Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Brezillon | 3024 | 75.77% | 8 | 21.05% |
Patrice Chotard | 312 | 7.82% | 2 | 5.26% |
Théo Lebrun | 235 | 5.89% | 1 | 2.63% |
Pratyush Yadav | 100 | 2.51% | 4 | 10.53% |
Chuanhua Han | 87 | 2.18% | 1 | 2.63% |
Frieder Schrempf | 66 | 1.65% | 1 | 2.63% |
Miquel Raynal | 57 | 1.43% | 2 | 5.26% |
David Brownell | 30 | 0.75% | 2 | 5.26% |
Geert Uytterhoeven | 16 | 0.40% | 2 | 5.26% |
Herve Codina via Alsa-devel | 10 | 0.25% | 1 | 2.63% |
Sowjanya Komatineni | 9 | 0.23% | 1 | 2.63% |
Tudor-Dan Ambarus | 7 | 0.18% | 2 | 5.26% |
AceLan Kao | 6 | 0.15% | 1 | 2.63% |
William Zhang | 6 | 0.15% | 1 | 2.63% |
Chuanhong Guo | 6 | 0.15% | 1 | 2.63% |
Yogesh Gaur | 5 | 0.13% | 1 | 2.63% |
Chris Packham | 5 | 0.13% | 1 | 2.63% |
Florian Fainelli | 3 | 0.08% | 1 | 2.63% |
Sergei Shtylyov | 2 | 0.05% | 1 | 2.63% |
Uwe Kleine-König | 2 | 0.05% | 1 | 2.63% |
Chi Minghao | 1 | 0.03% | 1 | 2.63% |
Yue haibing | 1 | 0.03% | 1 | 2.63% |
Yang Yingliang | 1 | 0.03% | 1 | 2.63% |
Total | 3991 | 38 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2018 Exceet Electronics GmbH * Copyright (C) 2018 Bootlin * * Author: Boris Brezillon <boris.brezillon@bootlin.com> */ #include <linux/dmaengine.h> #include <linux/iopoll.h> #include <linux/pm_runtime.h> #include <linux/spi/spi.h> #include <linux/spi/spi-mem.h> #include <linux/sched/task_stack.h> #include "internals.h" #define SPI_MEM_MAX_BUSWIDTH 8 /** * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a * memory operation * @ctlr: the SPI controller requesting this dma_map() * @op: the memory operation containing the buffer to map * @sgt: a pointer to a non-initialized sg_table that will be filled by this * function * * Some controllers might want to do DMA on the data buffer embedded in @op. * This helper prepares everything for you and provides a ready-to-use * sg_table. This function is not intended to be called from spi drivers. * Only SPI controller drivers should use it. * Note that the caller must ensure the memory region pointed by * op->data.buf.{in,out} is DMA-able before calling this function. * * Return: 0 in case of success, a negative error code otherwise. */ int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, const struct spi_mem_op *op, struct sg_table *sgt) { struct device *dmadev; if (!op->data.nbytes) return -EINVAL; if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) dmadev = ctlr->dma_tx->device->dev; else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) dmadev = ctlr->dma_rx->device->dev; else dmadev = ctlr->dev.parent; if (!dmadev) return -EINVAL; return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes, op->data.dir == SPI_MEM_DATA_IN ? DMA_FROM_DEVICE : DMA_TO_DEVICE); } EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data); /** * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a * memory operation * @ctlr: the SPI controller requesting this dma_unmap() * @op: the memory operation containing the buffer to unmap * @sgt: a pointer to an sg_table previously initialized by * spi_controller_dma_map_mem_op_data() * * Some controllers might want to do DMA on the data buffer embedded in @op. * This helper prepares things so that the CPU can access the * op->data.buf.{in,out} buffer again. * * This function is not intended to be called from SPI drivers. Only SPI * controller drivers should use it. * * This function should be called after the DMA operation has finished and is * only valid if the previous spi_controller_dma_map_mem_op_data() call * returned 0. * * Return: 0 in case of success, a negative error code otherwise. */ void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, const struct spi_mem_op *op, struct sg_table *sgt) { struct device *dmadev; if (!op->data.nbytes) return; if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx) dmadev = ctlr->dma_tx->device->dev; else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx) dmadev = ctlr->dma_rx->device->dev; else dmadev = ctlr->dev.parent; spi_unmap_buf(ctlr, dmadev, sgt, op->data.dir == SPI_MEM_DATA_IN ? DMA_FROM_DEVICE : DMA_TO_DEVICE); } EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data); static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx) { u32 mode = mem->spi->mode; switch (buswidth) { case 1: return 0; case 2: if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) || (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))) return 0; break; case 4: if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) || (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL)))) return 0; break; case 8: if ((tx && (mode & SPI_TX_OCTAL)) || (!tx && (mode & SPI_RX_OCTAL))) return 0; break; default: break; } return -ENOTSUPP; } static bool spi_mem_check_buswidth(struct spi_mem *mem, const struct spi_mem_op *op) { if (spi_check_buswidth_req(mem, op->cmd.buswidth, true)) return false; if (op->addr.nbytes && spi_check_buswidth_req(mem, op->addr.buswidth, true)) return false; if (op->dummy.nbytes && spi_check_buswidth_req(mem, op->dummy.buswidth, true)) return false; if (op->data.dir != SPI_MEM_NO_DATA && spi_check_buswidth_req(mem, op->data.buswidth, op->data.dir == SPI_MEM_DATA_OUT)) return false; return true; } bool spi_mem_default_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct spi_controller *ctlr = mem->spi->controller; bool op_is_dtr = op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr; if (op_is_dtr) { if (!spi_mem_controller_is_capable(ctlr, dtr)) return false; if (op->cmd.nbytes != 2) return false; } else { if (op->cmd.nbytes != 1) return false; } if (op->data.ecc) { if (!spi_mem_controller_is_capable(ctlr, ecc)) return false; } return spi_mem_check_buswidth(mem, op); } EXPORT_SYMBOL_GPL(spi_mem_default_supports_op); static bool spi_mem_buswidth_is_valid(u8 buswidth) { if (hweight8(buswidth) > 1 || buswidth > SPI_MEM_MAX_BUSWIDTH) return false; return true; } static int spi_mem_check_op(const struct spi_mem_op *op) { if (!op->cmd.buswidth || !op->cmd.nbytes) return -EINVAL; if ((op->addr.nbytes && !op->addr.buswidth) || (op->dummy.nbytes && !op->dummy.buswidth) || (op->data.nbytes && !op->data.buswidth)) return -EINVAL; if (!spi_mem_buswidth_is_valid(op->cmd.buswidth) || !spi_mem_buswidth_is_valid(op->addr.buswidth) || !spi_mem_buswidth_is_valid(op->dummy.buswidth) || !spi_mem_buswidth_is_valid(op->data.buswidth)) return -EINVAL; /* Buffers must be DMA-able. */ if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_IN && object_is_on_stack(op->data.buf.in))) return -EINVAL; if (WARN_ON_ONCE(op->data.dir == SPI_MEM_DATA_OUT && object_is_on_stack(op->data.buf.out))) return -EINVAL; return 0; } static bool spi_mem_internal_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { struct spi_controller *ctlr = mem->spi->controller; if (ctlr->mem_ops && ctlr->mem_ops->supports_op) return ctlr->mem_ops->supports_op(mem, op); return spi_mem_default_supports_op(mem, op); } /** * spi_mem_supports_op() - Check if a memory device and the controller it is * connected to support a specific memory operation * @mem: the SPI memory * @op: the memory operation to check * * Some controllers are only supporting Single or Dual IOs, others might only * support specific opcodes, or it can even be that the controller and device * both support Quad IOs but the hardware prevents you from using it because * only 2 IO lines are connected. * * This function checks whether a specific operation is supported. * * Return: true if @op is supported, false otherwise. */ bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { if (spi_mem_check_op(op)) return false; return spi_mem_internal_supports_op(mem, op); } EXPORT_SYMBOL_GPL(spi_mem_supports_op); static int spi_mem_access_start(struct spi_mem *mem) { struct spi_controller *ctlr = mem->spi->controller; /* * Flush the message queue before executing our SPI memory * operation to prevent preemption of regular SPI transfers. */ spi_flush_queue(ctlr); if (ctlr->auto_runtime_pm) { int ret; ret = pm_runtime_resume_and_get(ctlr->dev.parent); if (ret < 0) { dev_err(&ctlr->dev, "Failed to power device: %d\n", ret); return ret; } } mutex_lock(&ctlr->bus_lock_mutex); mutex_lock(&ctlr->io_mutex); return 0; } static void spi_mem_access_end(struct spi_mem *mem) { struct spi_controller *ctlr = mem->spi->controller; mutex_unlock(&ctlr->io_mutex); mutex_unlock(&ctlr->bus_lock_mutex); if (ctlr->auto_runtime_pm) pm_runtime_put(ctlr->dev.parent); } static void spi_mem_add_op_stats(struct spi_statistics __percpu *pcpu_stats, const struct spi_mem_op *op, int