Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniel Lezcano | 633 | 95.48% | 4 | 36.36% |
Javi Merino | 11 | 1.66% | 1 | 9.09% |
Viresh Kumar | 8 | 1.21% | 1 | 9.09% |
Rob Herring | 4 | 0.60% | 1 | 9.09% |
Amit Daniel Kachhap | 3 | 0.45% | 1 | 9.09% |
Randy Dunlap | 2 | 0.30% | 1 | 9.09% |
王程刚 | 1 | 0.15% | 1 | 9.09% |
zhuguangqing | 1 | 0.15% | 1 | 9.09% |
Total | 663 | 11 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 Linaro Limited. * * Author: Daniel Lezcano <daniel.lezcano@linaro.org> * */ #define pr_fmt(fmt) "cpuidle cooling: " fmt #include <linux/cpu.h> #include <linux/cpu_cooling.h> #include <linux/cpuidle.h> #include <linux/device.h> #include <linux/err.h> #include <linux/idle_inject.h> #include <linux/of.h> #include <linux/slab.h> #include <linux/thermal.h> /** * struct cpuidle_cooling_device - data for the idle cooling device * @ii_dev: an atomic to keep track of the last task exiting the idle cycle * @state: a normalized integer giving the state of the cooling device */ struct cpuidle_cooling_device { struct idle_inject_device *ii_dev; unsigned long state; }; /** * cpuidle_cooling_runtime - Running time computation * @idle_duration_us: CPU idle time to inject in microseconds * @state: a percentile based number * * The running duration is computed from the idle injection duration * which is fixed. If we reach 100% of idle injection ratio, that * means the running duration is zero. If we have a 50% ratio * injection, that means we have equal duration for idle and for * running duration. * * The formula is deduced as follows: * * running = idle x ((100 / ratio) - 1) * * For precision purpose for integer math, we use the following: * * running = (idle x 100) / ratio - idle * * For example, if we have an injected duration of 50%, then we end up * with 10ms of idle injection and 10ms of running duration. * * Return: An unsigned int for a usec based runtime duration. */ static unsigned int cpuidle_cooling_runtime(unsigned int idle_duration_us, unsigned long state) { if (!state) return 0; return ((idle_duration_us * 100) / state) - idle_duration_us; } /** * cpuidle_cooling_get_max_state - Get the maximum state * @cdev : the thermal cooling device * @state : a pointer to the state variable to be filled * * The function always returns 100 as the injection ratio. It is * percentile based for consistency across different platforms. * * Return: The function can not fail, it is always zero */ static int cpuidle_cooling_get_max_state(struct thermal_cooling_device *cdev, unsigned long *state) { /* * Depending on the configuration or the hardware, the running * cycle and the idle cycle could be different. We want to * unify that to an 0..100 interval, so the set state * interface will be the same whatever the platform is. * * The state 100% will make the cluster 100% ... idle. A 0% * injection ratio means no idle injection at all and 50% * means for 10ms of idle injection, we have 10ms of running * time. */ *state = 100; return 0; } /** * cpuidle_cooling_get_cur_state - Get the current cooling state * @cdev: the thermal cooling device * @state: a pointer to the state * * The function just copies the state value from the private thermal * cooling device structure, the mapping is 1 <-> 1. * * Return: The function can not fail, it is always zero */ static int cpuidle_cooling_get_cur_state(struct thermal_cooling_device *cdev, unsigned long *state) { struct cpuidle_cooling_device *idle_cdev = cdev->devdata; *state = idle_cdev->state; return 0; } /** * cpuidle_cooling_set_cur_state - Set the current cooling state * @cdev: the thermal cooling device * @state: the target state * * The function checks first if we are initiating the mitigation which * in turn wakes up all the idle injection tasks belonging to