Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lina Iyer | 1149 | 40.33% | 2 | 12.50% |
Dmitry Eremin-Solenikov | 926 | 32.50% | 2 | 12.50% |
Angelo G. Del Regno | 497 | 17.44% | 4 | 25.00% |
Bartosz Dudziak | 187 | 6.56% | 1 | 6.25% |
Stephan Gerhold | 37 | 1.30% | 2 | 12.50% |
Vincent Knecht | 34 | 1.19% | 1 | 6.25% |
Arnd Bergmann | 10 | 0.35% | 1 | 6.25% |
Jeff Johnson | 5 | 0.18% | 1 | 6.25% |
Thomas Gleixner | 2 | 0.07% | 1 | 6.25% |
Yangtao Li | 2 | 0.07% | 1 | 6.25% |
Total | 2849 | 16 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2011-2014, The Linux Foundation. All rights reserved. * Copyright (c) 2014,2015, Linaro Ltd. * * SAW power controller driver */ #include <linux/bitfield.h> #include <linux/err.h> #include <linux/init.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/linear_range.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/smp.h> #include <linux/regulator/driver.h> #include <soc/qcom/spm.h> #define FIELD_SET(current, mask, val) \ (((current) & ~(mask)) | FIELD_PREP((mask), (val))) #define SPM_CTL_INDEX 0x7f #define SPM_CTL_INDEX_SHIFT 4 #define SPM_CTL_EN BIT(0) /* These registers might be specific to SPM 1.1 */ #define SPM_VCTL_VLVL GENMASK(7, 0) #define SPM_PMIC_DATA_0_VLVL GENMASK(7, 0) #define SPM_PMIC_DATA_1_MIN_VSEL GENMASK(5, 0) #define SPM_PMIC_DATA_1_MAX_VSEL GENMASK(21, 16) #define SPM_1_1_AVS_CTL_AVS_ENABLED BIT(27) #define SPM_AVS_CTL_MAX_VLVL GENMASK(22, 17) #define SPM_AVS_CTL_MIN_VLVL GENMASK(15, 10) enum spm_reg { SPM_REG_CFG, SPM_REG_SPM_CTL, SPM_REG_DLY, SPM_REG_PMIC_DLY, SPM_REG_PMIC_DATA_0, SPM_REG_PMIC_DATA_1, SPM_REG_VCTL, SPM_REG_SEQ_ENTRY, SPM_REG_STS0, SPM_REG_STS1, SPM_REG_PMIC_STS, SPM_REG_AVS_CTL, SPM_REG_AVS_LIMIT, SPM_REG_RST, SPM_REG_NR, }; #define MAX_PMIC_DATA 2 #define MAX_SEQ_DATA 64 struct spm_reg_data { const u16 *reg_offset; u32 spm_cfg; u32 spm_dly; u32 pmic_dly; u32 pmic_data[MAX_PMIC_DATA]; u32 avs_ctl; u32 avs_limit; u8 seq[MAX_SEQ_DATA]; u8 start_index[PM_SLEEP_MODE_NR]; smp_call_func_t set_vdd; /* for now we support only a single range */ struct linear_range *range; unsigned int ramp_delay; unsigned int init_uV; }; struct spm_driver_data { void __iomem *reg_base; const struct spm_reg_data *reg_data; struct device *dev; unsigned int volt_sel; int reg_cpu; }; static const u16 spm_reg_offset_v4_1[SPM_REG_NR] = { [SPM_REG_AVS_CTL] = 0x904, [SPM_REG_AVS_LIMIT] = 0x908, }; static const struct spm_reg_data spm_reg_660_gold_l2 = { .reg_offset = spm_reg_offset_v4_1, .avs_ctl = 0x1010031, .avs_limit = 0x4580458, }; static const struct spm_reg_data spm_reg_660_silver_l2 = { .reg_offset = spm_reg_offset_v4_1, .avs_ctl = 0x101c031, .avs_limit = 0x4580458, }; static const struct spm_reg_data spm_reg_8998_gold_l2 = { .reg_offset = spm_reg_offset_v4_1, .avs_ctl = 0x1010031, .avs_limit = 0x4700470, }; static const struct spm_reg_data spm_reg_8998_silver_l2 = { .reg_offset = spm_reg_offset_v4_1, .avs_ctl = 0x1010031, .avs_limit = 0x4200420, }; static const u16 spm_reg_offset_v3_0[SPM_REG_NR] = { [SPM_REG_CFG] = 0x08, [SPM_REG_SPM_CTL] = 0x30, [SPM_REG_DLY] = 0x34, [SPM_REG_SEQ_ENTRY] = 0x400, }; /* SPM register data for 