exec_op_ret) { struct spi_statistics *stats; u64 len, l2len; get_cpu(); stats = this_cpu_ptr(pcpu_stats); u64_stats_update_begin(&stats->syncp); /* * We do not have the concept of messages or transfers. Let's consider * that one operation is equivalent to one message and one transfer. */ u64_stats_inc(&stats->messages); u64_stats_inc(&stats->transfers); /* Use the sum of all lengths as bytes count and histogram value. */ len = op->cmd.nbytes + op->addr.nbytes; len += op->dummy.nbytes + op->data.nbytes; u64_stats_add(&stats->bytes, len); l2len = min(fls(len), SPI_STATISTICS_HISTO_SIZE) - 1; u64_stats_inc(&stats->transfer_bytes_histo[l2len]); /* Only account for data bytes as transferred bytes. */ if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) u64_stats_add(&stats->bytes_tx, op->data.nbytes); if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) u64_stats_add(&stats->bytes_rx, op->data.nbytes); /* * A timeout is not an error, following the same behavior as * spi_transfer_one_message(). */ if (exec_op_ret == -ETIMEDOUT) u64_stats_inc(&stats->timedout); else if (exec_op_ret) u64_stats_inc(&stats->errors); u64_stats_update_end(&stats->syncp); put_cpu(); } /** * spi_mem_exec_op() - Execute a memory operation * @mem: the SPI memory * @op: the memory operation to execute * * Executes a memory operation. * * This function first checks that @op is supported and then tries to execute * it. * * Return: 0 in case of success, a negative error code otherwise. */ int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) { unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0; struct spi_controller *ctlr = mem->spi->controller; struct spi_transfer xfers[4] = { }; struct spi_message msg; u8 *tmpbuf; int ret; ret = spi_mem_check_op(op); if (ret) return ret; if (!spi_mem_internal_supports_op(mem, op)) return -EOPNOTSUPP; if (ctlr->mem_ops && ctlr->mem_ops->exec_op && !spi_get_csgpiod(mem->spi, 0)) { ret = spi_mem_access_start(mem); if (ret) return ret; ret = ctlr->mem_ops->exec_op(mem, op); spi_mem_access_end(mem); /* * Some controllers only optimize specific paths (typically the * read path) and expect the core to use the regular SPI * interface in other cases. */ if (!ret || (ret != -ENOTSUPP && ret != -EOPNOTSUPP)) { spi_mem_add_op_stats(ctlr->pcpu_statistics, op, ret); spi_mem_add_op_stats(mem->spi->pcpu_statistics, op, ret); return ret; } } tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; /* * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so * we're guaranteed that this buffer is DMA-able, as required by the * SPI layer. */ tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA); if (!tmpbuf) return -ENOMEM; spi_message_init(&msg); tmpbuf[0] = op->cmd.opcode; xfers[xferpos].tx_buf = tmpbuf; xfers[xferpos].len = op->cmd.nbytes; xfers[xferpos].tx_nbits = op->cmd.buswidth; spi_message_add_tail(&xfers[xferpos], &msg); xferpos++; totalxferlen++; if (op->addr.nbytes) { int i; for (i = 0; i < op->addr.nbytes; i++) tmpbuf[i + 1] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); xfers[xferpos].tx_buf = tmpbuf + 1; xfers[xferpos].len = op->addr.nbytes; xfers[xferpos].tx_nbits = op->addr.buswidth; spi_message_add_tail(&xfers[xferpos], &msg); xferpos++; totalxferlen += op->addr.nbytes; } if (op->dummy.nbytes) { memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes); xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1; xfers[xferpos].len = op->dummy.nbytes; xfers[xferpos].tx_nbits = op->dummy.buswidth; xfers[xferpos].dummy_data = 1; spi_message_add_tail(&xfers[xferpos], &msg); xferpos++; totalxferlen += op->dummy.nbytes; } if (op->data.nbytes) { if (op->data.dir == SPI_MEM_DATA_IN) { xfers[xferpos].rx_buf = op->data.buf.in; xfers[xferpos].rx_nbits = op->data.buswidth; } else { xfers[xferpos].tx_buf = op->data.buf.out; xfers[xferpos].tx_nbits = op->data.buswidth; } xfers[xferpos].len = op->data.nbytes; spi_message_add_tail(&xfers[xferpos], &msg); xferpos++; totalxferlen += op->data.nbytes; } ret = spi_sync(mem->spi, &msg); kfree(tmpbuf); if (ret) return ret; if (msg.actual_length != totalxferlen) return -EIO; return 0; } EXPORT_SYMBOL_GPL(spi_mem_exec_op); /** * spi_mem_get_name() - Return the SPI mem device name to be used by the * upper layer if necessary * @mem: the SPI