Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Javi Merino | 1226 | 49.44% | 9 | 12.00% |
Lukasz Luba | 819 | 33.02% | 21 | 28.00% |
Rafael J. Wysocki | 124 | 5.00% | 6 | 8.00% |
Eduardo Valentin | 65 | 2.62% | 4 | 5.33% |
Rui Zhang | 50 | 2.02% | 5 | 6.67% |
Durgadoss R | 43 | 1.73% | 6 | 8.00% |
Daniel Lezcano | 29 | 1.17% | 7 | 9.33% |
Matthew Garrett | 20 | 0.81% | 1 | 1.33% |
Michele Di Giorgio | 16 | 0.65% | 1 | 1.33% |
Lukasz Majewski | 14 | 0.56% | 2 | 2.67% |
Kapileshwar Singh | 13 | 0.52% | 1 | 1.33% |
Jeson Gao | 11 | 0.44% | 1 | 1.33% |
Di Shen | 11 | 0.44% | 1 | 1.33% |
Nícolas F. R. A. Prado | 8 | 0.32% | 1 | 1.33% |
Nikita Travkin | 7 | 0.28% | 2 | 2.67% |
Andrea Arcangeli | 7 | 0.28% | 1 | 1.33% |
Joe Perches | 6 | 0.24% | 1 | 1.33% |
Tejun Heo | 4 | 0.16% | 1 | 1.33% |
Dmitry Torokhov | 3 | 0.12% | 1 | 1.33% |
Sascha Hauer | 2 | 0.08% | 1 | 1.33% |
Andrew Morton | 1 | 0.04% | 1 | 1.33% |
Viresh Kumar | 1 | 0.04% | 1 | 1.33% |
Total | 2480 | 75 |
// SPDX-License-Identifier: GPL-2.0 /* * A power allocator to manage temperature * * Copyright (C) 2014 ARM Ltd. * */ #define pr_fmt(fmt) "Power allocator: " fmt #include <linux/slab.h> #include <linux/thermal.h> #define CREATE_TRACE_POINTS #include "thermal_trace_ipa.h" #include "thermal_core.h" #define FRAC_BITS 10 #define int_to_frac(x) ((x) << FRAC_BITS) #define frac_to_int(x) ((x) >> FRAC_BITS) /** * mul_frac() - multiply two fixed-point numbers * @x: first multiplicand * @y: second multiplicand * * Return: the result of multiplying two fixed-point numbers. The * result is also a fixed-point number. */ static inline s64 mul_frac(s64 x, s64 y) { return (x * y) >> FRAC_BITS; } /** * div_frac() - divide two fixed-point numbers * @x: the dividend * @y: the divisor * * Return: the result of dividing two fixed-point numbers. The * result is also a fixed-point number. */ static inline s64 div_frac(s64 x, s64 y) { return div_s64(x << FRAC_BITS, y); } /** * struct power_actor - internal power information for power actor * @req_power: requested power value (not weighted) * @max_power: max allocatable power for this actor * @granted_power: granted power for this actor * @extra_actor_power: extra power that this actor can receive * @weighted_req_power: weighted requested power as input to IPA */ struct power_actor { u32 req_power; u32 max_power; u32 granted_power; u32 extra_actor_power; u32 weighted_req_power; }; /** * struct power_allocator_params - parameters for the power allocator governor * @allocated_tzp: whether we have allocated tzp for this thermal zone and * it needs to be freed on unbind * @update_cdevs: whether or not update cdevs on the next run * @err_integral: accumulated error in the PID controller. * @prev_err: error in the previous iteration of the PID controller. * Used to calculate the derivative term. * @sustainable_power: Sustainable power (heat) that this thermal zone can * dissipate * @trip_switch_on: first passive trip point of the thermal zone. The * governor switches on when this trip point is crossed. * If the thermal zone only has one passive trip point, * @trip_switch_on should be NULL. * @trip_max: last passive trip point of the thermal zone. The * temperature we are controlling for. * @total_weight: Sum of all thermal instances weights * @num_actors: number of cooling devices supporting IPA callbacks * @buffer_size: internal buffer size, to avoid runtime re-calculation * @power: buffer for all power actors internal power information */ struct power_allocator_params { bool allocated_tzp; bool update_cdevs; s64 err_integral; s32 prev_err; u32 sustainable_power; const struct thermal_trip *trip_switch_on; const struct thermal_trip *trip_max; int total_weight; unsigned int num_actors; unsigned int buffer_size; struct power_actor *power; }; static bool power_actor_is_valid(struct power_allocator_params *params, struct thermal_instance *instance) { return (instance->trip == params->trip_max && cdev_is_power_actor(instance->cdev)); } /** * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone * @tz: thermal zone we are operating in * * For thermal zones that don't provide a sustainable_power in their * thermal_zone_params, estimate one. Calculate it using the minimum * power of all the cooling devices as that gives a valid value that * can give some degree of functionality. For optimal performance of * this