Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bartlomiej Zolnierkiewicz | 1234 | 24.24% | 41 | 35.04% |
Donggeun Kim | 922 | 18.11% | 1 | 0.85% |
Amit Daniel Kachhap | 772 | 15.17% | 18 | 15.38% |
Mateusz Majewski | 770 | 15.13% | 7 | 5.98% |
Chanwoo Choi | 367 | 7.21% | 5 | 4.27% |
Abhilash Kesavan | 338 | 6.64% | 1 | 0.85% |
Naveen Krishna Chatradhi | 153 | 3.01% | 3 | 2.56% |
Lukasz Majewski | 137 | 2.69% | 5 | 4.27% |
Krzysztof Kozlowski | 107 | 2.10% | 9 | 7.69% |
Maciej Purski | 86 | 1.69% | 1 | 0.85% |
Daniel Lezcano | 39 | 0.77% | 6 | 5.13% |
Marek Szyprowski | 36 | 0.71% | 4 | 3.42% |
Sachin Kamat | 35 | 0.69% | 2 | 1.71% |
Jonghwa Lee | 31 | 0.61% | 2 | 1.71% |
Rafael J. Wysocki | 30 | 0.59% | 1 | 0.85% |
Javier Martinez Canillas | 7 | 0.14% | 1 | 0.85% |
Dan Carpenter | 7 | 0.14% | 1 | 0.85% |
Sascha Hauer | 7 | 0.14% | 1 | 0.85% |
Tushar Behera | 3 | 0.06% | 1 | 0.85% |
Thierry Reding | 2 | 0.04% | 1 | 0.85% |
Uwe Kleine-König | 2 | 0.04% | 1 | 0.85% |
Julia Lawall | 1 | 0.02% | 1 | 0.85% |
Sudip Mukherjee | 1 | 0.02% | 1 | 0.85% |
Axel Lin | 1 | 0.02% | 1 | 0.85% |
Rob Herring | 1 | 0.02% | 1 | 0.85% |
Thomas Gleixner | 1 | 0.02% | 1 | 0.85% |
Total | 5090 | 117 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * exynos_tmu.c - Samsung Exynos TMU (Thermal Management Unit) * * Copyright (C) 2014 Samsung Electronics * Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> * Lukasz Majewski <l.majewski@samsung.com> * * Copyright (C) 2011 Samsung Electronics * Donggeun Kim <dg77.kim@samsung.com> * Amit Daniel Kachhap <amit.kachhap@linaro.org> */ #include <linux/clk.h> #include <linux/io.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/thermal.h> #include <dt-bindings/thermal/thermal_exynos.h> /* Exynos generic registers */ #define EXYNOS_TMU_REG_TRIMINFO 0x0 #define EXYNOS_TMU_REG_CONTROL 0x20 #define EXYNOS_TMU_REG_STATUS 0x28 #define EXYNOS_TMU_REG_CURRENT_TEMP 0x40 #define EXYNOS_TMU_REG_INTEN 0x70 #define EXYNOS_TMU_REG_INTSTAT 0x74 #define EXYNOS_TMU_REG_INTCLEAR 0x78 #define EXYNOS_TMU_TEMP_MASK 0xff #define EXYNOS_TMU_REF_VOLTAGE_SHIFT 24 #define EXYNOS_TMU_REF_VOLTAGE_MASK 0x1f #define EXYNOS_TMU_BUF_SLOPE_SEL_MASK 0xf #define EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT 8 #define EXYNOS_TMU_CORE_EN_SHIFT 0 /* Exynos3250 specific registers */ #define EXYNOS_TMU_TRIMINFO_CON1 0x10 /* Exynos4210 specific registers */ #define EXYNOS4210_TMU_REG_THRESHOLD_TEMP 0x44 #define EXYNOS4210_TMU_REG_TRIG_LEVEL0 0x50 /* Exynos5250, Exynos4412, Exynos3250 specific registers */ #define EXYNOS_TMU_TRIMINFO_CON2 0x14 #define EXYNOS_THD_TEMP_RISE 0x50 #define EXYNOS_THD_TEMP_FALL 0x54 #define EXYNOS_EMUL_CON 0x80 #define EXYNOS_TRIMINFO_RELOAD_ENABLE 1 #define EXYNOS_TRIMINFO_25_SHIFT 0 #define EXYNOS_TRIMINFO_85_SHIFT 8 #define EXYNOS_TMU_TRIP_MODE_SHIFT 