Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stephen Street | 1284 | 20.33% | 4 | 2.53% |
Andy Shevchenko | 1235 | 19.56% | 54 | 34.18% |
Jarkko Nikula | 1186 | 18.78% | 29 | 18.35% |
Mika Westerberg | 1115 | 17.66% | 16 | 10.13% |
Weike Chen | 580 | 9.18% | 2 | 1.27% |
Lubomir Rintel | 358 | 5.67% | 7 | 4.43% |
Sebastian Andrzej Siewior | 134 | 2.12% | 5 | 3.16% |
Evan Green | 78 | 1.24% | 2 | 1.27% |
Eric Miao | 60 | 0.95% | 3 | 1.90% |
Jan Kiszka | 33 | 0.52% | 2 | 1.27% |
Ned Forrester | 28 | 0.44% | 3 | 1.90% |
Stephen Warren | 20 | 0.32% | 1 | 0.63% |
Tobias Jordan | 20 | 0.32% | 1 | 0.63% |
Daniel Vetter | 19 | 0.30% | 1 | 0.63% |
Justin Clacherty | 19 | 0.30% | 1 | 0.63% |
Mike Rapoport | 18 | 0.29% | 2 | 1.27% |
Tan Jui Nee | 15 | 0.24% | 1 | 0.63% |
Herve Codina via Alsa-devel | 15 | 0.24% | 1 | 0.63% |
Antonio Ospite | 14 | 0.22% | 1 | 0.63% |
Vernon Sauder | 14 | 0.22% | 1 | 0.63% |
Flavio Suligoi | 12 | 0.19% | 3 | 1.90% |
Dmitry Eremin-Solenikov | 10 | 0.16% | 1 | 0.63% |
Yang Yingliang | 9 | 0.14% | 1 | 0.63% |
David Brownell | 9 | 0.14% | 3 | 1.90% |
Mark Brown | 5 | 0.08% | 2 | 1.27% |
Guennadi Liakhovetski | 5 | 0.08% | 1 | 0.63% |
Kay Sievers | 3 | 0.05% | 1 | 0.63% |
Gustavo A. R. Silva | 3 | 0.05% | 1 | 0.63% |
Lukas Wunner | 3 | 0.05% | 1 | 0.63% |
David Howells | 3 | 0.05% | 1 | 0.63% |
Daniel Ribeiro | 2 | 0.03% | 1 | 0.63% |
Dan Carpenter | 2 | 0.03% | 1 | 0.63% |
Roel Kluin | 1 | 0.02% | 1 | 0.63% |
Thomas Gleixner | 1 | 0.02% | 1 | 0.63% |
Geert Uytterhoeven | 1 | 0.02% | 1 | 0.63% |
kbuild test robot | 1 | 0.02% | 1 | 0.63% |
Total | 6315 | 158 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs * Copyright (C) 2013, 2021 Intel Corporation */ #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/bug.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/dmaengine.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/math64.h> #include <linux/minmax.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <linux/property.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/spi/spi.h> #include "internals.h" #include "spi-pxa2xx.h" #define TIMOUT_DFLT 1000 /* * For testing SSCR1 changes that require SSP restart, basically * everything except the service and interrupt enables, the PXA270 developer * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this * list, but the PXA255 developer manual says all bits without really meaning * the service and interrupt enables. */ #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ | QUARK_X1000_SSCR1_EFWR \ | QUARK_X1000_SSCR1_RFT \ | QUARK_X1000_SSCR1_TFT \ | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \ | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) struct chip_data { u32 cr1; u32 dds_rate; u32 threshold; u16 lpss_rx_threshold; u16 lpss_tx_threshold; }; #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) #define LPSS_CS_CONTROL_SW_MODE BIT(0) #define LPSS_CS_CONTROL_CS_HIGH BIT(1) #define LPSS_CAPS_CS_EN_SHIFT 9 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) #define LPSS_PRIV_CLOCK_GATE 0x38 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3 struct lpss_config { /* LPSS offset from drv_data->ioaddr */ unsigned offset; /* Register offsets from drv_data->lpss_base or -1 */ int reg_general; int reg_ssp; int reg_cs_ctrl; int reg_capabilities; /* FIFO thresholds */ u32 rx_threshold; u32 tx_threshold_lo; u32 tx_threshold_hi; /* Chip select control */ unsigned cs_sel_shift; unsigned cs_sel_mask; /* Quirks */ unsigned cs_clk_stays_gated : 1; }; /* Keep these sorted with enum pxa_ssp_type */ static const struct lpss_config lpss_platforms[] = { { /* LPSS_LPT_SSP */ .offset = 0x800, .reg_general = 0x08, .reg_ssp = 0x0c, .reg_cs_ctrl = 0x18, .reg_capabilities = -1, .rx_threshold = 64, .tx_threshold_lo = 160, .tx_threshold_hi = 224, }, { /* LPSS_BYT_SSP */ .offset = 0x400, .reg_general = 0x08, .reg_ssp = 0x0c, .reg_cs_ctrl = 0x18, .reg_capabilities = -1, .rx_threshold = 64, .tx_threshold_lo = 160, .tx_threshold_hi = 224, }, { /* LPSS_BSW_SSP */ .offset = 0x400, .reg_general = 0x08, .reg_ssp = 0x0c, .reg_cs_ctrl = 0x18, .reg_capabilities = -1, .rx_threshold = 64, .tx_threshold_lo = 160, .tx_threshold_hi = 224, .cs_sel_shift = 2, .cs_sel_mask = 1 << 2, }, { /* LPSS_SPT_SSP */ .offset = 0x200, .reg_general = -1, .reg_ssp = 0x20, .reg_cs_ctrl = 0x24, .reg_capabilities = -1, .rx_threshold = 1, .tx_threshold_lo = 32, .tx_threshold_hi = 56, }, { /* LPSS_BXT_SSP */ .offset = 0x200, .reg_general = -1, .reg_ssp = 0x20, .reg_cs_ctrl = 0x24, .reg_capabilities = 0xfc, .rx_threshold = 1, .tx_threshold_lo = 16, .tx_threshold_hi = 48, .cs_sel_shift = 8, .cs_sel_mask = 3 << 8, .cs_clk_stays_gated = true, }, { /* LPSS_CNL_SSP */ .offset = 0x200, .reg_general = -1, .reg_ssp = 0x20, .reg_cs_ctrl = 0x24, .reg_capabilities = 0xfc, .rx_threshold = 1, .tx_threshold_lo = 32, .tx_threshold_hi = 56, .cs_sel_shift = 8, .cs_sel_mask = 3 << 8, .cs_clk_stays_gated = true, }, }; static inline const struct lpss_config *lpss_get_config(const struct driver_data *drv_data) { return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; } static bool is_lpss_ssp(const struct driver_data *drv_data) { switch (drv_data->ssp_type) { case LPSS_LPT_SSP: case LPSS_BYT_SSP: case LPSS_BSW_SSP: case LPSS_SPT_SSP: case LPSS_BXT_SSP: case LPSS_CNL_SSP: return true; default: return false; } } static bool is_quark_x1000_ssp(const struct driver_data *drv_data) { return drv_data->ssp_type == QUARK_X1000_SSP; } static bool is_mmp2_ssp(const struct driver_data *drv_data) { return drv_data->ssp_type == MMP2_SSP; } static bool is_mrfld_ssp(const struct driver_data *drv_data) { return drv_data->ssp_type == MRFLD_SSP; } static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value) { if ((pxa2xx_spi_read(drv_data, reg) & mask) != value) pxa2xx_spi_write(drv_data, reg, value & mask); } static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) { switch (drv_data->ssp_type) { case QUARK_X1000_SSP: return QUARK_X1000_SSCR1_CHANGE_MASK; case CE4100_SSP: return CE4100_SSCR1_CHANGE_MASK; default: return SSCR1_CHANGE_MASK; } } static u32 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) { switch (drv_data->ssp_type) { case QUARK_X1000_SSP: return RX_THRESH_QUARK_X1000_DFLT; case CE4100_SSP: return RX_THRESH_CE4100_DFLT; default: return RX_THRESH_DFLT; } } static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) { u32 mask; switch (drv_data->ssp_type) { case QUARK_X1000_SSP: mask = QUARK_X1000_SSSR_TFL_MASK; break; case CE4100_SSP: mask = CE4100_SSSR_TFL_MASK; break; default: mask = SSSR_TFL_MASK; break; } return read_SSSR_bits(drv_data, mask) == mask; } static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, u32 *sccr1_reg) { u32 mask; switch (drv_data->ssp_type) { case QUARK_X1000_SSP: mask = QUARK_X1000_SSCR1_RFT; break; case CE4100_SSP: mask = CE4100_SSCR1_RFT; break; default: mask = SSCR1_RFT; break; } *sccr1_reg &= ~mask; } static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, u32 *sccr1_reg, u32 threshold) { switch (drv_data->ssp_type) { case QUARK_X1000_SSP: *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); break; case CE4100_SSP: *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold); break; default: *sccr1_reg |= SSCR1_RxTresh(threshold); break; } } static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, u32 clk_div, u8 bits) { switch (drv_data->ssp_type) { case QUARK_X1000_SSP: return clk_div | QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits); default: return clk_div | SSCR0_Motorola | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) | (bits > 16 ? SSCR0_EDSS : 0); } } /* * Read and write LPSS SSP private registers. Caller must first check that * is_lpss_ssp() returns true before these can be called. */ static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) { WARN_ON(!drv_data->lpss_base); return readl(drv_data->lpss_base + offset); } static void __lpss_ssp_write_priv(struct driver_data *drv_data, unsigned offset, u32 value) { WARN_ON(!drv_data->lpss_base); writel(value, drv_data->lpss_base + offset); } /* * lpss_ssp_setup - perform LPSS SSP specific setup * @drv_data: pointer to the driver private data * * Perform LPSS SSP specific setup. This function must be called first if * one is going to use LPSS SSP private registers. */ static void lpss_ssp_setup(struct driver_data *drv_data) { const struct lpss_config *config; u32 value; config = lpss_get_config(drv_data); drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset; /* Enable software chip select control */ value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); /* Enable multiblock DMA transfers */ if (drv_data->controller_info->enable_dma) { __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); if (config->reg_general >= 0) { value = __lpss_ssp_read_priv(drv_data, config->reg_general); value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; __lpss_ssp_write_priv(drv_data, config->reg_general, value); } } } static void lpss_ssp_select_cs(struct spi_device *spi, const struct lpss_config *config) { struct driver_data *drv_data = spi_controller_get_devdata(spi->controller); u32 value, cs; if (!config->cs_sel_mask) return; value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); cs = spi_get_chipselect(spi, 0); cs <<= config->cs_sel_shift; if (cs != (value & config->cs_sel_mask)) { /* * When switching another chip select output active the * output