Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Greg Kroah-Hartman | 2503 | 64.13% | 2 | 2.08% |
Larry Finger | 757 | 19.40% | 8 | 8.33% |
David Woo | 219 | 5.61% | 1 | 1.04% |
Mateusz Kulikowski | 129 | 3.31% | 12 | 12.50% |
Tree Davies | 95 | 2.43% | 34 | 35.42% |
Philipp Hortmann | 87 | 2.23% | 14 | 14.58% |
Sean MacLennan | 40 | 1.02% | 4 | 4.17% |
Felix Schlepper | 16 | 0.41% | 3 | 3.12% |
Rashika Kheria | 15 | 0.38% | 2 | 2.08% |
Gary Rookard | 10 | 0.26% | 5 | 5.21% |
Davide Spataro | 7 | 0.18% | 1 | 1.04% |
GUO Zihua | 5 | 0.13% | 1 | 1.04% |
Derek Robson | 3 | 0.08% | 1 | 1.04% |
Monam Agarwal | 3 | 0.08% | 1 | 1.04% |
John Grace | 3 | 0.08% | 1 | 1.04% |
William Durand | 3 | 0.08% | 3 | 3.12% |
Aditya Srivastava | 3 | 0.08% | 1 | 1.04% |
Johannes Berg | 3 | 0.08% | 1 | 1.04% |
Thomas Bracht Laumann Jespersen | 2 | 0.05% | 1 | 1.04% |
Total | 3903 | 96 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved. * * Contact Information: * James P. Ketrenos <ipw2100-admin@linux.intel.com> * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * Few modifications for Realtek's Wi-Fi drivers by * Andrea Merello <andrea.merello@gmail.com> * * A special thanks goes to Realtek for their support ! */ #include <linux/compiler.h> #include <linux/errno.h> #include <linux/if_arp.h> #include <linux/in6.h> #include <linux/in.h> #include <linux/ip.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/pci.h> #include <linux/proc_fs.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/tcp.h> #include <linux/types.h> #include <linux/wireless.h> #include <linux/etherdevice.h> #include <linux/uaccess.h> #include <linux/if_vlan.h> #include "rtllib.h" /* 802.11 Data Frame * * * 802.11 frame_control for data frames - 2 bytes * ,--------------------------------------------------------------------. * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----| * val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x | * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----| * desc | ver | type | ^-subtype-^ |to |from|more|retry| pwr |more |wep | * | | | x=0 data |DS | DS |frag| | mgm |data | | * | | | x=1 data+ack | | | | | | | | * '--------------------------------------------------------------------' * /\ * | * 802.11 Data Frame | * ,--------- 'ctrl' expands to >---' * | * ,--'---,-------------------------------------------------------------. * Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 | * |------|------|---------|---------|---------|------|---------|------| * Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs | * | | tion | (BSSID) | | | ence | data | | * `--------------------------------------------------| |------' * Total: 28 non-data bytes `----.----' * | * .- 'Frame data' expands to <---------------------------' * | * V * ,---------------------------------------------------. * Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 | * |------|------|---------|----------|------|---------| * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP | * | DSAP | SSAP | | | | Packet | * | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | | * `-----------------------------------------| | * Total: 8 non-data bytes `----.----' * | * .