governor, provide a sustainable_power in the thermal zone's * thermal_zone_params. */ static u32 estimate_sustainable_power(struct thermal_zone_device *tz) { struct power_allocator_params *params = tz->governor_data; struct thermal_cooling_device *cdev; struct thermal_instance *instance; u32 sustainable_power = 0; u32 min_power; list_for_each_entry(instance, &tz->thermal_instances, tz_node) { if (!power_actor_is_valid(params, instance)) continue; cdev = instance->cdev; if (cdev->ops->state2power(cdev, instance->upper, &min_power)) continue; sustainable_power += min_power; } return sustainable_power; } /** * estimate_pid_constants() - Estimate the constants for the PID controller * @tz: thermal zone for which to estimate the constants * @sustainable_power: sustainable power for the thermal zone * @trip_switch_on: trip point for the switch on temperature * @control_temp: target temperature for the power allocator governor * * This function is used to update the estimation of the PID * controller constants in struct thermal_zone_parameters. */ static void estimate_pid_constants(struct thermal_zone_device *tz, u32 sustainable_power, const struct thermal_trip *trip_switch_on, int control_temp) { u32 temperature_threshold = control_temp; s32 k_i; if (trip_switch_on) temperature_threshold -= trip_switch_on->temperature; /* * estimate_pid_constants() tries to find appropriate default * values for thermal zones that don't provide them. If a * system integrator has configured a thermal zone with two * passive trip points at the same temperature, that person * hasn't put any effort to set up the thermal zone properly * so just give up. */ if (!temperature_threshold) return; tz->tzp->k_po = int_to_frac(sustainable_power) / temperature_threshold; tz->tzp->k_pu = int_to_frac(2 * sustainable_power) / temperature_threshold; k_i = tz->tzp->k_pu / 10; tz->tzp->k_i = k_i > 0 ? k_i : 1; /* * The default for k_d and integral_cutoff is 0, so we can * leave them as they are. */ } /** * get_sustainable_power() - Get the right sustainable power * @tz: thermal zone for which to estimate the constants * @params: parameters for the power allocator governor * @control_temp: target temperature for the power allocator governor * * This function is used for getting the proper sustainable power value based * on variables which might be updated by the user sysfs interface. If that * happen the new value is going to be estimated and updated. It is also used * after thermal zone binding, where the initial values where set to 0. */ static u32 get_sustainable_power(struct thermal_zone_device *tz, struct power_allocator_params *params, int control_temp) { u32 sustainable_power; if (!tz->tzp->sustainable_power) sustainable_power = estimate_sustainable_power(tz); else sustainable_power = tz->tzp->sustainable_power; /* Check if it's init value 0 or there was update via sysfs */ if (sustainable_power != params->sustainable_power) { estimate_pid_constants(tz, sustainable_power, params->trip_switch_on, control_temp); /* Do the estimation only once and make available in sysfs */ tz->tzp->sustainable_power = sustainable_power; params->sustainable_power = sustainable_power; } return sustainable_power; } /** * pid_controller() - PID controller * @tz: thermal zone we are operating in * @control_temp: the target temperature in millicelsius * @max_allocatable_power: maximum allocatable power for this thermal zone * * This PID controller increases the available power budget so that the * temperature of the thermal zone gets as close as possible to * @control_temp and limits the power if it exceeds it. k_po is the * proportional term when we are overshooting, k_pu is the * proportional term when we are undershooting. integral_cutoff is a * threshold below which we stop accumulating the error. The * accumulated error is only valid if the requested power will make * the system warmer. If the system is mostly idle, there's no point * in accumulating positive error. * * Return: The power budget for the next period. */ static u32 pid_controller(struct thermal_zone_device *tz, int control_temp, u32 max_allocatable_power) { struct power_allocator_params *params = tz->governor_data; s64 p, i, d, power_range; s32 err, max_power_frac; u32 sustainable_power; max_power_frac = int_to_frac(max_allocatable_power); sustainable_power = get_sustainable_power(tz, params, control_temp); err = control_temp - tz->temperature; err = int_to_frac(err); /* Calculate the proportional term */ p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err); /* * Calculate the integral term * * if the error is less than cut off allow integration (but * the integral is limited to max power) */ i = mul_frac(tz->tzp->k_i, params->err_integral); if (err < int_to_frac(tz->tzp->integral_cutoff)) { s64 i_next = i + mul_frac(tz->tzp->k_i, err); if (abs(i_next) < max_power_frac) { i = i_next; params->err_integral += err; } } /* * Calculate the derivative term * * We do err - prev_err, so with a positive k_d, a decreasing * error (i.e. driving closer to the line) results in less * power being applied, slowing down the controller) */ d = mul_frac(tz->tzp->k_d, err - params->prev_err); d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies)); params->prev_err = err; power_range = p + i + d; /* feed-forward the known sustainable dissipatable power */ power_range = sustainable_power + frac_to_int(power_range); power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power); trace_thermal_power_allocator_pid(tz, frac_to_int(err), frac_to_int(params->err_integral), frac_to_int(p), frac_to_int(i), frac_to_int(d), power_range); return power_range; } /** * power_actor_set_power() - limit the maximum power a cooling device consumes * @cdev: pointer to &thermal_cooling_device * @instance: thermal instance to update * @power: the power in milliwatts * * Set the cooling device to consume at most @power milliwatts. The limit is * expected to be a cap at the maximum power consumption. * * Return: 0 on success, -EINVAL if the cooling device does not * implement the power actor API or -E* for other failures. */ static int power_actor_set_power(struct thermal_cooling_device *cdev, struct thermal_instance *instance, u32 power) { unsigned long state; int ret; ret = cdev->ops->power2state(cdev, power, &state); if (ret) return ret; instance->target = clamp_val(state, instance->lower, instance->upper); mutex_lock(&cdev->lock); __thermal_cdev_update(cdev); mutex_unlock(&cdev->lock); return 0; } /** * divvy_up_power() - divvy the allocated power between the actors * @power: buffer for all power actors internal power information * @num_actors: number of power actors in this thermal zone * @total_req_power: sum of all weighted requested power for all actors * @power_range: total allocated power * * This function divides the total allocated power (@power_range) * fairly between the actors. It first tries to give each actor a * share of the @power_range according to how much power it requested * compared to the rest of the actors. For example, if only one actor * requests power, then it receives all the @power_range. If * three actors each requests 1mW, each receives a third of the * @power_range. * * If any actor received more than their maximum power, then that * surplus is re-divvied among the actors based on how far they are * from their respective maximums. */ static void divvy_up_power(struct power_actor *power, int num_actors, u32 total_req_power, u32 power_range) { u32 capped_extra_power = 0; u32 extra_power = 0; int i; /* * Prevent division by 0 if none of the actors request power. */ if (!total_req_power) total_req_power = 1; for (i = 0; i < num_actors; i++) { struct power_actor *pa = &power[i]; u64 req_range = (u64)pa->req_power * power_range; pa->granted_power = DIV_ROUND_CLOSEST_ULL(req_range, total_req_power); if (pa->granted_power > pa->max_power) { extra_power += pa->granted_power - pa->max_power; pa->granted_power = pa->max_power; } pa->extra_actor_power = pa->max_power - pa->granted_power; capped_extra_power += pa->extra_actor_power; } if (!extra_power || !capped_extra_power) return; /* * Re-divvy the reclaimed extra among actors based on * how far they are from the max */ extra_power = min(extra_power, capped_extra_power); for (i = 0; i < num_actors; i++) { struct power_actor *pa = &power[i]; u64 extra_range = pa->extra_actor_power; extra_range *= extra_power; pa->granted_power += DIV_ROUND_CLOSEST_ULL(extra_range, capped_extra_power); } } static void allocate_power(struct thermal_zone_device *tz, int control_temp) { struct power_allocator_params *params = tz->governor_data; unsigned int num_actors = params->num_actors; struct power_actor *power = params->power; struct thermal_cooling_device *cdev; struct thermal_instance *instance; u32 total_weighted_req_power = 0; u32 max_allocatable_power = 0; u32 total_granted_power = 0; u32 total_req_power = 0; u32 power_range, weight; int i = 0, ret; if (!num_actors) return; /* Clean all buffers for new power estimations */ memset(power, 0, params->buffer_size); list_for_each_entry(instance, &tz->thermal_instances, tz_node) { struct power_actor *pa = &power[i]; if (!power_actor_is_valid(params, instance)) continue; cdev = instance->cdev; ret = cdev->ops->get_requested_power(cdev, &pa->req_power); if (ret) continue; if (!params->total_weight) weight = 1 << FRAC_BITS; else weight = instance->weight; pa->weighted_req_power = frac_to_int(weight * pa->req_power); ret = cdev->ops->state2power(cdev, instance->lower, &pa->max_power); if (ret) continue; total_req_power += pa->req_power; max_allocatable_power += pa->max_power; total_weighted_req_power += pa->weighted_req_power; i++; } power_range = pid_controller(tz, control_temp, max_allocatable_power); divvy_up_power(power, num_actors, total_weighted_req_power, power_range); i = 0; list_for_each_entry(instance, &tz->thermal_instances, tz_node) { struct power_actor *pa = &power[i]; if (!power_actor_is_valid(params, instance)) continue; power_actor_set_power(instance->cdev, instance, pa->granted_power); total_granted_power += pa->granted_power; trace_thermal_power_actor(tz, i, pa->req_power, pa->granted_power); i++; } trace_thermal_power_allocator(tz, total_req_power, total_granted_power, num_actors, power_range, max_allocatable_power, tz->temperature, control_temp - tz->temperature); } /** * get_governor_trips() - get the two trip points that are key for this governor * @tz: thermal zone to operate on * @params: pointer to private data for this governor * * The power allocator governor works optimally with two trips points: * a "switch on" trip point and a "maximum desired temperature". These * are defined as the first and last passive trip points. * * If there is only one trip point, then that's considered to be the * "maximum desired temperature" trip point and the governor is always * on. If there are no passive or active trip points, then the * governor won't do anything. In fact, its throttle function * won't be called at all. */ static void get_governor_trips(struct thermal_zone_device *tz, struct power_allocator_params *params) { const struct thermal_trip *first_passive = NULL; const struct thermal_trip *last_passive = NULL; const struct thermal_trip *last_active = NULL; const struct thermal_trip_desc *td; for_each_trip_desc(tz, td) { const struct thermal_trip *trip = &td->trip; switch (trip->type) { case THERMAL_TRIP_PASSIVE: if (!first_passive) { first_passive = trip; break; } last_passive = trip; break; case THERMAL_TRIP_ACTIVE: last_active = trip; break; default: break; } } if (last_passive) { params->trip_switch_on = first_passive; params->trip_max = last_passive; } else if (first_passive) { params->trip_switch_on = NULL; params->trip_max = first_passive; } else { params->trip_switch_on = NULL; params->trip_max = last_active; } } static void reset_pid_controller(struct power_allocator_params *params) { params->err_integral = 0; params->prev_err = 0; } static void allow_maximum_power(struct thermal_zone_device *tz) { struct power_allocator_params *params = tz->governor_data; struct thermal_cooling_device *cdev; struct thermal_instance *instance; u32 req_power; list_for_each_entry(instance, &tz->thermal_instances, tz_node) { if (!power_actor_is_valid(params, instance)) continue; cdev = instance->cdev; instance->target = 0; mutex_lock(&cdev->lock); /* * Call for updating the cooling devices local stats and avoid * periods of dozen of seconds when those have not been * maintained. */ cdev->ops->get_requested_power(cdev, &req_power); if (params->update_cdevs) __thermal_cdev_update(cdev); mutex_unlock(&cdev->lock); } } /** * check_power_actors() - Check all cooling devices and warn when they are * not power actors * @tz: thermal zone to operate on * @params: power allocator private data * * Check all cooling devices in the @tz and warn every time they are missing * power actor API. The warning should help to investigate the issue, which * could be e.g. lack of Energy Model for a given device. * * If all of the cooling devices currently attached to @tz implement the power * actor API, return