Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ivan T. Ivanov | 2858 | 46.43% | 3 | 6.12% |
Varadarajan Narayanan | 1412 | 22.94% | 14 | 28.57% |
Andy Gross | 1223 | 19.87% | 5 | 10.20% |
Stephan Gerhold | 273 | 4.43% | 3 | 6.12% |
Jorge Ramirez-Ortiz | 144 | 2.34% | 1 | 2.04% |
Yang Yingliang | 117 | 1.90% | 1 | 2.04% |
Uwe Kleine-König | 40 | 0.65% | 2 | 4.08% |
Xu Qiang | 23 | 0.37% | 2 | 4.08% |
Axel Lin | 15 | 0.24% | 4 | 8.16% |
Robert Marko | 10 | 0.16% | 1 | 2.04% |
Yuji Sasaki | 8 | 0.13% | 1 | 2.04% |
Sudeep Holla | 6 | 0.10% | 1 | 2.04% |
Arnd Bergmann | 5 | 0.08% | 2 | 4.08% |
Jeff Johnson | 5 | 0.08% | 1 | 2.04% |
Pramod Gurav | 3 | 0.05% | 1 | 2.04% |
Md Sadre Alam | 3 | 0.05% | 1 | 2.04% |
Rafael J. Wysocki | 2 | 0.03% | 1 | 2.04% |
Xingbang Liu | 2 | 0.03% | 1 | 2.04% |
Peter Ujfalusi | 2 | 0.03% | 1 | 2.04% |
Andy Shevchenko | 2 | 0.03% | 1 | 2.04% |
Thomas Gleixner | 2 | 0.03% | 1 | 2.04% |
Jingoo Han | 1 | 0.02% | 1 | 2.04% |
Total | 6156 | 49 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2008-2014, The Linux foundation. All rights reserved. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/err.h> #include <linux/interconnect.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/list.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_opp.h> #include <linux/pm_runtime.h> #include <linux/spi/spi.h> #include "internals.h" #define QUP_CONFIG 0x0000 #define QUP_STATE 0x0004 #define QUP_IO_M_MODES 0x0008 #define QUP_SW_RESET 0x000c #define QUP_OPERATIONAL 0x0018 #define QUP_ERROR_FLAGS 0x001c #define QUP_ERROR_FLAGS_EN 0x0020 #define QUP_OPERATIONAL_MASK 0x0028 #define QUP_HW_VERSION 0x0030 #define QUP_MX_OUTPUT_CNT 0x0100 #define QUP_OUTPUT_FIFO 0x0110 #define QUP_MX_WRITE_CNT 0x0150 #define QUP_MX_INPUT_CNT 0x0200 #define QUP_MX_READ_CNT 0x0208 #define QUP_INPUT_FIFO 0x0218 #define SPI_CONFIG 0x0300 #define SPI_IO_CONTROL 0x0304 #define SPI_ERROR_FLAGS 0x0308 #define SPI_ERROR_FLAGS_EN 0x030c /* QUP_CONFIG fields */ #define QUP_CONFIG_SPI_MODE (1 << 8) #define QUP_CONFIG_CLOCK_AUTO_GATE BIT(13) #define QUP_CONFIG_NO_INPUT BIT(7) #define QUP_CONFIG_NO_OUTPUT BIT(6) #define QUP_CONFIG_N 0x001f /* QUP_STATE fields */ #define QUP_STATE_VALID BIT(2) #define QUP_STATE_RESET 0 #define QUP_STATE_RUN 1 #define QUP_STATE_PAUSE 3 #define QUP_STATE_MASK 3 #define QUP_STATE_CLEAR 2 #define QUP_HW_VERSION_2_1_1 0x20010001 /* QUP_IO_M_MODES fields */ #define QUP_IO_M_PACK_EN BIT(15) #define QUP_IO_M_UNPACK_EN BIT(14) #define QUP_IO_M_INPUT_MODE_MASK_SHIFT 12 #define QUP_IO_M_OUTPUT_MODE_MASK_SHIFT 10 #define QUP_IO_M_INPUT_MODE_MASK (3 << QUP_IO_M_INPUT_MODE_MASK_SHIFT) #define QUP_IO_M_OUTPUT_MODE_MASK (3 << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT) #define QUP_IO_M_OUTPUT_BLOCK_SIZE(x) (((x) & (0x03 << 0)) >> 0) #define QUP_IO_M_OUTPUT_FIFO_SIZE(x) (((x) & (0x07 << 2)) >> 2) #define QUP_IO_M_INPUT_BLOCK_SIZE(x) (((x) & (0x03 << 5)) >> 5) #define QUP_IO_M_INPUT_FIFO_SIZE(x) (((x) & (0x07 << 7)) >> 7) #define QUP_IO_M_MODE_FIFO 0 #define QUP_IO_M_MODE_BLOCK 1 #define QUP_IO_M_MODE_DMOV 2 #define QUP_IO_M_MODE_BAM 3 /* QUP_OPERATIONAL fields */ #define QUP_OP_IN_BLOCK_READ_REQ BIT(13) #define QUP_OP_OUT_BLOCK_WRITE_REQ BIT(12) #define QUP_OP_MAX_INPUT_DONE_FLAG BIT(11) #define QUP_OP_MAX_OUTPUT_DONE_FLAG BIT(10) #define QUP_OP_IN_SERVICE_FLAG BIT(9) #define QUP_OP_OUT_SERVICE_FLAG BIT(8) #define QUP_OP_IN_FIFO_FULL BIT(7) #define QUP_OP_OUT_FIFO_FULL BIT(6) #define QUP_OP_IN_FIFO_NOT_EMPTY BIT(5) #define QUP_OP_OUT_FIFO_NOT_EMPTY BIT(4) /* QUP_ERROR_FLAGS and QUP_ERROR_FLAGS_EN fields */ #define QUP_ERROR_OUTPUT_OVER_RUN BIT(5) #define QUP_ERROR_INPUT_UNDER_RUN BIT(4) #define QUP_ERROR_OUTPUT_UNDER_RUN BIT(3) #define QUP_ERROR_INPUT_OVER_RUN BIT(2) /* SPI_CONFIG fields */ #define SPI_CONFIG_HS_MODE BIT(10) #define SPI_CONFIG_INPUT_FIRST BIT(9) #define SPI_CONFIG_LOOPBACK BIT(8) /* SPI_IO_CONTROL fields */ #define SPI_IO_C_FORCE_CS BIT(11) #define SPI_IO_C_CLK_IDLE_HIGH BIT(10) #define SPI_IO_C_MX_CS_MODE BIT(8) #define SPI_IO_C_CS_N_POLARITY_0 BIT(4) #define SPI_IO_C_CS_SELECT(x) (((x) & 3) << 2) #define SPI_IO_C_CS_SELECT_MASK 0x000c #define SPI_IO_C_TRISTATE_CS BIT(1) #define SPI_IO_C_NO_TRI_STATE BIT(0) /* SPI_ERROR_FLAGS and SPI_ERROR_FLAGS_EN fields */ #define SPI_ERROR_CLK_OVER_RUN