Contributors: 36
Author Tokens Token Proportion Commits Commit Proportion
Stephen Street 1284 20.33% 4 2.53%
Andy Shevchenko 1235 19.56% 54 34.18%
Jarkko Nikula 1186 18.78% 29 18.35%
Mika Westerberg 1115 17.66% 16 10.13%
Weike Chen 580 9.18% 2 1.27%
Lubomir Rintel 358 5.67% 7 4.43%
Sebastian Andrzej Siewior 134 2.12% 5 3.16%
Evan Green 78 1.24% 2 1.27%
Eric Miao 60 0.95% 3 1.90%
Jan Kiszka 33 0.52% 2 1.27%
Ned Forrester 28 0.44% 3 1.90%
Stephen Warren 20 0.32% 1 0.63%
Tobias Jordan 20 0.32% 1 0.63%
Daniel Vetter 19 0.30% 1 0.63%
Justin Clacherty 19 0.30% 1 0.63%
Mike Rapoport 18 0.29% 2 1.27%
Tan Jui Nee 15 0.24% 1 0.63%
Herve Codina via Alsa-devel 15 0.24% 1 0.63%
Antonio Ospite 14 0.22% 1 0.63%
Vernon Sauder 14 0.22% 1 0.63%
Flavio Suligoi 12 0.19% 3 1.90%
Dmitry Eremin-Solenikov 10 0.16% 1 0.63%
Yang Yingliang 9 0.14% 1 0.63%
David Brownell 9 0.14% 3 1.90%
Mark Brown 5 0.08% 2 1.27%
Guennadi Liakhovetski 5 0.08% 1 0.63%
Kay Sievers 3 0.05% 1 0.63%
Gustavo A. R. Silva 3 0.05% 1 0.63%
Lukas Wunner 3 0.05% 1 0.63%
David Howells 3 0.05% 1 0.63%
Daniel Ribeiro 2 0.03% 1 0.63%
Dan Carpenter 2 0.03% 1 0.63%
Roel Kluin 1 0.02% 1 0.63%
Thomas Gleixner 1 0.02% 1 0.63%
Geert Uytterhoeven 1 0.02% 1 0.63%
kbuild test robot 1 0.02% 1 0.63%
Total 6315 158


// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
 * Copyright (C) 2013, 2021 Intel Corporation
 */

#include <linux/atomic.h>
#include <linux/bitops.h>
#include <linux/bug.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/math64.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/slab.h>
#include <linux/types.h>

#include <linux/spi/spi.h>

#include "internals.h"
#include "spi-pxa2xx.h"

#define TIMOUT_DFLT		1000

/*
 * For testing SSCR1 changes that require SSP restart, basically
 * everything except the service and interrupt enables, the PXA270 developer
 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
 * list, but the PXA255 developer manual says all bits without really meaning
 * the service and interrupt enables.
 */
#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)

#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
				| QUARK_X1000_SSCR1_EFWR	\
				| QUARK_X1000_SSCR1_RFT		\
				| QUARK_X1000_SSCR1_TFT		\
				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)

#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)

struct chip_data {
	u32 cr1;
	u32 dds_rate;
	u32 threshold;
	u16 lpss_rx_threshold;
	u16 lpss_tx_threshold;
};

#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
#define LPSS_CAPS_CS_EN_SHIFT			9
#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)

#define LPSS_PRIV_CLOCK_GATE 0x38
#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3

struct lpss_config {
	/* LPSS offset from drv_data->ioaddr */
	unsigned offset;
	/* Register offsets from drv_data->lpss_base or -1 */
	int reg_general;
	int reg_ssp;
	int reg_cs_ctrl;
	int reg_capabilities;
	/* FIFO thresholds */
	u32 rx_threshold;
	u32 tx_threshold_lo;
	u32 tx_threshold_hi;
	/* Chip select control */
	unsigned cs_sel_shift;
	unsigned cs_sel_mask;
	/* Quirks */
	unsigned cs_clk_stays_gated : 1;
};