8909 */ static const struct spm_reg_data spm_reg_8909_cpu = { .reg_offset = spm_reg_offset_v3_0, .spm_cfg = 0x1, .spm_dly = 0x3C102800, .seq = { 0x60, 0x03, 0x60, 0x0B, 0x0F, 0x20, 0x10, 0x80, 0x30, 0x90, 0x5B, 0x60, 0x03, 0x60, 0x76, 0x76, 0x0B, 0x94, 0x5B, 0x80, 0x10, 0x26, 0x30, 0x0F }, .start_index[PM_SLEEP_MODE_STBY] = 0, .start_index[PM_SLEEP_MODE_SPC] = 5, }; /* SPM register data for 8916 */ static const struct spm_reg_data spm_reg_8916_cpu = { .reg_offset = spm_reg_offset_v3_0, .spm_cfg = 0x1, .spm_dly = 0x3C102800, .seq = { 0x60, 0x03, 0x60, 0x0B, 0x0F, 0x20, 0x10, 0x80, 0x30, 0x90, 0x5B, 0x60, 0x03, 0x60, 0x3B, 0x76, 0x76, 0x0B, 0x94, 0x5B, 0x80, 0x10, 0x26, 0x30, 0x0F }, .start_index[PM_SLEEP_MODE_STBY] = 0, .start_index[PM_SLEEP_MODE_SPC] = 5, }; static const struct spm_reg_data spm_reg_8939_cpu = { .reg_offset = spm_reg_offset_v3_0, .spm_cfg = 0x1, .spm_dly = 0x3C102800, .seq = { 0x60, 0x03, 0x60, 0x0B, 0x0F, 0x20, 0x50, 0x1B, 0x10, 0x80, 0x30, 0x90, 0x5B, 0x60, 0x50, 0x03, 0x60, 0x76, 0x76, 0x0B, 0x50, 0x1B, 0x94, 0x5B, 0x80, 0x10, 0x26, 0x30, 0x50, 0x0F }, .start_index[PM_SLEEP_MODE_STBY] = 0, .start_index[PM_SLEEP_MODE_SPC] = 5, }; static const u16 spm_reg_offset_v2_3[SPM_REG_NR] = { [SPM_REG_CFG] = 0x08, [SPM_REG_SPM_CTL] = 0x30, [SPM_REG_DLY] = 0x34, [SPM_REG_PMIC_DATA_0] = 0x40, [SPM_REG_PMIC_DATA_1] = 0x44, }; /* SPM register data for 8976 */ static const struct spm_reg_data spm_reg_8976_gold_l2 = { .reg_offset = spm_reg_offset_v2_3, .spm_cfg = 0x14, .spm_dly = 0x3c11840a, .pmic_data[0] = 0x03030080, .pmic_data[1] = 0x00030000, .start_index[PM_SLEEP_MODE_STBY] = 0, .start_index[PM_SLEEP_MODE_SPC] = 3, }; static const struct spm_reg_data spm_reg_8976_silver_l2 = { .reg_offset = spm_reg_offset_v2_3, .spm_cfg = 0x14, .spm_dly = 0x3c102800, .pmic_data[0] = 0x03030080, .pmic_data[1] = 0x00030000, .start_index[PM_SLEEP_MODE_STBY] = 0, .start_index[PM_SLEEP_MODE_SPC] = 2, }; static const u16 spm_reg_offset_v2_1[SPM_REG_NR] = { [SPM_REG_CFG] = 0x08, [SPM_REG_SPM_CTL] = 0x30, [SPM_REG_DLY] = 0x34, [SPM_REG_SEQ_ENTRY] = 0x80, }; /* SPM register data for 8974, 8084 */ static const struct spm_reg_data spm_reg_8974_8084_cpu = { .reg_offset = spm_reg_offset_v2_1, .spm_cfg = 0x1, .spm_dly = 0x3C102800, .seq = { 0x03, 0x0B, 0x0F, 0x00, 0x20, 0x80, 0x10, 0xE8, 0x5B, 0x03, 0x3B, 0xE8, 0x5B, 0x82, 0x10, 0x0B, 0x30, 0x06, 0x26, 0x30, 0x0F }, .start_index[PM_SLEEP_MODE_STBY] = 0, .start_index[PM_SLEEP_MODE_SPC] = 3, }; /* SPM register data for 8226 */ static const struct spm_reg_data spm_reg_8226_cpu = { .reg_offset = spm_reg_offset_v2_1, .spm_cfg = 0x0, .spm_dly = 0x3C102800, .seq = { 0x60, 0x03, 0x60, 0x0B, 0x0F, 0x20, 0x10, 0x80, 0x30, 0x90, 0x5B, 0x60, 0x03, 0x60, 0x3B, 0x76, 0x76, 0x0B, 0x94, 0x5B, 0x80, 0x10, 0x26, 0x30, 0x0F }, .start_index[PM_SLEEP_MODE_STBY] = 0, .start_index[PM_SLEEP_MODE_SPC] = 5, }; static const u16 spm_reg_offset_v1_1[SPM_REG_NR] = { [SPM_REG_CFG] = 0x08, [SPM_REG_STS0] = 0x0c, [SPM_REG_STS1] = 0x10, [SPM_REG_VCTL] = 0x14, [SPM_REG_AVS_CTL] = 0x18, [SPM_REG_SPM_CTL] = 0x20, [SPM_REG_PMIC_DLY] = 0x24, [SPM_REG_PMIC_DATA_0] = 0x28, [SPM_REG_PMIC_DATA_1] = 