must be selected first and wait 2 ssp_clk cycles * before changing state to active. Otherwise a short * glitch will occur on the previous chip select since * output select is latched but state control is not. */ value &= ~config->cs_sel_mask; value |= cs; __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); ndelay(1000000000 / (drv_data->controller->max_speed_hz / 2)); } } static void lpss_ssp_cs_control(struct spi_device *spi, bool enable) { struct driver_data *drv_data = spi_controller_get_devdata(spi->controller); const struct lpss_config *config; u32 value; config = lpss_get_config(drv_data); if (enable) lpss_ssp_select_cs(spi, config); value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); if (enable) value &= ~LPSS_CS_CONTROL_CS_HIGH; else value |= LPSS_CS_CONTROL_CS_HIGH; __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); if (config->cs_clk_stays_gated) { u32 clkgate; /* * Changing CS alone when dynamic clock gating is on won't * actually flip CS at that time. This ruins SPI transfers * that specify delays, or have no data. Toggle the clock mode * to force on briefly to poke the CS pin to move. */ clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE); value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) | LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON; __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value); __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate); } } static void cs_assert(struct spi_device *spi) { struct driver_data *drv_data = spi_controller_get_devdata(spi->controller); if (drv_data->ssp_type == CE4100_SSP) { pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0)); return; } if (is_lpss_ssp(drv_data)) lpss_ssp_cs_control(spi, true); } static void cs_deassert(struct spi_device *spi) { struct driver_data *drv_data = spi_controller_get_devdata(spi->controller); unsigned long timeout; if (drv_data->ssp_type == CE4100_SSP) return; /* Wait until SSP becomes idle before deasserting the CS */ timeout = jiffies + msecs_to_jiffies(10); while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && !time_after(jiffies, timeout)) cpu_relax(); if (is_lpss_ssp(drv_data)) lpss_ssp_cs_control(spi, false); } static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level) { if (level) cs_deassert(spi); else cs_assert(spi); } int pxa2xx_spi_flush(struct driver_data *drv_data) { unsigned long limit = loops_per_jiffy << 1; do { while (read_SSSR_bits(drv_data, SSSR_RNE)) pxa2xx_spi_read(drv_data, SSDR); } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); write_SSSR_CS(drv_data, SSSR_ROR); return limit; } static void pxa2xx_spi_off(struct driver_data *drv_data) { /* On MMP, disabling SSE seems to corrupt the Rx FIFO */ if (is_mmp2_ssp(drv_data)) return; pxa_ssp_disable(drv_data->ssp); } static int null_writer(struct driver_data *drv_data) { u8 n_bytes = drv_data->n_bytes; if (pxa2xx_spi_txfifo_full(drv_data) || (drv_data->tx == drv_data->tx_end)) return 0; pxa2xx_spi_write(drv_data, SSDR, 0); drv_data->tx += n_bytes; return 1; } static int null_reader(struct driver_data *drv_data) { u8 n_bytes = drv_data->n_bytes; while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { pxa2xx_spi_read(drv_data, SSDR); drv_data->rx += n_bytes; } return drv_data->rx == drv_data->rx_end; } static int u8_writer(struct driver_data *drv_data) { if (pxa2xx_spi_txfifo_full(drv_data) || (drv_data->tx == drv_data->tx_end)) return 0; pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); ++drv_data->tx; return 1; } static int u8_reader(struct driver_data *drv_data) { while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); ++drv_data->rx; } return drv_data->rx == drv_data->rx_end; } static int u16_writer(struct driver_data *drv_data) { if (pxa2xx_spi_txfifo_full(drv_data) || (drv_data->tx == drv_data->tx_end)) return 0; pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); drv_data->tx += 2; return 1; } static int u16_reader(struct driver_data *drv_data) { while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); drv_data->rx += 2; } return drv_data->rx == drv_data->rx_end; } static int u32_writer(struct driver_data *drv_data) { if (pxa2xx_spi_txfifo_full(drv_data) || (drv_data->tx == drv_data->tx_end)) return 0; pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); drv_data->tx += 4; return 1; } static int u32_reader(struct driver_data *drv_data) { while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); drv_data->rx += 4; } return drv_data->rx == drv_data->rx_end; } static void reset_sccr1(struct driver_data *drv_data) { u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold; struct chip_data *chip; if (drv_data->controller->cur_msg) { chip = spi_get_ctldata(drv_data->controller->cur_msg->spi); threshold = chip->threshold; } else { threshold = 0; } switch (drv_data->ssp_type) { case QUARK_X1000_SSP: mask |= QUARK_X1000_SSCR1_RFT; break; case CE4100_SSP: mask |= CE4100_SSCR1_RFT; break; default: mask |= SSCR1_RFT; break; } pxa2xx_spi_update(drv_data, SSCR1, mask, threshold); } static void int_stop_and_reset(struct driver_data *drv_data) { /* Clear and disable interrupts */ write_SSSR_CS(drv_data, drv_data->clear_sr); reset_sccr1(drv_data); if (pxa25x_ssp_comp(drv_data)) return; pxa2xx_spi_write(drv_data, SSTO, 0); } static void int_error_stop(struct driver_data *drv_data, const char *msg, int err) { int_stop_and_reset(drv_data); pxa2xx_spi_flush(drv_data); pxa2xx_spi_off(drv_data); dev_err(drv_data->ssp->dev, "%s\n", msg); drv_data->controller->cur_msg->status = err; spi_finalize_current_transfer(drv_data->controller); } static void int_transfer_complete(struct driver_data *drv_data) { int_stop_and_reset(drv_data); spi_finalize_current_transfer(drv_data->controller); } static irqreturn_t interrupt_transfer(struct driver_data *drv_data) { u32 irq_status; irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr); if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE)) irq_status &= ~SSSR_TFS; if (irq_status & SSSR_ROR) { int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO); return IRQ_HANDLED; } if (irq_status & SSSR_TUR) { int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO); return IRQ_HANDLED; } if (irq_status & SSSR_TINT) { pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); if (drv_data->read(drv_data)) { int_transfer_complete(drv_data); return IRQ_HANDLED; } } /* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */ do { if (drv_data->read(drv_data)) { int_transfer_complete(drv_data); return IRQ_HANDLED; } } while (drv_data->write(drv_data)); if (drv_data->read(drv_data)) { int_transfer_complete(drv_data); return IRQ_HANDLED; } if (drv_data->tx == drv_data->tx_end) { u32 bytes_left; u32 sccr1_reg; sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); sccr1_reg &= ~SSCR1_TIE; /* * PXA25x_SSP has no timeout, set up Rx threshold for * the remaining Rx bytes. */ if (pxa25x_ssp_comp(drv_data)) { u32 rx_thre; pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); bytes_left = drv_data->rx_end - drv_data->rx; switch (drv_data->n_bytes) { case 4: bytes_left >>= 2; break; case 2: bytes_left >>= 1; break; } rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); if (rx_thre > bytes_left) rx_thre = bytes_left; pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); } pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); } /* We did something */ return IRQ_HANDLED; } static void handle_bad_msg(struct driver_data *drv_data) { int_stop_and_reset(drv_data); pxa2xx_spi_off(drv_data); dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n"); } static irqreturn_t ssp_int(int irq, void *dev_id) { struct driver_data *drv_data = dev_id; u32 sccr1_reg; u32 mask = drv_data->mask_sr; u32 status; /* * The IRQ might be shared with other peripherals so we must first * check that are we RPM suspended or not. If we are we assume that * the IRQ was not for us (we shouldn't be RPM suspended when the * interrupt is enabled). */ if (pm_runtime_suspended(drv_data->ssp->dev)) return IRQ_NONE; /* * If the device is not yet in RPM suspended state and we get an * interrupt that is meant for another device, check if status bits * are all set to one. That means that the device is already * powered off. */ status = pxa2xx_spi_read(drv_data, SSSR); if (status == ~0) return IRQ_NONE; sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); /* Ignore possible writes if we don't need to write */ if (!(sccr1_reg & SSCR1_TIE)) mask &= ~SSSR_TFS; /* Ignore RX timeout interrupt if it is disabled */ if (!(sccr1_reg & SSCR1_TINTE)) mask &= ~SSSR_TINT; if (!(status & mask)) return IRQ_NONE; pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1); pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); if (!drv_data->controller->cur_msg) { handle_bad_msg(drv_data); /* Never fail */ return IRQ_HANDLED; } return drv_data->transfer_handler(drv_data); } /* * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply * input frequency by fractions of 2^24. It also has a divider by 5. * * There are formulas to get baud rate value for given input frequency and * divider parameters, such as DDS_CLK_RATE and SCR: * * Fsys = 200MHz * * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) * * DDS_CLK_RATE either 2^n or 2^n / 5. * SCR is in range 0 .. 