BIT(1) #define SPI_ERROR_CLK_UNDER_RUN BIT(0) #define SPI_NUM_CHIPSELECTS 4 #define SPI_MAX_XFER (SZ_64K - 64) /* high speed mode is when bus rate is greater then 26MHz */ #define SPI_HS_MIN_RATE 26000000 #define SPI_MAX_RATE 50000000 #define SPI_DELAY_THRESHOLD 1 #define SPI_DELAY_RETRY 10 #define SPI_BUS_WIDTH 8 struct spi_qup { void __iomem *base; struct device *dev; struct clk *cclk; /* core clock */ struct clk *iclk; /* interface clock */ struct icc_path *icc_path; /* interconnect to RAM */ int irq; spinlock_t lock; int in_fifo_sz; int out_fifo_sz; int in_blk_sz; int out_blk_sz; struct spi_transfer *xfer; struct completion done; int error; int w_size; /* bytes per SPI word */ int n_words; int tx_bytes; int rx_bytes; const u8 *tx_buf; u8 *rx_buf; int qup_v1; int mode; struct dma_slave_config rx_conf; struct dma_slave_config tx_conf; u32 bw_speed_hz; }; static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer); static inline bool spi_qup_is_flag_set(struct spi_qup *controller, u32 flag) { u32 opflag = readl_relaxed(controller->base + QUP_OPERATIONAL); return (opflag & flag) != 0; } static inline bool spi_qup_is_dma_xfer(int mode) { if (mode == QUP_IO_M_MODE_DMOV || mode == QUP_IO_M_MODE_BAM) return true; return false; } /* get's the transaction size length */ static inline unsigned int spi_qup_len(struct spi_qup *controller) { return controller->n_words * controller->w_size; } static inline bool spi_qup_is_valid_state(struct spi_qup *controller) { u32 opstate = readl_relaxed(controller->base + QUP_STATE); return opstate & QUP_STATE_VALID; } static int spi_qup_vote_bw(struct spi_qup *controller, u32 speed_hz) { u32 needed_peak_bw; int ret; if (controller->bw_speed_hz == speed_hz) return 0; needed_peak_bw = Bps_to_icc(speed_hz * SPI_BUS_WIDTH); ret = icc_set_bw(controller->icc_path, 0, needed_peak_bw); if (ret) return ret; controller->bw_speed_hz = speed_hz; return 0; } static int spi_qup_set_state(struct spi_qup *controller, u32 state) { unsigned long loop; u32 cur_state; loop = 0; while (!spi_qup_is_valid_state(controller)) { usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2); if (++loop > SPI_DELAY_RETRY) return -EIO; } if (loop) dev_dbg(controller->dev, "invalid state for %ld,us %d\n", loop, state); cur_state = readl_relaxed(controller->base + QUP_STATE); /* * Per spec: for PAUSE_STATE to RESET_STATE, two writes * of (b10) are required */ if (((cur_state & QUP_STATE_MASK) == QUP_STATE_PAUSE) && (state == QUP_STATE_RESET)) { writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE); writel_relaxed(QUP_STATE_CLEAR, controller->base + QUP_STATE); } else { cur_state &= ~QUP_STATE_MASK; cur_state |= state; writel_relaxed(cur_state, controller->base + QUP_STATE); } loop = 0; while (!spi_qup_is_valid_state(controller)) { usleep_range(SPI_DELAY_THRESHOLD, SPI_DELAY_THRESHOLD * 2); if (++loop > SPI_DELAY_RETRY) return -EIO; } return 0; } static void spi_qup_read_from_fifo(struct spi_qup *controller, u32 num_words) { u8 *rx_buf = controller->rx_buf; int i, shift, num_bytes; u32 word; for (; num_words; num_words--) { word = readl_relaxed(controller->base + QUP_INPUT_FIFO); num_bytes = min_t(int, spi_qup_len(controller) - controller->rx_bytes, controller->w_size); if (!rx_buf) { controller->rx_bytes += num_bytes; continue; } for (i = 0; i < num_bytes; i++, controller->rx_bytes++) { /* * The data format depends on bytes per SPI word: * 4 bytes: 0x12345678 * 2 bytes: 0x00001234 * 1 byte : 0x00000012 */ shift = BITS_PER_BYTE; shift *= (controller->w_size - i - 1); rx_buf[controller->rx_bytes] = word >> shift; } } } static void spi_qup_read(struct spi_qup *controller, u32 *opflags) { u32 remainder, words_per_block, num_words; bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK; remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->rx_bytes, controller->w_size); words_per_block = controller->in_blk_sz >> 2; do { /* ACK by clearing service flag */ writel_relaxed(QUP_OP_IN_SERVICE_FLAG, controller->base + QUP_OPERATIONAL); if (!remainder) goto exit; if (is_block_mode) { num_words = (remainder > words_per_block) ? words_per_block : remainder; } else { if (!spi_qup_is_flag_set(controller, QUP_OP_IN_FIFO_NOT_EMPTY)) break; num_words = 1; } /* read up to the maximum transfer size available */ spi_qup_read_from_fifo(controller, num_words); remainder -= num_words; /* if block mode, check to see if next block is available */ if (is_block_mode && !spi_qup_is_flag_set(controller, QUP_OP_IN_BLOCK_READ_REQ)) break; } while (remainder); /* * Due to extra stickiness of the QUP_OP_IN_SERVICE_FLAG during block * reads, it has to be cleared again at the very end. However, be sure * to refresh opflags value because MAX_INPUT_DONE_FLAG may now be * present and this is used to determine if transaction is complete */ exit: if (!remainder) { *opflags = readl_relaxed(controller->base + QUP_OPERATIONAL); if (is_block_mode && *opflags & QUP_OP_MAX_INPUT_DONE_FLAG) writel_relaxed(QUP_OP_IN_SERVICE_FLAG, controller->base + QUP_OPERATIONAL); } } static void spi_qup_write_to_fifo(struct spi_qup *controller, u32 num_words) { const u8 *tx_buf = controller->tx_buf; int i, num_bytes; u32 word, data; for (; num_words; num_words--) { word = 0; num_bytes = min_t(int, spi_qup_len(controller) - controller->tx_bytes, controller->w_size); if (tx_buf) for (i = 0; i < num_bytes; i++) { data = tx_buf[controller->tx_bytes + i]; word |= data << (BITS_PER_BYTE * (3 - i)); } controller->tx_bytes += num_bytes; writel_relaxed(word, controller->base + QUP_OUTPUT_FIFO); } } static void spi_qup_dma_done(void *data) { struct spi_qup *qup = data; complete(&qup->done); } static void spi_qup_write(struct spi_qup *controller) { bool is_block_mode = controller->mode == QUP_IO_M_MODE_BLOCK; u32 remainder, words_per_block, num_words; remainder = DIV_ROUND_UP(spi_qup_len(controller) - controller->tx_bytes, controller->w_size); words_per_block = controller->out_blk_sz >> 2; do { /* ACK by clearing service flag */ writel_relaxed(QUP_OP_OUT_SERVICE_FLAG, controller->base + QUP_OPERATIONAL); /* make sure the interrupt is valid */ if (!remainder) return; if (is_block_mode) { num_words = (remainder > words_per_block) ? words_per_block : remainder; } else { if (spi_qup_is_flag_set(controller, QUP_OP_OUT_FIFO_FULL)) break; num_words = 1; } spi_qup_write_to_fifo(controller, num_words); remainder -= num_words; /* if block mode, check to see if next block is available */ if (is_block_mode && !spi_qup_is_flag_set(controller, QUP_OP_OUT_BLOCK_WRITE_REQ)) break; } while (remainder); } static int spi_qup_prep_sg(struct spi_controller *host, struct scatterlist *sgl, unsigned int nents, enum dma_transfer_direction dir, dma_async_tx_callback callback) { struct spi_qup *qup = spi_controller_get_devdata(host); unsigned long flags = DMA_PREP_INTERRUPT | DMA_PREP_FENCE; struct dma_async_tx_descriptor *desc; struct dma_chan *chan; dma_cookie_t cookie; if (dir == DMA_MEM_TO_DEV) chan = host->dma_tx; else chan = host->dma_rx; desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags); if (IS_ERR_OR_NULL(desc)) return desc ? PTR_ERR(desc) : -EINVAL; desc->callback = callback; desc->callback_param = qup; cookie = dmaengine_submit(desc); return dma_submit_error(cookie); } static void spi_qup_dma_terminate(struct spi_controller *host, struct spi_transfer *xfer) { if (xfer->tx_buf) dmaengine_terminate_all(host->dma_tx); if (xfer->rx_buf) dmaengine_terminate_all(host->dma_rx); } static u32 spi_qup_sgl_get_nents_len(struct scatterlist *sgl, u32 max, u32 *nents) { struct scatterlist *sg; u32 total = 0; for (sg = sgl; sg; sg = sg_next(sg)) { unsigned int len = sg_dma_len(sg); /* check for overflow as well as limit */ if (((total + len) < total) || ((total + len) > max)) break; total += len; (*nents)++; } return total; } static int spi_qup_do_dma(struct spi_device *spi, struct spi_transfer *xfer, unsigned long timeout) { dma_async_tx_callback rx_done = NULL, tx_done = NULL; struct spi_controller *host = spi->controller; struct spi_qup *qup = spi_controller_get_devdata(host); struct scatterlist *tx_sgl, *rx_sgl; int ret; ret = spi_qup_vote_bw(qup, xfer->speed_hz); if (ret) { dev_err(qup->dev, "fail to vote for ICC bandwidth: %d\n", ret); return -EIO; } if (xfer->rx_buf) rx_done = spi_qup_dma_done; else if (xfer->tx_buf) tx_done = spi_qup_dma_done; rx_sgl = xfer->rx_sg.sgl; tx_sgl = xfer->tx_sg.sgl; do { u32 rx_nents = 0, tx_nents = 0; if (rx_sgl) qup->n_words = spi_qup_sgl_get_nents_len(rx_sgl, SPI_MAX_XFER, &rx_nents) / qup->w_size; if (tx_sgl) qup->n_words = spi_qup_sgl_get_nents_len(tx_sgl, SPI_MAX_XFER, &tx_nents) / qup->w_size; if (!qup->n_words) return -EIO; ret = spi_qup_io_config(spi, xfer); if (ret) return ret; /* before issuing the descriptors, set the QUP to run */ ret = spi_qup_set_state(qup, QUP_STATE_RUN); if (ret) { dev_warn(qup->dev, "cannot set RUN state\n"); return ret; } if (rx_sgl) { ret = spi_qup_prep_sg(host, rx_sgl, rx_nents, DMA_DEV_TO_MEM, rx_done); if (ret) return ret; dma_async_issue_pending(host->dma_rx); } if (tx_sgl) { ret = spi_qup_prep_sg(host, tx_sgl, tx_nents, DMA_MEM_TO_DEV, tx_done); if (ret) return ret; dma_async_issue_pending(host->dma_tx); } if (!wait_for_completion_timeout(&qup->done, timeout)) return -ETIMEDOUT; for (; rx_sgl && rx_nents--; rx_sgl = sg_next(rx_sgl)) ; for (; tx_sgl && tx_nents--; tx_sgl = sg_next(tx_sgl)) ; } while (rx_sgl || tx_sgl); return 0; } static int spi_qup_do_pio(struct spi_device *spi, struct spi_transfer *xfer, unsigned long timeout) { struct spi_controller *host = spi->controller; struct spi_qup *qup = spi_controller_get_devdata(host); int ret, n_words, iterations, offset = 0; n_words = qup->n_words; iterations = n_words / SPI_MAX_XFER; /* round down */ qup->rx_buf = xfer->rx_buf; qup->tx_buf = xfer->tx_buf; do { if (iterations) qup->n_words = SPI_MAX_XFER; else qup->n_words = n_words % SPI_MAX_XFER; if (qup->tx_buf && offset) qup->tx_buf = xfer->tx_buf + offset * SPI_MAX_XFER; if (qup->rx_buf && offset) qup->rx_buf = xfer->rx_buf + offset * SPI_MAX_XFER; /* * if the transaction is small enough, we need * to fallback to FIFO mode */ if (qup->n_words <= (qup->in_fifo_sz / sizeof(u32))) qup->mode = QUP_IO_M_MODE_FIFO; ret = spi_qup_io_config(spi, xfer); if (ret) return ret; ret = spi_qup_set_state(qup, QUP_STATE_RUN); if (ret) { dev_warn(qup->dev, "cannot set RUN state\n"); return ret; } ret = spi_qup_set_state(qup, QUP_STATE_PAUSE); if (ret) { dev_warn(qup->dev, "cannot set PAUSE state\n"); return ret; } if (qup->mode == QUP_IO_M_MODE_FIFO) spi_qup_write(qup); ret = spi_qup_set_state(qup, QUP_STATE_RUN); if (ret) { dev_warn(qup->dev, "cannot set RUN state\n"); return ret; } if (!wait_for_completion_timeout(&qup->done, timeout)) return -ETIMEDOUT; offset++; } while (iterations--); return 0; } static bool spi_qup_data_pending(struct spi_qup *controller) { unsigned int remainder_tx, remainder_rx; remainder_tx = DIV_ROUND_UP(spi_qup_len(controller) - controller->tx_bytes, controller->w_size); remainder_rx = DIV_ROUND_UP(spi_qup_len(controller) - controller->rx_bytes, controller->w_size); return remainder_tx || remainder_rx; } static irqreturn_t spi_qup_qup_irq(int irq, void *dev_id) { struct spi_qup *controller = dev_id; u32 opflags, qup_err, spi_err; int error = 0; qup_err = readl_relaxed(controller->base + QUP_ERROR_FLAGS); spi_err = readl_relaxed(controller->base + SPI_ERROR_FLAGS); opflags = readl_relaxed(controller->base + QUP_OPERATIONAL); writel_relaxed(qup_err, controller->base + QUP_ERROR_FLAGS); writel_relaxed(spi_err, controller->base + SPI_ERROR_FLAGS); if (qup_err) { if (qup_err & QUP_ERROR_OUTPUT_OVER_RUN) dev_warn(controller->dev, "OUTPUT_OVER_RUN\n"); if (qup_err & QUP_ERROR_INPUT_UNDER_RUN) dev_warn(controller->dev, "INPUT_UNDER_RUN\n"); if (qup_err & QUP_ERROR_OUTPUT_UNDER_RUN) dev_warn(controller->dev, "OUTPUT_UNDER_RUN\n"); if (qup_err & QUP_ERROR_INPUT_OVER_RUN) dev_warn(controller->dev, "INPUT_OVER_RUN\n"); error = -EIO; } if (spi_err) { if (spi_err & SPI_ERROR_CLK_OVER_RUN) dev_warn(controller->dev, "CLK_OVER_RUN\n"); if (spi_err & SPI_ERROR_CLK_UNDER_RUN) dev_warn(controller->dev, "CLK_UNDER_RUN\n"); error = -EIO; } spin_lock(&controller->lock); if (!controller->error) controller->error = error; spin_unlock(&controller->lock); if (spi_qup_is_dma_xfer(controller->mode)) { writel_relaxed(opflags, controller->base + QUP_OPERATIONAL); } else { if (opflags & QUP_OP_IN_SERVICE_FLAG) spi_qup_read(controller, &opflags); if (opflags & QUP_OP_OUT_SERVICE_FLAG) spi_qup_write(controller); if (!spi_qup_data_pending(controller)) complete(&controller->done); } if (error) complete(&controller->done); if (opflags & QUP_OP_MAX_INPUT_DONE_FLAG) { if (!spi_qup_is_dma_xfer(controller->mode)) { if (spi_qup_data_pending(controller)) return IRQ_HANDLED; } complete(&controller->done); } return IRQ_HANDLED; } /* set clock freq ... bits per word, determine mode */ static int