/* Keep these sorted with enum pxa_ssp_type */
static const struct lpss_config lpss_platforms[] = {
	{	/* LPSS_LPT_SSP */
		.offset = 0x800,
		.reg_general = 0x08,
		.reg_ssp = 0x0c,
		.reg_cs_ctrl = 0x18,
		.reg_capabilities = -1,
		.rx_threshold = 64,
		.tx_threshold_lo = 160,
		.tx_threshold_hi = 224,
	},
	{	/* LPSS_BYT_SSP */
		.offset = 0x400,
		.reg_general = 0x08,
		.reg_ssp = 0x0c,
		.reg_cs_ctrl = 0x18,
		.reg_capabilities = -1,
		.rx_threshold = 64,
		.tx_threshold_lo = 160,
		.tx_threshold_hi = 224,
	},
	{	/* LPSS_BSW_SSP */
		.offset = 0x400,
		.reg_general = 0x08,
		.reg_ssp = 0x0c,
		.reg_cs_ctrl = 0x18,
		.reg_capabilities = -1,
		.rx_threshold = 64,
		.tx_threshold_lo = 160,
		.tx_threshold_hi = 224,
		.cs_sel_shift = 2,
		.cs_sel_mask = 1 << 2,
	},
	{	/* LPSS_SPT_SSP */
		.offset = 0x200,
		.reg_general = -1,
		.reg_ssp = 0x20,
		.reg_cs_ctrl = 0x24,
		.reg_capabilities = -1,
		.rx_threshold = 1,
		.tx_threshold_lo = 32,
		.tx_threshold_hi = 56,
	},
	{	/* LPSS_BXT_SSP */
		.offset = 0x200,
		.reg_general = -1,
		.reg_ssp = 0x20,
		.reg_cs_ctrl = 0x24,
		.reg_capabilities = 0xfc,
		.rx_threshold = 1,
		.tx_threshold_lo = 16,
		.tx_threshold_hi = 48,
		.cs_sel_shift = 8,
		.cs_sel_mask = 3 << 8,
		.cs_clk_stays_gated = true,
	},
	{	/* LPSS_CNL_SSP */
		.offset = 0x200,
		.reg_general = -1,
		.reg_ssp = 0x20,
		.reg_cs_ctrl = 0x24,
		.reg_capabilities = 0xfc,
		.rx_threshold = 1,
		.tx_threshold_lo = 32,
		.tx_threshold_hi = 56,
		.cs_sel_shift = 8,
		.cs_sel_mask = 3 << 8,
		.cs_clk_stays_gated = true,
	},
};

static inline const struct lpss_config
*lpss_get_config(const struct driver_data *drv_data)
{
	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
}

static bool is_lpss_ssp(const struct driver_data *drv_data)
{
	switch (drv_data->ssp_type) {
	case LPSS_LPT_SSP:
	case LPSS_BYT_SSP:
	case LPSS_BSW_SSP:
	case LPSS_SPT_SSP:
	case LPSS_BXT_SSP:
	case LPSS_CNL_SSP:
		return true;
	default:
		return false;
	}
}

static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
{
	return drv_data->ssp_type == QUARK_X1000_SSP;
}

static bool is_mmp2_ssp(const struct driver_data *drv_data)
{
	return drv_data->ssp_type == MMP2_SSP;
}

static bool is_mrfld_ssp(const struct driver_data *drv_data)
{
	return drv_data->ssp_type == MRFLD_SSP;
}

static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
{
	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
		pxa2xx_spi_write(drv_data, reg, value & mask);
}

static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
{
	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
		return QUARK_X1000_SSCR1_CHANGE_MASK;
	case CE4100_SSP:
		return CE4100_SSCR1_CHANGE_MASK;
	default:
		return SSCR1_CHANGE_MASK;
	}
}

static u32
pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
{
	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
		return RX_THRESH_QUARK_X1000_DFLT;
	case CE4100_SSP:
		return RX_THRESH_CE4100_DFLT;
	default:
		return RX_THRESH_DFLT;
	}
}

static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
{
	u32 mask;

	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
		mask = QUARK_X1000_SSSR_TFL_MASK;
		break;
	case CE4100_SSP:
		mask = CE4100_SSSR_TFL_MASK;
		break;
	default:
		mask = SSSR_TFL_MASK;
		break;
	}

	return read_SSSR_bits(drv_data, mask) == mask;
}

static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
				     u32 *sccr1_reg)
{
	u32 mask;

	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
		mask = QUARK_X1000_SSCR1_RFT;
		break;
	case CE4100_SSP:
		mask = CE4100_SSCR1_RFT;
		break;
	default:
		mask = SSCR1_RFT;
		break;
	}
	*sccr1_reg &= ~mask;
}

static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
				   u32 *sccr1_reg, u32 threshold)
{
	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
		break;
	case CE4100_SSP:
		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
		break;
	default:
		*sccr1_reg |= SSCR1_RxTresh(threshold);
		break;
	}
}

static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
				  u32 clk_div, u8 bits)
{
	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
		return clk_div
			| QUARK_X1000_SSCR0_Motorola
			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
	default:
		return clk_div
			| SSCR0_Motorola
			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
			| (bits > 16 ? SSCR0_EDSS : 0);
	}
}

/*
 * Read and write LPSS SSP private registers. Caller must first check that
 * is_lpss_ssp() returns true before these can be called.
 */
static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
{
	WARN_ON(!drv_data->lpss_base);
	return readl(drv_data->lpss_base + offset);
}

static void __lpss_ssp_write_priv(struct driver_data *drv_data,
				  unsigned offset, u32 value)
{
	WARN_ON(!drv_data->lpss_base);
	writel(value, drv_data->lpss_base + offset);
}

/*
 * lpss_ssp_setup - perform LPSS SSP specific setup
 * @drv_data: pointer to the driver private data
 *
 * Perform LPSS SSP specific setup. This function must be called first if
 * one is going to use LPSS SSP private registers.
 */
static void lpss_ssp_setup(struct driver_data *drv_data)
{
	const struct lpss_config *config;
	u32 value;

	config = lpss_get_config(drv_data);
	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;

	/* Enable software chip select control */
	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);