13 #define EXYNOS_TMU_TRIP_MODE_MASK 0x7 #define EXYNOS_TMU_THERM_TRIP_EN_SHIFT 12 #define EXYNOS_TMU_INTEN_RISE0_SHIFT 0 #define EXYNOS_TMU_INTEN_FALL0_SHIFT 16 #define EXYNOS_EMUL_TIME 0x57F0 #define EXYNOS_EMUL_TIME_MASK 0xffff #define EXYNOS_EMUL_TIME_SHIFT 16 #define EXYNOS_EMUL_DATA_SHIFT 8 #define EXYNOS_EMUL_DATA_MASK 0xFF #define EXYNOS_EMUL_ENABLE 0x1 /* Exynos5260 specific */ #define EXYNOS5260_TMU_REG_INTEN 0xC0 #define EXYNOS5260_TMU_REG_INTSTAT 0xC4 #define EXYNOS5260_TMU_REG_INTCLEAR 0xC8 #define EXYNOS5260_EMUL_CON 0x100 /* Exynos4412 specific */ #define EXYNOS4412_MUX_ADDR_VALUE 6 #define EXYNOS4412_MUX_ADDR_SHIFT 20 /* Exynos5433 specific registers */ #define EXYNOS5433_THD_TEMP_RISE3_0 0x050 #define EXYNOS5433_THD_TEMP_RISE7_4 0x054 #define EXYNOS5433_THD_TEMP_FALL3_0 0x060 #define EXYNOS5433_THD_TEMP_FALL7_4 0x064 #define EXYNOS5433_TMU_REG_INTEN 0x0c0 #define EXYNOS5433_TMU_REG_INTPEND 0x0c8 #define EXYNOS5433_TMU_EMUL_CON 0x110 #define EXYNOS5433_TMU_PD_DET_EN 0x130 #define EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT 16 #define EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT 23 #define EXYNOS5433_TRIMINFO_SENSOR_ID_MASK \ (0xf << EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT) #define EXYNOS5433_TRIMINFO_CALIB_SEL_MASK BIT(23) #define EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING 0 #define EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING 1 #define EXYNOS5433_PD_DET_EN 1 #define EXYNOS5433_G3D_BASE 0x10070000 /* Exynos7 specific registers */ #define EXYNOS7_THD_TEMP_RISE7_6 0x50 #define EXYNOS7_THD_TEMP_FALL7_6 0x60 #define EXYNOS7_TMU_REG_INTEN 0x110 #define EXYNOS7_TMU_REG_INTPEND 0x118 #define EXYNOS7_TMU_REG_EMUL_CON 0x160 #define EXYNOS7_TMU_TEMP_MASK 0x1ff #define EXYNOS7_PD_DET_EN_SHIFT 23 #define EXYNOS7_TMU_INTEN_RISE0_SHIFT 0 #define EXYNOS7_EMUL_DATA_SHIFT 7 #define EXYNOS7_EMUL_DATA_MASK 0x1ff #define EXYNOS_FIRST_POINT_TRIM 25 #define EXYNOS_SECOND_POINT_TRIM 85 #define EXYNOS_NOISE_CANCEL_MODE 4 #define MCELSIUS 1000 enum soc_type { SOC_ARCH_EXYNOS3250 = 1, SOC_ARCH_EXYNOS4210, SOC_ARCH_EXYNOS4412, SOC_ARCH_EXYNOS5250, SOC_ARCH_EXYNOS5260, SOC_ARCH_EXYNOS5420, SOC_ARCH_EXYNOS5420_TRIMINFO, SOC_ARCH_EXYNOS5433, SOC_ARCH_EXYNOS7, }; /** * struct exynos_tmu_data : A structure to hold the private data of the TMU * driver * @base: base address of the single instance of the TMU controller. * @base_second: base address of the common registers of the TMU controller. * @irq: irq number of the TMU controller. * @soc: id of the SOC type. * @lock: lock to implement synchronization. * @clk: pointer to the clock structure. * @clk_sec: pointer to the clock structure for accessing the base_second. * @sclk: pointer to the clock structure for accessing the tmu special clk. * @cal_type: calibration type for