the idle * cooling device. In any case, it updates the internal state for the * cooling device. * * Return: The function can not fail, it is always zero */ static int cpuidle_cooling_set_cur_state(struct thermal_cooling_device *cdev, unsigned long state) { struct cpuidle_cooling_device *idle_cdev = cdev->devdata; struct idle_inject_device *ii_dev = idle_cdev->ii_dev; unsigned long current_state = idle_cdev->state; unsigned int runtime_us, idle_duration_us; idle_cdev->state = state; idle_inject_get_duration(ii_dev, &runtime_us, &idle_duration_us); runtime_us = cpuidle_cooling_runtime(idle_duration_us, state); idle_inject_set_duration(ii_dev, runtime_us, idle_duration_us); if (current_state == 0 && state > 0) { idle_inject_start(ii_dev); } else if (current_state > 0 && !state) { idle_inject_stop(ii_dev); } return 0; } /* * cpuidle_cooling_ops - thermal cooling device ops */ static struct thermal_cooling_device_ops cpuidle_cooling_ops = { .get_max_state = cpuidle_cooling_get_max_state, .get_cur_state = cpuidle_cooling_get_cur_state, .set_cur_state = cpuidle_cooling_set_cur_state, }; /** * __cpuidle_cooling_register: register the cooling device * @drv: a cpuidle driver structure pointer * @np: a device node structure pointer used for the thermal binding * * This function is in charge of allocating the cpuidle cooling device * structure, the idle injection, initialize them and register the * cooling device to the thermal framework. * * Return: zero on success, a negative value returned by one of the * underlying subsystem in case of error */ static int __cpuidle_cooling_register(struct device_node *np, struct cpuidle_driver *drv) { struct idle_inject_device *ii_dev; struct cpuidle_cooling_device *idle_cdev; struct thermal_cooling_device *cdev; struct device *dev; unsigned int idle_duration_us = TICK_USEC; unsigned int latency_us = UINT_MAX; char *name; int ret; idle_cdev = kzalloc(sizeof(*idle_cdev), GFP_KERNEL); if (!idle_cdev) { ret = -ENOMEM; goto out; } ii_dev = idle_inject_register(drv->cpumask); if (!ii_dev) { ret = -EINVAL; goto out_kfree; } of_property_read_u32(np, "duration-us", &idle_duration_us); of_property_read_u32(np, "exit-latency-us", &latency_us); idle_inject_set_duration(ii_dev, TICK_USEC, idle_duration_us); idle_inject_set_latency(ii_dev, latency_us); idle_cdev->ii_dev = ii_dev; dev = get_cpu_device(cpumask_first(drv->cpumask)); name = kasprintf(GFP_KERNEL, "idle-%s", dev_name(dev)); if (!name) { ret = -ENOMEM; goto out_unregister; } cdev = thermal_of_cooling_device_register(np, name, idle_cdev, &cpuidle_cooling_ops); if (IS_ERR(cdev)) { ret = PTR_ERR(cdev); goto out_kfree_name; } pr_debug("%s: Idle injection set with idle duration=%u, latency=%u\n", name, idle_duration_us, latency_us); kfree(name); return 0; out_kfree_name: kfree(name); out_unregister: idle_inject_unregister(ii_dev); out_kfree: kfree(idle_cdev); out: return ret; } /** * cpuidle_cooling_register - Idle cooling device initialization function * @drv: a cpuidle driver structure pointer * * This function is in charge of creating a cooling device per cpuidle * driver and register it to the thermal framework. */ void cpuidle_cooling_register(struct cpuidle_driver *drv) { struct device_node *cooling_node; struct device_node *cpu_node; int cpu, ret; for_each_cpu(cpu, drv->cpumask) { cpu_node = of_cpu_device_node_get(cpu); cooling_node = of_get_child_by_name(cpu_node, "thermal-idle"); of_node_put(cpu_node); if (!cooling_node) { pr_debug("'thermal-idle' node not found for cpu%d\n", cpu); continue; } ret = __cpuidle_cooling_register(cooling_node, drv); of_node_put(cooling_node); if (ret) { pr_err("Failed to register the cpuidle cooling device" \ "for cpu%d: %d\n", cpu, ret); break; } } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1