	/* Enable multiblock DMA transfers */
	if (drv_data->controller_info->enable_dma) {
		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);

		if (config->reg_general >= 0) {
			value = __lpss_ssp_read_priv(drv_data,
						     config->reg_general);
			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
			__lpss_ssp_write_priv(drv_data,
					      config->reg_general, value);
		}
	}
}

static void lpss_ssp_select_cs(struct spi_device *spi,
			       const struct lpss_config *config)
{
	struct driver_data *drv_data =
		spi_controller_get_devdata(spi->controller);
	u32 value, cs;

	if (!config->cs_sel_mask)
		return;

	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);

	cs = spi_get_chipselect(spi, 0);
	cs <<= config->cs_sel_shift;
	if (cs != (value & config->cs_sel_mask)) {
		/*
		 * When switching another chip select output active the
		 * output must be selected first and wait 2 ssp_clk cycles
		 * before changing state to active. Otherwise a short
		 * glitch will occur on the previous chip select since
		 * output select is latched but state control is not.
		 */
		value &= ~config->cs_sel_mask;
		value |= cs;
		__lpss_ssp_write_priv(drv_data,
				      config->reg_cs_ctrl, value);
		ndelay(1000000000 /
		       (drv_data->controller->max_speed_hz / 2));
	}
}

static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
{
	struct driver_data *drv_data =
		spi_controller_get_devdata(spi->controller);
	const struct lpss_config *config;
	u32 value;

	config = lpss_get_config(drv_data);

	if (enable)
		lpss_ssp_select_cs(spi, config);

	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
	if (enable)
		value &= ~LPSS_CS_CONTROL_CS_HIGH;
	else
		value |= LPSS_CS_CONTROL_CS_HIGH;
	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
	if (config->cs_clk_stays_gated) {
		u32 clkgate;

		/*
		 * Changing CS alone when dynamic clock gating is on won't
		 * actually flip CS at that time. This ruins SPI transfers
		 * that specify delays, or have no data. Toggle the clock mode
		 * to force on briefly to poke the CS pin to move.
		 */
		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;

		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
	}
}

static void cs_assert(struct spi_device *spi)
{
	struct driver_data *drv_data =
		spi_controller_get_devdata(spi->controller);

	if (drv_data->ssp_type == CE4100_SSP) {
		pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0));
		return;
	}

	if (is_lpss_ssp(drv_data))
		lpss_ssp_cs_control(spi, true);
}

static void cs_deassert(struct spi_device *spi)
{
	struct driver_data *drv_data =
		spi_controller_get_devdata(spi->controller);
	unsigned long timeout;

	if (drv_data->ssp_type == CE4100_SSP)
		return;

	/* Wait until SSP becomes idle before deasserting the CS */
	timeout = jiffies + msecs_to_jiffies(10);
	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
	       !time_after(jiffies, timeout))
		cpu_relax();

	if (is_lpss_ssp(drv_data))
		lpss_ssp_cs_control(spi, false);
}

static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
{
	if (level)
		cs_deassert(spi);
	else
		cs_assert(spi);
}

int pxa2xx_spi_flush(struct driver_data *drv_data)
{
	unsigned long limit = loops_per_jiffy << 1;

	do {
		while (read_SSSR_bits(drv_data, SSSR_RNE))
			pxa2xx_spi_read(drv_data, SSDR);
	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
	write_SSSR_CS(drv_data, SSSR_ROR);

	return limit;
}

static void pxa2xx_spi_off(struct driver_data *drv_data)
{
	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
	if (is_mmp2_ssp(drv_data))
		return;

	pxa_ssp_disable(drv_data->ssp);
}

static int null_writer(struct driver_data *drv_data)
{
	u8 n_bytes = drv_data->n_bytes;

	if (pxa2xx_spi_txfifo_full(drv_data)
		|| (drv_data->tx == drv_data->tx_end))
		return 0;

	pxa2xx_spi_write(drv_data, SSDR, 0);
	drv_data->tx += n_bytes;

	return 1;
}

static int null_reader(struct driver_data *drv_data)
{
	u8 n_bytes = drv_data->n_bytes;

	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
		pxa2xx_spi_read(drv_data, SSDR);
		drv_data->rx += n_bytes;
	}

	return drv_data->rx == drv_data->rx_end;
}

static int u8_writer(struct driver_data *drv_data)
{
	if (pxa2xx_spi_txfifo_full(drv_data)
		|| (drv_data->tx == drv_data->tx_end))
		return 0;

	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
	++drv_data->tx;

	return 1;
}

static int u8_reader(struct driver_data *drv_data)
{
	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
		++drv_data->rx;
	}

	return drv_data->rx == drv_data->rx_end;
}

static int u16_writer(struct driver_data *drv_data)
{
	if (pxa2xx_spi_txfifo_full(drv_data)
		|| (drv_data->tx == drv_data->tx_end))
		return 0;

	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
	drv_data->tx += 2;

	return 1;
}

static int u16_reader(struct driver_data *drv_data)
{
	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
		drv_data->rx += 2;
	}

	return drv_data->rx == drv_data->rx_end;
}

static int u32_writer(struct driver_data *drv_data)
{
	if (pxa2xx_spi_txfifo_full(drv_data)
		|| (drv_data->tx == drv_data->tx_end))
		return 0;

	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
	drv_data->tx += 4;

	return 1;
}

static int u32_reader(struct driver_data *drv_data)
{
	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
		drv_data->rx += 4;
	}

	return drv_data->rx == drv_data->rx_end;
}

static void reset_sccr1(struct driver_data *drv_data)
{
	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
	struct chip_data *chip;

	if (drv_data->controller->cur_msg) {
		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
		threshold = chip->threshold;
	} else {
		threshold = 0;
	}