spi_qup_io_prep(struct spi_device *spi, struct spi_transfer *xfer) { struct spi_qup *controller = spi_controller_get_devdata(spi->controller); int ret; if (spi->mode & SPI_LOOP && xfer->len > controller->in_fifo_sz) { dev_err(controller->dev, "too big size for loopback %d > %d\n", xfer->len, controller->in_fifo_sz); return -EIO; } ret = dev_pm_opp_set_rate(controller->dev, xfer->speed_hz); if (ret) { dev_err(controller->dev, "fail to set frequency %d", xfer->speed_hz); return -EIO; } controller->w_size = DIV_ROUND_UP(xfer->bits_per_word, 8); controller->n_words = xfer->len / controller->w_size; if (controller->n_words <= (controller->in_fifo_sz / sizeof(u32))) controller->mode = QUP_IO_M_MODE_FIFO; else if (spi_xfer_is_dma_mapped(spi->controller, spi, xfer)) controller->mode = QUP_IO_M_MODE_BAM; else controller->mode = QUP_IO_M_MODE_BLOCK; return 0; } /* prep qup for another spi transaction of specific type */ static int spi_qup_io_config(struct spi_device *spi, struct spi_transfer *xfer) { struct spi_qup *controller = spi_controller_get_devdata(spi->controller); u32 config, iomode, control; unsigned long flags; spin_lock_irqsave(&controller->lock, flags); controller->xfer = xfer; controller->error = 0; controller->rx_bytes = 0; controller->tx_bytes = 0; spin_unlock_irqrestore(&controller->lock, flags); if (spi_qup_set_state(controller, QUP_STATE_RESET)) { dev_err(controller->dev, "cannot set RESET state\n"); return -EIO; } switch (controller->mode) { case QUP_IO_M_MODE_FIFO: writel_relaxed(controller->n_words, controller->base + QUP_MX_READ_CNT); writel_relaxed(controller->n_words, controller->base + QUP_MX_WRITE_CNT); /* must be zero for FIFO */ writel_relaxed(0, controller->base + QUP_MX_INPUT_CNT); writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT); break; case QUP_IO_M_MODE_BAM: writel_relaxed(controller->n_words, controller->base + QUP_MX_INPUT_CNT); writel_relaxed(controller->n_words, controller->base + QUP_MX_OUTPUT_CNT); /* must be zero for BLOCK and BAM */ writel_relaxed(0, controller->base + QUP_MX_READ_CNT); writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT); if (!controller->qup_v1) { void __iomem *input_cnt; input_cnt = controller->base + QUP_MX_INPUT_CNT; /* * for DMA transfers, both QUP_MX_INPUT_CNT and * QUP_MX_OUTPUT_CNT must be zero to all cases but one. * That case is a non-balanced transfer when there is * only a rx_buf. */ if (xfer->tx_buf) writel_relaxed(0, input_cnt); else writel_relaxed(controller->n_words, input_cnt); writel_relaxed(0, controller->base + QUP_MX_OUTPUT_CNT); } break; case QUP_IO_M_MODE_BLOCK: reinit_completion(&controller->done); writel_relaxed(controller->n_words, controller->base + QUP_MX_INPUT_CNT); writel_relaxed(controller->n_words, controller->base + QUP_MX_OUTPUT_CNT); /* must be zero for BLOCK and BAM */ writel_relaxed(0, controller->base + QUP_MX_READ_CNT); writel_relaxed(0, controller->base + QUP_MX_WRITE_CNT); break; default: dev_err(controller->dev, "unknown mode = %d\n", controller->mode); return -EIO; } iomode = readl_relaxed(controller->base + QUP_IO_M_MODES); /* Set input and output transfer mode */ iomode &= ~(QUP_IO_M_INPUT_MODE_MASK | QUP_IO_M_OUTPUT_MODE_MASK); if (!spi_qup_is_dma_xfer(controller->mode)) iomode &= ~(QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN); else iomode |= QUP_IO_M_PACK_EN | QUP_IO_M_UNPACK_EN; iomode |= (controller->mode << QUP_IO_M_OUTPUT_MODE_MASK_SHIFT); iomode |= (controller->mode << QUP_IO_M_INPUT_MODE_MASK_SHIFT); writel_relaxed(iomode, controller->base + QUP_IO_M_MODES); control = readl_relaxed(controller->base + SPI_IO_CONTROL); if (spi->mode & SPI_CPOL) control |= SPI_IO_C_CLK_IDLE_HIGH; else control &= ~SPI_IO_C_CLK_IDLE_HIGH; writel_relaxed(control, controller->base + SPI_IO_CONTROL); config = readl_relaxed(controller->base + SPI_CONFIG); if (spi->mode & SPI_LOOP) config |= SPI_CONFIG_LOOPBACK; else config &= ~SPI_CONFIG_LOOPBACK; if (spi->mode & SPI_CPHA) config &= ~SPI_CONFIG_INPUT_FIRST; else config |= SPI_CONFIG_INPUT_FIRST; /* * HS_MODE improves signal stability for spi-clk high rates, * but is invalid in loop back mode. */ if ((xfer->speed_hz >= SPI_HS_MIN_RATE) && !