Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ivan T. Ivanov | 1031 | 52.04% | 1 | 5.00% |
David Collins | 448 | 22.61% | 2 | 10.00% |
Matthias Kaehlcke | 377 | 19.03% | 1 | 5.00% |
Daniel Lezcano | 81 | 4.09% | 6 | 30.00% |
Luca Weiss | 25 | 1.26% | 2 | 10.00% |
Dmitry Eremin-Solenikov | 10 | 0.50% | 1 | 5.00% |
Srinivas Pandruvada | 2 | 0.10% | 1 | 5.00% |
Stephen Boyd | 2 | 0.10% | 1 | 5.00% |
Thomas Gleixner | 1 | 0.05% | 1 | 5.00% |
Rafael J. Wysocki | 1 | 0.05% | 1 | 5.00% |
Sascha Hauer | 1 | 0.05% | 1 | 5.00% |
Johan Hovold | 1 | 0.05% | 1 | 5.00% |
Veera Vegivada | 1 | 0.05% | 1 | 5.00% |
Total | 1981 | 20 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2011-2015, 2017, 2020, The Linux Foundation. All rights reserved. */ #include <linux/bitops.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/iio/consumer.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/thermal.h> #include "../thermal_hwmon.h" #define QPNP_TM_REG_DIG_MAJOR 0x01 #define QPNP_TM_REG_TYPE 0x04 #define QPNP_TM_REG_SUBTYPE 0x05 #define QPNP_TM_REG_STATUS 0x08 #define QPNP_TM_REG_SHUTDOWN_CTRL1 0x40 #define QPNP_TM_REG_ALARM_CTRL 0x46 #define QPNP_TM_TYPE 0x09 #define QPNP_TM_SUBTYPE_GEN1 0x08 #define QPNP_TM_SUBTYPE_GEN2 0x09 #define STATUS_GEN1_STAGE_MASK GENMASK(1, 0) #define STATUS_GEN2_STATE_MASK GENMASK(6, 4) #define STATUS_GEN2_STATE_SHIFT 4 #define SHUTDOWN_CTRL1_OVERRIDE_S2 BIT(6) #define SHUTDOWN_CTRL1_THRESHOLD_MASK GENMASK(1, 0) #define SHUTDOWN_CTRL1_RATE_25HZ BIT(3) #define ALARM_CTRL_FORCE_ENABLE BIT(7) #define THRESH_COUNT 4 #define STAGE_COUNT 3 /* Over-temperature trip point values in mC */ static const long temp_map_gen1[THRESH_COUNT][STAGE_COUNT] = { { 105000, 125000, 145000 }, { 110000, 130000, 150000 }, { 115000, 135000, 155000 }, { 120000, 140000, 160000 }, }; static const long temp_map_gen2_v1[THRESH_COUNT][STAGE_COUNT] = { { 90000, 110000, 140000 }, { 95000, 115000, 145000 }, { 100000, 120000, 150000 }, { 105000, 125000, 155000 }, }; #define TEMP_THRESH_STEP 5000 /* Threshold step: 5 C */ #define THRESH_MIN 0 #define THRESH_MAX 3 #define TEMP_STAGE_HYSTERESIS 2000 /* Temperature in Milli Celsius reported during stage 0 if no ADC is present */ #define DEFAULT_TEMP 37000 struct qpnp_tm_chip { struct regmap *map; struct device *dev; struct thermal_zone_device *tz_dev; unsigned int subtype; long temp; unsigned int thresh; unsigned int stage; unsigned int base; /* protects .thresh, .stage and chip registers */ struct mutex lock; bool initialized; struct iio_channel *adc; const long (*temp_map)[THRESH_COUNT][STAGE_COUNT]; }; /* This array maps from GEN2 alarm state to GEN1 alarm stage */ static const unsigned int alarm_state_map[8] = {0, 1, 1, 2, 2, 3, 3, 3}; static int qpnp_tm_read(struct qpnp_tm_chip *chip, u16 addr, u8 *data) { unsigned int val; int ret; ret = regmap_read(chip->map, chip->base + addr, &val); if (ret < 0) return ret; *data = val; return 0; } static int qpnp_tm_write(struct qpnp_tm_chip *chip, u16 addr, u8 data) { return regmap_write(chip->map, chip->base + addr, data); } /** * qpnp_tm_decode_temp() - return temperature in mC corresponding to the * specified over-temperature stage * @chip: Pointer to the qpnp_tm chip * @stage: Over-temperature stage * * Return: temperature in mC */ static long qpnp_tm_decode_temp(struct qpnp_tm_chip *chip, unsigned int stage) { if (!chip->temp_map || chip->thresh >= THRESH_COUNT || stage == 0 || stage > STAGE_COUNT) return 0; return (*chip->temp_map)[chip->thresh][stage - 1]; } /** * qpnp_tm_get_temp_stage() - return over-temperature stage * @chip: Pointer to the qpnp_tm chip * * Return: stage (GEN1) or state (GEN2) on success, or errno on failure. */ static int qpnp_tm_get_temp_stage(struct qpnp_tm_chip *chip) { int ret; u8 reg = 0; ret = qpnp_tm_read(chip, QPNP_TM_REG_STATUS, ®); if (ret < 