0x2C, [SPM_REG_SEQ_ENTRY] = 0x80, }; static void smp_set_vdd_v1_1(void *data); /* SPM register data for 8064 */ static struct linear_range spm_v1_1_regulator_range = REGULATOR_LINEAR_RANGE(700000, 0, 56, 12500); static const struct spm_reg_data spm_reg_8064_cpu = { .reg_offset = spm_reg_offset_v1_1, .spm_cfg = 0x1F, .pmic_dly = 0x02020004, .pmic_data[0] = 0x0084009C, .pmic_data[1] = 0x00A4001C, .seq = { 0x03, 0x0F, 0x00, 0x24, 0x54, 0x10, 0x09, 0x03, 0x01, 0x10, 0x54, 0x30, 0x0C, 0x24, 0x30, 0x0F }, .start_index[PM_SLEEP_MODE_STBY] = 0, .start_index[PM_SLEEP_MODE_SPC] = 2, .set_vdd = smp_set_vdd_v1_1, .range = &spm_v1_1_regulator_range, .init_uV = 1300000, .ramp_delay = 1250, }; static inline void spm_register_write(struct spm_driver_data *drv, enum spm_reg reg, u32 val) { if (drv->reg_data->reg_offset[reg]) writel_relaxed(val, drv->reg_base + drv->reg_data->reg_offset[reg]); } /* Ensure a guaranteed write, before return */ static inline void spm_register_write_sync(struct spm_driver_data *drv, enum spm_reg reg, u32 val) { u32 ret; if (!drv->reg_data->reg_offset[reg]) return; do { writel_relaxed(val, drv->reg_base + drv->reg_data->reg_offset[reg]); ret = readl_relaxed(drv->reg_base + drv->reg_data->reg_offset[reg]); if (ret == val) break; cpu_relax(); } while (1); } static inline u32 spm_register_read(struct spm_driver_data *drv, enum spm_reg reg) { return readl_relaxed(drv->reg_base + drv->reg_data->reg_offset[reg]); } void spm_set_low_power_mode(struct spm_driver_data *drv, enum pm_sleep_mode mode) { u32 start_index; u32 ctl_val; start_index = drv->reg_data->start_index[mode]; ctl_val = spm_register_read(drv, SPM_REG_SPM_CTL); ctl_val &= ~(SPM_CTL_INDEX << SPM_CTL_INDEX_SHIFT); ctl_val |= start_index << SPM_CTL_INDEX_SHIFT; ctl_val |= SPM_CTL_EN; spm_register_write_sync(drv, SPM_REG_SPM_CTL, ctl_val); } static int spm_set_voltage_sel(struct regulator_dev *rdev, unsigned int selector) { struct spm_driver_data *drv = rdev_get_drvdata(rdev); drv->volt_sel = selector; /* Always do the SAW register writes on the corresponding CPU */ return smp_call_function_single(drv->reg_cpu, drv->reg_data->set_vdd, drv, true); } static int spm_get_voltage_sel(struct regulator_dev *rdev) { struct spm_driver_data *drv = rdev_get_drvdata(rdev); return drv->volt_sel; } static const struct regulator_ops spm_reg_ops = { .set_voltage_sel = spm_set_voltage_sel, .get_voltage_sel = spm_get_voltage_sel, .list_voltage = regulator_list_voltage_linear_range, .set_voltage_time_sel = regulator_set_voltage_time_sel, }; static void smp_set_vdd_v1_1(void *data) { struct spm_driver_data *drv = data; unsigned int vctl, data0, data1, avs_ctl, sts; unsigned int vlevel, volt_sel; bool avs_enabled; volt_sel = drv->volt_sel; vlevel = volt_sel | 0x80; /* band */ avs_ctl = spm_register_read(drv, SPM_REG_AVS_CTL); vctl = spm_register_read(drv, SPM_REG_VCTL); data0 = spm_register_read(drv, SPM_REG_PMIC_DATA_0); data1 = spm_register_read(drv, SPM_REG_PMIC_DATA_1); avs_enabled = avs_ctl & SPM_1_1_AVS_CTL_AVS_ENABLED; /* If AVS is enabled, switch it off during the voltage change */ if (avs_enabled) { avs_ctl &= ~SPM_1_1_AVS_CTL_AVS_ENABLED; spm_register_write(drv, SPM_REG_AVS_CTL, avs_ctl); } /* Kick the state machine back to idle */ spm_register_write(drv, SPM_REG_RST, 1); vctl = FIELD_SET(vctl, SPM_VCTL_VLVL, vlevel); data0 = FIELD_SET(data0, SPM_PMIC_DATA_0_VLVL, vlevel); data1 = FIELD_SET(data1, SPM_PMIC_DATA_1_MIN_VSEL, volt_sel); data1 = FIELD_SET(data1, SPM_PMIC_DATA_1_MAX_VSEL, volt_sel); spm_register_write(drv, SPM_REG_VCTL, vctl); spm_register_write(drv, SPM_REG_PMIC_DATA_0, data0); spm_register_write(drv, SPM_REG_PMIC_DATA_1, data1); if (read_poll_timeout_atomic(spm_register_read, sts, sts == vlevel, 1, 200, false, drv, SPM_REG_STS1)) { dev_err_ratelimited(drv->dev, "timeout setting the voltage (%x %x)!\n", sts, vlevel); goto enable_avs; } if (avs_enabled) { unsigned int max_avs = volt_sel; unsigned int min_avs = max(max_avs, 4U) - 4; avs_ctl = FIELD_SET(avs_ctl, SPM_AVS_CTL_MIN_VLVL, min_avs); avs_ctl = FIELD_SET(avs_ctl, SPM_AVS_CTL_MAX_VLVL, max_avs); spm_register_write(drv, SPM_REG_AVS_CTL, avs_ctl); } enable_avs: if (avs_enabled) { avs_ctl |= SPM_1_1_AVS_CTL_AVS_ENABLED; spm_register_write(drv, SPM_REG_AVS_CTL, avs_ctl); } } static int spm_get_cpu(struct device *dev) { int cpu; bool found; for_each_possible_cpu(cpu) { struct device_node *cpu_node, *saw_node; cpu_node = of_cpu_device_node_get(cpu); if (!cpu_node) continue; saw_node = of_parse_phandle(cpu_node, "qcom,saw", 0); found = (saw_node == dev->of_node); of_node_put(saw_node); of_node_put(cpu_node); if (found) return cpu; } /* L2 SPM is not bound to any CPU, voltage setting is not supported */ return -EOPNOTSUPP; } static int spm_register_regulator(struct device *dev, struct spm_driver_data *drv) { struct regulator_config config = { .dev = dev, .driver_data = drv, }; struct regulator_desc *rdesc; struct regulator_dev *rdev; int ret; bool found; if (!drv->reg_data->set_vdd) return 0; rdesc = devm_kzalloc(dev, sizeof(*rdesc), GFP_KERNEL); if (!rdesc) return -ENOMEM; rdesc->name = "spm"; rdesc->of_match = of_match_ptr("regulator"); rdesc->type = REGULATOR_VOLTAGE; rdesc->owner = THIS_MODULE; rdesc->ops = &spm_reg_ops; rdesc->linear_ranges = drv->reg_data->range; rdesc->n_linear_ranges = 1; rdesc->n_voltages = rdesc->linear_ranges[rdesc->n_linear_ranges - 1].max_sel + 1; rdesc->ramp_delay = drv->reg_data->ramp_delay; ret = spm_get_cpu(dev); if (ret < 0) return ret; drv->reg_cpu = ret; dev_dbg(dev, "SAW2 bound to CPU %d\n", drv->reg_cpu); /* * Program initial voltage, otherwise registration will also try * setting the voltage, which might result in undervolting the CPU. */ drv->volt_sel = DIV_ROUND_UP(drv->reg_data->init_uV - rdesc->min_uV, rdesc->uV_step); ret = linear_range_get_selector_high(drv->reg_data->range, drv->reg_data->init_uV, &drv->volt_sel, &found); if (ret) { dev_err(dev, "Initial uV value out of bounds\n"); return ret; } /* Always do the SAW register writes on the corresponding CPU */ smp_call_function_single(drv->reg_cpu, drv->reg_data->set_vdd, drv, true); rdev = devm_regulator_register(dev, rdesc, &config); if (IS_ERR(rdev)) { dev_err(dev, "failed to register regulator\n"); return PTR_ERR(rdev); } return 0; } static const struct of_device_id