	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
		mask |= QUARK_X1000_SSCR1_RFT;
		break;
	case CE4100_SSP:
		mask |= CE4100_SSCR1_RFT;
		break;
	default:
		mask |= SSCR1_RFT;
		break;
	}

	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
}

static void int_stop_and_reset(struct driver_data *drv_data)
{
	/* Clear and disable interrupts */
	write_SSSR_CS(drv_data, drv_data->clear_sr);
	reset_sccr1(drv_data);
	if (pxa25x_ssp_comp(drv_data))
		return;

	pxa2xx_spi_write(drv_data, SSTO, 0);
}

static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
{
	int_stop_and_reset(drv_data);
	pxa2xx_spi_flush(drv_data);
	pxa2xx_spi_off(drv_data);

	dev_err(drv_data->ssp->dev, "%s\n", msg);

	drv_data->controller->cur_msg->status = err;
	spi_finalize_current_transfer(drv_data->controller);
}

static void int_transfer_complete(struct driver_data *drv_data)
{
	int_stop_and_reset(drv_data);

	spi_finalize_current_transfer(drv_data->controller);
}

static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
{
	u32 irq_status;

	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
		irq_status &= ~SSSR_TFS;

	if (irq_status & SSSR_ROR) {
		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
		return IRQ_HANDLED;
	}

	if (irq_status & SSSR_TUR) {
		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
		return IRQ_HANDLED;
	}

	if (irq_status & SSSR_TINT) {
		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
		if (drv_data->read(drv_data)) {
			int_transfer_complete(drv_data);
			return IRQ_HANDLED;
		}
	}

	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
	do {
		if (drv_data->read(drv_data)) {
			int_transfer_complete(drv_data);
			return IRQ_HANDLED;
		}
	} while (drv_data->write(drv_data));

	if (drv_data->read(drv_data)) {
		int_transfer_complete(drv_data);
		return IRQ_HANDLED;
	}

	if (drv_data->tx == drv_data->tx_end) {
		u32 bytes_left;
		u32 sccr1_reg;

		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
		sccr1_reg &= ~SSCR1_TIE;

		/*
		 * PXA25x_SSP has no timeout, set up Rx threshold for
		 * the remaining Rx bytes.
		 */
		if (pxa25x_ssp_comp(drv_data)) {
			u32 rx_thre;

			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);

			bytes_left = drv_data->rx_end - drv_data->rx;
			switch (drv_data->n_bytes) {
			case 4:
				bytes_left >>= 2;
				break;
			case 2:
				bytes_left >>= 1;
				break;
			}

			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
			if (rx_thre > bytes_left)
				rx_thre = bytes_left;

			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
		}
		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
	}

	/* We did something */
	return IRQ_HANDLED;
}

static void handle_bad_msg(struct driver_data *drv_data)
{
	int_stop_and_reset(drv_data);
	pxa2xx_spi_off(drv_data);

	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
}

static irqreturn_t ssp_int(int irq, void *dev_id)
{
	struct driver_data *drv_data = dev_id;
	u32 sccr1_reg;
	u32 mask = drv_data->mask_sr;
	u32 status;

	/*
	 * The IRQ might be shared with other peripherals so we must first
	 * check that are we RPM suspended or not. If we are we assume that
	 * the IRQ was not for us (we shouldn't be RPM suspended when the
	 * interrupt is enabled).
	 */
	if (pm_runtime_suspended(drv_data->ssp->dev))
		return IRQ_NONE;

	/*
	 * If the device is not yet in RPM suspended state and we get an
	 * interrupt that is meant for another device, check if status bits
	 * are all set to one. That means that the device is already
	 * powered off.
	 */
	status = pxa2xx_spi_read(drv_data, SSSR);
	if (status == ~0)
		return IRQ_NONE;

	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);

	/* Ignore possible writes if we don't need to write */
	if (!(sccr1_reg & SSCR1_TIE))
		mask &= ~SSSR_TFS;

	/* Ignore RX timeout interrupt if it is disabled */
	if (!(sccr1_reg & SSCR1_TINTE))
		mask &= ~SSSR_TINT;

	if (!(status & mask))
		return IRQ_NONE;

	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);

	if (!drv_data->controller->cur_msg) {
		handle_bad_msg(drv_data);
		/* Never fail */
		return IRQ_HANDLED;
	}

	return drv_data->transfer_handler(drv_data);
}

/*
 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 * input frequency by fractions of 2^24. It also has a divider by 5.
 *
 * There are formulas to get baud rate value for given input frequency and
 * divider parameters, such as DDS_CLK_RATE and SCR:
 *
 * Fsys = 200MHz
 *
 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 *
 * DDS_CLK_RATE either 2^n or 2^n / 5.
 * SCR is in range 0 .. 255
 *
 * Divisor = 5^i * 2^j * 2 * k
 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 *       j = [0, 23]     j = 0 iff i = 1
 *       k = [1, 256]
 * Special case: j = 0, i = 1: Divisor = 2 / 5
 *
 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 * are:
 *	Case 1:		2^n, n = [0, 23]
 *	Case 2:		2^24 * 2 / 5 (0x666666)
 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 *
 * In all cases the lowest possible value is better.
 *
 * The function calculates parameters for all cases and chooses the one closest
 * to the asked baud rate.
 */
static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
{
	unsigned long xtal = 200000000;
	unsigned long fref = xtal / 2;		/* mandatory division by 2,
						   see (2) */
						/* case 3 */
	unsigned long fref1 = fref / 2;		/* case 1 */
	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
	unsigned long scale;
	unsigned long q, q1, q2;
	long r, r1, r2;
	u32 mul;