- 'IP Packet' expands, if WEP enabled, to <--' * | * V * ,-----------------------. * Bytes | 4 | 0-2296 | 4 | * |-----|-----------|-----| * Desc. | IV | Encrypted | ICV | * | | IP Packet | | * `-----------------------' * Total: 8 non-data bytes * * * 802.3 Ethernet Data Frame * * ,-----------------------------------------. * Bytes | 6 | 6 | 2 | Variable | 4 | * |-------|-------|------|-----------|------| * Desc. | Dest. | Source| Type | IP Packet | fcs | * | MAC | MAC | | | | * `-----------------------------------------' * Total: 18 non-data bytes * * In the event that fragmentation is required, the incoming payload is split * into N parts of size ieee->fts. The first fragment contains the SNAP header * and the remaining packets are just data. * * If encryption is enabled, each fragment payload size is reduced by enough * space to add the prefix and postfix (IV and ICV totalling 8 bytes in * the case of WEP) So if you have 1500 bytes of payload with ieee->fts set to * 500 without encryption it will take 3 frames. With WEP it will take 4 frames * as the payload of each frame is reduced to 492 bytes. * * SKB visualization * * ,- skb->data * | * | ETHERNET HEADER ,-<-- PAYLOAD * | | 14 bytes from skb->data * | 2 bytes for Type --> ,T. | (sizeof ethhdr) * | | | | * |,-Dest.--. ,--Src.---. | | | * | 6 bytes| | 6 bytes | | | | * v | | | | | | * 0 | v 1 | v | v 2 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 * ^ | ^ | ^ | * | | | | | | * | | | | `T' <---- 2 bytes for Type * | | | | * | | '---SNAP--' <-------- 6 bytes for SNAP * | | * `-IV--' <-------------------- 4 bytes for IV (WEP) * * SNAP HEADER * */ static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 }; static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 }; static int rtllib_put_snap(u8 *data, u16 h_proto) { struct rtllib_snap_hdr *snap; u8 *oui; snap = (struct rtllib_snap_hdr *)data; snap->dsap = 0xaa; snap->ssap = 0xaa; snap->ctrl = 0x03; if (h_proto == 0x8137 || h_proto == 0x80f3) oui = P802_1H_OUI; else oui = RFC1042_OUI; snap->oui[0] = oui[0]; snap->oui[1] = oui[1]; snap->oui[2] = oui[2]; *(__be16 *)(data + SNAP_SIZE) = htons(h_proto); return SNAP_SIZE + sizeof(u16); } int rtllib_encrypt_fragment(struct rtllib_device *ieee, struct sk_buff *frag, int hdr_len) { struct lib80211_crypt_data *crypt = NULL; int res; crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx]; if (!(crypt && crypt->ops)) { netdev_info(ieee->dev, "=========>%s(), crypt is null\n", __func__); return -1; } /* To encrypt, frame format is: * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes) */ /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so * call both MSDU and MPDU encryption functions from here. */ atomic_inc(&crypt->refcnt); res = 0; if (crypt->ops->encrypt_msdu) res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv); if (res == 0 && crypt->ops->encrypt_mpdu) res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv); atomic_dec(&crypt->refcnt); if (res < 0) { netdev_info(ieee->dev, "%s: Encryption failed: len=%d.