Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dave Gerlach | 1346 | 60.22% | 4 | 25.00% |
J Keerthy | 682 | 30.51% | 4 | 25.00% |
Tony Lindgren | 192 | 8.59% | 2 | 12.50% |
Miaoqian Lin | 5 | 0.22% | 1 | 6.25% |
Christophe Jaillet | 3 | 0.13% | 1 | 6.25% |
Uwe Kleine-König | 2 | 0.09% | 1 | 6.25% |
Yue haibing | 2 | 0.09% | 1 | 6.25% |
Vasyl Gomonovych | 2 | 0.09% | 1 | 6.25% |
Chi Minghao | 1 | 0.04% | 1 | 6.25% |
Total | 2235 | 16 |
// SPDX-License-Identifier: GPL-2.0 /* * AM33XX Power Management Routines * * Copyright (C) 2012-2018 Texas Instruments Incorporated - http://www.ti.com/ * Vaibhav Bedia, Dave Gerlach */ #include <linux/clk.h> #include <linux/cpu.h> #include <linux/err.h> #include <linux/genalloc.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/io.h> #include <linux/module.h> #include <linux/nvmem-consumer.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/platform_data/pm33xx.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/rtc.h> #include <linux/rtc/rtc-omap.h> #include <linux/sizes.h> #include <linux/sram.h> #include <linux/suspend.h> #include <linux/ti-emif-sram.h> #include <linux/wkup_m3_ipc.h> #include <asm/proc-fns.h> #include <asm/suspend.h> #include <asm/system_misc.h> #define AMX3_PM_SRAM_SYMBOL_OFFSET(sym) ((unsigned long)(sym) - \ (unsigned long)pm_sram->do_wfi) #define RTC_SCRATCH_RESUME_REG 0 #define RTC_SCRATCH_MAGIC_REG 1 #define RTC_REG_BOOT_MAGIC 0x8cd0 /* RTC */ #define GIC_INT_SET_PENDING_BASE 0x200 #define AM43XX_GIC_DIST_BASE 0x48241000 static void __iomem *rtc_base_virt; static struct clk *rtc_fck; static u32 rtc_magic_val; static int (*am33xx_do_wfi_sram)(unsigned long unused); static phys_addr_t am33xx_do_wfi_sram_phys; static struct gen_pool *sram_pool, *sram_pool_data; static unsigned long ocmcram_location, ocmcram_location_data; static struct rtc_device *omap_rtc; static void __iomem *gic_dist_base; static struct am33xx_pm_platform_data *pm_ops; static struct am33xx_pm_sram_addr *pm_sram; static struct device *pm33xx_dev; static struct wkup_m3_ipc *m3_ipc; #ifdef CONFIG_SUSPEND static int rtc_only_idle; static int retrigger_irq; static unsigned long suspend_wfi_flags; static struct wkup_m3_wakeup_src wakeup_src = {.irq_nr = 0, .src = "Unknown", }; static struct wkup_m3_wakeup_src rtc_alarm_wakeup = { .irq_nr = 108, .src = "RTC Alarm", }; static struct wkup_m3_wakeup_src rtc_ext_wakeup = { .irq_nr = 0, .src = "Ext wakeup", }; #endif static u32 sram_suspend_address(unsigned long addr) { return ((unsigned long)am33xx_do_wfi_sram + AMX3_PM_SRAM_SYMBOL_OFFSET(addr)); } static int am33xx_push_sram_idle(void) { struct am33xx_pm_ro_sram_data ro_sram_data; int ret; u32 table_addr, ro_data_addr; void *copy_addr; ro_sram_data.amx3_pm_sram_data_virt = ocmcram_location_data; ro_sram_data.amx3_pm_sram_data_phys = gen_pool_virt_to_phys(sram_pool_data, ocmcram_location_data); ro_sram_data.rtc_base_virt = rtc_base_virt; /* Save physical address to calculate resume offset during pm init */ am33xx_do_wfi_sram_phys = gen_pool_virt_to_phys(sram_pool, ocmcram_location); am33xx_do_wfi_sram = sram_exec_copy(sram_pool, (void *)ocmcram_location, pm_sram->do_wfi, *pm_sram->do_wfi_sz); if (!am33xx_do_wfi_sram) { dev_err(pm33xx_dev, "PM: %s: am33xx_do_wfi copy to sram failed\n", __func__); return -ENODEV; } table_addr = sram_suspend_address((unsigned long)pm_sram->emif_sram_table); ret = ti_emif_copy_pm_function_table(sram_pool, (void *)table_addr); if (ret) { dev_dbg(pm33xx_dev, "PM: %s: EMIF function copy failed\n", __func__); return -EPROBE_DEFER; } ro_data_addr = sram_suspend_address((unsigned long)pm_sram->ro_sram_data); copy_addr = sram_exec_copy(sram_pool, (void *)ro_data_addr, &ro_sram_data, sizeof(ro_sram_data)); if (!copy_addr) { dev_err(pm33xx_dev, "PM: %s: ro_sram_data copy to sram failed\n", __func__); return -ENODEV; } return 0; } static int am33xx_do_sram_idle(u32 wfi_flags) { if (!m3_ipc || !pm_ops) return 0; if (wfi_flags & WFI_FLAG_WAKE_M3) m3_ipc->ops->prepare_low_power(m3_ipc, WKUP_M3_IDLE); return pm_ops->cpu_suspend(am33xx_do_wfi_sram, wfi_flags); } static int __init am43xx_map_gic(void) { gic_dist_base = ioremap(AM43XX_GIC_DIST_BASE, SZ_4K); if (!gic_dist_base) return -ENOMEM; return 0; } #ifdef CONFIG_SUSPEND static struct wkup_m3_wakeup_src rtc_wake_src(void) { u32 i; i = __raw_readl(rtc_base_virt + 0x44) & 0x40; if (i) { retrigger_irq = rtc_alarm_wakeup.irq_nr; return rtc_alarm_wakeup; } retrigger_irq = rtc_ext_wakeup.irq_nr; return rtc_ext_wakeup; } static int am33xx_rtc_only_idle(unsigned long wfi_flags) { omap_rtc_power_off_program(&omap_rtc->dev); am33xx_do_wfi_sram(wfi_flags); return 0; } /* * Note that the RTC module clock must be re-enabled only for rtc+ddr suspend. * And looks like the module can stay in SYSC_IDLE_SMART_WKUP mode configured * by the interconnect code just fine for both rtc+ddr suspend and retention * suspend. */ static int am33xx_pm_suspend(suspend_state_t suspend_state) { int i, ret = 0; if (suspend_state == PM_SUSPEND_MEM && pm_ops->check_off_mode_enable()) { ret = clk_prepare_enable(rtc_fck); if (ret) { dev_err(pm33xx_dev, "Failed to enable clock: %i\n", ret); return ret; } pm_ops->save_context(); suspend_wfi_flags |= WFI_FLAG_RTC_ONLY; clk_save_context(); ret = pm_ops->soc_suspend(suspend_state, am33xx_rtc_only_idle, suspend_wfi_flags); suspend_wfi_flags &= ~WFI_FLAG_RTC_ONLY; dev_info(pm33xx_dev, "Entering RTC Only mode with DDR in self-refresh\n"); if (!ret) { clk_restore_context(); pm_ops->restore_context(); m3_ipc->ops->set_rtc_only(m3_ipc); am33xx_push_sram_idle(); } } else { ret = pm_ops->soc_suspend(suspend_state, am33xx_do_wfi_sram, suspend_wfi_flags); } if (ret) { dev_err(pm33xx_dev, "PM: Kernel suspend failure\n"); } else { i = m3_ipc->ops->request_pm_status(m3_ipc); switch (i) { case 0: dev_info(pm33xx_dev, "PM: Successfully put all powerdomains to target state\n"); break; case 1: dev_err(pm33xx_dev, "PM: Could not transition all powerdomains to target state\n"); ret = -1; break; default: dev_err(pm33xx_dev, "PM: CM3 returned unknown result = %d\n", i); ret = -1; } /* print the wakeup reason */ if (rtc_only_idle) { wakeup_src = rtc_wake_src(); pr_info("PM: Wakeup source %s\n", wakeup_src.src); } else { pr_info("PM: Wakeup source %s\n", m3_ipc->ops->request_wake_src(m3_ipc)); } } if (suspend_state == PM_SUSPEND_MEM && pm_ops->check_off_mode_enable()) clk_disable_unprepare(rtc_fck); return ret; } static int am33xx_pm_enter(suspend_state_t suspend_state) { int ret = 0; switch (suspend_state) { case PM_SUSPEND_MEM: case PM_SUSPEND_STANDBY: ret = am33xx_pm_suspend(suspend_state); break; default: ret = -EINVAL; } return ret; } static int am33xx_pm_begin(suspend_state_t state) { int ret = -EINVAL; struct nvmem_device *nvmem; if (state == PM_SUSPEND_MEM && pm_ops->check_off_mode_enable()) { nvmem = devm_nvmem_device_get(&omap_rtc->dev, "omap_rtc_scratch0"); if (!IS_ERR(nvmem)) nvmem_device_write(nvmem, RTC_SCRATCH_MAGIC_REG * 4, 