(spi->mode & SPI_LOOP)) config |= SPI_CONFIG_HS_MODE; else config &= ~SPI_CONFIG_HS_MODE; writel_relaxed(config, controller->base + SPI_CONFIG); config = readl_relaxed(controller->base + QUP_CONFIG); config &= ~(QUP_CONFIG_NO_INPUT | QUP_CONFIG_NO_OUTPUT | QUP_CONFIG_N); config |= xfer->bits_per_word - 1; config |= QUP_CONFIG_SPI_MODE; if (spi_qup_is_dma_xfer(controller->mode)) { if (!xfer->tx_buf) config |= QUP_CONFIG_NO_OUTPUT; if (!xfer->rx_buf) config |= QUP_CONFIG_NO_INPUT; } writel_relaxed(config, controller->base + QUP_CONFIG); /* only write to OPERATIONAL_MASK when register is present */ if (!controller->qup_v1) { u32 mask = 0; /* * mask INPUT and OUTPUT service flags to prevent IRQs on FIFO * status change in BAM mode */ if (spi_qup_is_dma_xfer(controller->mode)) mask = QUP_OP_IN_SERVICE_FLAG | QUP_OP_OUT_SERVICE_FLAG; writel_relaxed(mask, controller->base + QUP_OPERATIONAL_MASK); } return 0; } static int spi_qup_transfer_one(struct spi_controller *host, struct spi_device *spi, struct spi_transfer *xfer) { struct spi_qup *controller = spi_controller_get_devdata(host); unsigned long timeout, flags; int ret; ret = spi_qup_io_prep(spi, xfer); if (ret) return ret; timeout = DIV_ROUND_UP(xfer->speed_hz, MSEC_PER_SEC); timeout = DIV_ROUND_UP(min_t(unsigned long, SPI_MAX_XFER, xfer->len) * 8, timeout); timeout = 100 * msecs_to_jiffies(timeout); reinit_completion(&controller->done); spin_lock_irqsave(&controller->lock, flags); controller->xfer = xfer; controller->error = 0; controller->rx_bytes = 0; controller->tx_bytes = 0; spin_unlock_irqrestore(&controller->lock, flags); if (spi_qup_is_dma_xfer(controller->mode)) ret = spi_qup_do_dma(spi, xfer, timeout); else ret = spi_qup_do_pio(spi, xfer, timeout); spi_qup_set_state(controller, QUP_STATE_RESET); spin_lock_irqsave(&controller->lock, flags); if (!ret) ret = controller->error; spin_unlock_irqrestore(&controller->lock, flags); if (ret && spi_qup_is_dma_xfer(controller->mode)) spi_qup_dma_terminate(host, xfer); return ret; } static bool spi_qup_can_dma(struct spi_controller *host, struct spi_device *spi, struct spi_transfer *xfer) { struct spi_qup *qup = spi_controller_get_devdata(host); size_t dma_align = dma_get_cache_alignment(); int n_words; if (xfer->rx_buf) { if (!IS_ALIGNED((size_t)xfer->rx_buf, dma_align) || IS_ERR_OR_NULL(host->dma_rx)) return false; if (qup->qup_v1 && (xfer->len % qup->in_blk_sz)) return false; } if (xfer->tx_buf) { if (!IS_ALIGNED((size_t)xfer->tx_buf, dma_align) || IS_ERR_OR_NULL(host->dma_tx)) return false; if (qup->qup_v1 && (xfer->len % qup->out_blk_sz)) return false; } n_words = xfer->len / DIV_ROUND_UP(xfer->bits_per_word, 8); if (n_words <= (qup->in_fifo_sz / sizeof(u32))) return false; return true; } static void spi_qup_release_dma(struct spi_controller *host) { if (!IS_ERR_OR_NULL(host->dma_rx)) dma_release_channel(host->dma_rx); if (!IS_ERR_OR_NULL(host->dma_tx)) dma_release_channel(host->dma_tx); } static int spi_qup_init_dma(struct spi_controller *host, resource_size_t base) { struct spi_qup *spi = spi_controller_get_devdata(host); struct dma_slave_config *rx_conf = &spi->rx_conf, *tx_conf = &spi->tx_conf; struct device *dev = spi->dev; int ret; /* allocate dma resources, if available */ host->dma_rx = dma_request_chan(dev, "rx"); if (IS_ERR(host->dma_rx)) return PTR_ERR(host->dma_rx); host->dma_tx = dma_request_chan(dev, "tx"); if (IS_ERR(host->dma_tx)) { ret = PTR_ERR(host->dma_tx); goto err_tx; } /* set DMA parameters */ rx_conf->direction = DMA_DEV_TO_MEM; rx_conf->device_fc = 1; rx_conf->src_addr = base + QUP_INPUT_FIFO; rx_conf->src_maxburst = spi->in_blk_sz; tx_conf->direction = DMA_MEM_TO_DEV; tx_conf->device_fc = 1; tx_conf->dst_addr = base + QUP_OUTPUT_FIFO; tx_conf->dst_maxburst = spi->out_blk_sz; ret = dmaengine_slave_config(host->dma_rx, rx_conf); if (ret) { dev_err(dev, "failed to configure RX channel\n"); goto err; } ret = dmaengine_slave_config(host->dma_tx, tx_conf); if (ret) { dev_err(dev, "failed to configure TX channel\n"); goto err; } return 0; err: dma_release_channel(host->dma_tx); err_tx: dma_release_channel(host->dma_rx); return ret; } static void spi_qup_set_cs(struct spi_device *spi, bool val) { struct spi_qup *controller; u32 spi_ioc; u32 spi_ioc_orig; controller = spi_controller_get_devdata(spi->controller); spi_ioc = readl_relaxed(controller->base + SPI_IO_CONTROL); spi_ioc_orig = spi_ioc; if (!val) spi_ioc |= SPI_IO_C_FORCE_CS; else