0) return ret; if (chip->subtype == QPNP_TM_SUBTYPE_GEN1) ret = reg & STATUS_GEN1_STAGE_MASK; else ret = (reg & STATUS_GEN2_STATE_MASK) >> STATUS_GEN2_STATE_SHIFT; return ret; } /* * This function updates the internal temp value based on the * current thermal stage and threshold as well as the previous stage */ static int qpnp_tm_update_temp_no_adc(struct qpnp_tm_chip *chip) { unsigned int stage, stage_new, stage_old; int ret; WARN_ON(!mutex_is_locked(&chip->lock)); ret = qpnp_tm_get_temp_stage(chip); if (ret < 0) return ret; stage = ret; if (chip->subtype == QPNP_TM_SUBTYPE_GEN1) { stage_new = stage; stage_old = chip->stage; } else { stage_new = alarm_state_map[stage]; stage_old = alarm_state_map[chip->stage]; } if (stage_new > stage_old) { /* increasing stage, use lower bound */ chip->temp = qpnp_tm_decode_temp(chip, stage_new) + TEMP_STAGE_HYSTERESIS; } else if (stage_new < stage_old) { /* decreasing stage, use upper bound */ chip->temp = qpnp_tm_decode_temp(chip, stage_new + 1) - TEMP_STAGE_HYSTERESIS; } chip->stage = stage; return 0; } static int qpnp_tm_get_temp(struct thermal_zone_device *tz, int *temp) { struct qpnp_tm_chip *chip = thermal_zone_device_priv(tz); int ret, mili_celsius; if (!temp) return -EINVAL; if (!chip->initialized) { *temp = DEFAULT_TEMP; return 0; } if (!chip->adc) { mutex_lock(&chip->lock); ret = qpnp_tm_update_temp_no_adc(chip); mutex_unlock(&chip->lock); if (ret < 0) return ret; } else { ret = iio_read_channel_processed(chip->adc, &mili_celsius); if (ret < 0) return ret; chip->temp = mili_celsius; } *temp = chip->temp; return 0; } static int qpnp_tm_update_critical_trip_temp(struct qpnp_tm_chip *chip, int temp) { long stage2_threshold_min = (*chip->temp_map)[THRESH_MIN][1]; long stage2_threshold_max = (*chip->temp_map)[THRESH_MAX][1]; bool disable_s2_shutdown = false; u8 reg; WARN_ON(!mutex_is_locked(&chip->lock)); /* * Default: S2 and S3 shutdown enabled, thresholds at * lowest threshold set, monitoring at 25Hz */ reg = SHUTDOWN_CTRL1_RATE_25HZ; if (temp == THERMAL_TEMP_INVALID || temp < stage2_threshold_min) { chip->thresh = THRESH_MIN; goto skip; } if (temp <= stage2_threshold_max) { chip->thresh = THRESH_MAX - ((stage2_threshold_max - temp) / TEMP_THRESH_STEP); disable_s2_shutdown = true; } else { chip->thresh = THRESH_MAX; if (chip->adc) disable_s2_shutdown = true; else dev_warn(chip->dev, "No ADC is configured and critical temperature %d mC is above the maximum stage 2 threshold of %ld mC! Configuring stage 2 shutdown at %ld mC.\n", temp, stage2_threshold_max, stage2_threshold_max); } skip: reg |= chip->thresh; if (disable_s2_shutdown) reg |= SHUTDOWN_CTRL1_OVERRIDE_S2; return qpnp_tm_write(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, reg); } static int qpnp_tm_set_trip_temp(struct thermal_zone_device *tz, const struct thermal_trip *trip, int temp) { struct qpnp_tm_chip *chip = thermal_zone_device_priv(tz); int ret; if (trip->type != THERMAL_TRIP_CRITICAL) return 0; mutex_lock(&chip->lock); ret = qpnp_tm_update_critical_trip_temp(chip, temp); mutex_unlock(&chip->lock); return ret; } static const struct thermal_zone_device_ops qpnp_tm_sensor_ops = { .get_temp = qpnp_tm_get_temp, .set_trip_temp = qpnp_tm_set_trip_temp, }; static irqreturn_t qpnp_tm_isr(int irq, void *data) { struct qpnp_tm_chip *chip = data; thermal_zone_device_update(chip->tz_dev, THERMAL_EVENT_UNSPECIFIED); return IRQ_HANDLED; } static int qpnp_tm_get_critical_trip_temp(struct qpnp_tm_chip *chip) { struct thermal_trip trip; int i, ret; for (i = 0; i < thermal_zone_get_num_trips(chip->tz_dev); i++) { ret = thermal_zone_get_trip(chip->tz_dev, i, &trip); if (ret) continue; if (trip.type == THERMAL_TRIP_CRITICAL) return trip.temperature; } return THERMAL_TEMP_INVALID; } /* * This function initializes the internal temp value based on only the * current thermal stage and threshold. Setup threshold control and * disable shutdown override. */ static int qpnp_tm_init(struct qpnp_tm_chip *chip) { unsigned int stage; int ret; u8 reg = 0; int crit_temp; mutex_lock(&chip->lock); ret = qpnp_tm_read(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, ®); if (ret < 0) goto out; chip->thresh = reg & SHUTDOWN_CTRL1_THRESHOLD_MASK; chip->temp = DEFAULT_TEMP; ret = qpnp_tm_get_temp_stage(chip); if (ret < 0) goto out; chip->stage = ret; stage = chip->subtype == QPNP_TM_SUBTYPE_GEN1 ? chip->stage : alarm_state_map[chip->stage]; if (stage) chip->temp = qpnp_tm_decode_temp(chip, stage); mutex_unlock(&chip->lock); crit_temp = qpnp_tm_get_critical_trip_temp(chip); mutex_lock(&chip->lock); ret = qpnp_tm_update_critical_trip_temp(chip, crit_temp); if (ret < 0) goto out; /* Enable the thermal alarm PMIC module in always-on mode. */ reg = ALARM_CTRL_FORCE_ENABLE; ret = qpnp_tm_write(chip, QPNP_TM_REG_ALARM_CTRL, reg); chip->initialized = true; out: mutex_unlock(&chip->lock); return ret; } static int qpnp_tm_probe(struct platform_device *pdev) { struct qpnp_tm_chip *chip; struct device_node *node; u8 type, subtype, dig_major; u32 res; int ret, irq; node = pdev->dev.of_node; chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; dev_set_drvdata(&pdev->dev, chip); chip->dev = &pdev->dev; mutex_init(&chip->lock); chip->map = dev_get_regmap(pdev->dev.parent, NULL); if (!chip->map) return -ENXIO; ret = of_property_read_u32(node, "reg", &res); if (ret < 0) return ret; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; /* ADC based measurements are optional */ chip->adc = devm_iio_channel_get(&pdev->dev, "thermal"); if (IS_ERR(chip->adc)) { ret = PTR_ERR(chip->adc); chip->adc = NULL; if (ret == -EPROBE_DEFER) return ret; } chip->base = res; ret = qpnp_tm_read(chip, QPNP_TM_REG_TYPE, &type); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "could not read type\n"); ret = qpnp_tm_read(chip, QPNP_TM_REG_SUBTYPE, &subtype); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "could not read subtype\n"); ret = qpnp_tm_read(chip, QPNP_TM_REG_DIG_MAJOR, &dig_major); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "could not read dig_major\n"); if (type != QPNP_TM_TYPE || (subtype != QPNP_TM_SUBTYPE_GEN1 && subtype != QPNP_TM_SUBTYPE_GEN2)) { dev_err(&pdev->dev, "invalid type 0x%02x or subtype 0x%02x\n", type, subtype); return -ENODEV; } chip->subtype = subtype; if (subtype == QPNP_TM_SUBTYPE_GEN2 && dig_major >= 1) chip->temp_map = &temp_map_gen2_v1; else chip->temp_map = &temp_map_gen1; /* * Register the sensor before initializing the hardware to be able to * read the trip points. get_temp() returns the default temperature * before the hardware initialization is completed. */ chip->tz_dev = devm_thermal_of_zone_register( &pdev->dev, 0, chip, &qpnp_tm_sensor_ops); if (IS_ERR(chip->tz_dev)) return dev_err_probe(&pdev->dev, PTR_ERR(chip->tz_dev), "failed to register sensor\n"); ret = qpnp_tm_init(chip); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "init failed\n"); devm_thermal_add_hwmon_sysfs(&pdev->dev, chip->tz_dev); ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, qpnp_tm_isr, IRQF_ONESHOT, node->name, chip); if (ret < 0) return ret; thermal_zone_device_update(chip->tz_dev, THERMAL_EVENT_UNSPECIFIED); return 0; } static const struct of_device_id qpnp_tm_match_table[] = { { .compatible = "qcom,spmi-temp-alarm" }, { } }; MODULE_DEVICE_TABLE(of, qpnp_tm_match_table); static struct platform_driver qpnp_tm_driver = { .driver = { .name = "spmi-temp-alarm", .of_match_table = qpnp_tm_match_table, }, .probe = qpnp_tm_probe, }; module_platform_driver(qpnp_tm_driver); MODULE_ALIAS("platform:spmi-temp-alarm"); MODULE_DESCRIPTION("QPNP PMIC Temperature Alarm driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1