_t d = (uintptr_t)pm8001_dev - (uintptr_t)&pm8001_ha->devices; if (((d % sizeof(*pm8001_dev)) != 0) || ((d / sizeof(*pm8001_dev)) >= PM8001_MAX_DEVICES)) continue; } else if (pm8001_dev != device_to_close) continue; task = ccb->task; if (!task || !task->task_done) continue; if (task_to_close && (task != task_to_close)) continue; ts = &task->task_status; ts->resp = SAS_TASK_COMPLETE; /* Force the midlayer to retry */ ts->stat = SAS_OPEN_REJECT; ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; if (pm8001_dev) atomic_dec(&pm8001_dev->running_req); spin_lock_irqsave(&task->task_state_lock, flags1); task->task_state_flags &= ~SAS_TASK_STATE_PENDING; task->task_state_flags |= SAS_TASK_STATE_DONE; if (unlikely((task->task_state_flags & SAS_TASK_STATE_ABORTED))) { spin_unlock_irqrestore(&task->task_state_lock, flags1); pm8001_ccb_task_free(pm8001_ha, ccb); } else { spin_unlock_irqrestore(&task->task_state_lock, flags1); pm8001_ccb_task_free(pm8001_ha, ccb); mb();/* in order to force CPU ordering */ spin_unlock_irqrestore(&pm8001_ha->lock, flags); task->task_done(task); spin_lock_irqsave(&pm8001_ha->lock, flags); } } spin_unlock_irqrestore(&pm8001_ha->lock, flags); } /** * pm8001_I_T_nexus_reset() - reset the initiator/target connection * @dev: the device structure for the device to reset. * * Standard mandates link reset for ATA (type 0) and hard reset for * SSP (type 1), only for RECOVERY */ int pm8001_I_T_nexus_reset(struct domain_device *dev) { int rc = TMF_RESP_FUNC_FAILED; struct pm8001_device *pm8001_dev; struct pm8001_hba_info *pm8001_ha; struct sas_phy *phy; if (!dev || !dev->lldd_dev) return -ENODEV; pm8001_dev = dev->lldd_dev; pm8001_ha = pm8001_find_ha_by_dev(dev); phy = sas_get_local_phy(dev); if (dev_is_sata(dev)) { if (scsi_is_sas_phy_local(phy)) { rc = 0; goto out; } rc = sas_phy_reset(phy, 1); if (rc) { pm8001_dbg(pm8001_ha, EH, "phy reset failed for device %x\n" "with rc %d\n", pm8001_dev->device_id, rc); rc = TMF_RESP_FUNC_FAILED; goto out; } msleep(2000); rc = sas_execute_internal_abort_dev(dev, 0, NULL); if (rc) { pm8001_dbg(pm8001_ha, EH, "task abort failed %x\n" "with rc %d\n", pm8001_dev->device_id, rc); rc = TMF_RESP_FUNC_FAILED; } } else { rc = sas_phy_reset(phy, 1); msleep(2000); } pm8001_dbg(pm8001_ha, EH, " for device[%x]:rc=%d\n", pm8001_dev->device_id, rc); out: sas_put_local_phy(phy); return rc; } /* * This function handle the IT_NEXUS_XXX event or completion * status code for SSP/SATA/SMP I/O request. */ int pm8001_I_T_nexus_event_handler(struct domain_device *dev) { int rc = TMF_RESP_FUNC_FAILED; struct pm8001_device *pm8001_dev; struct pm8001_hba_info *pm8001_ha; struct sas_phy *phy; if (!dev || !dev->lldd_dev) return -1; pm8001_dev = dev->lldd_dev; pm8001_ha = pm8001_find_ha_by_dev(dev); pm8001_dbg(pm8001_ha, EH, "I_T_Nexus handler invoked !!\n"); phy = sas_get_local_phy(dev); if (dev_is_sata(dev)) { DECLARE_COMPLETION_ONSTACK(completion_setstate); if (scsi_is_sas_phy_local(phy)) { rc = 0; goto out; } /* send internal ssp/sata/smp abort command to FW */ sas_execute_internal_abort_dev(dev, 0, NULL); msleep(100); /* deregister the target device */ pm8001_dev_gone_notify(dev); msleep(200); /*send phy reset to hard reset target */ rc = sas_phy_reset(phy, 1); msleep(2000); pm8001_dev->setds_completion = &completion_setstate; wait_for_completion(&completion_setstate); } else { /* send internal ssp/sata/smp abort command to FW */ sas_execute_internal_abort_dev(dev, 0, NULL); msleep(100); /* deregister the target device */ pm8001_dev_gone_notify(dev); msleep(200); /*send phy reset to hard reset target */ rc = sas_phy_reset(phy, 1); msleep(2000); } pm8001_dbg(pm8001_ha, EH, " for device[%x]:rc=%d\n", pm8001_dev->device_id, rc); out: sas_put_local_phy(phy); return rc; } /* mandatory SAM-3, the task reset the specified LUN*/ int pm8001_lu_reset(struct domain_device *dev, u8 *lun) { int rc = TMF_RESP_FUNC_FAILED; struct