\n", ieee->dev->name, frag->len); return -1; } return 0; } void rtllib_txb_free(struct rtllib_txb *txb) { if (unlikely(!txb)) return; kfree(txb); } static struct rtllib_txb *rtllib_alloc_txb(int nr_frags, int txb_size, gfp_t gfp_mask) { struct rtllib_txb *txb; int i; txb = kzalloc(struct_size(txb, fragments, nr_frags), gfp_mask); if (!txb) return NULL; txb->nr_frags = nr_frags; txb->frag_size = cpu_to_le16(txb_size); for (i = 0; i < nr_frags; i++) { txb->fragments[i] = dev_alloc_skb(txb_size); if (unlikely(!txb->fragments[i])) goto err_free; memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb)); } return txb; err_free: while (--i >= 0) dev_kfree_skb_any(txb->fragments[i]); kfree(txb); return NULL; } static int rtllib_classify(struct sk_buff *skb) { struct ethhdr *eth; struct iphdr *ip; eth = (struct ethhdr *)skb->data; if (eth->h_proto != htons(ETH_P_IP)) return 0; #ifdef VERBOSE_DEBUG print_hex_dump_bytes("%s: ", __func__, DUMP_PREFIX_NONE, skb->data, skb->len); #endif ip = ip_hdr(skb); switch (ip->tos & 0xfc) { case 0x20: return 2; case 0x40: return 1; case 0x60: return 3; case 0x80: return 4; case 0xa0: return 5; case 0xc0: return 6; case 0xe0: return 7; default: return 0; } } static void rtllib_tx_query_agg_cap(struct rtllib_device *ieee, struct sk_buff *skb, struct cb_desc *tcb_desc) { struct rt_hi_throughput *ht_info = ieee->ht_info; struct tx_ts_record *ts = NULL; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; if (rtllib_act_scanning(ieee, false)) return; if (!ht_info->current_ht_support || !ht_info->enable_ht) return; if (!is_qos_data_frame(skb->data)) return; if (is_multicast_ether_addr(hdr->addr1)) return; if (tcb_desc->bdhcp || ieee->cnt_after_link < 2) return; if (ht_info->iot_action & HT_IOT_ACT_TX_NO_AGGREGATION) return; if (!ieee->get_nmode_support_by_sec_cfg(ieee->dev)) return; if (ht_info->current_ampdu_enable) { if (!rtllib_get_ts(ieee, (struct ts_common_info **)(&ts), hdr->addr1, skb->priority, TX_DIR, true)) { netdev_info(ieee->dev, "%s: can't get TS\n", __func__); return; } if (!ts->tx_admitted_ba_record.b_valid) { if (ieee->wpa_ie_len && (ieee->pairwise_key_type == KEY_TYPE_NA)) { ; } else if (tcb_desc->bdhcp == 1) { ; } else if (!ts->disable_add_ba) { rtllib_ts_start_add_ba_process(ieee, ts); } return; } else if (!ts->using_ba) { if (SN_LESS(ts->tx_admitted_ba_record.ba_start_seq_ctrl.field.seq_num, (ts->tx_cur_seq + 1) % 4096)) ts->using_ba = true; else return; } if (ieee->iw_mode == IW_MODE_INFRA) { tcb_desc->ampdu_enable = true; tcb_desc->ampdu_factor = ht_info->current_ampdu_factor; tcb_desc->ampdu_density = ht_info->current_mpdu_density; } } } static void rtllib_query_short_preamble_mode(struct rtllib_device *ieee, struct cb_desc *tcb_desc) { tcb_desc->use_short_preamble = false; if (tcb_desc->data_rate == 2) return; else if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE) tcb_desc->use_short_preamble = true; } static void rtllib_query_ht_cap_short_gi(struct rtllib_device *ieee, struct cb_desc *tcb_desc) { struct rt_hi_throughput *ht_info = ieee->ht_info; tcb_desc->use_short_gi = false; if (!ht_info->current_ht_support || !ht_info->enable_ht) return; if (ht_info->cur_bw_40mhz && ht_info->cur_short_gi_40mhz) tcb_desc->use_short_gi = true; else if (!ht_info->cur_bw_40mhz && ht_info->cur_short_gi_20mhz) tcb_desc->use_short_gi = true; } static void rtllib_query_bandwidth_mode(struct rtllib_device *ieee, struct cb_desc *tcb_desc) { struct rt_hi_throughput *ht_info = ieee->ht_info; tcb_desc->packet_bw = false; if (!ht_info->current_ht_support || !ht_info->enable_ht) return; if (tcb_desc->multicast || tcb_desc->broadcast) return; if ((tcb_desc->data_rate & 0x80) == 0) return; if (ht_info->cur_bw_40mhz && ht_info->cur_tx_bw40mhz && !ieee->bandwidth_auto_switch.forced_tx_20MHz) tcb_desc->packet_bw = true; } static void rtllib_query_protectionmode(struct rtllib_device *ieee, struct cb_desc *tcb_desc, struct sk_buff *skb) { struct rt_hi_throughput *ht_info; tcb_desc->rtsstbc = false; tcb_desc->rts_use_short_gi = false; tcb_desc->cts_enable = false; tcb_desc->RTSSC = 0; tcb_desc->rts_bw = false; if (tcb_desc->broadcast || tcb_desc->multicast) return; if (is_broadcast_ether_addr(skb->data + 16)) return; if (ieee->mode < WIRELESS_MODE_N_24G) { if (skb->len > ieee->rts) { tcb_desc->rts_enable = true; tcb_desc->rts_rate = MGN_24M; } else if (ieee->current_network.buseprotection) { tcb_desc->rts_enable = true; tcb_desc->cts_enable = true; tcb_desc->rts_rate = MGN_24M; } return; } ht_info = ieee->ht_info; while (true) { if (ht_info->iot_action & HT_IOT_ACT_FORCED_CTS2SELF) { tcb_desc->cts_enable = true; tcb_desc->rts_rate = MGN_24M; tcb_desc->rts_enable = true; break; } else if (ht_info->iot_action & (HT_IOT_ACT_FORCED_RTS | HT_IOT_ACT_PURE_N_MODE)) { tcb_desc->rts_enable = true; tcb_desc->rts_rate = MGN_24M; break; } if (ieee->current_network.buseprotection) { tcb_desc->rts_enable = true; tcb_desc->cts_enable = true; tcb_desc->rts_rate = MGN_24M; break; } if (ht_info->current_ht_support && ht_info->enable_ht) { u8 ht_op_mode = ht_info->current_op_mode; if ((ht_info->cur_bw_40mhz && (ht_op_mode == 2 || ht_op_mode == 3)) || (!ht_info->cur_bw_40mhz && ht_op_mode == 3)) { tcb_desc->rts_rate = MGN_24M; tcb_desc->rts_enable = true; break; } } if (skb->len > ieee->rts) { tcb_desc->rts_rate = MGN_24M; tcb_desc->rts_enable = true; break; } if (tcb_desc->ampdu_enable) { tcb_desc->rts_rate = MGN_24M; tcb_desc->rts_enable = false; break; } goto NO_PROTECTION; } if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE) tcb_desc->use_short_preamble = true; return; NO_PROTECTION: tcb_desc->rts_enable = false; tcb_desc->cts_enable = false; tcb_desc->rts_rate = 0; tcb_desc->RTSSC = 0; tcb_desc->rts_bw = false; } static void rtllib_txrate_selectmode(struct rtllib_device *ieee, struct cb_desc *tcb_desc) { if (ieee->tx_dis_rate_fallback) tcb_desc->tx_dis_rate_fallback = true; if (ieee->tx_use_drv_assinged_rate) tcb_desc->tx_use_drv_assinged_rate = true; if (!tcb_desc->tx_dis_rate_fallback || !tcb_desc->tx_use_drv_assinged_rate) { if (ieee->iw_mode == IW_MODE_INFRA) tcb_desc->ratr_index = 0; } } static u16 rtllib_query_seqnum(struct rtllib_device *ieee, struct sk_buff *skb, u8 *dst) { u16 seqnum = 0; if (is_multicast_ether_addr(dst)) return 0; if (is_qos_data_frame(skb->data)) { struct tx_ts_record *ts = NULL; if (!rtllib_get_ts(ieee, (struct ts_common_info **)(&ts), dst, skb->priority, TX_DIR, true)) return 0; seqnum = ts->tx_cur_seq; ts->tx_cur_seq = (ts->tx_cur_seq + 1) % 4096; return seqnum; } return 0; } static int wme_downgrade_ac(struct sk_buff *skb) { switch (skb->priority) { case 6: case 7: skb->priority = 5; /* VO -> VI */ return 0; case 4: case 5: skb->priority = 3; /* VI -> BE */ return 0; case 0: case 3: skb->priority = 1; /* BE -> BK */ return 0; default: return -1; } } static u8 rtllib_current_rate(struct rtllib_device *ieee) { if (ieee->mode & IEEE_MODE_MASK) return ieee->rate; if (ieee->ht_curr_op_rate) return ieee->ht_curr_op_rate; else