Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martyn Welch | 2269 | 68.88% | 5 | 8.20% |
Dmitry Kalinkin | 515 | 15.63% | 11 | 18.03% |
Arthur Benilov | 119 | 3.61% | 3 | 4.92% |
Vincent Bossier | 67 | 2.03% | 3 | 4.92% |
Toshiaki Yamane | 61 | 1.85% | 1 | 1.64% |
Santosh Nayak | 45 | 1.37% | 1 | 1.64% |
Arnd Bergmann | 36 | 1.09% | 4 | 6.56% |
Al Viro | 33 | 1.00% | 4 | 6.56% |
Emilio G. Cota | 33 | 1.00% | 5 | 8.20% |
Greg Kroah-Hartman | 32 | 0.97% | 3 | 4.92% |
Manohar Vanga | 22 | 0.67% | 3 | 4.92% |
Wei Yongjun | 10 | 0.30% | 1 | 1.64% |
DaeSeok Youn | 9 | 0.27% | 1 | 1.64% |
Kumar Amit Mehta | 7 | 0.21% | 1 | 1.64% |
Bojan Prtvar | 6 | 0.18% | 1 | 1.64% |
Elena Reshetova | 5 | 0.15% | 1 | 1.64% |
Egor Uleyskiy | 5 | 0.15% | 1 | 1.64% |
Aaron Sierra | 4 | 0.12% | 1 | 1.64% |
Walt Feasel | 3 | 0.09% | 1 | 1.64% |
Linus Torvalds (pre-git) | 2 | 0.06% | 1 | 1.64% |
Nanakos Chrysostomos | 2 | 0.06% | 1 | 1.64% |
Christophe Jaillet | 2 | 0.06% | 1 | 1.64% |
Philip Thiemann | 1 | 0.03% | 1 | 1.64% |
Uwe Kleine-König | 1 | 0.03% | 1 | 1.64% |
Ryan Swan | 1 | 0.03% | 1 | 1.64% |
Dan Carpenter | 1 | 0.03% | 1 | 1.64% |
Bruno Moreira-Guedes | 1 | 0.03% | 1 | 1.64% |
Mahati Chamarthy | 1 | 0.03% | 1 | 1.64% |
Linus Torvalds | 1 | 0.03% | 1 | 1.64% |
Total | 3294 | 61 |
// SPDX-License-Identifier: GPL-2.0+ /* * VMEbus User access driver * * Author: Martyn Welch <martyn.welch@ge.com> * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc. * * Based on work by: * Tom Armistead and Ajit Prem * Copyright 2004 Motorola Inc. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/refcount.h> #include <linux/cdev.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/ioctl.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/pagemap.h> #include <linux/pci.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/syscalls.h> #include <linux/types.h> #include <linux/io.h> #include <linux/uaccess.h> #include "vme.h" #include "vme_user.h" #define DRIVER_NAME "vme_user" static int bus[VME_USER_BUS_MAX]; static unsigned int bus_num; /* Currently Documentation/admin-guide/devices.rst defines the * following for VME: * * 221 char VME bus * 0 = /dev/bus/vme/m0 First master image * 1 = /dev/bus/vme/m1 Second master image * 2 = /dev/bus/vme/m2 Third master image * 3 = /dev/bus/vme/m3 Fourth master image * 4 = /dev/bus/vme/s0 First slave image * 5 = /dev/bus/vme/s1 Second slave image * 6 = /dev/bus/vme/s2 Third slave image * 7 = /dev/bus/vme/s3 Fourth slave image * 8 = /dev/bus/vme/ctl Control * * It is expected that all VME bus drivers will use the * same interface. For interface documentation see * http://www.vmelinux.org/. * * However the VME driver at http://www.vmelinux.org/ is rather old and doesn't * even support the tsi148 chipset (which has 8 master and 8 slave windows). * We'll run with this for now as far as possible, however it probably makes * sense to get rid of the old mappings and just do everything dynamically. * * So for now, we'll restrict the driver to providing 4 masters and 4 slaves as * defined above and try to support at least some of the interface from * http://www.vmelinux.org/ as an alternative the driver can be written * providing a saner interface later. * * The vmelinux.org driver never supported slave images, the devices reserved * for slaves were repurposed to support all 8 master images on the UniverseII! * We shall support 4 masters and 4 slaves with this driver. */ #define VME_MAJOR 221 /* VME Major Device Number */ #define VME_DEVS 9 /* Number of dev entries */ #define MASTER_MINOR 0 #define MASTER_MAX 3 #define SLAVE_MINOR 4 #define SLAVE_MAX 7 #define CONTROL_MINOR 8 #define PCI_BUF_SIZE 0x20000 /* Size of one slave image buffer */ /* * Structure to handle image related parameters. */ struct image_desc { void *kern_buf; /* Buffer address in kernel space */ dma_addr_t pci_buf; /* Buffer