pm8001_device *pm8001_dev = dev->lldd_dev; struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); DECLARE_COMPLETION_ONSTACK(completion_setstate); if (PM8001_CHIP_DISP->fatal_errors(pm8001_ha)) { /* * If the controller is in fatal error state, * we will not get a response from the controller */ pm8001_dbg(pm8001_ha, FAIL, "LUN reset failed due to fatal errors\n"); return rc; } if (dev_is_sata(dev)) { struct sas_phy *phy = sas_get_local_phy(dev); sas_execute_internal_abort_dev(dev, 0, NULL); rc = sas_phy_reset(phy, 1); sas_put_local_phy(phy); pm8001_dev->setds_completion = &completion_setstate; rc = PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, pm8001_dev, DS_OPERATIONAL); wait_for_completion(&completion_setstate); } else { rc = sas_lu_reset(dev, lun); } /* If failed, fall-through I_T_Nexus reset */ pm8001_dbg(pm8001_ha, EH, "for device[%x]:rc=%d\n", pm8001_dev->device_id, rc); return rc; } /* optional SAM-3 */ int pm8001_query_task(struct sas_task *task) { u32 tag = 0xdeadbeef; int rc = TMF_RESP_FUNC_FAILED; if (unlikely(!task || !task->lldd_task || !task->dev)) return rc; if (task->task_proto & SAS_PROTOCOL_SSP) { struct scsi_cmnd *cmnd = task->uldd_task; struct domain_device *dev = task->dev; struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); rc = pm8001_find_tag(task, &tag); if (rc == 0) { rc = TMF_RESP_FUNC_FAILED; return rc; } pm8001_dbg(pm8001_ha, EH, "Query:[%16ph]\n", cmnd->cmnd); rc = sas_query_task(task, tag); switch (rc) { /* The task is still in Lun, release it then */ case TMF_RESP_FUNC_SUCC: pm8001_dbg(pm8001_ha, EH, "The task is still in Lun\n"); break; /* The task is not in Lun or failed, reset the phy */ case TMF_RESP_FUNC_FAILED: case TMF_RESP_FUNC_COMPLETE: pm8001_dbg(pm8001_ha, EH, "The task is not in Lun or failed, reset the phy\n"); break; } } pr_err("pm80xx: rc= %d\n", rc); return rc; } /* mandatory SAM-3, still need free task/ccb info, abort the specified task */ int pm8001_abort_task(struct sas_task *task) { struct pm8001_ccb_info *ccb = task->lldd_task; unsigned long flags; u32 tag; struct domain_device *dev ; struct pm8001_hba_info *pm8001_ha; struct pm8001_device *pm8001_dev; int rc = TMF_RESP_FUNC_FAILED, ret; u32 phy_id, port_id; struct sas_task_slow slow_task; if (!task->lldd_task || !task->dev) return TMF_RESP_FUNC_FAILED; dev = task->dev; pm8001_dev = dev->lldd_dev; pm8001_ha = pm8001_find_ha_by_dev(dev); phy_id = pm8001_dev->attached_phy; if (PM8001_CHIP_DISP->fatal_errors(pm8001_ha)) { // If the controller is seeing fatal errors // abort task will not get a response from the controller return TMF_RESP_FUNC_FAILED; } ret = pm8001_find_tag(task, &tag); if (ret == 0) { pm8001_info(pm8001_ha, "no tag for task:%p\n", task); return TMF_RESP_FUNC_FAILED; } spin_lock_irqsave(&task->task_state_lock, flags); if (task->task_state_flags & SAS_TASK_STATE_DONE) { spin_unlock_irqrestore(&task->task_state_lock, flags); return TMF_RESP_FUNC_COMPLETE; } task->task_state_flags |= SAS_TASK_STATE_ABORTED; if (task->slow_task == NULL) { init_completion(&slow_task.completion); task->slow_task = &slow_task; } spin_unlock_irqrestore(&task->task_state_lock, flags); if (task->task_proto & SAS_PROTOCOL_SSP) { rc = sas_abort_task(task, tag); sas_execute_internal_abort_single(dev, tag, 0, NULL); } else if (task->task_proto & SAS_PROTOCOL_SATA || task->task_proto & SAS_PROTOCOL_STP) { if (pm8001_ha->chip_id == chip_8006) { DECLARE_COMPLETION_ONSTACK(completion_reset); DECLARE_COMPLETION_ONSTACK(completion); struct pm8001_phy *phy = pm8001_ha->phy + phy_id; port_id = phy->port->port_id; /* 1. Set Device state as Recovery */ pm8001_dev->setds_completion = &completion; PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, pm8001_dev, DS_IN_RECOVERY); wait_for_completion(&completion); /* 2. Send Phy Control Hard Reset */ reinit_completion(&completion); phy->port_reset_status = PORT_RESET_TMO; phy->reset_success = false; phy->enable_completion = &completion; phy->reset_completion = &completion_reset; ret = PM8001_CHIP_DISP->phy_ctl_req(pm8001_ha, phy_id, PHY_HARD_RESET); if (ret) { phy->enable_completion = NULL; phy->reset_completion = NULL; goto out; } /* In the case of the reset timeout/fail we still * abort the command at the firmware. The assumption * here is that the drive is off doing something so * that it's not processing requests, and we want to * avoid getting a completion for this and either * leaking the task in libsas or losing the race and * getting a double free. */ pm8001_dbg(pm8001_ha, MSG, "Waiting for local phy ctl\n"); ret = wait_for_completion_timeout(&completion, PM8001_TASK_TIMEOUT * HZ); if (!ret || !phy->reset_success) { phy->enable_completion = NULL; phy->reset_completion = NULL; } else { /* 3. Wait for Port Reset complete or * Port reset TMO */ pm8001_dbg(pm8001_ha, MSG, "Waiting for Port reset\n"); ret = wait_for_completion_timeout( &completion_reset, PM8001_TASK_TIMEOUT * HZ); if (!ret) phy->reset_completion = NULL; WARN_ON(phy->port_reset_status == PORT_RESET_TMO); if (phy->port_reset_status == PORT_RESET_TMO) { pm8001_dev_gone_notify(dev); PM8001_CHIP_DISP->hw_event_ack_req( pm8001_ha, 0, 0x07, /*HW_EVENT_PHY_DOWN ack*/ port_id, phy_id, 0, 0); goto out; } } /* * 4. SATA Abort ALL * we wait for the task to be aborted so that the task * is removed from the ccb. on success the caller is * going to free the task. */ ret = sas_execute_internal_abort_dev(dev, 0, NULL); if (ret) goto out; ret = wait_for_completion_timeout( &task->slow_task->completion, PM8001_TASK_TIMEOUT * HZ); if (!ret) goto out; /* 5. Set Device State as Operational */ reinit_completion(&completion); pm8001_dev->setds_completion = &completion; PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, pm8001_dev, DS_OPERATIONAL); wait_for_completion(&completion); } else { /* * Ensure that if we see a completion for the ccb * associated with the task which we are trying to * abort then we should not touch the sas_task as it * may race with libsas freeing it when return here. */ ccb->task = NULL; ret = sas_execute_internal_abort_single(dev, tag, 0, NULL); } rc = TMF_RESP_FUNC_COMPLETE; } else if (task->task_proto & SAS_PROTOCOL_SMP) { /* SMP */ rc = sas_execute_internal_abort_single(dev, tag, 0, NULL); } out: spin_lock_irqsave(&task->task_state_lock, flags); if (task->slow_task == &slow_task) task->slow_task = NULL; spin_unlock_irqrestore(&task->task_state_lock, flags); if (rc != TMF_RESP_FUNC_COMPLETE) pm8001_info(pm8001_ha, "rc= %d\n", rc); return rc; } int pm8001_clear_task_set(struct domain_device *dev, u8 *lun) { struct pm8001_device *pm8001_dev = dev->lldd_dev; struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); pm8001_dbg(pm8001_ha, EH, "I_T_L_Q clear task set[%x]\n", pm8001_dev->device_id); return sas_clear_task_set(dev, lun); } void pm8001_port_formed(struct asd_sas_phy *sas_phy) { struct sas_ha_struct *sas_ha = sas_phy->ha; struct pm8001_hba_info *pm8001_ha = sas_ha->lldd_ha; struct pm8001_phy *phy = sas_phy->lldd_phy; struct asd_sas_port *sas_port = sas_phy->port; struct pm8001_port *port = phy->port; if (!sas_port) { pm8001_dbg(pm8001_ha, FAIL, "Received null port\n"); return; } sas_port->lldd_port = port; } void pm8001_setds_completion(struct domain_device *dev) { struct pm8001_hba_info *pm8001_ha = pm8001_find_ha_by_dev(dev); struct pm8001_device *pm8001_dev = dev->lldd_dev; DECLARE_COMPLETION_ONSTACK(completion_setstate); if (pm8001_ha->chip_id != chip_8001) { pm8001_dev->setds_completion = &completion_setstate; PM8001_CHIP_DISP->set_dev_state_req(pm8001_ha, pm8001_dev, DS_OPERATIONAL); wait_for_completion(&completion_setstate); } } void pm8001_tmf_aborted(struct sas_task *task) { struct pm8001_ccb_info *ccb = task->lldd_task; if (ccb) ccb->task = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1