4, (void *)&rtc_magic_val); rtc_only_idle = 1; } else { rtc_only_idle = 0; } pm_ops->begin_suspend(); switch (state) { case PM_SUSPEND_MEM: ret = m3_ipc->ops->prepare_low_power(m3_ipc, WKUP_M3_DEEPSLEEP); break; case PM_SUSPEND_STANDBY: ret = m3_ipc->ops->prepare_low_power(m3_ipc, WKUP_M3_STANDBY); break; } return ret; } static void am33xx_pm_end(void) { u32 val = 0; struct nvmem_device *nvmem; nvmem = devm_nvmem_device_get(&omap_rtc->dev, "omap_rtc_scratch0"); if (IS_ERR(nvmem)) return; m3_ipc->ops->finish_low_power(m3_ipc); if (rtc_only_idle) { if (retrigger_irq) { /* * 32 bits of Interrupt Set-Pending correspond to 32 * 32 interrupts. Compute the bit offset of the * Interrupt and set that particular bit * Compute the register offset by dividing interrupt * number by 32 and mutiplying by 4 */ writel_relaxed(1 << (retrigger_irq & 31), gic_dist_base + GIC_INT_SET_PENDING_BASE + retrigger_irq / 32 * 4); } nvmem_device_write(nvmem, RTC_SCRATCH_MAGIC_REG * 4, 4, (void *)&val); } rtc_only_idle = 0; pm_ops->finish_suspend(); } static int am33xx_pm_valid(suspend_state_t state) { switch (state) { case PM_SUSPEND_STANDBY: case PM_SUSPEND_MEM: return 1; default: return 0; } } static const struct platform_suspend_ops am33xx_pm_ops = { .begin = am33xx_pm_begin, .end = am33xx_pm_end, .enter = am33xx_pm_enter, .valid = am33xx_pm_valid, }; #endif /* CONFIG_SUSPEND */ static void am33xx_pm_set_ipc_ops(void) { u32 resume_address; int temp; temp = ti_emif_get_mem_type(); if (temp < 0) { dev_err(pm33xx_dev, "PM: Cannot determine memory type, no PM available\n"); return; } m3_ipc->ops->set_mem_type(m3_ipc, temp); /* Physical resume address to be used by ROM code */ resume_address = am33xx_do_wfi_sram_phys + *pm_sram->resume_offset + 0x4; m3_ipc->ops->set_resume_address(m3_ipc, (void *)resume_address); } static void am33xx_pm_free_sram(void) { gen_pool_free(sram_pool, ocmcram_location, *pm_sram->do_wfi_sz); gen_pool_free(sram_pool_data, ocmcram_location_data, sizeof(struct am33xx_pm_ro_sram_data)); } /* * Push the minimal suspend-resume code to SRAM */ static int am33xx_pm_alloc_sram(void) { struct device_node *np; int ret = 0; np = of_find_compatible_node(NULL, NULL, "ti,omap3-mpu"); if (!np) { np = of_find_compatible_node(NULL, NULL, "ti,omap4-mpu"); if (!np) { dev_err(pm33xx_dev, "PM: %s: Unable to find device node for mpu\n", __func__); return -ENODEV; } } sram_pool = of_gen_pool_get(np, "pm-sram", 0); if (!sram_pool) { dev_err(pm33xx_dev, "PM: %s: Unable to get sram pool for ocmcram\n", __func__); ret = -ENODEV; goto mpu_put_node; } sram_pool_data = of_gen_pool_get(np, "pm-sram", 1); if (!sram_pool_data) { dev_err(pm33xx_dev, "PM: %s: Unable to get sram data pool for ocmcram\n", __func__); ret = -ENODEV; goto mpu_put_node; } ocmcram_location = gen_pool_alloc(sram_pool, *pm_sram->do_wfi_sz); if (!ocmcram_location) { dev_err(pm33xx_dev, "PM: %s: Unable to allocate memory from ocmcram\n", __func__); ret = -ENOMEM; goto mpu_put_node; } ocmcram_location_data = gen_pool_alloc(sram_pool_data, sizeof(struct emif_regs_amx3)); if (!ocmcram_location_data) { dev_err(pm33xx_dev, "PM: Unable to allocate memory from ocmcram\n"); gen_pool_free(sram_pool, ocmcram_location, *pm_sram->do_wfi_sz); ret = -ENOMEM; } mpu_put_node: of_node_put(np); return ret; } static int am33xx_pm_rtc_setup(void) { struct device_node *np; unsigned long val = 0; struct nvmem_device *nvmem; int error; np = of_find_node_by_name(NULL, "rtc"); if (of_device_is_available(np)) { /* RTC