Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Larry Finger | 10121 | 98.92% | 1 | 4.17% |
Christophe Jaillet | 33 | 0.32% | 2 | 8.33% |
Luis de Bethencourt | 14 | 0.14% | 2 | 8.33% |
Kees Cook | 14 | 0.14% | 1 | 4.17% |
Martin Homuth | 9 | 0.09% | 1 | 4.17% |
Jannik Becher | 8 | 0.08% | 2 | 8.33% |
Nishka Dasgupta | 6 | 0.06% | 4 | 16.67% |
Joseph Wright | 6 | 0.06% | 1 | 4.17% |
Michael Straube | 4 | 0.04% | 2 | 8.33% |
Krzysztof Kozlowski | 4 | 0.04% | 1 | 4.17% |
Vijai Kumar K | 3 | 0.03% | 1 | 4.17% |
Dan Carpenter | 2 | 0.02% | 1 | 4.17% |
Joe Perches | 2 | 0.02% | 1 | 4.17% |
Aya Mahfouz | 2 | 0.02% | 1 | 4.17% |
Amitoj Kaur Chawla | 1 | 0.01% | 1 | 4.17% |
Michael Fiedler | 1 | 0.01% | 1 | 4.17% |
Ali Bahar | 1 | 0.01% | 1 | 4.17% |
Total | 10231 | 24 |
// SPDX-License-Identifier: GPL-2.0 /****************************************************************************** * rtl871x_security.c * * Copyright(c) 2007 - 2010 Realtek Corporation. All rights reserved. * Linux device driver for RTL8192SU * * Modifications for inclusion into the Linux staging tree are * Copyright(c) 2010 Larry Finger. All rights reserved. * * Contact information: * WLAN FAE <wlanfae@realtek.com> * Larry Finger <Larry.Finger@lwfinger.net> * ******************************************************************************/ #define _RTL871X_SECURITY_C_ #include <linux/compiler.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/kref.h> #include <linux/netdevice.h> #include <linux/skbuff.h> #include <linux/circ_buf.h> #include <linux/uaccess.h> #include <asm/byteorder.h> #include <linux/atomic.h> #include <linux/crc32poly.h> #include <linux/semaphore.h> #include <linux/ieee80211.h> #include "osdep_service.h" #include "drv_types.h" #include "osdep_intf.h" /* =====WEP related===== */ struct arc4context { u32 x; u32 y; u8 state[256]; }; static void arcfour_init(struct arc4context *parc4ctx, u8 *key, u32 key_len) { u32 t, u; u32 keyindex; u32 stateindex; u8 *state; u32 counter; state = parc4ctx->state; parc4ctx->x = 0; parc4ctx->y = 0; for (counter = 0; counter < 256; counter++) state[counter] = (u8)counter; keyindex = 0; stateindex = 0; for (counter = 0; counter < 256; counter++) { t = state[counter]; stateindex = (stateindex + key[keyindex] + t) & 0xff; u = state[stateindex]; state[stateindex] = (u8)t; state[counter] = (u8)u; if (++keyindex >= key_len) keyindex = 0; } } static u32 arcfour_byte(struct arc4context *parc4ctx) { u32 x; u32 y; u32 sx, sy; u8 *state; state = parc4ctx->state; x = (parc4ctx->x + 1) & 0xff; sx = state[x]; y = (sx + parc4ctx->y) & 0xff; sy = state[y]; parc4ctx->x = x; parc4ctx->y = y; state[y] = (u8)sx; state[x] = (u8)sy; return state[(sx + sy) & 0xff]; } static void arcfour_encrypt(struct arc4context *parc4ctx, u8 *dest, u8 *src, u32 len) { u32 i; for (i = 0; i < len; i++) dest[i] = src[i] ^ (unsigned char)arcfour_byte(parc4ctx); } static sint bcrc32initialized; static u32 crc32_table[256]; static u8 crc32_reverseBit(u8 data) { return ((u8)(data << 7) & 0x80) | ((data << 5) & 0x40) | ((data << 3) & 0x20) | ((data << 1) & 0x10) | ((data >> 1) & 0x08) | ((data >> 3) & 0x04) | ((data >> 5) & 0x02) | ((data >> 7) & 0x01); } static void crc32_init(void) { sint i, j; u32 c; u8 *p = (u8 *)&c, *p1; u8 k; if (bcrc32initialized == 1) return; for (i = 0; i < 256; ++i) { k = crc32_reverseBit((u8)i); for (c = ((u32)k) << 24, j = 8; j > 0; --j) c = c & 0x80000000 ? (c << 1) ^ CRC32_POLY_BE : (c << 1); p1 = (u8 *)&crc32_table[i]; p1[0] = crc32_reverseBit(p[3]); p1[1] = crc32_reverseBit(p[2]); p1[2] = crc32_reverseBit(p[1]); p1[3] = crc32_reverseBit(p[0]); } bcrc32initialized = 1; } static u32 getcrc32(u8 *buf, u32 len) { u8 *p; u32 crc; if (!bcrc32initialized) crc32_init(); crc = 0xffffffff; /* preload shift register, per CRC-32 spec */ for (p = buf; len > 0; ++p, --len) crc = crc32_table[(crc ^ *p) & 0xff] ^ (crc >> 8); return ~crc; /* transmit complement, per CRC-32 spec */ } /* * Need to consider the fragment situation */ void r8712_wep_encrypt(struct _adapter *padapter, u8 *pxmitframe) { /* exclude ICV */ unsigned char crc[4]; struct arc4context mycontext; u32 curfragnum, length, keylength, pki; u8 *pframe, *payload, *iv; /*,*wepkey*/ u8 wepkey[16]; struct pkt_attrib *pattrib = &((struct xmit_frame *) pxmitframe)->attrib; struct security_priv *psecuritypriv = &padapter->securitypriv; struct xmit_priv *pxmitpriv = &padapter->xmitpriv; if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL) return; pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + TXDESC_OFFSET; /*start to encrypt each fragment*/ if ((pattrib->encrypt == _WEP40_) || (pattrib->encrypt == _WEP104_)) { pki = psecuritypriv->PrivacyKeyIndex; keylength = psecuritypriv->DefKeylen[pki]; for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) { iv = pframe + pattrib->hdrlen; memcpy(&wepkey[0], iv, 3); memcpy(&wepkey[3], &psecuritypriv->DefKey[ psecuritypriv->PrivacyKeyIndex].skey[0], keylength); payload = pframe + pattrib->iv_len + pattrib->hdrlen; if ((curfragnum + 1) == pattrib->nr_frags) { length = pattrib->last_txcmdsz - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len; *((__le32 *)crc) = cpu_to_le32(getcrc32( payload, length)); arcfour_init(&mycontext, wepkey, 3 + keylength); arcfour_encrypt(&mycontext, payload, payload, length); arcfour_encrypt(&mycontext, payload + length, crc, 4); } else { length = pxmitpriv->frag_len - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len; *((__le32 *)crc) = cpu_to_le32(getcrc32( payload, length)); arcfour_init(&mycontext, wepkey, 3 + keylength); arcfour_encrypt(&mycontext, payload, payload, length); arcfour_encrypt(&mycontext, payload + length, crc, 4); pframe += pxmitpriv->frag_len; pframe = (u8 *)RND4((addr_t)(pframe)); } } } } void r8712_wep_decrypt(struct _adapter *padapter, u8 *precvframe) { /* exclude ICV */ u8 crc[4]; struct arc4context mycontext; u32 length, keylength; u8 *pframe, *payload, *iv, wepkey[16]; u8 keyindex; struct rx_pkt_attrib *prxattrib = &(((union recv_frame *) precvframe)->u.hdr.attrib); struct security_priv *psecuritypriv = &padapter->securitypriv; pframe = (unsigned char *)((union recv_frame *)precvframe)-> u.hdr.rx_data; /* start to decrypt recvframe */ if ((prxattrib->encrypt == _WEP40_) || (prxattrib->encrypt == _WEP104_)) { iv = pframe + prxattrib->hdrlen; keyindex = (iv[3] & 0x3); keylength = psecuritypriv->DefKeylen[keyindex]; memcpy(&wepkey[0], iv, 3); memcpy(&wepkey[3], &psecuritypriv->DefKey[ psecuritypriv->PrivacyKeyIndex].skey[0], keylength); length = ((union recv_frame *)precvframe)-> u.hdr.len - prxattrib->hdrlen - prxattrib->iv_len; payload = pframe + prxattrib->iv_len + prxattrib->hdrlen; /* decrypt payload include icv */ arcfour_init(&mycontext, wepkey, 3 + keylength); arcfour_encrypt(&mycontext, payload, payload, length); /* calculate icv and compare the icv */ *((__le32 *)crc) = cpu_to_le32(getcrc32(payload, length - 4)); } } /* 3 =====TKIP related===== */ static u32 secmicgetuint32(u8 *p) /* Convert from Byte[] to Us4Byte32 in a portable way */ { s32 i; u32 res = 0; for (i = 0; i < 4; i++) res |= ((u32)(*p++)) << (8 * i); return res; } static void secmicputuint32(u8 *p, u32 val) /* Convert from Us4Byte32 to Byte[] in a portable way */ { long i; for (i = 0; i < 4; i++) { *p++ = (u8)(val & 0xff); val >>= 8; } } static void secmicclear(struct mic_data *pmicdata) { /* Reset the state to the empty message. */ pmicdata->L = pmicdata->K0; pmicdata->R = pmicdata->K1; pmicdata->nBytesInM = 0; pmicdata->M = 0; } void r8712_secmicsetkey(struct mic_data *pmicdata, u8 *key) { /* Set the key */ pmicdata->K0 = secmicgetuint32(key); pmicdata->K1 = secmicgetuint32(key + 4); /* and reset the message */ secmicclear(pmicdata); } static void secmicappendbyte(struct mic_data *pmicdata, u8 b) { /* Append the byte to our word-sized buffer */ pmicdata->M |= ((u32)b) << (8 * pmicdata->nBytesInM); pmicdata->nBytesInM++; /* Process the word if it is full. */ if (pmicdata->nBytesInM >= 4) { pmicdata->L ^= pmicdata->M; pmicdata->R ^= ROL32(pmicdata->L, 17); pmicdata->L += pmicdata->R; pmicdata->R ^= ((pmicdata->L & 0xff00ff00) >> 8) | ((pmicdata->L & 0x00ff00ff) << 8); pmicdata->L += pmicdata->R; pmicdata->R ^= ROL32(pmicdata->L, 3); pmicdata->L += pmicdata->R; pmicdata->R ^= ROR32(pmicdata->L, 2); pmicdata->L += pmicdata->R; /* Clear the buffer */ pmicdata->M = 0; pmicdata->nBytesInM = 0; } } void r8712_secmicappend(struct mic_data *pmicdata, u8 *src, u32 nbytes) { /* This is simple */ while (nbytes > 0) { secmicappendbyte(pmicdata, *src++); nbytes--; } } void r8712_secgetmic(struct mic_data *pmicdata, u8 *dst) { /* Append the minimum padding */ secmicappendbyte(pmicdata, 0x5a); secmicappendbyte(pmicdata, 0); secmicappendbyte(pmicdata, 0); secmicappendbyte(pmicdata, 0); secmicappendbyte(pmicdata, 0); /* and then zeroes until the length is a multiple of 4 */ while (pmicdata->nBytesInM != 0) secmicappendbyte(pmicdata, 0); /* The appendByte function has already computed the result. */ secmicputuint32(dst, pmicdata->L); secmicputuint32(dst + 4, pmicdata->R); /* Reset to the empty message. */ secmicclear(pmicdata); } void seccalctkipmic(u8 *key, u8 *header, u8 *data, u32 data_len, u8 *mic_code, u8 pri) { struct mic_data micdata; u8 priority[4] = {0x0, 0x0, 0x0, 0x0}; r8712_secmicsetkey(&micdata, key); priority[0] = pri; /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */ if (header[1] & 1) { /* ToDS==1 */ r8712_secmicappend(&micdata, &header[16], 6); /* DA */ if (header[1] & 2) /* From Ds==1 */ r8712_secmicappend(&micdata, &header[24], 6); else r8712_secmicappend(&micdata, &header[10], 6); } else { /* ToDS==0 */ r8712_secmicappend(&micdata, &header[4], 6); /* DA */ if (header[1] & 2) /* From Ds==1 */ r8712_secmicappend(&micdata, &header[16], 6); else r8712_secmicappend(&micdata, &header[10], 6); } r8712_secmicappend(&micdata, &priority[0], 4); r8712_secmicappend(&micdata, data, data_len); r8712_secgetmic(&micdata, mic_code); } /* macros for extraction/creation of unsigned char/unsigned short values */ #define RotR1(v16) ((((v16) >> 1) & 0x7FFF) ^ (((v16) & 1) << 15)) #define Lo8(v16) ((u8)((v16) & 