address in PCI address space */ unsigned long long size_buf; /* Buffer size */ struct mutex mutex; /* Mutex for locking image */ struct device *device; /* Sysfs device */ struct vme_resource *resource; /* VME resource */ int mmap_count; /* Number of current mmap's */ }; static struct image_desc image[VME_DEVS]; static struct cdev *vme_user_cdev; /* Character device */ static struct vme_dev *vme_user_bridge; /* Pointer to user device */ static const struct class vme_user_sysfs_class = { .name = DRIVER_NAME, }; static const int type[VME_DEVS] = { MASTER_MINOR, MASTER_MINOR, MASTER_MINOR, MASTER_MINOR, SLAVE_MINOR, SLAVE_MINOR, SLAVE_MINOR, SLAVE_MINOR, CONTROL_MINOR }; struct vme_user_vma_priv { unsigned int minor; refcount_t refcnt; }; static ssize_t resource_to_user(int minor, char __user *buf, size_t count, loff_t *ppos) { ssize_t copied = 0; if (count > image[minor].size_buf) count = image[minor].size_buf; copied = vme_master_read(image[minor].resource, image[minor].kern_buf, count, *ppos); if (copied < 0) return (int)copied; if (copy_to_user(buf, image[minor].kern_buf, (unsigned long)copied)) return -EFAULT; return copied; } static ssize_t resource_from_user(unsigned int minor, const char __user *buf, size_t count, loff_t *ppos) { if (count > image[minor].size_buf) count = image[minor].size_buf; if (copy_from_user(image[minor].kern_buf, buf, (unsigned long)count)) return -EFAULT; return vme_master_write(image[minor].resource, image[minor].kern_buf, count, *ppos); } static ssize_t buffer_to_user(unsigned int minor, char __user *buf, size_t count, loff_t *ppos) { void *image_ptr; image_ptr = image[minor].kern_buf + *ppos; if (copy_to_user(buf, image_ptr, (unsigned long)count)) return -EFAULT; return count; } static ssize_t buffer_from_user(unsigned int minor, const char __user *buf, size_t count, loff_t *ppos) { void *image_ptr; image_ptr = image[minor].kern_buf + *ppos; if (copy_from_user(image_ptr, buf, (unsigned long)count)) return -EFAULT; return count; } static ssize_t vme_user_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { unsigned int minor = iminor(file_inode(file)); ssize_t retval; size_t image_size; if (minor == CONTROL_MINOR) return 0; mutex_lock(&image[minor].mutex); /* XXX Do we *really* want this helper - we can use vme_*_get ? */ image_size = vme_get_size(image[minor].resource); /* Ensure we are starting at a valid location */ if ((*ppos < 0) || (*ppos > (image_size - 1))) { mutex_unlock(&image[minor].mutex); return 0; } /* Ensure not reading past end of the image */ if (*ppos + count > image_size) count = image_size - *ppos; switch (type[minor]) { case MASTER_MINOR: retval = resource_to_user(minor, buf, count, ppos); break; case SLAVE_MINOR: retval = buffer_to_user(minor, buf, count, ppos); break; default: retval = -EINVAL; } mutex_unlock(&image[minor].mutex); if (retval > 0) *ppos += retval; return retval; } static ssize_t vme_user_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { unsigned int minor = iminor(file_inode(file)); ssize_t retval; size_t image_size; if (minor == CONTROL_MINOR) return 0; mutex_lock(&image[minor].mutex); image_size = vme_get_size(image[minor].resource); /* Ensure we are starting at a valid location */ if ((*ppos < 0) || (*ppos > (image_size - 1))) { mutex_unlock(&image[minor].mutex); return 0; } /* Ensure not reading past end of the image */ if (*ppos + count > image_size) count = image_size - *ppos; switch (type[minor]) { case MASTER_MINOR: retval = resource_from_user(minor, buf, count, ppos); break; case SLAVE_MINOR: retval = buffer_from_user(minor, buf, count, ppos); break; default: retval = -EINVAL; } mutex_unlock(&image[minor].mutex); if (retval > 0) *ppos += retval; return retval; } static loff_t vme_user_llseek(struct file *file, loff_t off, int whence) { unsigned int minor = iminor(file_inode(file)); size_t image_size; loff_t