	/* Case 1 */

	/* Set initial value for DDS_CLK_RATE */
	mul = (1 << 24) >> 1;

	/* Calculate initial quot */
	q1 = DIV_ROUND_UP(fref1, rate);

	/* Scale q1 if it's too big */
	if (q1 > 256) {
		/* Scale q1 to range [1, 512] */
		scale = fls_long(q1 - 1);
		if (scale > 9) {
			q1 >>= scale - 9;
			mul >>= scale - 9;
		}

		/* Round the result if we have a remainder */
		q1 += q1 & 1;
	}

	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
	scale = __ffs(q1);
	q1 >>= scale;
	mul >>= scale;

	/* Get the remainder */
	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);

	/* Case 2 */

	q2 = DIV_ROUND_UP(fref2, rate);
	r2 = abs(fref2 / q2 - rate);

	/*
	 * Choose the best between two: less remainder we have the better. We
	 * can't go case 2 if q2 is greater than 256 since SCR register can
	 * hold only values 0 .. 255.
	 */
	if (r2 >= r1 || q2 > 256) {
		/* case 1 is better */
		r = r1;
		q = q1;
	} else {
		/* case 2 is better */
		r = r2;
		q = q2;
		mul = (1 << 24) * 2 / 5;
	}

	/* Check case 3 only if the divisor is big enough */
	if (fref / rate >= 80) {
		u64 fssp;
		u32 m;

		/* Calculate initial quot */
		q1 = DIV_ROUND_UP(fref, rate);
		m = (1 << 24) / q1;

		/* Get the remainder */
		fssp = (u64)fref * m;
		do_div(fssp, 1 << 24);
		r1 = abs(fssp - rate);

		/* Choose this one if it suits better */
		if (r1 < r) {
			/* case 3 is better */
			q = 1;
			mul = m;
		}
	}

	*dds = mul;
	return q - 1;
}

static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
{
	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
	const struct ssp_device *ssp = drv_data->ssp;

	rate = min_t(int, ssp_clk, rate);

	/*
	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
	 * that the SSP transmission rate can be greater than the device rate.
	 */
	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
	else
		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
}

static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
					   int rate)
{
	struct chip_data *chip =
		spi_get_ctldata(drv_data->controller->cur_msg->spi);
	unsigned int clk_div;

	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
		break;
	default:
		clk_div = ssp_get_clk_div(drv_data, rate);
		break;
	}
	return clk_div << 8;
}

static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
			       struct spi_device *spi,
			       struct spi_transfer *xfer)
{
	struct driver_data *drv_data = spi_controller_get_devdata(controller);

	return drv_data->controller_info->enable_dma &&
	       xfer->len <= MAX_DMA_LEN &&
	       xfer->len >= drv_data->controller_info->dma_burst_size;
}

static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
				   struct spi_device *spi,
				   struct spi_transfer *transfer)
{
	struct driver_data *drv_data = spi_controller_get_devdata(controller);
	struct chip_data *chip = spi_get_ctldata(spi);
	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
	u32 dma_thresh;
	u32 clk_div;
	u8 bits;
	u32 speed;
	u32 cr0;
	u32 cr1;
	int err;
	int dma_mapped;

	/* Check if we can DMA this transfer */
	if (transfer->len > MAX_DMA_LEN && drv_data->controller_info->enable_dma) {
		/* Warn ... we force this to PIO mode */
		dev_warn_ratelimited(&spi->dev,
				     "DMA disabled for transfer length %u greater than %d\n",
				     transfer->len, MAX_DMA_LEN);
	}

	/* Setup the transfer state based on the type of transfer */
	if (pxa2xx_spi_flush(drv_data) == 0) {
		dev_err(&spi->dev, "Flush failed\n");
		return -EIO;
	}
	drv_data->tx = (void *)transfer->tx_buf;
	drv_data->tx_end = drv_data->tx + transfer->len;
	drv_data->rx = transfer->rx_buf;
	drv_data->rx_end = drv_data->rx + transfer->len;

	/* Change speed and bit per word on a per transfer */
	bits = transfer->bits_per_word;
	speed = transfer->speed_hz;

	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);

	if (bits <= 8) {
		drv_data->n_bytes = 1;
		drv_data->read = drv_data->rx ? u8_reader : null_reader;
		drv_data->write = drv_data->tx ? u8_writer : null_writer;
	} else if (bits <= 16) {
		drv_data->n_bytes = 2;
		drv_data->read = drv_data->rx ? u16_reader : null_reader;
		drv_data->write = drv_data->tx ? u16_writer : null_writer;
	} else if (bits <= 32) {
		drv_data->n_bytes = 4;
		drv_data->read = drv_data->rx ? u32_reader : null_reader;
		drv_data->write = drv_data->tx ? u32_writer : null_writer;
	}

	dma_thresh = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT);
	dma_mapped = spi_xfer_is_dma_mapped(controller, spi, transfer);
	if (dma_mapped) {
		/* Ensure we have the correct interrupt handler */
		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;