the number of them (which may be 0, because some cooling * devices may be attached later). Otherwise, return -EINVAL. */ static int check_power_actors(struct thermal_zone_device *tz, struct power_allocator_params *params) { struct thermal_instance *instance; int ret = 0; list_for_each_entry(instance, &tz->thermal_instances, tz_node) { if (instance->trip != params->trip_max) continue; if (!cdev_is_power_actor(instance->cdev)) { dev_warn(&tz->device, "power_allocator: %s is not a power actor\n", instance->cdev->type); return -EINVAL; } ret++; } return ret; } static int allocate_actors_buffer(struct power_allocator_params *params, int num_actors) { int ret; kfree(params->power); /* There might be no cooling devices yet. */ if (!num_actors) { ret = 0; goto clean_state; } params->power = kcalloc(num_actors, sizeof(struct power_actor), GFP_KERNEL); if (!params->power) { ret = -ENOMEM; goto clean_state; } params->num_actors = num_actors; params->buffer_size = num_actors * sizeof(struct power_actor); return 0; clean_state: params->num_actors = 0; params->buffer_size = 0; params->power = NULL; return ret; } static void power_allocator_update_tz(struct thermal_zone_device *tz, enum thermal_notify_event reason) { struct power_allocator_params *params = tz->governor_data; struct thermal_instance *instance; int num_actors = 0; switch (reason) { case THERMAL_TZ_BIND_CDEV: case THERMAL_TZ_UNBIND_CDEV: list_for_each_entry(instance, &tz->thermal_instances, tz_node) if (power_actor_is_valid(params, instance)) num_actors++; if (num_actors == params->num_actors) return; allocate_actors_buffer(params, num_actors); break; case THERMAL_INSTANCE_WEIGHT_CHANGED: params->total_weight = 0; list_for_each_entry(instance, &tz->thermal_instances, tz_node) if (power_actor_is_valid(params, instance)) params->total_weight += instance->weight; break; default: break; } } /** * power_allocator_bind() - bind the power_allocator governor to a thermal zone * @tz: thermal zone to bind it to * * Initialize the PID controller parameters and bind it to the thermal * zone. * * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL * when there are unsupported cooling devices in the @tz. */ static int power_allocator_bind(struct thermal_zone_device *tz) { struct power_allocator_params *params; int ret; params = kzalloc(sizeof(*params), GFP_KERNEL); if (!params) return -ENOMEM; get_governor_trips(tz, params); ret = check_power_actors(tz, params); if (ret < 0) { dev_warn(&tz->device, "power_allocator: binding failed\n"); kfree(params); return ret; } ret = allocate_actors_buffer(params, ret); if (ret) { dev_warn(&tz->device, "power_allocator: allocation failed\n"); kfree(params); return ret; } if (!tz->tzp) { tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL); if (!tz->tzp) { ret = -ENOMEM; goto free_params; } params->allocated_tzp = true; } if (!tz->tzp->sustainable_power) dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n"); else params->sustainable_power = tz->tzp->sustainable_power; if (params->trip_max) estimate_pid_constants(tz, tz->tzp->sustainable_power, params->trip_switch_on, params->trip_max->temperature); reset_pid_controller(params); tz->governor_data = params; return 0; free_params: kfree(params->power); kfree(params); return ret; } static void power_allocator_unbind(struct thermal_zone_device *tz) { struct power_allocator_params *params = tz->governor_data; dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id); if (params->allocated_tzp) { kfree(tz->tzp); tz->tzp = NULL; } kfree(params->power); kfree(tz->governor_data); tz->governor_data = NULL; } static void power_allocator_manage(struct thermal_zone_device *tz) { struct power_allocator_params *params = tz->governor_data; const struct thermal_trip *trip = params->trip_switch_on; lockdep_assert_held(&tz->lock); if (trip && tz->temperature < trip->temperature) { reset_pid_controller(params); allow_maximum_power(tz); params->update_cdevs = false; return; } if (!params->trip_max) return; allocate_power(tz, params->trip_max->temperature); params->update_cdevs = true; } static struct thermal_governor thermal_gov_power_allocator = { .name = "power_allocator", .bind_to_tz = power_allocator_bind, .unbind_from_tz = power_allocator_unbind, .manage = power_allocator_manage, .update_tz = power_allocator_update_tz, }; THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1