memory * * This function allows SPI mem users to retrieve the SPI mem device name. * It is useful if the upper layer needs to expose a custom name for * compatibility reasons. * * Return: a string containing the name of the memory device to be used * by the SPI mem user */ const char *spi_mem_get_name(struct spi_mem *mem) { return mem->name; } EXPORT_SYMBOL_GPL(spi_mem_get_name); /** * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to * match controller limitations * @mem: the SPI memory * @op: the operation to adjust * * Some controllers have FIFO limitations and must split a data transfer * operation into multiple ones, others require a specific alignment for * optimized accesses. This function allows SPI mem drivers to split a single * operation into multiple sub-operations when required. * * Return: a negative error code if the controller can't properly adjust @op, * 0 otherwise. Note that @op->data.nbytes will be updated if @op * can't be handled in a single step. */ int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { struct spi_controller *ctlr = mem->spi->controller; size_t len; if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size) return ctlr->mem_ops->adjust_op_size(mem, op); if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; if (len > spi_max_transfer_size(mem->spi)) return -EINVAL; op->data.nbytes = min3((size_t)op->data.nbytes, spi_max_transfer_size(mem->spi), spi_max_message_size(mem->spi) - len); if (!op->data.nbytes) return -EINVAL; } return 0; } EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size); static ssize_t spi_mem_no_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf) { struct spi_mem_op op = desc->info.op_tmpl; int ret; op.addr.val = desc->info.offset + offs; op.data.buf.in = buf; op.data.nbytes = len; ret = spi_mem_adjust_op_size(desc->mem, &op); if (ret) return ret; ret = spi_mem_exec_op(desc->mem, &op); if (ret) return ret; return op.data.nbytes; } static ssize_t spi_mem_no_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, const void *buf) { struct spi_mem_op op = desc->info.op_tmpl; int ret; op.addr.val = desc->info.offset + offs; op.data.buf.out = buf; op.data.nbytes = len; ret = spi_mem_adjust_op_size(desc->mem, &op); if (ret) return ret; ret = spi_mem_exec_op(desc->mem, &op); if (ret) return ret; return op.data.nbytes; } /** * spi_mem_dirmap_create() - Create a direct mapping descriptor * @mem: SPI mem device this direct mapping should be created for * @info: direct mapping information * * This function is creating a direct mapping descriptor which can then be used * to access the memory using spi_mem_dirmap_read() or spi_mem_dirmap_write(). * If the SPI controller driver does not support direct mapping, this function * falls back to an implementation using spi_mem_exec_op(), so that the caller * doesn't have to bother implementing a fallback on his own. * * Return: a valid pointer in case of success, and ERR_PTR() otherwise. */ struct spi_mem_dirmap_desc * spi_mem_dirmap_create(struct spi_mem *mem, const struct spi_mem_dirmap_info *info) { struct spi_controller *ctlr = mem->spi->controller; struct spi_mem_dirmap_desc *desc; int ret = -ENOTSUPP; /* Make sure the number of address cycles is between 1 and 8 bytes. */ if (!info->op_tmpl.addr.nbytes || info->op_tmpl.addr.nbytes > 8) return ERR_PTR(-EINVAL); /* data.dir should either be SPI_MEM_DATA_IN or SPI_MEM_DATA_OUT. */ if (info->op_tmpl.data.dir == SPI_MEM_NO_DATA) return ERR_PTR(-EINVAL); desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) return ERR_PTR(-ENOMEM); desc->mem = mem; desc->info = *info; if (ctlr->mem_ops && ctlr->mem_ops->dirmap_create) ret = ctlr->mem_ops->dirmap_create(desc); if (ret) { desc->nodirmap = true; if (!spi_mem_supports_op(desc->mem, &desc->info.op_tmpl)) ret = -EOPNOTSUPP; else ret = 0; } if (ret) { kfree(desc); return ERR_PTR(ret); } return desc; } EXPORT_SYMBOL_GPL(spi_mem_dirmap_create); /** * spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor * @desc: the direct mapping descriptor to destroy * * This function destroys a direct mapping descriptor previously created by * spi_mem_dirmap_create(). */ void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc) { struct spi_controller *ctlr = desc->mem->spi->controller; if (!desc->nodirmap && ctlr->mem_ops && ctlr->mem_ops->dirmap_destroy) ctlr->mem_ops->dirmap_destroy(desc); kfree(desc); } EXPORT_SYMBOL_GPL(spi_mem_dirmap_destroy); static void devm_spi_mem_dirmap_release(struct device *dev, void *res) { struct spi_mem_dirmap_desc *desc = *(struct spi_mem_dirmap_desc **)res; spi_mem_dirmap_destroy(desc); } /** * devm_spi_mem_dirmap_create() - Create a direct mapping descriptor and attach * it to a device * @dev: device the dirmap desc will be attached to * @mem: SPI mem device this direct mapping should be created for * @info: direct mapping information * * devm_ variant of the spi_mem_dirmap_create() function. See * spi_mem_dirmap_create() for more details. * * Return: a valid pointer in case of success, and ERR_PTR() otherwise. */ struct spi_mem_dirmap_desc * devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem, const struct spi_mem_dirmap_info *info) { struct spi_mem_dirmap_desc **ptr, *desc; ptr = devres_alloc(devm_spi_mem_dirmap_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); desc = spi_mem_dirmap_create(mem, info); if (IS_ERR(desc)) { devres_free(ptr); } else { *ptr = desc; devres_add(dev, ptr); } return desc; } EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_create); static int devm_spi_mem_dirmap_match(struct device *dev, void *res, void *data) { struct spi_mem_dirmap_desc **ptr = res; if (WARN_ON(!ptr || !*ptr)) return 0; return *ptr == data; } /** * devm_spi_mem_dirmap_destroy() - Destroy a direct mapping descriptor attached * to a device * @dev: device the dirmap desc is attached to * @desc: the direct mapping descriptor to destroy * * devm_ variant of the spi_mem_dirmap_destroy() function. See * spi_mem_dirmap_destroy() for more details. */ void devm_spi_mem_dirmap_destroy(struct device *dev, struct spi_mem_dirmap_desc *desc) { devres_release(dev, devm_spi_mem_dirmap_release, devm_spi_mem_dirmap_match, desc); } EXPORT_SYMBOL_GPL(devm_spi_mem_dirmap_destroy); /** * spi_mem_dirmap_read() - Read data through a direct mapping * @desc: direct mapping descriptor * @offs: offset to start reading from. Note that this is not an absolute * offset, but the offset within the direct mapping which already has * its own offset * @len: length in bytes * @buf: destination buffer. This buffer must be DMA-able * * This function reads data from a memory device using a direct mapping * previously instantiated with spi_mem_dirmap_create(). * * Return: the amount of data read from the memory device or a negative error * code. Note that the returned size might be smaller than @len, and the caller * is responsible for calling spi_mem_dirmap_read() again when that happens. */ ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, void *buf) { struct spi_controller *ctlr = desc->mem->spi->controller; ssize_t ret; if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_IN) return -EINVAL; if (!len) return 0; if (desc->nodirmap) { ret = spi_mem_no_dirmap_read(desc, offs, len, buf); } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_read) { ret = spi_mem_access_start(desc->mem); if (ret) return ret; ret = ctlr->mem_ops->dirmap_read(desc, offs, len, buf); spi_mem_access_end(desc->mem); } else { ret = -ENOTSUPP; } return ret; } EXPORT_SYMBOL_GPL(spi_mem_dirmap_read); /** * spi_mem_dirmap_write() - Write data through a direct mapping * @desc: direct mapping descriptor * @offs: offset to start writing from. Note that this is not an absolute * offset, but the offset within the direct mapping which already has * its own offset * @len: length in bytes * @buf: source buffer. This buffer must be DMA-able * * This function writes data to a memory device using a direct mapping * previously instantiated with spi_mem_dirmap_create(). * * Return: the amount of data written to the memory device or a negative error * code. Note that the returned size might be smaller than @len, and the caller * is responsible for calling spi_mem_dirmap_write() again when that happens. */ ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, u64 offs, size_t len, const void *buf) { struct spi_controller *ctlr = desc->mem->spi->controller; ssize_t ret; if (desc->info.op_tmpl.data.dir != SPI_MEM_DATA_OUT) return -EINVAL; if (!len) return 0; if (desc->nodirmap) { ret = spi_mem_no_dirmap_write(desc, offs, len, buf); } else if (ctlr->mem_ops && ctlr->mem_ops->dirmap_write) { ret = spi_mem_access_start(desc->mem); if (ret) return ret; ret = ctlr->mem_ops->dirmap_write(desc, offs, len, buf); spi_mem_access_end(desc->mem); } else { ret = -ENOTSUPP; } return ret; } EXPORT_SYMBOL_GPL(spi_mem_dirmap_write); static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv) { return container_of(drv, struct spi_mem_driver, spidrv.driver); } static int spi_mem_read_status(struct spi_mem *mem, const struct spi_mem_op *op, u16 *status) { const u8 *bytes = (u8 *)op->data.buf.in; int ret; ret = spi_mem_exec_op(mem, op); if (ret) return ret; if (op->data.nbytes > 1) *status = ((u16)bytes[0] << 8) | bytes[1]; else *status = bytes[0]; return 0; } /** * spi_mem_poll_status() - Poll memory device status * @mem: SPI memory device * @op: the memory operation to execute * @mask: status bitmask to ckeck * @match: (status & mask) expected value * @initial_delay_us: delay in us before starting to poll * @polling_delay_us: time to sleep between reads in us * @timeout_ms: timeout in milliseconds * * This function polls a status register and returns when * (status & mask) == match or when the timeout has expired. * * Return: 0 in case of success, -ETIMEDOUT in case of error, * -EOPNOTSUPP if not supported. */ int spi_mem_poll_status(struct spi_mem *mem, const struct spi_mem_op *op, u16 mask, u16 match, unsigned long initial_delay_us, unsigned long polling_delay_us, u16 timeout_ms) { struct spi_controller *ctlr = mem->spi->controller; int ret = -EOPNOTSUPP; int read_status_ret; u16 status; if (op->data.nbytes < 1 || op->data.nbytes > 2 || op->data.dir != SPI_MEM_DATA_IN) return -EINVAL; if (ctlr->mem_ops && ctlr->mem_ops->poll_status && !spi_get_csgpiod(mem->spi, 0)) { ret = spi_mem_access_start(mem); if (ret) return ret; ret = ctlr->mem_ops->poll_status(mem, op, mask, match, initial_delay_us, polling_delay_us, timeout_ms); spi_mem_access_end(mem); } if (ret == -EOPNOTSUPP) { if (!spi_mem_supports_op(mem, op)) return ret; if (initial_delay_us < 10) udelay(initial_delay_us); else usleep_range((initial_delay_us >> 2) + 1, initial_delay_us); ret = read_poll_timeout(spi_mem_read_status, read_status_ret, (read_status_ret || ((status) & mask) == match), polling_delay_us, timeout_ms * 1000, false, mem, op, &status); if (read_status_ret) return read_status_ret; } return ret; } EXPORT_SYMBOL_GPL(spi_mem_poll_status); static int spi_mem_probe(struct spi_device *spi) { struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); struct spi_controller *ctlr = spi->controller; struct spi_mem *mem; mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL); if (!mem) return -ENOMEM; mem->spi = spi; if (ctlr->mem_ops && ctlr->mem_ops->get_name) mem->name = ctlr->mem_ops->get_name(mem); else mem->name = dev_name(&spi->dev); if (IS_ERR_OR_NULL(mem->name)) return PTR_ERR_OR_ZERO(mem->name); spi_set_drvdata(spi, mem); return memdrv->probe(mem); } static void spi_mem_remove(struct spi_device *spi) { struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); struct spi_mem *mem = spi_get_drvdata(spi); if (memdrv->remove) memdrv->remove(mem); } static void spi_mem_shutdown(struct spi_device *spi) { struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver); struct spi_mem *mem = spi_get_drvdata(spi); if (memdrv->shutdown) memdrv->shutdown(mem); } /** * spi_mem_driver_register_with_owner() - Register a SPI memory driver * @memdrv: the SPI memory driver to register * @owner: the owner of this driver * * Registers a SPI memory driver. * * Return: 0 in case of success, a negative error core otherwise. */ int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv, struct module *owner) { memdrv->spidrv.probe = spi_mem_probe; memdrv->spidrv.remove = spi_mem_remove; memdrv->spidrv.shutdown = spi_mem_shutdown; return __spi_register_driver(owner, &memdrv->spidrv); } EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner); /** * spi_mem_driver_unregister() - Unregister a SPI memory driver * @memdrv: the SPI memory driver to unregister * * Unregisters a SPI memory driver. */ void spi_mem_driver_unregister(struct spi_mem_driver *memdrv) { spi_unregister_driver(&memdrv->spidrv); } EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1