res; switch (type[minor]) { case MASTER_MINOR: case SLAVE_MINOR: mutex_lock(&image[minor].mutex); image_size = vme_get_size(image[minor].resource); res = fixed_size_llseek(file, off, whence, image_size); mutex_unlock(&image[minor].mutex); return res; } return -EINVAL; } /* * The ioctls provided by the old VME access method (the one at vmelinux.org) * are most certainly wrong as the effectively push the registers layout * through to user space. Given that the VME core can handle multiple bridges, * with different register layouts this is most certainly not the way to go. * * We aren't using the structures defined in the Motorola driver either - these * are also quite low level, however we should use the definitions that have * already been defined. */ static int vme_user_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct vme_master master; struct vme_slave slave; struct vme_irq_id irq_req; unsigned long copied; unsigned int minor = iminor(inode); int retval; dma_addr_t pci_addr; void __user *argp = (void __user *)arg; switch (type[minor]) { case CONTROL_MINOR: switch (cmd) { case VME_IRQ_GEN: copied = copy_from_user(&irq_req, argp, sizeof(irq_req)); if (copied) { pr_warn("Partial copy from userspace\n"); return -EFAULT; } return vme_irq_generate(vme_user_bridge, irq_req.level, irq_req.statid); } break; case MASTER_MINOR: switch (cmd) { case VME_GET_MASTER: memset(&master, 0, sizeof(master)); /* XXX We do not want to push aspace, cycle and width * to userspace as they are */ retval = vme_master_get(image[minor].resource, &master.enable, &master.vme_addr, &master.size, &master.aspace, &master.cycle, &master.dwidth); copied = copy_to_user(argp, &master, sizeof(master)); if (copied) { pr_warn("Partial copy to userspace\n"); return -EFAULT; } return retval; case VME_SET_MASTER: if (image[minor].mmap_count != 0) { pr_warn("Can't adjust mapped window\n"); return -EPERM; } copied = copy_from_user(&master, argp, sizeof(master)); if (copied) { pr_warn("Partial copy from userspace\n"); return -EFAULT; } /* XXX We do not want to push aspace, cycle and width * to userspace as they are */ return vme_master_set(image[minor].resource, master.enable, master.vme_addr, master.size, master.aspace, master.cycle, master.dwidth); break; } break; case SLAVE_MINOR: switch (cmd) { case VME_GET_SLAVE: memset(&slave, 0, sizeof(slave)); /* XXX We do not want to push aspace, cycle and width * to userspace as they are */ retval = vme_slave_get(image[minor].resource, &slave.enable, &slave.vme_addr, &slave.size, &pci_addr, &slave.aspace, &slave.cycle); copied = copy_to_user(argp, &slave, sizeof(slave)); if (copied) { pr_warn("Partial copy to userspace\n"); return -EFAULT; } return retval; case VME_SET_SLAVE: copied = copy_from_user(&slave, argp, sizeof(slave)); if (copied) { pr_warn("Partial copy from userspace\n"); return -EFAULT; } /* XXX We do not want to push aspace, cycle and width * to userspace as they are */ return vme_slave_set(image[minor].resource, slave.enable, slave.vme_addr, slave.size, image[minor].pci_buf, slave.aspace, slave.cycle); break; } break; } return -EINVAL; } static long vme_user_unlocked_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { int ret; struct inode *inode = file_inode(file); unsigned int minor = iminor(inode); mutex_lock(&image[minor].mutex); ret = vme_user_ioctl(inode, file, cmd, arg); mutex_unlock(&image[minor].mutex); return ret; } static void vme_user_vm_open(struct vm_area_struct *vma) { struct vme_user_vma_priv *vma_priv = vma->vm_private_data; refcount_inc(&vma_priv->refcnt); } static void vme_user_vm_close(struct vm_area_struct *vma) { struct vme_user_vma_priv *vma_priv = vma->vm_private_data; unsigned int minor = vma_priv->minor; if (!refcount_dec_and_test(&vma_priv->refcnt)) return; mutex_lock(&image[minor].mutex); image[minor].mmap_count--; mutex_unlock(&image[minor].mutex); kfree(vma_priv); } static