		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
		if (err)
			return err;

		/* Clear status and start DMA engine */
		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);

		pxa2xx_spi_dma_start(drv_data);
	} else {
		/* Ensure we have the correct interrupt handler	*/
		drv_data->transfer_handler = interrupt_transfer;

		/* Clear status  */
		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
		write_SSSR_CS(drv_data, drv_data->clear_sr);
	}

	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
	if (!pxa25x_ssp_comp(drv_data))
		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
			controller->max_speed_hz
				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
			dma_mapped ? "DMA" : "PIO");
	else
		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
			controller->max_speed_hz / 2
				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
			dma_mapped ? "DMA" : "PIO");

	if (is_lpss_ssp(drv_data)) {
		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
	}

	if (is_mrfld_ssp(drv_data)) {
		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
		u32 thresh = 0;

		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);

		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
	}

	if (is_quark_x1000_ssp(drv_data))
		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);

	/* Stop the SSP */
	if (!is_mmp2_ssp(drv_data))
		pxa_ssp_disable(drv_data->ssp);

	if (!pxa25x_ssp_comp(drv_data))
		pxa2xx_spi_write(drv_data, SSTO, TIMOUT_DFLT);

	/* First set CR1 without interrupt and service enables */
	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);

	/* See if we need to reload the configuration registers */
	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);

	/* Restart the SSP */
	pxa_ssp_enable(drv_data->ssp);

	if (is_mmp2_ssp(drv_data)) {
		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;

		if (tx_level) {
			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
			if (tx_level > transfer->len)
				tx_level = transfer->len;
			drv_data->tx += tx_level;
		}
	}

	if (spi_controller_is_target(controller)) {
		while (drv_data->write(drv_data))
			;
		if (drv_data->gpiod_ready) {
			gpiod_set_value(drv_data->gpiod_ready, 1);
			udelay(1);
			gpiod_set_value(drv_data->gpiod_ready, 0);
		}
	}

	/*
	 * Release the data by enabling service requests and interrupts,
	 * without changing any mode bits.
	 */
	pxa2xx_spi_write(drv_data, SSCR1, cr1);

	return 1;
}

static int pxa2xx_spi_target_abort(struct spi_controller *controller)
{
	struct driver_data *drv_data = spi_controller_get_devdata(controller);

	int_error_stop(drv_data, "transfer aborted", -EINTR);

	return 0;
}

static void pxa2xx_spi_handle_err(struct spi_controller *controller,
				 struct spi_message *msg)
{
	struct driver_data *drv_data = spi_controller_get_devdata(controller);

	int_stop_and_reset(drv_data);

	/* Disable the SSP */
	pxa2xx_spi_off(drv_data);

	/*
	 * Stop the DMA if running. Note DMA callback handler may have unset
	 * the dma_running already, which is fine as stopping is not needed
	 * then but we shouldn't rely this flag for anything else than
	 * stopping. For instance to differentiate between PIO and DMA
	 * transfers.
	 */
	if (atomic_read(&drv_data->dma_running))
		pxa2xx_spi_dma_stop(drv_data);
}

static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
{
	struct driver_data *drv_data = spi_controller_get_devdata(controller);

	/* Disable the SSP now */
	pxa2xx_spi_off(drv_data);

	return 0;
}

static int setup(struct spi_device *spi)
{
	struct chip_data *chip;
	const struct lpss_config *config;
	struct driver_data *drv_data =
		spi_controller_get_devdata(spi->controller);
	uint tx_thres, tx_hi_thres, rx_thres;

	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
		tx_hi_thres = 0;
		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
		break;
	case MRFLD_SSP:
		tx_thres = TX_THRESH_MRFLD_DFLT;
		tx_hi_thres = 0;
		rx_thres = RX_THRESH_MRFLD_DFLT;
		break;
	case CE4100_SSP:
		tx_thres = TX_THRESH_CE4100_DFLT;
		tx_hi_thres = 0;
		rx_thres = RX_THRESH_CE4100_DFLT;
		break;
	case LPSS_LPT_SSP:
	case LPSS_BYT_SSP:
	case LPSS_BSW_SSP:
	case LPSS_SPT_SSP:
	case LPSS_BXT_SSP:
	case LPSS_CNL_SSP:
		config = lpss_get_config(drv_data);
		tx_thres = config->tx_threshold_lo;
		tx_hi_thres = config->tx_threshold_hi;
		rx_thres = config->rx_threshold;
		break;
	default:
		tx_hi_thres = 0;
		if (spi_controller_is_target(drv_data->controller)) {
			tx_thres = 1;
			rx_thres = 2;
		} else {
			tx_thres = TX_THRESH_DFLT;
			rx_thres = RX_THRESH_DFLT;
		}
		break;
	}

	if (drv_data->ssp_type == CE4100_SSP) {
		if (spi_get_chipselect(spi, 0) > 4) {
			dev_err(&spi->dev, "failed setup: cs number must not be > 4.\n");
			return -EINVAL;
		}
	}