255 * * Divisor = 5^i * 2^j * 2 * k * i = [0, 1] i = 1 iff j = 0 or j > 3 * j = [0, 23] j = 0 iff i = 1 * k = [1, 256] * Special case: j = 0, i = 1: Divisor = 2 / 5 * * Accordingly to the specification the recommended values for DDS_CLK_RATE * are: * Case 1: 2^n, n = [0, 23] * Case 2: 2^24 * 2 / 5 (0x666666) * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) * * In all cases the lowest possible value is better. * * The function calculates parameters for all cases and chooses the one closest * to the asked baud rate. */ static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) { unsigned long xtal = 200000000; unsigned long fref = xtal / 2; /* mandatory division by 2, see (2) */ /* case 3 */ unsigned long fref1 = fref / 2; /* case 1 */ unsigned long fref2 = fref * 2 / 5; /* case 2 */ unsigned long scale; unsigned long q, q1, q2; long r, r1, r2; u32 mul; /* Case 1 */ /* Set initial value for DDS_CLK_RATE */ mul = (1 << 24) >> 1; /* Calculate initial quot */ q1 = DIV_ROUND_UP(fref1, rate); /* Scale q1 if it's too big */ if (q1 > 256) { /* Scale q1 to range [1, 512] */ scale = fls_long(q1 - 1); if (scale > 9) { q1 >>= scale - 9; mul >>= scale - 9; } /* Round the result if we have a remainder */ q1 += q1 & 1; } /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ scale = __ffs(q1); q1 >>= scale; mul >>= scale; /* Get the remainder */ r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); /* Case 2 */ q2 = DIV_ROUND_UP(fref2, rate); r2 = abs(fref2 / q2 - rate); /* * Choose the best between two: less remainder we have the better. We * can't go case 2 if q2 is greater than 256 since SCR register can * hold only values 0 .. 255. */ if (r2 >= r1 || q2 > 256) { /* case 1 is better */ r = r1; q = q1; } else { /* case 2 is better */ r = r2; q = q2; mul = (1 << 24) * 2 / 5; } /* Check case 3 only if the divisor is big enough */ if (fref / rate >= 80) { u64 fssp; u32 m; /* Calculate initial quot */ q1 = DIV_ROUND_UP(fref, rate); m = (1 << 24) / q1; /* Get the remainder */ fssp = (u64)fref * m; do_div(fssp, 1 << 24); r1 = abs(fssp - rate); /* Choose this one if it suits better */ if (r1 < r) { /* case 3 is better */ q = 1; mul = m; } } *dds = mul; return q - 1; } static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) { unsigned long ssp_clk = drv_data->controller->max_speed_hz; const struct ssp_device *ssp = drv_data->ssp; rate = min_t(int, ssp_clk, rate); /* * Calculate the divisor for the SCR (Serial Clock Rate), avoiding * that the SSP transmission rate can be greater than the device rate. */ if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff; else return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff; } static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, int rate) { struct chip_data *chip = spi_get_ctldata(drv_data->controller->cur_msg->spi); unsigned int clk_div; switch (drv_data->ssp_type) { case QUARK_X1000_SSP: clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); break; default: clk_div = ssp_get_clk_div(drv_data, rate); break; } return clk_div << 8; } static bool pxa2xx_spi_can_dma(struct spi_controller *controller, struct spi_device *spi, struct spi_transfer *xfer) { struct driver_data *drv_data = spi_controller_get_devdata(controller); return drv_data->controller_info->enable_dma && xfer->len <= MAX_DMA_LEN && xfer->len >= drv_data->controller_info->dma_burst_size; } static int pxa2xx_spi_transfer_one(struct spi_controller *controller, struct spi_device *spi, struct spi_transfer *transfer) { struct driver_data *drv_data = spi_controller_get_devdata(controller); struct chip_data *chip = spi_get_ctldata(spi); u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); u32 dma_thresh; u32 clk_div; u8 bits; u32 speed; u32 cr0; u32 cr1; int err; int dma_mapped; /* Check if we can DMA this transfer */ if (transfer->len > MAX_DMA_LEN && drv_data->controller_info->enable_dma) { /* Warn ... we force this to PIO mode */ dev_warn_ratelimited(&spi->dev, "DMA disabled for transfer length %u greater than %d\n", transfer->len, MAX_DMA_LEN); } /* Setup the transfer state based on the type of transfer */ if (pxa2xx_spi_flush(drv_data) == 0) { dev_err(&spi->dev, "Flush failed\n"); return -EIO; } drv_data->tx = (void *)transfer->tx_buf; drv_data->tx_end = drv_data->tx + transfer->len; drv_data->rx = transfer->rx_buf; drv_data->rx_end = drv_data->rx + transfer->len; /* Change speed and bit per word on a per transfer */ bits = transfer->bits_per_word; speed = transfer->speed_hz; clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); if (bits <= 8) { drv_data->n_bytes = 1; drv_data->read = drv_data->rx ? u8_reader : null_reader; drv_data->write = drv_data->tx ? u8_writer : null_writer; } else if (bits <= 16) { drv_data->n_bytes = 2; drv_data->read = drv_data->rx ? u16_reader : null_reader; drv_data->write = drv_data->tx ? u16_writer : null_writer; } else if (bits <= 32) { drv_data->n_bytes = 4; drv_data->read = drv_data->rx ? u32_reader : null_reader; drv_data->write = drv_data->tx ? u32_writer : null_writer; } dma_thresh = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT); dma_mapped = spi_xfer_is_dma_mapped(controller, spi, transfer); if (dma_mapped) { /* Ensure we have the correct interrupt handler */ drv_data->transfer_handler = pxa2xx_spi_dma_transfer; err = pxa2xx_spi_dma_prepare(drv_data, transfer); if (err) return err; /* Clear status and start DMA engine */ cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); pxa2xx_spi_dma_start(drv_data); } else { /* Ensure we have the correct interrupt handler */ drv_data->transfer_handler = interrupt_transfer; /* Clear status */ cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; write_SSSR_CS(drv_data, drv_data->clear_sr); } /* NOTE: PXA25x_SSP _could_ use external clocking ... */ cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); if (!pxa25x_ssp_comp(drv_data)) dev_dbg(&spi->dev, "%u Hz actual, %s\n", controller->max_speed_hz / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), dma_mapped ? "DMA" : "PIO"); else dev_dbg(&spi->dev, "%u Hz actual, %s\n", controller->max_speed_hz / 2 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), dma_mapped ? "DMA" : "PIO"); if (is_lpss_ssp(drv_data)) { pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold); pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold); } if (is_mrfld_ssp(drv_data)) { u32 mask = SFIFOTT_RFT | SFIFOTT_TFT; u32 thresh = 0; thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold); thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold); pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh); } if (is_quark_x1000_ssp(drv_data)) pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate); /* Stop the SSP */ if (!is_mmp2_ssp(drv_data)) pxa_ssp_disable(drv_data->ssp); if (!pxa25x_ssp_comp(drv_data)) pxa2xx_spi_write(drv_data, SSTO, TIMOUT_DFLT); /* First set CR1 without interrupt and service enables */ pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1); /* See if we need to reload the configuration registers */ pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0); /* Restart the SSP */ pxa_ssp_enable(drv_data->ssp); if (is_mmp2_ssp(drv_data)) { u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8; if (tx_level) { /* On MMP2, flipping SSE doesn't to empty Tx FIFO. */ dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level); if (tx_level > transfer->len) tx_level = transfer->len; drv_data->tx += tx_level; } } if (spi_controller_is_target(controller)) { while (drv_data->write(drv_data)) ; if (drv_data->gpiod_ready) { gpiod_set_value(drv_data->gpiod_ready, 1); udelay(1); gpiod_set_value(drv_data->gpiod_ready, 0); } } /* * Release the data by enabling service requests and interrupts, * without changing any mode bits. */ pxa2xx_spi_write(drv_data, SSCR1, cr1); return 1; } static int pxa2xx_spi_target_abort(struct spi_controller *controller) { struct driver_data *drv_data = spi_controller_get_devdata(controller); int_error_stop(drv_data, "transfer aborted", -EINTR); return 0; } static void pxa2xx_spi_handle_err(struct spi_controller *controller, struct spi_message *msg) { struct driver_data *drv_data = spi_controller_get_devdata(controller); int_stop_and_reset(drv_data); /* Disable the SSP */ pxa2xx_spi_off(drv_data); /* * Stop the DMA if running. Note DMA callback handler may have unset * the dma_running already, which is fine as stopping is not needed * then but we shouldn't rely this flag for anything else than * stopping. For instance to differentiate between PIO and DMA * transfers. */ if (atomic_read(&drv_data->dma_running)) pxa2xx_spi_dma_stop(drv_data); } static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller) { struct driver_data *drv_data = spi_controller_get_devdata(controller); /* Disable the SSP now */ pxa2xx_spi_off(drv_data); return 0; } static int setup(struct spi_device *spi) { struct chip_data *chip; const struct lpss_config *config; struct driver_data *drv_data = spi_controller_get_devdata(spi->controller); uint tx_thres, tx_hi_thres, rx_thres; switch (drv_data->ssp_type) { case QUARK_X1000_SSP: tx_thres = TX_THRESH_QUARK_X1000_DFLT; tx_hi_thres = 0; rx_thres = RX_THRESH_QUARK_X1000_DFLT; break; case MRFLD_SSP: tx_thres = TX_THRESH_MRFLD_DFLT; tx_hi_thres = 0; rx_thres = RX_THRESH_MRFLD_DFLT; break; case CE4100_SSP: tx_thres = TX_THRESH_CE4100_DFLT; tx_hi_thres = 0; rx_thres = RX_THRESH_CE4100_DFLT; break; case LPSS_LPT_SSP: case LPSS_BYT_SSP: case LPSS_BSW_SSP: case LPSS_SPT_SSP: case LPSS_BXT_SSP: case LPSS_CNL_SSP: config = lpss_get_config(drv_data); tx_thres = config->tx_threshold_lo; tx_hi_thres = config->tx_threshold_hi; rx_thres = config->rx_threshold; break; default: tx_hi_thres = 0; if (spi_controller_is_target(drv_data->controller)) { tx_thres = 1; rx_thres = 2; } else { tx_thres = TX_THRESH_DFLT; rx_thres = RX_THRESH_DFLT; } break; } if (drv_data->ssp_type == CE4100_SSP) { if (spi_get_chipselect(spi, 0) > 4) { dev_err(&spi->dev, "failed setup: cs number must not be > 4.