0x00FF)) #define Hi8(v16) ((u8)(((v16) >> 8) & 0x00FF)) #define Lo16(v32) ((u16)((v32) & 0xFFFF)) #define Hi16(v32) ((u16)(((v32) >> 16) & 0xFFFF)) #define Mk16(hi, lo) ((lo) ^ (((u16)(hi)) << 8)) /* select the Nth 16-bit word of the temporal key unsigned char array TK[] */ #define TK16(N) Mk16(tk[2 * (N) + 1], tk[2 * (N)]) /* S-box lookup: 16 bits --> 16 bits */ #define _S_(v16) (Sbox1[0][Lo8(v16)] ^ Sbox1[1][Hi8(v16)]) /* fixed algorithm "parameters" */ #define PHASE1_LOOP_CNT 8 /* this needs to be "big enough" */ #define TA_SIZE 6 /* 48-bit transmitter address */ #define TK_SIZE 16 /* 128-bit temporal key */ #define P1K_SIZE 10 /* 80-bit Phase1 key */ #define RC4_KEY_SIZE 16 /* 128-bit RC4KEY (104 bits unknown) */ /* 2-unsigned char by 2-unsigned char subset of the full AES S-box table */ static const unsigned short Sbox1[2][256] = {/* Sbox for hash (can be in ROM) */ { 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154, 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A, 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B, 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B, 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F, 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F, 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5, 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F, 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB, 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397, 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED, 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A, 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194, 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3, 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104, 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D, 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39, 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695, 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83, 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76, 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4, 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B, 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0, 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018, 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751, 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85, 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12, 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9, 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7, 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A, 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8, 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A, }, { /* second half is unsigned char-reversed version of first! */ 0xA5C6, 0x84F8, 0x99EE, 0x8DF6, 0x0DFF, 0xBDD6, 0xB1DE, 0x5491, 0x5060, 0x0302, 0xA9CE, 0x7D56, 0x19E7, 0x62B5, 0xE64D, 0x9AEC, 0x458F, 0x9D1F, 0x4089, 0x87FA, 0x15EF, 0xEBB2, 0xC98E, 0x0BFB, 0xEC41, 0x67B3, 0xFD5F, 0xEA45, 0xBF23, 0xF753, 0x96E4, 0x5B9B, 0xC275, 0x1CE1, 0xAE3D, 0x6A4C, 0x5A6C, 0x417E, 0x02F5, 0x4F83, 0x5C68, 0xF451, 0x34D1, 0x08F9, 0x93E2, 0x73AB, 0x5362, 0x3F2A, 0x0C08, 0x5295, 0x6546, 0x5E9D, 0x2830, 0xA137, 0x0F0A, 0xB52F, 0x090E, 0x3624, 0x9B1B, 0x3DDF, 0x26CD, 0x694E, 0xCD7F, 0x9FEA, 0x1B12, 0x9E1D, 0x7458, 0x2E34, 0x2D36, 0xB2DC, 0xEEB4, 0xFB5B, 0xF6A4, 0x4D76, 0x61B7, 0xCE7D, 0x7B52, 0x3EDD, 0x715E, 0x9713, 0xF5A6, 0x68B9, 0x0000, 0x2CC1, 0x6040, 0x1FE3, 0xC879, 0xEDB6, 0xBED4, 0x468D, 0xD967, 0x4B72, 0xDE94, 0xD498, 0xE8B0, 0x4A85, 0x6BBB, 0x2AC5, 0xE54F, 0x16ED, 0xC586, 0xD79A, 0x5566, 0x9411, 0xCF8A, 0x10E9, 0x0604, 0x81FE, 0xF0A0, 0x4478, 0xBA25, 0xE34B, 0xF3A2, 0xFE5D, 0xC080, 0x8A05, 0xAD3F, 0xBC21, 0x4870, 0x04F1, 0xDF63, 0xC177, 0x75AF, 0x6342, 0x3020, 0x1AE5, 0x0EFD, 0x6DBF, 0x4C81, 0x1418, 0x3526, 0x2FC3, 0xE1BE, 0xA235, 0xCC88, 0x392E, 0x5793, 0xF255, 0x82FC, 0x477A, 0xACC8, 0xE7BA, 0x2B32, 0x95E6, 0xA0C0, 0x9819, 0xD19E, 0x7FA3, 0x6644, 0x7E54, 0xAB3B, 0x830B, 0xCA8C, 0x29C7, 0xD36B, 0x3C28, 0x79A7, 0xE2BC, 0x1D16, 0x76AD, 0x3BDB, 0x5664, 0x4E74, 0x1E14, 0xDB92, 0x0A0C, 0x6C48, 0xE4B8, 0x5D9F, 0x6EBD, 0xEF43, 0xA6C4, 0xA839, 0xA431, 0x37D3, 0x8BF2, 0x32D5, 0x438B, 0x596E, 0xB7DA, 0x8C01, 0x64B1, 0xD29C, 0xE049, 0xB4D8, 0xFAAC, 0x07F3, 0x25CF, 0xAFCA, 0x8EF4, 0xE947, 0x1810, 0xD56F, 0x88F0, 0x6F4A, 0x725C, 0x2438, 0xF157, 0xC773, 0x5197, 0x23CB, 0x7CA1, 0x9CE8, 0x213E, 0xDD96, 0xDC61, 0x860D, 0x850F, 0x90E0, 0x427C, 0xC471, 0xAACC, 0xD890, 0x0506, 0x01F7, 0x121C, 0xA3C2, 0x5F6A, 0xF9AE, 0xD069, 0x9117, 0x5899, 0x273A, 0xB927, 0x38D9, 0x13EB, 0xB32B, 0x3322, 0xBBD2, 0x70A9, 0x8907, 0xA733, 0xB62D, 0x223C, 0x9215, 0x20C9, 0x4987, 0xFFAA, 0x7850, 0x7AA5, 0x8F03, 0xF859, 0x8009, 0x171A, 0xDA65, 0x31D7, 0xC684, 0xB8D0, 0xC382, 0xB029, 0x775A, 0x111E, 0xCB7B, 0xFCA8, 0xD66D, 0x3A2C, } }; /* ********************************************************************** * Routine: Phase 1 -- generate P1K, given TA, TK, IV32 * * Inputs: * tk[] = temporal key [128 bits] * ta[] = transmitter's MAC address [ 48 bits] * iv32 = upper 32 bits