const struct vm_operations_struct vme_user_vm_ops = { .open = vme_user_vm_open, .close = vme_user_vm_close, }; static int vme_user_master_mmap(unsigned int minor, struct vm_area_struct *vma) { int err; struct vme_user_vma_priv *vma_priv; mutex_lock(&image[minor].mutex); err = vme_master_mmap(image[minor].resource, vma); if (err) { mutex_unlock(&image[minor].mutex); return err; } vma_priv = kmalloc(sizeof(*vma_priv), GFP_KERNEL); if (!vma_priv) { mutex_unlock(&image[minor].mutex); return -ENOMEM; } vma_priv->minor = minor; refcount_set(&vma_priv->refcnt, 1); vma->vm_ops = &vme_user_vm_ops; vma->vm_private_data = vma_priv; image[minor].mmap_count++; mutex_unlock(&image[minor].mutex); return 0; } static int vme_user_mmap(struct file *file, struct vm_area_struct *vma) { unsigned int minor = iminor(file_inode(file)); if (type[minor] == MASTER_MINOR) return vme_user_master_mmap(minor, vma); return -ENODEV; } static const struct file_operations vme_user_fops = { .read = vme_user_read, .write = vme_user_write, .llseek = vme_user_llseek, .unlocked_ioctl = vme_user_unlocked_ioctl, .compat_ioctl = compat_ptr_ioctl, .mmap = vme_user_mmap, }; static int vme_user_match(struct vme_dev *vdev) { int i; int cur_bus = vme_bus_num(vdev); int cur_slot = vme_slot_num(vdev); for (i = 0; i < bus_num; i++) if ((cur_bus == bus[i]) && (cur_slot == vdev->num)) return 1; return 0; } /* * In this simple access driver, the old behaviour is being preserved as much * as practical. We will therefore reserve the buffers and request the images * here so that we don't have to do it later. */ static int vme_user_probe(struct vme_dev *vdev) { int i, err; char *name; /* Save pointer to the bridge device */ if (vme_user_bridge) { dev_err(&vdev->dev, "Driver can only be loaded for 1 device\n"); err = -EINVAL; goto err_dev; } vme_user_bridge = vdev; /* Initialise descriptors */ for (i = 0; i < VME_DEVS; i++) { image[i].kern_buf = NULL; image[i].pci_buf = 0; mutex_init(&image[i].mutex); image[i].device = NULL; image[i].resource = NULL; } /* Assign major and minor numbers for the driver */ err = register_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS, DRIVER_NAME); if (err) { dev_warn(&vdev->dev, "Error getting Major Number %d for driver.\n", VME_MAJOR); goto err_region; } /* Register the driver as a char device */ vme_user_cdev = cdev_alloc(); if (!vme_user_cdev) { err = -ENOMEM; goto err_char; } vme_user_cdev->ops = &vme_user_fops; vme_user_cdev->owner = THIS_MODULE; err = cdev_add(vme_user_cdev, MKDEV(VME_MAJOR, 0), VME_DEVS); if (err) goto err_class; /* Request slave resources and allocate buffers (128kB wide) */ for (i = SLAVE_MINOR; i < (SLAVE_MAX + 1); i++) { /* XXX Need to properly request attributes */ /* For ca91cx42 bridge there are only two slave windows * supporting A16 addressing, so we request A24 supported * by all windows. */ image[i].resource = vme_slave_request(vme_user_bridge, VME_A24, VME_SCT); if (!image[i].resource) { dev_warn(&vdev->dev, "Unable to allocate slave resource\n"); err = -ENOMEM; goto err_slave; } image[i].size_buf = PCI_BUF_SIZE; image[i].kern_buf = vme_alloc_consistent(image[i].resource, image[i].size_buf, &image[i].pci_buf); if (!image[i].kern_buf) { dev_warn(&vdev->dev, "Unable to allocate memory for buffer\n"); image[i].pci_buf = 0; vme_slave_free(image[i].resource); err = -ENOMEM; goto err_slave; } } /* * Request master resources allocate page sized buffers for small * reads and writes */ for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++) { /* XXX Need to properly request attributes */ image[i].resource = vme_master_request(vme_user_bridge, VME_A32, VME_SCT, VME_D32); if (!image[i].resource) { dev_warn(&vdev->dev, "Unable to allocate master resource\n"); err = -ENOMEM; goto err_master; } image[i].size_buf = PCI_BUF_SIZE; image[i].kern_buf = kmalloc(image[i].size_buf, GFP_KERNEL); if (!image[i].kern_buf) { err = -ENOMEM; vme_master_free(image[i].resource); goto err_master; } } /* Create sysfs entries - on udev systems this creates the dev files */ err = class_register(&vme_user_sysfs_class); if (err) { dev_err(&vdev->dev, "Error creating vme_user class.