\n"); return -EINVAL; } } /* Only allocate on the first setup */ chip = spi_get_ctldata(spi); if (!chip) { chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); if (!chip) return -ENOMEM; } chip->cr1 = 0; if (spi_controller_is_target(drv_data->controller)) { chip->cr1 |= SSCR1_SCFR; chip->cr1 |= SSCR1_SCLKDIR; chip->cr1 |= SSCR1_SFRMDIR; chip->cr1 |= SSCR1_SPH; } if (is_lpss_ssp(drv_data)) { chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) | SSITF_TxHiThresh(tx_hi_thres); } if (is_mrfld_ssp(drv_data)) { chip->lpss_rx_threshold = rx_thres; chip->lpss_tx_threshold = tx_thres; } switch (drv_data->ssp_type) { case QUARK_X1000_SSP: chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) & QUARK_X1000_SSCR1_RFT) | (QUARK_X1000_SSCR1_TxTresh(tx_thres) & QUARK_X1000_SSCR1_TFT); break; case CE4100_SSP: chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) | (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT); break; default: chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); break; } chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) | ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0); if (spi->mode & SPI_LOOP) chip->cr1 |= SSCR1_LBM; spi_set_ctldata(spi, chip); return 0; } static void cleanup(struct spi_device *spi) { struct chip_data *chip = spi_get_ctldata(spi); kfree(chip); } static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller, unsigned int cs) { struct driver_data *drv_data = spi_controller_get_devdata(controller); switch (drv_data->ssp_type) { /* * For some of Intel Atoms the ACPI DeviceSelection used by the Windows * driver starts from 1 instead of 0 so translate it here to match what * Linux expects. */ case LPSS_BYT_SSP: case LPSS_BSW_SSP: return cs - 1; default: return cs; } } static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi) { return MAX_DMA_LEN; } int pxa2xx_spi_probe(struct device *dev, struct ssp_device *ssp, struct pxa2xx_spi_controller *platform_info) { struct spi_controller *controller; struct driver_data *drv_data; const struct lpss_config *config; int status; u32 tmp; if (platform_info->is_target) controller = devm_spi_alloc_target(dev, sizeof(*drv_data)); else controller = devm_spi_alloc_host(dev, sizeof(*drv_data)); if (!controller) return dev_err_probe(dev, -ENOMEM, "cannot alloc spi_controller\n"); drv_data = spi_controller_get_devdata(controller); drv_data->controller = controller; drv_data->controller_info = platform_info; drv_data->ssp = ssp; device_set_node(&controller->dev, dev_fwnode(dev)); /* The spi->mode bits understood by this driver: */ controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; controller->bus_num = ssp->port_id; controller->dma_alignment = DMA_ALIGNMENT; controller->cleanup = cleanup; controller->setup = setup; controller->set_cs = pxa2xx_spi_set_cs; controller->transfer_one = pxa2xx_spi_transfer_one; controller->target_abort = pxa2xx_spi_target_abort; controller->handle_err = pxa2xx_spi_handle_err; controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs; controller->auto_runtime_pm = true; controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; drv_data->ssp_type = ssp->type; if (pxa25x_ssp_comp(drv_data)) { switch (drv_data->ssp_type) { case QUARK_X1000_SSP: controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); break; default: controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); break; } drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; drv_data->dma_cr1 = 0; drv_data->clear_sr = SSSR_ROR; drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; } else { controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; drv_data->dma_cr1 = DEFAULT_DMA_CR1; drv_data->clear_sr = SSSR_ROR | SSSR_TINT; drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR | SSSR_TUR; } status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), drv_data); if (status < 0) return dev_err_probe(dev, status, "cannot get IRQ %d\n", ssp->irq); /* Setup DMA if requested */ if (platform_info->enable_dma) { status = pxa2xx_spi_dma_setup(drv_data); if (status) { dev_warn(dev, "no DMA channels available, using PIO\n"); platform_info->enable_dma = false; } else { controller->can_dma = pxa2xx_spi_can_dma; controller->max_dma_len = MAX_DMA_LEN; controller->max_transfer_size = pxa2xx_spi_max_dma_transfer_size; dev_dbg(dev, "DMA burst size set to %u\n", platform_info->dma_burst_size); } } /* Enable SOC clock */ status = clk_prepare_enable(ssp->clk); if (status) goto out_error_dma_irq_alloc; controller->max_speed_hz = clk_get_rate(ssp->clk); /* * Set minimum speed for all other platforms than Intel Quark which is * able do under 1 Hz transfers. */ if (!pxa25x_ssp_comp(drv_data)) controller->min_speed_hz = DIV_ROUND_UP(controller->max_speed_hz, 4096); else if (!is_quark_x1000_ssp(drv_data)) controller->min_speed_hz = DIV_ROUND_UP(controller->max_speed_hz, 512); pxa_ssp_disable(ssp); /* Load default SSP configuration */ switch (drv_data->ssp_type) { case QUARK_X1000_SSP: tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); pxa2xx_spi_write(drv_data, SSCR1, tmp); /* Using the Motorola SPI protocol and use 8 bit frame */ tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8); pxa2xx_spi_write(drv_data, SSCR0, tmp); break; case CE4100_SSP: tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) | CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT); pxa2xx_spi_write(drv_data, SSCR1, tmp); tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); pxa2xx_spi_write(drv_data, SSCR0, tmp); break; default: if (spi_controller_is_target(controller)) { tmp = SSCR1_SCFR | SSCR1_SCLKDIR | SSCR1_SFRMDIR | SSCR1_RxTresh(2) | SSCR1_TxTresh(1) | SSCR1_SPH; } else { tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT); } pxa2xx_spi_write(drv_data, SSCR1, tmp); tmp = SSCR0_Motorola | SSCR0_DataSize(8); if (!spi_controller_is_target(controller)) tmp |= SSCR0_SCR(2); pxa2xx_spi_write(drv_data, SSCR0, tmp); break; } if (!pxa25x_ssp_comp(drv_data)) pxa2xx_spi_write(drv_data, SSTO, 0); if (!is_quark_x1000_ssp(drv_data)) pxa2xx_spi_write(drv_data, SSPSP, 0); if (is_lpss_ssp(drv_data)) { lpss_ssp_setup(drv_data); config = lpss_get_config(drv_data); if (config->reg_capabilities >= 0) { tmp = __lpss_ssp_read_priv(drv_data, config->reg_capabilities); tmp &= LPSS_CAPS_CS_EN_MASK; tmp >>= LPSS_CAPS_CS_EN_SHIFT; platform_info->num_chipselect = ffz(tmp); } } controller->num_chipselect = platform_info->num_chipselect; controller->use_gpio_descriptors = true; if (platform_info->is_target) { drv_data->gpiod_ready = devm_gpiod_get_optional(dev, "ready", GPIOD_OUT_LOW); if (IS_ERR(drv_data->gpiod_ready)) { status = PTR_ERR(drv_data->gpiod_ready); goto out_error_clock_enabled; } } /* Register with the SPI framework */ dev_set_drvdata(dev, drv_data); status = spi_register_controller(controller); if (status) { dev_err_probe(dev, status, "problem registering SPI controller\n"); goto out_error_clock_enabled; } return status; out_error_clock_enabled: clk_disable_unprepare(ssp->clk); out_error_dma_irq_alloc: pxa2xx_spi_dma_release(drv_data); free_irq(ssp->irq, drv_data); return status; } EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_probe, SPI_PXA2xx); void pxa2xx_spi_remove(struct device *dev) { struct driver_data *drv_data = dev_get_drvdata(dev); struct ssp_device *ssp = drv_data->ssp; spi_unregister_controller(drv_data->controller); /* Disable the SSP at the peripheral and SOC level */ pxa_ssp_disable(ssp); clk_disable_unprepare(ssp->clk); /* Release DMA */ if (drv_data->controller_info->enable_dma) pxa2xx_spi_dma_release(drv_data); /* Release IRQ */ free_irq(ssp->irq, drv_data); } EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_remove, SPI_PXA2xx); static int pxa2xx_spi_suspend(struct device *dev) { struct driver_data *drv_data = dev_get_drvdata(dev); struct ssp_device *ssp = drv_data->ssp; int status; status = spi_controller_suspend(drv_data->controller); if (status) return status; pxa_ssp_disable(ssp); if (!pm_runtime_suspended(dev)) clk_disable_unprepare(ssp->clk); return 0; } static int pxa2xx_spi_resume(struct device *dev) { struct driver_data *drv_data = dev_get_drvdata(dev); struct ssp_device *ssp = drv_data->ssp; int status; /* Enable the SSP clock */ if (!pm_runtime_suspended(dev)) { status = clk_prepare_enable(ssp->clk); if (status) return status; } /* Start the queue running */ return spi_controller_resume(drv_data->controller); } static int pxa2xx_spi_runtime_suspend(struct device *dev) { struct driver_data *drv_data = dev_get_drvdata(dev); clk_disable_unprepare(drv_data->ssp->clk); return 0; } static int pxa2xx_spi_runtime_resume(struct device *dev) { struct driver_data *drv_data = dev_get_drvdata(dev); return clk_prepare_enable(drv_data->ssp->clk); } EXPORT_NS_GPL_DEV_PM_OPS(pxa2xx_spi_pm_ops, SPI_PXA2xx) = { SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL) }; MODULE_AUTHOR("Stephen Street"); MODULE_DESCRIPTION("PXA2xx SSP SPI Controller core driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1