spi_ioc &= ~SPI_IO_C_FORCE_CS; if (spi_ioc != spi_ioc_orig) writel_relaxed(spi_ioc, controller->base + SPI_IO_CONTROL); } static int spi_qup_probe(struct platform_device *pdev) { struct spi_controller *host; struct icc_path *icc_path; struct clk *iclk, *cclk; struct spi_qup *controller; struct resource *res; struct device *dev; void __iomem *base; u32 max_freq, iomode, num_cs; int ret, irq, size; dev = &pdev->dev; base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(base)) return PTR_ERR(base); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; cclk = devm_clk_get(dev, "core"); if (IS_ERR(cclk)) return PTR_ERR(cclk); iclk = devm_clk_get(dev, "iface"); if (IS_ERR(iclk)) return PTR_ERR(iclk); icc_path = devm_of_icc_get(dev, NULL); if (IS_ERR(icc_path)) return dev_err_probe(dev, PTR_ERR(icc_path), "failed to get interconnect path\n"); /* This is optional parameter */ if (of_property_read_u32(dev->of_node, "spi-max-frequency", &max_freq)) max_freq = SPI_MAX_RATE; if (!max_freq || max_freq > SPI_MAX_RATE) { dev_err(dev, "invalid clock frequency %d\n", max_freq); return -ENXIO; } ret = devm_pm_opp_set_clkname(dev, "core"); if (ret) return ret; /* OPP table is optional */ ret = devm_pm_opp_of_add_table(dev); if (ret && ret != -ENODEV) return dev_err_probe(dev, ret, "invalid OPP table\n"); host = spi_alloc_host(dev, sizeof(struct spi_qup)); if (!host) { dev_err(dev, "cannot allocate host\n"); return -ENOMEM; } /* use num-cs unless not present or out of range */ if (of_property_read_u32(dev->of_node, "num-cs", &num_cs) || num_cs > SPI_NUM_CHIPSELECTS) host->num_chipselect = SPI_NUM_CHIPSELECTS; else host->num_chipselect = num_cs; host->use_gpio_descriptors = true; host->max_native_cs = SPI_NUM_CHIPSELECTS; host->bus_num = pdev->id; host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); host->max_speed_hz = max_freq; host->transfer_one = spi_qup_transfer_one; host->dev.of_node = pdev->dev.of_node; host->auto_runtime_pm = true; host->dma_alignment = dma_get_cache_alignment(); host->max_dma_len = SPI_MAX_XFER; platform_set_drvdata(pdev, host); controller = spi_controller_get_devdata(host); controller->dev = dev; controller->base = base; controller->iclk = iclk; controller->cclk = cclk; controller->icc_path = icc_path; controller->irq = irq; ret = spi_qup_init_dma(host, res->start); if (ret == -EPROBE_DEFER) goto error; else if (!ret) host->can_dma = spi_qup_can_dma; controller->qup_v1 = (uintptr_t)of_device_get_match_data(dev); if (!controller->qup_v1) host->set_cs = spi_qup_set_cs; spin_lock_init(&controller->lock); init_completion(&controller->done); ret = clk_prepare_enable(cclk); if (ret) { dev_err(dev, "cannot enable core clock\n"); goto error_dma; } ret = clk_prepare_enable(iclk); if (ret) { clk_disable_unprepare(cclk); dev_err(dev, "cannot enable iface clock\n"); goto error_dma; } iomode = readl_relaxed(base + QUP_IO_M_MODES); size = QUP_IO_M_OUTPUT_BLOCK_SIZE(iomode); if (size) controller->out_blk_sz = size * 16; else controller->out_blk_sz = 4; size = QUP_IO_M_INPUT_BLOCK_SIZE(iomode); if (size) controller->in_blk_sz = size * 16; else controller->in_blk_sz = 4; size = QUP_IO_M_OUTPUT_FIFO_SIZE(iomode); controller->out_fifo_sz = controller->out_blk_sz * (2 << size); size = QUP_IO_M_INPUT_FIFO_SIZE(iomode); controller->in_fifo_sz = controller->in_blk_sz * (2 << size); dev_info(dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n", controller->in_blk_sz, controller->in_fifo_sz, controller->out_blk_sz, controller->out_fifo_sz); writel_relaxed(1, base + QUP_SW_RESET); ret = spi_qup_set_state(controller, QUP_STATE_RESET); if (ret) { dev_err(dev, "cannot set RESET state\n"); goto error_clk; } writel_relaxed(0, base + QUP_OPERATIONAL); writel_relaxed(0, base + QUP_IO_M_MODES); if (!controller->qup_v1) writel_relaxed(0, base + QUP_OPERATIONAL_MASK); writel_relaxed(SPI_ERROR_CLK_UNDER_RUN | SPI_ERROR_CLK_OVER_RUN, base + SPI_ERROR_FLAGS_EN); /* if earlier version of the QUP, disable INPUT_OVERRUN */ if (controller->qup_v1) writel_relaxed(QUP_ERROR_OUTPUT_OVER_RUN | QUP_ERROR_INPUT_UNDER_RUN | QUP_ERROR_OUTPUT_UNDER_RUN, base + QUP_ERROR_FLAGS_EN); writel_relaxed(0, base + SPI_CONFIG); writel_relaxed(SPI_IO_C_NO_TRI_STATE, base + SPI_IO_CONTROL); ret = devm_request_irq(dev, irq, spi_qup_qup_irq, IRQF_TRIGGER_HIGH, pdev->name, controller); if (ret) goto error_clk; pm_runtime_set_autosuspend_delay(dev, MSEC_PER_SEC); pm_runtime_use_autosuspend(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); ret = devm_spi_register_controller(dev, host); if (ret) goto disable_pm; return 0; disable_pm: pm_runtime_disable(&pdev->dev); error_clk: clk_disable_unprepare(cclk); clk_disable_unprepare(iclk); error_dma: spi_qup_release_dma(host); error: spi_controller_put(host); return ret; } #ifdef CONFIG_PM static int spi_qup_pm_suspend_runtime(struct device *device) { struct spi_controller *host = dev_get_drvdata(device); struct spi_qup *controller = spi_controller_get_devdata(host); u32 config; /* Enable clocks auto gaiting */ config = readl(controller->base + QUP_CONFIG); config |= QUP_CONFIG_CLOCK_AUTO_GATE; writel_relaxed(config, controller->base + QUP_CONFIG); clk_disable_unprepare(controller->cclk); spi_qup_vote_bw(controller, 0); clk_disable_unprepare(controller->iclk); return 0; } static int spi_qup_pm_resume_runtime(struct device *device) { struct spi_controller *host = dev_get_drvdata(device); struct spi_qup *controller = spi_controller_get_devdata(host); u32 config; int ret; ret = clk_prepare_enable(controller->iclk); if (ret) return ret; ret = clk_prepare_enable(controller->cclk); if (ret) { clk_disable_unprepare(controller->iclk); return ret; } /* Disable clocks auto gaiting */ config = readl_relaxed(controller->base + QUP_CONFIG); config &= ~QUP_CONFIG_CLOCK_AUTO_GATE; writel_relaxed(config, controller->base + QUP_CONFIG); return 0; } #endif /* CONFIG_PM */ #ifdef CONFIG_PM_SLEEP static int spi_qup_suspend(struct device *device) { struct spi_controller *host = dev_get_drvdata(device); struct spi_qup *controller = spi_controller_get_devdata(host); int ret; if (pm_runtime_suspended(device)) { ret = spi_qup_pm_resume_runtime(device); if (ret) return ret; } ret = spi_controller_suspend(host); if (ret) return ret; ret = spi_qup_set_state(controller, QUP_STATE_RESET); if (ret) return ret; clk_disable_unprepare(controller->cclk); spi_qup_vote_bw(controller, 0); clk_disable_unprepare(controller->iclk); return 0; } static int spi_qup_resume(struct device *device) { struct spi_controller *host = dev_get_drvdata(device); struct spi_qup *controller = spi_controller_get_devdata(host); int ret; ret = clk_prepare_enable(controller->iclk); if (ret) return ret; ret = clk_prepare_enable(controller->cclk); if (ret) { clk_disable_unprepare(controller->iclk); return ret; } ret = spi_qup_set_state(controller, QUP_STATE_RESET); if (ret) goto disable_clk; ret = spi_controller_resume(host); if (ret) goto disable_clk; return 0; disable_clk: clk_disable_unprepare(controller->cclk); clk_disable_unprepare(controller->iclk); return ret; } #endif /* CONFIG_PM_SLEEP */ static void spi_qup_remove(struct platform_device *pdev) { struct spi_controller *host = dev_get_drvdata(&pdev->dev); struct spi_qup *controller = spi_controller_get_devdata(host); int ret; ret = pm_runtime_get_sync(&pdev->dev); if (ret >= 0) { ret = spi_qup_set_state(controller, QUP_STATE_RESET); if (ret) dev_warn(&pdev->dev, "failed to reset controller (%pe)\n", ERR_PTR(ret)); clk_disable_unprepare(controller->cclk); clk_disable_unprepare(controller->iclk); } else { dev_warn(&pdev->dev, "failed to resume, skip hw disable (%pe)\n", ERR_PTR(ret)); } spi_qup_release_dma(host); pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); } static const struct of_device_id spi_qup_dt_match[] = { { .compatible = "qcom,spi-qup-v1.1.1", .data = (void *)1, }, { .compatible = "qcom,spi-qup-v2.1.1", }, { .compatible = "qcom,spi-qup-v2.2.1", }, { } }; MODULE_DEVICE_TABLE(of, spi_qup_dt_match); static const struct dev_pm_ops spi_qup_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(spi_qup_suspend, spi_qup_resume) SET_RUNTIME_PM_OPS(spi_qup_pm_suspend_runtime, spi_qup_pm_resume_runtime, NULL) }; static struct platform_driver spi_qup_driver = { .driver = { .name = "spi_qup", .pm = &spi_qup_dev_pm_ops, .of_match_table = spi_qup_dt_match, }, .probe = spi_qup_probe, .remove_new = spi_qup_remove, }; module_platform_driver(spi_qup_driver); MODULE_DESCRIPTION("Qualcomm SPI controller with QUP interface"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:spi_qup");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1