	/* Only allocate on the first setup */
	chip = spi_get_ctldata(spi);
	if (!chip) {
		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
		if (!chip)
			return -ENOMEM;
	}

	chip->cr1 = 0;
	if (spi_controller_is_target(drv_data->controller)) {
		chip->cr1 |= SSCR1_SCFR;
		chip->cr1 |= SSCR1_SCLKDIR;
		chip->cr1 |= SSCR1_SFRMDIR;
		chip->cr1 |= SSCR1_SPH;
	}

	if (is_lpss_ssp(drv_data)) {
		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
					  SSITF_TxHiThresh(tx_hi_thres);
	}

	if (is_mrfld_ssp(drv_data)) {
		chip->lpss_rx_threshold = rx_thres;
		chip->lpss_tx_threshold = tx_thres;
	}

	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
				   & QUARK_X1000_SSCR1_RFT)
				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
				   & QUARK_X1000_SSCR1_TFT);
		break;
	case CE4100_SSP:
		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
		break;
	default:
		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
		break;
	}

	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);

	if (spi->mode & SPI_LOOP)
		chip->cr1 |= SSCR1_LBM;

	spi_set_ctldata(spi, chip);

	return 0;
}

static void cleanup(struct spi_device *spi)
{
	struct chip_data *chip = spi_get_ctldata(spi);

	kfree(chip);
}

static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
				      unsigned int cs)
{
	struct driver_data *drv_data = spi_controller_get_devdata(controller);

	switch (drv_data->ssp_type) {
	/*
	 * For some of Intel Atoms the ACPI DeviceSelection used by the Windows
	 * driver starts from 1 instead of 0 so translate it here to match what
	 * Linux expects.
	 */
	case LPSS_BYT_SSP:
	case LPSS_BSW_SSP:
		return cs - 1;

	default:
		return cs;
	}
}

static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
{
	return MAX_DMA_LEN;
}

int pxa2xx_spi_probe(struct device *dev, struct ssp_device *ssp,
		     struct pxa2xx_spi_controller *platform_info)
{
	struct spi_controller *controller;
	struct driver_data *drv_data;
	const struct lpss_config *config;
	int status;
	u32 tmp;

	if (platform_info->is_target)
		controller = devm_spi_alloc_target(dev, sizeof(*drv_data));
	else
		controller = devm_spi_alloc_host(dev, sizeof(*drv_data));
	if (!controller)
		return dev_err_probe(dev, -ENOMEM, "cannot alloc spi_controller\n");

	drv_data = spi_controller_get_devdata(controller);
	drv_data->controller = controller;
	drv_data->controller_info = platform_info;
	drv_data->ssp = ssp;

	device_set_node(&controller->dev, dev_fwnode(dev));

	/* The spi->mode bits understood by this driver: */
	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;

	controller->bus_num = ssp->port_id;
	controller->dma_alignment = DMA_ALIGNMENT;
	controller->cleanup = cleanup;
	controller->setup = setup;
	controller->set_cs = pxa2xx_spi_set_cs;
	controller->transfer_one = pxa2xx_spi_transfer_one;
	controller->target_abort = pxa2xx_spi_target_abort;
	controller->handle_err = pxa2xx_spi_handle_err;
	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
	controller->auto_runtime_pm = true;
	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;

	drv_data->ssp_type = ssp->type;

	if (pxa25x_ssp_comp(drv_data)) {
		switch (drv_data->ssp_type) {
		case QUARK_X1000_SSP:
			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
			break;
		default:
			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
			break;
		}

		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
		drv_data->dma_cr1 = 0;
		drv_data->clear_sr = SSSR_ROR;
		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
	} else {
		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
						| SSSR_ROR | SSSR_TUR;
	}

	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
			drv_data);
	if (status < 0)
		return dev_err_probe(dev, status, "cannot get IRQ %d\n", ssp->irq);

	/* Setup DMA if requested */
	if (platform_info->enable_dma) {
		status = pxa2xx_spi_dma_setup(drv_data);
		if (status) {
			dev_warn(dev, "no DMA channels available, using PIO\n");
			platform_info->enable_dma = false;
		} else {
			controller->can_dma = pxa2xx_spi_can_dma;
			controller->max_dma_len = MAX_DMA_LEN;
			controller->max_transfer_size =
				pxa2xx_spi_max_dma_transfer_size;

			dev_dbg(dev, "DMA burst size set to %u\n", platform_info->dma_burst_size);
		}
	}

	/* Enable SOC clock */
	status = clk_prepare_enable(ssp->clk);
	if (status)
		goto out_error_dma_irq_alloc;

	controller->max_speed_hz = clk_get_rate(ssp->clk);
	/*
	 * Set minimum speed for all other platforms than Intel Quark which is
	 * able do under 1 Hz transfers.
	 */
	if (!pxa25x_ssp_comp(drv_data))
		controller->min_speed_hz =
			DIV_ROUND_UP(controller->max_speed_hz, 4096);
	else if (!is_quark_x1000_ssp(drv_data))
		controller->min_speed_hz =
			DIV_ROUND_UP(controller->max_speed_hz, 512);

	pxa_ssp_disable(ssp);