\n"); goto err_master; } /* Add sysfs Entries */ for (i = 0; i < VME_DEVS; i++) { int num; switch (type[i]) { case MASTER_MINOR: name = "bus/vme/m%d"; break; case CONTROL_MINOR: name = "bus/vme/ctl"; break; case SLAVE_MINOR: name = "bus/vme/s%d"; break; default: err = -EINVAL; goto err_sysfs; } num = (type[i] == SLAVE_MINOR) ? i - (MASTER_MAX + 1) : i; image[i].device = device_create(&vme_user_sysfs_class, NULL, MKDEV(VME_MAJOR, i), NULL, name, num); if (IS_ERR(image[i].device)) { dev_info(&vdev->dev, "Error creating sysfs device\n"); err = PTR_ERR(image[i].device); goto err_sysfs; } } return 0; err_sysfs: while (i > 0) { i--; device_destroy(&vme_user_sysfs_class, MKDEV(VME_MAJOR, i)); } class_unregister(&vme_user_sysfs_class); /* Ensure counter set correctly to unalloc all master windows */ i = MASTER_MAX + 1; err_master: while (i > MASTER_MINOR) { i--; kfree(image[i].kern_buf); vme_master_free(image[i].resource); } /* * Ensure counter set correctly to unalloc all slave windows and buffers */ i = SLAVE_MAX + 1; err_slave: while (i > SLAVE_MINOR) { i--; vme_free_consistent(image[i].resource, image[i].size_buf, image[i].kern_buf, image[i].pci_buf); vme_slave_free(image[i].resource); } err_class: cdev_del(vme_user_cdev); err_char: unregister_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS); err_region: err_dev: return err; } static void vme_user_remove(struct vme_dev *dev) { int i; /* Remove sysfs Entries */ for (i = 0; i < VME_DEVS; i++) { mutex_destroy(&image[i].mutex); device_destroy(&vme_user_sysfs_class, MKDEV(VME_MAJOR, i)); } class_unregister(&vme_user_sysfs_class); for (i = MASTER_MINOR; i < (MASTER_MAX + 1); i++) { kfree(image[i].kern_buf); vme_master_free(image[i].resource); } for (i = SLAVE_MINOR; i < (SLAVE_MAX + 1); i++) { vme_slave_set(image[i].resource, 0, 0, 0, 0, VME_A32, 0); vme_free_consistent(image[i].resource, image[i].size_buf, image[i].kern_buf, image[i].pci_buf); vme_slave_free(image[i].resource); } /* Unregister device driver */ cdev_del(vme_user_cdev); /* Unregister the major and minor device numbers */ unregister_chrdev_region(MKDEV(VME_MAJOR, 0), VME_DEVS); } static struct vme_driver vme_user_driver = { .name = DRIVER_NAME, .match = vme_user_match, .probe = vme_user_probe, .remove = vme_user_remove, }; static int __init vme_user_init(void) { int retval = 0; pr_info("VME User Space Access Driver\n"); if (bus_num == 0) { pr_err("No cards, skipping registration\n"); retval = -ENODEV; goto err_nocard; } /* Let's start by supporting one bus, we can support more than one * in future revisions if that ever becomes necessary. */ if (bus_num > VME_USER_BUS_MAX) { pr_err("Driver only able to handle %d buses\n", VME_USER_BUS_MAX); bus_num = VME_USER_BUS_MAX; } /* * Here we just register the maximum number of devices we can and * leave vme_user_match() to allow only 1 to go through to probe(). * This way, if we later want to allow multiple user access devices, * we just change the code in vme_user_match(). */ retval = vme_register_driver(&vme_user_driver, VME_MAX_SLOTS); if (retval) goto err_reg; return retval; err_reg: err_nocard: return retval; } static void __exit vme_user_exit(void) { vme_unregister_driver(&vme_user_driver); } MODULE_PARM_DESC(bus, "Enumeration of VMEbus to which the driver is connected"); module_param_array(bus, int, &bus_num, 0000); MODULE_DESCRIPTION("VME User Space Access Driver"); MODULE_AUTHOR("Martyn Welch <martyn.welch@ge.com>"); MODULE_LICENSE("GPL"); module_init(vme_user_init); module_exit(vme_user_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1