interconnect target module clock */ rtc_fck = of_clk_get_by_name(np->parent, "fck"); if (IS_ERR(rtc_fck)) return PTR_ERR(rtc_fck); rtc_base_virt = of_iomap(np, 0); if (!rtc_base_virt) { pr_warn("PM: could not iomap rtc\n"); error = -ENODEV; goto err_clk_put; } omap_rtc = rtc_class_open("rtc0"); if (!omap_rtc) { pr_warn("PM: rtc0 not available\n"); error = -EPROBE_DEFER; goto err_iounmap; } nvmem = devm_nvmem_device_get(&omap_rtc->dev, "omap_rtc_scratch0"); if (!IS_ERR(nvmem)) { nvmem_device_read(nvmem, RTC_SCRATCH_MAGIC_REG * 4, 4, (void *)&rtc_magic_val); if ((rtc_magic_val & 0xffff) != RTC_REG_BOOT_MAGIC) pr_warn("PM: bootloader does not support rtc-only!\n"); nvmem_device_write(nvmem, RTC_SCRATCH_MAGIC_REG * 4, 4, (void *)&val); val = pm_sram->resume_address; nvmem_device_write(nvmem, RTC_SCRATCH_RESUME_REG * 4, 4, (void *)&val); } } else { pr_warn("PM: no-rtc available, rtc-only mode disabled.\n"); } return 0; err_iounmap: iounmap(rtc_base_virt); err_clk_put: clk_put(rtc_fck); return error; } static int am33xx_pm_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; int ret; if (!of_machine_is_compatible("ti,am33xx") && !of_machine_is_compatible("ti,am43")) return -ENODEV; pm_ops = dev->platform_data; if (!pm_ops) { dev_err(dev, "PM: Cannot get core PM ops!\n"); return -ENODEV; } ret = am43xx_map_gic(); if (ret) { pr_err("PM: Could not ioremap GIC base\n"); return ret; } pm_sram = pm_ops->get_sram_addrs(); if (!pm_sram) { dev_err(dev, "PM: Cannot get PM asm function addresses!!\n"); return -ENODEV; } m3_ipc = wkup_m3_ipc_get(); if (!m3_ipc) { pr_err("PM: Cannot get wkup_m3_ipc handle\n"); return -EPROBE_DEFER; } pm33xx_dev = dev; ret = am33xx_pm_alloc_sram(); if (ret) goto err_wkup_m3_ipc_put; ret = am33xx_pm_rtc_setup(); if (ret) goto err_free_sram; ret = am33xx_push_sram_idle(); if (ret) goto err_unsetup_rtc; am33xx_pm_set_ipc_ops(); #ifdef CONFIG_SUSPEND suspend_set_ops(&am33xx_pm_ops); /* * For a system suspend we must flush the caches, we want * the DDR in self-refresh, we want to save the context * of the EMIF, and we want the wkup_m3 to handle low-power * transition. */ suspend_wfi_flags |= WFI_FLAG_FLUSH_CACHE; suspend_wfi_flags |= WFI_FLAG_SELF_REFRESH; suspend_wfi_flags |= WFI_FLAG_SAVE_EMIF; suspend_wfi_flags |= WFI_FLAG_WAKE_M3; #endif /* CONFIG_SUSPEND */ pm_runtime_enable(dev); ret = pm_runtime_resume_and_get(dev); if (ret < 0) goto err_pm_runtime_disable; ret = pm_ops->init(am33xx_do_sram_idle); if (ret) { dev_err(dev, "Unable to call core pm init!\n"); ret = -ENODEV; goto err_pm_runtime_put; } return 0; err_pm_runtime_put: pm_runtime_put_sync(dev); err_pm_runtime_disable: pm_runtime_disable(dev); err_unsetup_rtc: iounmap(rtc_base_virt); clk_put(rtc_fck); err_free_sram: am33xx_pm_free_sram(); pm33xx_dev = NULL; err_wkup_m3_ipc_put: wkup_m3_ipc_put(m3_ipc); return ret; } static void am33xx_pm_remove(struct platform_device *pdev) { pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); if (pm_ops->deinit) pm_ops->deinit(); suspend_set_ops(NULL); wkup_m3_ipc_put(m3_ipc); am33xx_pm_free_sram(); iounmap(rtc_base_virt); clk_put(rtc_fck); } static struct platform_driver am33xx_pm_driver = { .driver = { .name = "pm33xx", }, .probe = am33xx_pm_probe, .remove_new = am33xx_pm_remove, }; module_platform_driver(am33xx_pm_driver); MODULE_ALIAS("platform:pm33xx"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("am33xx power management driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1