return ieee->rate & 0x7F; } static int rtllib_xmit_inter(struct sk_buff *skb, struct net_device *dev) { struct rtllib_device *ieee = (struct rtllib_device *) netdev_priv_rsl(dev); struct rtllib_txb *txb = NULL; struct ieee80211_qos_hdr *frag_hdr; int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size; unsigned long flags; struct net_device_stats *stats = &ieee->stats; int ether_type = 0, encrypt; int bytes, fc, qos_ctl = 0, hdr_len; struct sk_buff *skb_frag; struct ieee80211_qos_hdr header = { /* Ensure zero initialized */ .duration_id = 0, .seq_ctrl = 0, .qos_ctrl = 0 }; int qos_activated = ieee->current_network.qos_data.active; u8 dest[ETH_ALEN]; u8 src[ETH_ALEN]; struct lib80211_crypt_data *crypt = NULL; struct cb_desc *tcb_desc; u8 is_multicast = false; bool bdhcp = false; spin_lock_irqsave(&ieee->lock, flags); /* If there is no driver handler to take the TXB, don't bother * creating it... */ if (!(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) || ((!ieee->softmac_data_hard_start_xmit && (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) { netdev_warn(ieee->dev, "No xmit handler.\n"); goto success; } if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) { netdev_warn(ieee->dev, "skb too small (%d).\n", skb->len); goto success; } /* Save source and destination addresses */ ether_addr_copy(dest, skb->data); ether_addr_copy(src, skb->data + ETH_ALEN); memset(skb->cb, 0, sizeof(skb->cb)); ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto); if (ieee->iw_mode == IW_MODE_MONITOR) { txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC); if (unlikely(!txb)) { netdev_warn(ieee->dev, "Could not allocate TXB\n"); goto failed; } txb->encrypted = 0; txb->payload_size = cpu_to_le16(skb->len); skb_put_data(txb->fragments[0], skb->data, skb->len); goto success; } if (skb->len > 282) { if (ether_type == ETH_P_IP) { const struct iphdr *ip = (struct iphdr *) ((u8 *)skb->data + 14); if (ip->protocol == IPPROTO_UDP) { struct udphdr *udp; udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); if (((((u8 *)udp)[1] == 68) && (((u8 *)udp)[3] == 67)) || ((((u8 *)udp)[1] == 67) && (((u8 *)udp)[3] == 68))) { bdhcp = true; ieee->lps_delay_cnt = 200; } } } else if (ether_type == ETH_P_ARP) { netdev_info(ieee->dev, "=================>DHCP Protocol start tx ARP pkt!!\n"); bdhcp = true; ieee->lps_delay_cnt = ieee->current_network.tim.tim_count; } } skb->priority = rtllib_classify(skb); crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx]; encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) && crypt && crypt->ops; if (!encrypt && ieee->ieee802_1x && ieee->drop_unencrypted && ether_type != ETH_P_PAE) { stats->tx_dropped++; goto success; } if (crypt && !encrypt && ether_type == ETH_P_PAE) { struct eapol *eap = (struct eapol *)(skb->data + sizeof(struct ethhdr) - SNAP_SIZE - sizeof(u16)); netdev_dbg(ieee->dev, "TX: IEEE 802.11 EAPOL frame: %s\n", eap_get_type(eap->type)); } /* Advance the SKB to the start of the payload */ skb_pull(skb, sizeof(struct ethhdr)); /* Determine total amount of storage required for TXB packets */ bytes = skb->len + SNAP_SIZE + sizeof(u16); if (encrypt) fc = RTLLIB_FTYPE_DATA | IEEE80211_FCTL_PROTECTED; else fc = RTLLIB_FTYPE_DATA; if (qos_activated) fc |= IEEE80211_STYPE_QOS_DATA; else fc |= IEEE80211_STYPE_DATA; if (ieee->iw_mode == IW_MODE_INFRA) { fc |= IEEE80211_FCTL_TODS; /* To DS: Addr1 = BSSID, Addr2 = SA, * Addr3 = DA */ ether_addr_copy(header.addr1, ieee->current_network.bssid); ether_addr_copy(header.addr2, src); ether_addr_copy(header.addr3, dest); } is_multicast = is_multicast_ether_addr(header.addr1); header.frame_control = cpu_to_le16(fc); /* Determine fragmentation size based on destination (multicast * and broadcast are not fragmented) */ if (is_multicast) { frag_size = MAX_FRAG_THRESHOLD; qos_ctl |= QOS_CTL_NOTCONTAIN_ACK; } else { frag_size = ieee->fts; qos_ctl = 0; } if (qos_activated) { hdr_len = RTLLIB_3ADDR_LEN + 2; /* in case we are a client verify acm is not set for this ac */ while (unlikely(ieee->wmm_acm & (0x01 << skb->priority))) { netdev_info(ieee->dev, "skb->priority = %x\n", skb->priority); if (wme_downgrade_ac(skb)) break; netdev_info(ieee->dev, "converted skb->priority = %x\n", skb->priority); } qos_ctl |= skb->priority; header.qos_ctrl = cpu_to_le16(qos_ctl & RTLLIB_QOS_TID); } else { hdr_len = RTLLIB_3ADDR_LEN; } /* Determine amount of payload per fragment. Regardless of if * this stack is providing the full 802.11 header, one will * eventually be affixed to this fragment -- so we must account * for it when determining the amount of payload space. */ bytes_per_frag = frag_size - hdr_len; if (ieee->config & (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS)) bytes_per_frag -= RTLLIB_FCS_LEN; /* Each fragment may need to have room for encrypting * pre/postfix */ if (encrypt) { bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len + crypt->ops->extra_mpdu_postfix_len + crypt->ops->extra_msdu_prefix_len + crypt->ops->extra_msdu_postfix_len; } /* Number of fragments is the total bytes_per_frag / * payload_per_fragment */ nr_frags = bytes / bytes_per_frag; bytes_last_frag = bytes % bytes_per_frag; if (bytes_last_frag) nr_frags++; else bytes_last_frag = bytes_per_frag; /* When we allocate the TXB we allocate enough space for the * reserve and full fragment bytes (bytes_per_frag doesn't * include prefix, postfix, header, FCS, etc.) */ txb = rtllib_alloc_txb(nr_frags, frag_size + ieee->tx_headroom, GFP_ATOMIC); if (unlikely(!txb)) { netdev_warn(ieee->dev, "Could not allocate TXB\n"); goto failed; } txb->encrypted = encrypt; txb->payload_size = cpu_to_le16(bytes); if (qos_activated) txb->queue_index = UP2AC(skb->priority); else txb->queue_index = WME_AC_BE; for (i = 0; i < nr_frags; i++) { skb_frag = txb->fragments[i]; tcb_desc = (struct cb_desc *)(skb_frag->cb + MAX_DEV_ADDR_SIZE); if (qos_activated) { skb_frag->priority = skb->priority; tcb_desc->queue_index = UP2AC(skb->priority); } else { skb_frag->priority = WME_AC_BE; tcb_desc->queue_index = WME_AC_BE; } skb_reserve(skb_frag, ieee->tx_headroom); if (encrypt) { if (ieee->hwsec_active) tcb_desc->hw_sec = 1; else tcb_desc->hw_sec = 0; skb_reserve(skb_frag, crypt->ops->extra_mpdu_prefix_len + crypt->ops->extra_msdu_prefix_len); } else { tcb_desc->hw_sec = 0; } frag_hdr = skb_put_data(skb_frag, &header, hdr_len); /* If this is not the last fragment, then add the * MOREFRAGS bit to the frame control */ if (i != nr_frags - 1) { frag_hdr->frame_control = cpu_to_le16(fc | IEEE80211_FCTL_MOREFRAGS); bytes = bytes_per_frag; } else { /* The last fragment has