spm_match_table[] = { { .compatible = "qcom,sdm660-gold-saw2-v4.1-l2", .data = &spm_reg_660_gold_l2 }, { .compatible = "qcom,sdm660-silver-saw2-v4.1-l2", .data = &spm_reg_660_silver_l2 }, { .compatible = "qcom,msm8226-saw2-v2.1-cpu", .data = &spm_reg_8226_cpu }, { .compatible = "qcom,msm8909-saw2-v3.0-cpu", .data = &spm_reg_8909_cpu }, { .compatible = "qcom,msm8916-saw2-v3.0-cpu", .data = &spm_reg_8916_cpu }, { .compatible = "qcom,msm8939-saw2-v3.0-cpu", .data = &spm_reg_8939_cpu }, { .compatible = "qcom,msm8974-saw2-v2.1-cpu", .data = &spm_reg_8974_8084_cpu }, { .compatible = "qcom,msm8976-gold-saw2-v2.3-l2", .data = &spm_reg_8976_gold_l2 }, { .compatible = "qcom,msm8976-silver-saw2-v2.3-l2", .data = &spm_reg_8976_silver_l2 }, { .compatible = "qcom,msm8998-gold-saw2-v4.1-l2", .data = &spm_reg_8998_gold_l2 }, { .compatible = "qcom,msm8998-silver-saw2-v4.1-l2", .data = &spm_reg_8998_silver_l2 }, { .compatible = "qcom,apq8084-saw2-v2.1-cpu", .data = &spm_reg_8974_8084_cpu }, { .compatible = "qcom,apq8064-saw2-v1.1-cpu", .data = &spm_reg_8064_cpu }, { }, }; MODULE_DEVICE_TABLE(of, spm_match_table); static int spm_dev_probe(struct platform_device *pdev) { const struct of_device_id *match_id; struct spm_driver_data *drv; void __iomem *addr; drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL); if (!drv) return -ENOMEM; drv->reg_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(drv->reg_base)) return PTR_ERR(drv->reg_base); match_id = of_match_node(spm_match_table, pdev->dev.of_node); if (!match_id) return -ENODEV; drv->reg_data = match_id->data; drv->dev = &pdev->dev; platform_set_drvdata(pdev, drv); /* Write the SPM sequences first.. */ addr = drv->reg_base + drv->reg_data->reg_offset[SPM_REG_SEQ_ENTRY]; __iowrite32_copy(addr, drv->reg_data->seq, ARRAY_SIZE(drv->reg_data->seq) / 4); /* * ..and then the control registers. * On some SoC if the control registers are written first and if the * CPU was held in reset, the reset signal could trigger the SPM state * machine, before the sequences are completely written. */ spm_register_write(drv, SPM_REG_AVS_CTL, drv->reg_data->avs_ctl); spm_register_write(drv, SPM_REG_AVS_LIMIT, drv->reg_data->avs_limit); spm_register_write(drv, SPM_REG_CFG, drv->reg_data->spm_cfg); spm_register_write(drv, SPM_REG_DLY, drv->reg_data->spm_dly); spm_register_write(drv, SPM_REG_PMIC_DLY, drv->reg_data->pmic_dly); spm_register_write(drv, SPM_REG_PMIC_DATA_0, drv->reg_data->pmic_data[0]); spm_register_write(drv, SPM_REG_PMIC_DATA_1, drv->reg_data->pmic_data[1]); /* Set up Standby as the default low power mode */ if (drv->reg_data->reg_offset[SPM_REG_SPM_CTL]) spm_set_low_power_mode(drv, PM_SLEEP_MODE_STBY); if (IS_ENABLED(CONFIG_REGULATOR)) return spm_register_regulator(&pdev->dev, drv); return 0; } static struct platform_driver spm_driver = { .probe = spm_dev_probe, .driver = { .name = "qcom_spm", .of_match_table = spm_match_table, }, }; static int __init qcom_spm_init(void) { return platform_driver_register(&spm_driver); } arch_initcall(qcom_spm_init); MODULE_DESCRIPTION("Qualcomm Subsystem Power Manager (SPM)"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1