of IV [ 32 bits] * Output: * p1k[] = Phase 1 key [ 80 bits] * * Note: * This function only needs to be called every 2**16 packets, * although in theory it could be called every packet. * ********************************************************************** */ static void phase1(u16 *p1k, const u8 *tk, const u8 *ta, u32 iv32) { sint i; /* Initialize the 80 bits of P1K[] from IV32 and TA[0..5] */ p1k[0] = Lo16(iv32); p1k[1] = Hi16(iv32); p1k[2] = Mk16(ta[1], ta[0]); /* use TA[] as little-endian */ p1k[3] = Mk16(ta[3], ta[2]); p1k[4] = Mk16(ta[5], ta[4]); /* Now compute an unbalanced Feistel cipher with 80-bit block */ /* size on the 80-bit block P1K[], using the 128-bit key TK[] */ for (i = 0; i < PHASE1_LOOP_CNT; i++) { /* Each add is mod 2**16 */ p1k[0] += _S_(p1k[4] ^ TK16((i & 1) + 0)); p1k[1] += _S_(p1k[0] ^ TK16((i & 1) + 2)); p1k[2] += _S_(p1k[1] ^ TK16((i & 1) + 4)); p1k[3] += _S_(p1k[2] ^ TK16((i & 1) + 6)); p1k[4] += _S_(p1k[3] ^ TK16((i & 1) + 0)); p1k[4] += (unsigned short)i; /* avoid "slide attacks" */ } } /* ********************************************************************** * Routine: Phase 2 -- generate RC4KEY, given TK, P1K, IV16 * * Inputs: * tk[] = Temporal key [128 bits] * p1k[] = Phase 1 output key [ 80 bits] * iv16 = low 16 bits of IV counter [ 16 bits] * Output: * rc4key[] = the key used to encrypt the packet [128 bits] * * Note: * The value {TA,IV32,IV16} for Phase1/Phase2 must be unique * across all packets using the same key TK value. Then, for a * given value of TK[], this TKIP48 construction guarantees that * the final RC4KEY value is unique across all packets. * * Suggested implementation optimization: if PPK[] is "overlaid" * appropriately on RC4KEY[], there is no need for the final * for loop below that copies the PPK[] result into RC4KEY[]. * ********************************************************************** */ static void phase2(u8 *rc4key, const u8 *tk, const u16 *p1k, u16 iv16) { sint i; u16 PPK[6]; /* temporary key for mixing */ /* Note: all adds in the PPK[] equations below are mod 2**16 */ for (i = 0; i < 5; i++) PPK[i] = p1k[i]; /* first, copy P1K to PPK */ PPK[5] = p1k[4] + iv16; /* next, add in IV16 */ /* Bijective non-linear mixing of the 96 bits of PPK[0..5] */ PPK[0] += _S_(PPK[5] ^ TK16(0)); /* Mix key in each "round" */ PPK[1] += _S_(PPK[0] ^ TK16(1)); PPK[2] += _S_(PPK[1] ^ TK16(2)); PPK[3] += _S_(PPK[2] ^ TK16(3)); PPK[4] += _S_(PPK[3] ^ TK16(4)); PPK[5] += _S_(PPK[4] ^ TK16(5)); /* Total # S-box lookups == 6 */ /* Final sweep: bijective, "linear". Rotates kill LSB correlations */ PPK[0] += RotR1(PPK[5] ^ TK16(6)); PPK[1] += RotR1(PPK[0] ^ TK16(7)); /* Use all of TK[] in Phase2 */ PPK[2] += RotR1(PPK[1]); PPK[3] += RotR1(PPK[2]); PPK[4] += RotR1(PPK[3]); PPK[5] += RotR1(PPK[4]); /* Note: At this point, for a given key TK[0..15], the 96-bit output */ /* value PPK[0..5] is guaranteed to be unique, as a function */ /* of the 96-bit "input" value {TA,IV32,IV16}. That is, P1K */ /* is now a keyed permutation of {TA,IV32,IV16}. */ /* Set RC4KEY[0..3], which includes "cleartext" portion of RC4 key */ rc4key[0] = Hi8(iv16); /* RC4KEY[0..2] is the WEP IV */ rc4key[1] = (Hi8(iv16) | 0x20) & 0x7F; /* Help avoid weak (FMS) keys */ rc4key[2] = Lo8(iv16); rc4key[3] = Lo8((PPK[5] ^ TK16(0)) >> 1); /* Copy 96 bits of PPK[0..5] to RC4KEY[4..15] (little-endian) */ for (i = 0; i < 6; i++) { rc4key[4 + 2 * i] = Lo8(PPK[i]); rc4key[5 + 2 * i] = Hi8(PPK[i]); } } /*The hlen isn't include the IV*/ u32 r8712_tkip_encrypt(struct _adapter *padapter, u8 *pxmitframe) { /* exclude ICV */ u16 pnl; u32 pnh; u8 rc4key[16]; u8 ttkey[16]; u8 crc[4]; struct arc4context mycontext; u32 curfragnum, length; u8 *pframe, *payload, *iv, *prwskey; union pn48 txpn; struct sta_info *stainfo; struct pkt_attrib *pattrib = &((struct xmit_frame *)pxmitframe)->attrib; struct xmit_priv *pxmitpriv = &padapter->xmitpriv; u32 res = _SUCCESS; if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL) return _FAIL; pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + TXDESC_OFFSET; /* 4 start to encrypt each fragment */ if (pattrib->encrypt == _TKIP_) { if (pattrib->psta) stainfo = pattrib->psta; else stainfo = r8712_get_stainfo(&padapter->stapriv, &pattrib->ra[0]); if (stainfo) { prwskey = &stainfo->x_UncstKey.skey[0]; for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) { iv = pframe + pattrib->hdrlen; payload = pframe + pattrib->iv_len + pattrib->hdrlen; GET_TKIP_PN(iv, txpn); pnl = (u16)(txpn.val); pnh = (u32)(txpn.val >> 16); phase1((u16 *)&ttkey[0], prwskey, &pattrib->ta[0], pnh); phase2(&rc4key[0], prwskey, (u16 *)&ttkey[0], pnl); if ((curfragnum + 1) == pattrib->nr_frags) { /* 4 the last fragment */ length = pattrib->last_txcmdsz - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len; *((__le32 *)crc) = cpu_to_le32( getcrc32(payload, length)); arcfour_init(&mycontext, rc4key, 16); arcfour_encrypt(&mycontext, payload, payload, length); arcfour_encrypt(&mycontext, payload + length, crc, 4); } else { length = pxmitpriv->frag_len - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len; *((__le32 *)crc) = cpu_to_le32(getcrc32( payload, length)); arcfour_init(&mycontext, rc4key, 16); arcfour_encrypt(&mycontext, payload, payload, length); arcfour_encrypt(&mycontext, payload + length, crc, 4); pframe += pxmitpriv->frag_len; pframe = (u8 *)RND4((addr_t)(pframe)); } } } else { res = _FAIL; } } return res; } /* The hlen doesn't include the IV */ void r8712_tkip_decrypt(struct _adapter *padapter, u8 *precvframe) { /* exclude ICV */ u16 pnl; u32 pnh; u8 rc4key[16]; u8 ttkey[16]; u8 crc[4]; struct arc4context mycontext; u32 length; u8 *pframe, *payload, *iv, *prwskey, idx = 0; union pn48 txpn; struct sta_info *stainfo; struct rx_pkt_attrib *prxattrib = &((union recv_frame *) precvframe)->u.hdr.attrib; struct security_priv *psecuritypriv = &padapter->securitypriv; pframe = (unsigned char *)((union recv_frame *) precvframe)->u.hdr.rx_data; /* 4 start to decrypt recvframe */ if (prxattrib->encrypt == _TKIP_) { stainfo = r8712_get_stainfo(&padapter->stapriv, &prxattrib->ta[0]); if (stainfo) { iv = pframe + prxattrib->hdrlen; payload = pframe + prxattrib->iv_len + prxattrib->hdrlen; length = ((union recv_frame *)precvframe)-> u.hdr.len - prxattrib->hdrlen - prxattrib->iv_len; if (is_multicast_ether_addr(prxattrib->ra)) { idx = iv[3]; prwskey = &psecuritypriv->XGrpKey[ ((idx >> 6) & 0x3) - 1].skey[0]; if (!psecuritypriv->binstallGrpkey) return; } else { prwskey = &stainfo->x_UncstKey.skey[0]; } GET_TKIP_PN(iv, txpn); pnl = (u16)(txpn.val); pnh = (u32)(txpn.val >> 16); phase1((u16 *)&ttkey[0], prwskey, &prxattrib->ta[0], pnh); phase2(&rc4key[0], prwskey, (unsigned short *) &ttkey[0], pnl); /* 4 decrypt payload include icv */ arcfour_init(&mycontext, rc4key, 16); arcfour_encrypt(&mycontext, payload, payload, length); *((__le32 *)crc) = cpu_to_le32(getcrc32(payload, length - 4)); } } } /* 3 =====AES related===== */ #define MAX_MSG_SIZE 2048 /*****************************/ /******** SBOX Table *********/ /*****************************/ static const u8 sbox_table[256] = { 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; /****************************************/ /* aes128k128d() */ /* Performs a 128 bit AES encrypt with */ /* 128 bit data. */ /****************************************/ static void xor_128(u8 *a, u8 *b, u8 *out) { sint i; for (i = 0; i < 16; i++) out[i] = a[i] ^ b[i]; } static void xor_32(u8 *a, u8 *b, u8 *out) { sint i; for (i = 0; i < 4; i++) out[i] = a[i] ^ b[i]; } static u8 sbox(u8 a) { return sbox_table[(sint)a]; } static void next_key(u8 *key, sint round) { u8 rcon; u8 sbox_key[4]; static const u8 rcon_table[12] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x36, 0x36 }; sbox_key[0] = sbox(key[13]); sbox_key[1] = sbox(key[14]); sbox_key[2] = sbox(key[15]); sbox_key[3] = sbox(key[12]); rcon = rcon_table[round]; xor_32(&key[0], sbox_key, &key[0]); key[0] = key[0] ^ rcon; xor_32(&key[4], &key[0], &key[4]); xor_32(&key[8], &key[4], &key[8]); xor_32(&key[12], &key[8], &key[12]); } static void byte_sub(u8 *in, u8 *out) { sint i; for (i = 0; i < 16; i++) out[i] = sbox(in[i]); } static void shift_row(u8 *in, u8 *out) { out[0] = in[0]; out[1] = in[5]; out[2] = in[10]; out[3] = in[15]; out[4] = in[4]; out[5] = in[9]; out[6] = in[14]; out[7] = in[3]; out[8] = in[8]; out[9] = in[13]; out[10] = in[2]; out[11] = in[7]; out[12] = in[12]; out[13] = in[1]; out[14] = in[6]; out[15] = in[11]; } static void mix_column(u8 *in, u8 *out) { sint i; u8 add1b[4]; u8 add1bf7[4]; u8 rotl[4]; u8 swap_halves[4]; u8 andf7[4]; u8 rotr[4]; u8 temp[4]; u8 tempb[4]; for (i = 0; i < 4; i++) { if ((in[i] & 0x80) == 0x80) add1b[i] = 0x1b; else add1b[i] = 0x00; } swap_halves[0] = in[2]; /* Swap halves */ swap_halves[1] = in[3]; swap_halves[2] = in[0]; swap_halves[3] = in[1]; rotl[0] = in[3]; /* Rotate left 8 bits */ rotl[1] = in[0]; rotl[2] = in[1]; rotl[3] = in[2]; andf7[0] = in[0] & 0x7f; andf7[1] = in[1] & 0x7f; andf7[2] = in[2] & 0x7f; andf7[3] = in[3] & 0x7f; for (i = 3; i > 0; i--) { /* logical shift left 1 bit */ andf7[i] = andf7[i] << 1; if ((andf7[i - 1] & 0x80) == 0x80) andf7[i] = (andf7[i] | 0x01); } andf7[0] = andf7[0] << 1; andf7[0] = andf7[0] & 0xfe; xor_32(add1b, andf7, add1bf7); xor_32(in, add1bf7, rotr); temp[0] = rotr[0]; /* Rotate right 8 bits */ rotr[0] = rotr[1]; rotr[1] = rotr[2]; rotr[2] = rotr[3]; rotr[3] = temp[0]; xor_32(add1bf7, rotr, temp); xor_32(swap_halves, rotl, tempb); xor_32(temp, tempb, out); } static void aes128k128d(u8 *key, u8 *data, u8 *ciphertext) { sint round; sint i; u8 intermediatea[16]; u8 intermediateb[16]; u8 round_key[16]; for (i = 0; i < 16; i++) round_key[i] = key[i]; for (round = 0; round < 11; round++) { if (round == 0) { xor_128(round_key, data, ciphertext); next_key(round_key, round); } else if (round == 10) { byte_sub(ciphertext, intermediatea); shift_row(intermediatea, intermediateb); xor_128(intermediateb, round_key, ciphertext); } else { /* 1 - 9 */ byte_sub(ciphertext, intermediatea); shift_row(intermediatea, intermediateb); mix_column(&intermediateb[0], &intermediatea[0]); mix_column(&intermediateb[4], &intermediatea[4]); mix_column(&intermediateb[8], &intermediatea[8]); mix_column(&intermediateb[12], &intermediatea[12]); xor_128(intermediatea, round_key, ciphertext); next_key(round_key, round); } } } /************************************************/ /* construct_mic_iv() */ /* Builds the MIC IV from header fields and PN */ /************************************************/ static void construct_mic_iv(u8 *mic_iv, sint qc_exists, sint a4_exists, u8 *mpdu, uint payload_length, u8 *pn_vector) { sint i; mic_iv[0] = 0x59; if (qc_exists && a4_exists) mic_iv[1] = mpdu[30] & 0x0f; /* QoS_TC */ if (qc_exists && !a4_exists) mic_iv[1] = mpdu[24] & 0x0f; /* mute bits 7-4 */ if (!qc_exists) mic_iv[1] = 0x00; for (i = 2; i < 8; i++) mic_iv[i] = mpdu[i + 8]; for (i = 8; i < 14; i++) mic_iv[i] = pn_vector[13 - i]; /* mic_iv[8:13] = PN[5:0] */ mic_iv[14] = (unsigned char)(payload_length / 256); mic_iv[15] = (unsigned char)(payload_length % 256); } /************************************************/ /* construct_mic_header1() */ /* Builds the first MIC header block from */ /* header fields. */ /************************************************/ static void construct_mic_header1(u8 *mic_header1, sint header_length, u8 *mpdu) { mic_header1[0] = (u8)((header_length - 2) / 256); mic_header1[1] = (u8)((header_length - 2) % 256); mic_header1[2] = mpdu[0] & 0xcf; /* Mute CF poll & CF ack bits */ /* Mute retry, more data and pwr mgt bits */ mic_header1[3] = mpdu[1] & 0xc7; mic_header1[4] = mpdu[4]; /* A1 */ mic_header1[5] = mpdu[5]; mic_header1[6] = mpdu[6]; mic_header1[7] = mpdu[7]; mic_header1[8] = mpdu[8]; mic_header1[9] = mpdu[9]; mic_header1[10] = mpdu[10]; /* A2 */ mic_header1[11] = mpdu[11]; mic_header1[12] = mpdu[12]; mic_header1[13] = mpdu[13]; mic_header1[14] = mpdu[14]; mic_header1[15] = mpdu[15]; } /************************************************/ /* construct_mic_header2() */ /* Builds the last MIC header block from */ /* header fields. */ /************************************************/ static void construct_mic_header2(u8 *mic_header2, u8 *mpdu, sint a4_exists, sint qc_exists) { sint i; for (i = 0; i < 16; i++) mic_header2[i] = 0x00; mic_header2[0] = mpdu[16]; /* A3 */ mic_header2[1] = mpdu[17]; mic_header2[2] = mpdu[18]; mic_header2[3] = mpdu[19]; mic_header2[4] = mpdu[20]; mic_header2[5] = mpdu[21]; mic_header2[6] = 0x00; mic_header2[7] = 0x00; /* mpdu[23]; */ if (!qc_exists && a4_exists) for (i = 0; i < 6; i++) mic_header2[8 + i] = mpdu[24 + i]; /* A4 */ if (qc_exists && !a4_exists) { mic_header2[8] = mpdu[24] & 0x0f; /* mute bits 15 - 4 */ mic_header2[9] = mpdu[25] & 0x00; } if (qc_exists && a4_exists) { for (i = 0; i < 6; i++) mic_header2[8 + i] = mpdu[24 + i]; /* A4 */ mic_header2[14] = mpdu[30] & 0x0f; mic_header2[15] = mpdu[31] & 0x00; } } /************************************************/ /* construct_mic_header2() */ /* Builds the last MIC header block from */ /* header fields. */ /************************************************/ static void construct_ctr_preload(u8 *ctr_preload, sint a4_exists, sint qc_exists, u8 *mpdu, u8 *pn_vector, sint c) { sint i; for (i = 0; i < 16; i++) ctr_preload[i] = 0x00; i = 0; ctr_preload[0] = 0x01; /* flag */ if (qc_exists && a4_exists) ctr_preload[1] = mpdu[30] & 0x0f; if (qc_exists && !a4_exists) ctr_preload[1] = mpdu[24] & 0x0f; for (i = 2; i < 8; i++) ctr_preload[i] = mpdu[i + 8]; for (i = 8; i < 14; i++) ctr_preload[i] = pn_vector[13 - i]; ctr_preload[14] = (unsigned char)(c / 256); /* Ctr */ ctr_preload[15] = (unsigned char)(c % 256); } /************************************/ /* bitwise_xor() */ /* A 128 bit, bitwise exclusive or */ /************************************/ static void bitwise_xor(u8 *ina, u8 *inb, u8 *out) { sint i; for (i = 0; i < 16; i++) out[i] = ina[i] ^ inb[i]; } static void aes_cipher(u8 *key, uint hdrlen, u8 *pframe, uint plen) { uint qc_exists, a4_exists, i, j, payload_remainder; uint num_blocks, payload_index; u8 pn_vector[6]; u8 mic_iv[16]; u8 mic_header1[16]; u8 mic_header2[16]; u8 ctr_preload[16]; /* Intermediate Buffers */ u8 chain_buffer[16]; u8 aes_out[16]; u8 padded_buffer[16]; u8 mic[8]; u16 frtype = GetFrameType(pframe); u16 frsubtype = GetFrameSubType(pframe); frsubtype >>= 4; memset((void *)mic_iv, 0, 16); memset((void *)mic_header1, 0, 16); memset((void *)mic_header2, 0, 16); memset((void *)ctr_preload, 0, 16); memset((void *)chain_buffer, 0, 16); memset((void *)aes_out, 0, 16); memset((void *)padded_buffer, 0, 16); if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen == WLAN_HDR_A3_QOS_LEN)) a4_exists = 0; else a4_exists = 1; if ((frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFACK)) || (frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFPOLL)) || (frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFACKPOLL))) { qc_exists = 1; if (hdrlen != WLAN_HDR_A3_QOS_LEN) hdrlen += 2; } else if ((frsubtype == 0x08) || (frsubtype == 0x09) || (frsubtype == 0x0a) || (frsubtype == 0x0b)) { if (hdrlen != WLAN_HDR_A3_QOS_LEN) hdrlen += 2; qc_exists = 1; } else { qc_exists = 0; } pn_vector[0] = pframe[hdrlen]; pn_vector[1] = pframe[hdrlen + 1]; pn_vector[2] = pframe[hdrlen + 4]; pn_vector[3] = pframe[hdrlen + 5]; pn_vector[4] = pframe[hdrlen + 6]; pn_vector[5] = pframe[hdrlen + 7]; construct_mic_iv(mic_iv, qc_exists, a4_exists, pframe, plen, pn_vector); construct_mic_header1(mic_header1, hdrlen, pframe); construct_mic_header2(mic_header2, pframe, a4_exists, qc_exists); payload_remainder = plen % 16; num_blocks = plen / 16; /* Find start of payload */ payload_index = hdrlen + 8; /* Calculate MIC */ aes128k128d(key, mic_iv, aes_out); bitwise_xor(aes_out, mic_header1, chain_buffer); aes128k128d(key, chain_buffer, aes_out); bitwise_xor(aes_out, mic_header2, chain_buffer); aes128k128d(key, chain_buffer, aes_out); for (i = 0; i < num_blocks; i++) { bitwise_xor(aes_out, &pframe[payload_index], chain_buffer); payload_index += 16; aes128k128d(key, chain_buffer, aes_out); } /* Add on the final payload block if it needs padding */ if (payload_remainder > 0) { for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) padded_buffer[j] = pframe[payload_index++]; bitwise_xor(aes_out, padded_buffer, chain_buffer); aes128k128d(key, chain_buffer, aes_out); } for (j = 0; j < 8; j++) mic[j] = aes_out[j]; /* Insert MIC into payload */ for (j = 0; j < 8; j++) pframe[payload_index + j] = mic[j]; payload_index = hdrlen + 8; for (i = 0; i < num_blocks; i++) { construct_ctr_preload(ctr_preload, a4_exists, qc_exists, pframe, pn_vector, i + 1); aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, &pframe[payload_index], chain_buffer); for (j = 0; j < 16; j++) pframe[payload_index++] = chain_buffer[j]; } if (payload_remainder > 0) { /* If short final block, then pad it,*/ /* encrypt and copy unpadded part back */ construct_ctr_preload(ctr_preload, a4_exists, qc_exists, pframe, pn_vector, num_blocks + 1); for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) padded_buffer[j] = pframe[payload_index + j]; aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, padded_buffer, chain_buffer); for (j = 0; j < payload_remainder; j++) pframe[payload_index++] = chain_buffer[j]; } /* Encrypt the MIC */ construct_ctr_preload(ctr_preload, a4_exists, qc_exists, pframe, pn_vector, 0); for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < 8; j++) padded_buffer[j] = pframe[j + hdrlen + 8 + plen]; aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, padded_buffer, chain_buffer); for (j = 0; j < 8; j++) pframe[payload_index++] = chain_buffer[j]; } u32 r8712_aes_encrypt(struct _adapter *padapter, u8 *pxmitframe) { /* exclude ICV */ /* Intermediate Buffers */ sint curfragnum, length; u8 *pframe, *prwskey; struct sta_info *stainfo; struct pkt_attrib *pattrib = &((struct xmit_frame *) pxmitframe)->attrib; struct xmit_priv *pxmitpriv = &padapter->xmitpriv; u32 res = _SUCCESS; if (((struct xmit_frame *)pxmitframe)->buf_addr == NULL) return _FAIL; pframe = ((struct xmit_frame *)pxmitframe)->buf_addr + TXDESC_OFFSET; /* 4 start to encrypt each fragment */ if (pattrib->encrypt == _AES_) { if (pattrib->psta) stainfo = pattrib->psta; else stainfo = r8712_get_stainfo(&padapter->stapriv, &pattrib->ra[0]); if (stainfo) { prwskey = &stainfo->x_UncstKey.skey[0]; for (curfragnum = 0; curfragnum < pattrib->nr_frags; curfragnum++) { if ((curfragnum + 1) == pattrib->nr_frags) { length = pattrib->last_txcmdsz - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len; aes_cipher(prwskey, pattrib->hdrlen, pframe, length); } else { length = pxmitpriv->frag_len - pattrib->hdrlen - pattrib->iv_len - pattrib->icv_len; aes_cipher(prwskey, pattrib->hdrlen, pframe, length); pframe += pxmitpriv->frag_len; pframe = (u8 *)RND4((addr_t)(pframe)); } } } else { res = _FAIL; } } return res; } static void aes_decipher(u8 *key, uint hdrlen, u8 *pframe, uint plen) { static u8 message[MAX_MSG_SIZE]; uint qc_exists, a4_exists, i, j, payload_remainder; uint num_blocks, payload_index; u8 pn_vector[6]; u8 mic_iv[16]; u8 mic_header1[16]; u8 mic_header2[16]; u8 ctr_preload[16]; /* Intermediate Buffers */ u8 chain_buffer[16]; u8 aes_out[16]; u8 padded_buffer[16]; u8 mic[8]; uint frtype = GetFrameType(pframe); uint frsubtype = GetFrameSubType(pframe); frsubtype >>= 4; memset((void *)mic_iv, 0, 16); memset((void *)mic_header1, 0, 16); memset((void *)mic_header2, 0, 16); memset((void *)ctr_preload, 0, 16); memset((void *)chain_buffer, 0, 16); memset((void *)aes_out, 0, 16); memset((void *)padded_buffer, 0, 16); /* start to decrypt the payload */ /*(plen including llc, payload and mic) */ num_blocks = (plen - 8) / 16; payload_remainder = (plen - 8) % 16; pn_vector[0] = pframe[hdrlen]; pn_vector[1] = pframe[hdrlen + 1]; pn_vector[2] = pframe[hdrlen + 4]; pn_vector[3] = pframe[hdrlen + 5]; pn_vector[4] = pframe[hdrlen + 6]; pn_vector[5] = pframe[hdrlen + 7]; if ((hdrlen == WLAN_HDR_A3_LEN) || (hdrlen == WLAN_HDR_A3_QOS_LEN)) a4_exists = 0; else a4_exists = 1; if ((frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFACK)) || (frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFPOLL)) || (frtype == (IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA_CFACKPOLL))) { qc_exists = 1; if (hdrlen != WLAN_HDR_A3_QOS_LEN) hdrlen += 2; } else if ((frsubtype == 0x08) || (frsubtype == 0x09) || (frsubtype == 0x0a) || (frsubtype == 0x0b)) { if (hdrlen != WLAN_HDR_A3_QOS_LEN) hdrlen += 2; qc_exists = 1; } else { qc_exists = 0; } /* now, decrypt pframe with hdrlen offset and plen long */ payload_index = hdrlen + 8; /* 8 is for extiv */ for (i = 0; i < num_blocks; i++) { construct_ctr_preload(ctr_preload, a4_exists, qc_exists, pframe, pn_vector, i + 1); aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, &pframe[payload_index], chain_buffer); for (j = 0; j < 16; j++) pframe[payload_index++] = chain_buffer[j]; } if (payload_remainder > 0) { /* If short final block, pad it,*/ /* encrypt it and copy the unpadded part back */ construct_ctr_preload(ctr_preload, a4_exists, qc_exists, pframe, pn_vector, num_blocks + 1); for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) padded_buffer[j] = pframe[payload_index + j]; aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, padded_buffer, chain_buffer); for (j = 0; j < payload_remainder; j++) pframe[payload_index++] = chain_buffer[j]; } /* start to calculate the mic */ memcpy((void *)message, pframe, (hdrlen + plen + 8)); pn_vector[0] = pframe[hdrlen]; pn_vector[1] = pframe[hdrlen + 1]; pn_vector[2] = pframe[hdrlen + 4]; pn_vector[3] = pframe[hdrlen + 5]; pn_vector[4] = pframe[hdrlen + 6]; pn_vector[5] = pframe[hdrlen + 7]; construct_mic_iv(mic_iv, qc_exists, a4_exists, message, plen - 8, pn_vector); construct_mic_header1(mic_header1, hdrlen, message); construct_mic_header2(mic_header2, message, a4_exists, qc_exists); payload_remainder = (plen - 8) % 16; num_blocks = (plen - 8) / 16; /* Find start of payload */ payload_index = hdrlen + 8; /* Calculate MIC */ aes128k128d(key, mic_iv, aes_out); bitwise_xor(aes_out, mic_header1, chain_buffer); aes128k128d(key, chain_buffer, aes_out); bitwise_xor(aes_out, mic_header2, chain_buffer); aes128k128d(key, chain_buffer, aes_out); for (i = 0; i < num_blocks; i++) { bitwise_xor(aes_out, &message[payload_index], chain_buffer); payload_index += 16; aes128k128d(key, chain_buffer, aes_out); } /* Add on the final payload block if it needs padding */ if (payload_remainder > 0) { for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) padded_buffer[j] = message[payload_index++]; bitwise_xor(aes_out, padded_buffer, chain_buffer); aes128k128d(key, chain_buffer, aes_out); } for (j = 0; j < 8; j++) mic[j] = aes_out[j]; /* Insert MIC into payload */ for (j = 0; j < 8; j++) message[payload_index + j] = mic[j]; payload_index = hdrlen + 8; for (i = 0; i < num_blocks; i++) { construct_ctr_preload(ctr_preload, a4_exists, qc_exists, message, pn_vector, i + 1); aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, &message[payload_index], chain_buffer); for (j = 0; j < 16; j++) message[payload_index++] = chain_buffer[j]; } if (payload_remainder > 0) { /* If short final block, pad it,*/ /* encrypt and copy unpadded part back */ construct_ctr_preload(ctr_preload, a4_exists, qc_exists, message, pn_vector, num_blocks + 1); for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < payload_remainder; j++) padded_buffer[j] = message[payload_index + j]; aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, padded_buffer, chain_buffer); for (j = 0; j < payload_remainder; j++) message[payload_index++] = chain_buffer[j]; } /* Encrypt the MIC */ construct_ctr_preload(ctr_preload, a4_exists, qc_exists, message, pn_vector, 0); for (j = 0; j < 16; j++) padded_buffer[j] = 0x00; for (j = 0; j < 8; j++) padded_buffer[j] = message[j + hdrlen + plen]; aes128k128d(key, ctr_preload, aes_out); bitwise_xor(aes_out, padded_buffer, chain_buffer); for (j = 0; j < 8; j++) message[payload_index++] = chain_buffer[j]; /* compare the mic */ } void r8712_aes_decrypt(struct _adapter *padapter, u8 *precvframe) { /* exclude ICV */ /* Intermediate Buffers */ sint length; u8 *pframe, *prwskey, *iv, idx; struct sta_info *stainfo; struct rx_pkt_attrib *prxattrib = &((union recv_frame *) precvframe)->u.hdr.attrib; struct security_priv *psecuritypriv = &padapter->securitypriv; pframe = (unsigned char *)((union recv_frame *)precvframe)-> u.hdr.rx_data; /* 4 start to encrypt each fragment */ if (prxattrib->encrypt == _AES_) { stainfo = r8712_get_stainfo(&padapter->stapriv, &prxattrib->ta[0]); if (stainfo) { if (is_multicast_ether_addr(prxattrib->ra)) { iv = pframe + prxattrib->hdrlen; idx = iv[3]; prwskey = &psecuritypriv->XGrpKey[ ((idx >> 6) & 0x3) - 1].skey[0]; if (!psecuritypriv->binstallGrpkey) return; } else { prwskey = &stainfo->x_UncstKey.skey[0]; } length = ((union recv_frame *)precvframe)-> u.hdr.len - prxattrib->hdrlen - prxattrib->iv_len; aes_decipher(prwskey, prxattrib->hdrlen, pframe, length); } } } void r8712_use_tkipkey_handler(struct timer_list *t) { struct _adapter *padapter = from_timer(padapter, t, securitypriv.tkip_timer); padapter->securitypriv.busetkipkey = true; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1