the remaining length */ bytes = bytes_last_frag; } if ((qos_activated) && (!is_multicast)) { frag_hdr->seq_ctrl = cpu_to_le16(rtllib_query_seqnum(ieee, skb_frag, header.addr1)); frag_hdr->seq_ctrl = cpu_to_le16(le16_to_cpu(frag_hdr->seq_ctrl) << 4 | i); } else { frag_hdr->seq_ctrl = cpu_to_le16(ieee->seq_ctrl[0] << 4 | i); } /* Put a SNAP header on the first fragment */ if (i == 0) { rtllib_put_snap(skb_put(skb_frag, SNAP_SIZE + sizeof(u16)), ether_type); bytes -= SNAP_SIZE + sizeof(u16); } skb_put_data(skb_frag, skb->data, bytes); /* Advance the SKB... */ skb_pull(skb, bytes); /* Encryption routine will move the header forward in * order to insert the IV between the header and the * payload */ if (encrypt) rtllib_encrypt_fragment(ieee, skb_frag, hdr_len); if (ieee->config & (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS)) skb_put(skb_frag, 4); } if ((qos_activated) && (!is_multicast)) { if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF) ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0; else ieee->seq_ctrl[UP2AC(skb->priority) + 1]++; } else { if (ieee->seq_ctrl[0] == 0xFFF) ieee->seq_ctrl[0] = 0; else ieee->seq_ctrl[0]++; } success: if (txb) { tcb_desc = (struct cb_desc *) (txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE); tcb_desc->tx_enable_fw_calc_dur = 1; tcb_desc->priority = skb->priority; if (ether_type == ETH_P_PAE) { if (ieee->ht_info->iot_action & HT_IOT_ACT_WA_IOT_Broadcom) { tcb_desc->data_rate = mgnt_query_tx_rate_exclude_cck_rates(ieee); tcb_desc->tx_dis_rate_fallback = false; } else { tcb_desc->data_rate = ieee->basic_rate; tcb_desc->tx_dis_rate_fallback = 1; } tcb_desc->ratr_index = 7; tcb_desc->tx_use_drv_assinged_rate = 1; } else { if (is_multicast_ether_addr(header.addr1)) tcb_desc->multicast = 1; if (is_broadcast_ether_addr(header.addr1)) tcb_desc->broadcast = 1; rtllib_txrate_selectmode(ieee, tcb_desc); if (tcb_desc->multicast || tcb_desc->broadcast) tcb_desc->data_rate = ieee->basic_rate; else tcb_desc->data_rate = rtllib_current_rate(ieee); if (bdhcp) { if (ieee->ht_info->iot_action & HT_IOT_ACT_WA_IOT_Broadcom) { tcb_desc->data_rate = mgnt_query_tx_rate_exclude_cck_rates(ieee); tcb_desc->tx_dis_rate_fallback = false; } else { tcb_desc->data_rate = MGN_1M; tcb_desc->tx_dis_rate_fallback = 1; } tcb_desc->ratr_index = 7; tcb_desc->tx_use_drv_assinged_rate = 1; tcb_desc->bdhcp = 1; } rtllib_query_short_preamble_mode(ieee, tcb_desc); rtllib_tx_query_agg_cap(ieee, txb->fragments[0], tcb_desc); rtllib_query_ht_cap_short_gi(ieee, tcb_desc); rtllib_query_bandwidth_mode(ieee, tcb_desc); rtllib_query_protectionmode(ieee, tcb_desc, txb->fragments[0]); } } spin_unlock_irqrestore(&ieee->lock, flags); dev_kfree_skb_any(skb); if (txb) { if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) { dev->stats.tx_packets++; dev->stats.tx_bytes += le16_to_cpu(txb->payload_size); rtllib_softmac_xmit(txb, ieee); } else { rtllib_txb_free(txb); } } return 0; failed: spin_unlock_irqrestore(&ieee->lock, flags); netif_stop_queue(dev); stats->tx_errors++; return 1; } netdev_tx_t rtllib_xmit(struct sk_buff *skb, struct net_device *dev) { memset(skb->cb, 0, sizeof(skb->cb)); return rtllib_xmit_inter(skb, dev) ? NETDEV_TX_BUSY : NETDEV_TX_OK; } EXPORT_SYMBOL(rtllib_xmit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1