	/* Load default SSP configuration */
	switch (drv_data->ssp_type) {
	case QUARK_X1000_SSP:
		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
		pxa2xx_spi_write(drv_data, SSCR1, tmp);

		/* Using the Motorola SPI protocol and use 8 bit frame */
		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
		pxa2xx_spi_write(drv_data, SSCR0, tmp);
		break;
	case CE4100_SSP:
		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
		pxa2xx_spi_write(drv_data, SSCR1, tmp);
		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
		pxa2xx_spi_write(drv_data, SSCR0, tmp);
		break;
	default:

		if (spi_controller_is_target(controller)) {
			tmp = SSCR1_SCFR |
			      SSCR1_SCLKDIR |
			      SSCR1_SFRMDIR |
			      SSCR1_RxTresh(2) |
			      SSCR1_TxTresh(1) |
			      SSCR1_SPH;
		} else {
			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
			      SSCR1_TxTresh(TX_THRESH_DFLT);
		}
		pxa2xx_spi_write(drv_data, SSCR1, tmp);
		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
		if (!spi_controller_is_target(controller))
			tmp |= SSCR0_SCR(2);
		pxa2xx_spi_write(drv_data, SSCR0, tmp);
		break;
	}

	if (!pxa25x_ssp_comp(drv_data))
		pxa2xx_spi_write(drv_data, SSTO, 0);

	if (!is_quark_x1000_ssp(drv_data))
		pxa2xx_spi_write(drv_data, SSPSP, 0);

	if (is_lpss_ssp(drv_data)) {
		lpss_ssp_setup(drv_data);
		config = lpss_get_config(drv_data);
		if (config->reg_capabilities >= 0) {
			tmp = __lpss_ssp_read_priv(drv_data,
						   config->reg_capabilities);
			tmp &= LPSS_CAPS_CS_EN_MASK;
			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
			platform_info->num_chipselect = ffz(tmp);
		}
	}
	controller->num_chipselect = platform_info->num_chipselect;
	controller->use_gpio_descriptors = true;

	if (platform_info->is_target) {
		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
						"ready", GPIOD_OUT_LOW);
		if (IS_ERR(drv_data->gpiod_ready)) {
			status = PTR_ERR(drv_data->gpiod_ready);
			goto out_error_clock_enabled;
		}
	}

	/* Register with the SPI framework */
	dev_set_drvdata(dev, drv_data);
	status = spi_register_controller(controller);
	if (status) {
		dev_err_probe(dev, status, "problem registering SPI controller\n");
		goto out_error_clock_enabled;
	}

	return status;

out_error_clock_enabled:
	clk_disable_unprepare(ssp->clk);

out_error_dma_irq_alloc:
	pxa2xx_spi_dma_release(drv_data);
	free_irq(ssp->irq, drv_data);

	return status;
}
EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_probe, SPI_PXA2xx);

void pxa2xx_spi_remove(struct device *dev)
{
	struct driver_data *drv_data = dev_get_drvdata(dev);
	struct ssp_device *ssp = drv_data->ssp;

	spi_unregister_controller(drv_data->controller);

	/* Disable the SSP at the peripheral and SOC level */
	pxa_ssp_disable(ssp);
	clk_disable_unprepare(ssp->clk);

	/* Release DMA */
	if (drv_data->controller_info->enable_dma)
		pxa2xx_spi_dma_release(drv_data);

	/* Release IRQ */
	free_irq(ssp->irq, drv_data);
}
EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_remove, SPI_PXA2xx);

static int pxa2xx_spi_suspend(struct device *dev)
{
	struct driver_data *drv_data = dev_get_drvdata(dev);
	struct ssp_device *ssp = drv_data->ssp;
	int status;

	status = spi_controller_suspend(drv_data->controller);
	if (status)
		return status;

	pxa_ssp_disable(ssp);

	if (!pm_runtime_suspended(dev))
		clk_disable_unprepare(ssp->clk);

	return 0;
}

static int pxa2xx_spi_resume(struct device *dev)
{
	struct driver_data *drv_data = dev_get_drvdata(dev);
	struct ssp_device *ssp = drv_data->ssp;
	int status;

	/* Enable the SSP clock */
	if (!pm_runtime_suspended(dev)) {
		status = clk_prepare_enable(ssp->clk);
		if (status)
			return status;
	}

	/* Start the queue running */
	return spi_controller_resume(drv_data->controller);
}

static int pxa2xx_spi_runtime_suspend(struct device *dev)
{
	struct driver_data *drv_data = dev_get_drvdata(dev);

	clk_disable_unprepare(drv_data->ssp->clk);
	return 0;
}

static int pxa2xx_spi_runtime_resume(struct device *dev)
{
	struct driver_data *drv_data = dev_get_drvdata(dev);

	return clk_prepare_enable(drv_data->ssp->clk);
}

EXPORT_NS_GPL_DEV_PM_OPS(pxa2xx_spi_pm_ops, SPI_PXA2xx) = {
	SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
	RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL)
};

MODULE_AUTHOR("Stephen Street");
MODULE_DESCRIPTION("PXA2xx SSP SPI Controller core driver");
MODULE_LICENSE("GPL");