temperature * @efuse_value: SoC defined fuse value * @min_efuse_value: minimum valid trimming data * @max_efuse_value: maximum valid trimming data * @temp_error1: fused value of the first point trim. * @temp_error2: fused value of the second point trim. * @gain: gain of amplifier in the positive-TC generator block * 0 < gain <= 15 * @reference_voltage: reference voltage of amplifier * in the positive-TC generator block * 0 < reference_voltage <= 31 * @tzd: pointer to thermal_zone_device structure * @enabled: current status of TMU device * @tmu_set_low_temp: SoC specific method to set trip (falling threshold) * @tmu_set_high_temp: SoC specific method to set trip (rising threshold) * @tmu_set_crit_temp: SoC specific method to set critical temperature * @tmu_disable_low: SoC specific method to disable an interrupt (falling threshold) * @tmu_disable_high: SoC specific method to disable an interrupt (rising threshold) * @tmu_initialize: SoC specific TMU initialization method * @tmu_control: SoC specific TMU control method * @tmu_read: SoC specific TMU temperature read method * @tmu_set_emulation: SoC specific TMU emulation setting method * @tmu_clear_irqs: SoC specific TMU interrupts clearing method */ struct exynos_tmu_data { void __iomem *base; void __iomem *base_second; int irq; enum soc_type soc; struct mutex lock; struct clk *clk, *clk_sec, *sclk; u32 cal_type; u32 efuse_value; u32 min_efuse_value; u32 max_efuse_value; u16 temp_error1, temp_error2; u8 gain; u8 reference_voltage; struct thermal_zone_device *tzd; bool enabled; void (*tmu_set_low_temp)(struct exynos_tmu_data *data, u8 temp); void (*tmu_set_high_temp)(struct exynos_tmu_data *data, u8 temp); void (*tmu_set_crit_temp)(struct exynos_tmu_data *data, u8 temp); void (*tmu_disable_low)(struct exynos_tmu_data *data); void (*tmu_disable_high)(struct exynos_tmu_data *data); void (*tmu_initialize)(struct platform_device *pdev); void (*tmu_control)(struct platform_device *pdev, bool on); int (*tmu_read)(struct exynos_tmu_data *data); void (*tmu_set_emulation)(struct exynos_tmu_data *data, int temp); void (*tmu_clear_irqs)(struct exynos_tmu_data *data); }; /* * TMU treats temperature as a mapped temperature code. * The temperature is converted differently depending on the calibration type. */ static int temp_to_code(struct exynos_tmu_data *data, u8 temp) { if (data->cal_type == TYPE_ONE_POINT_TRIMMING) return temp + data->temp_error1 - EXYNOS_FIRST_POINT_TRIM; return (temp - EXYNOS_FIRST_POINT_TRIM) * (data->temp_error2 - data->temp_error1) / (EXYNOS_SECOND_POINT_TRIM - EXYNOS_FIRST_POINT_TRIM) + data->temp_error1; } /* * Calculate a temperature value from a temperature code. * The unit of the temperature is degree Celsius. */ static int code_to_temp(struct exynos_tmu_data *data, u16 temp_code) { if (data->cal_type == TYPE_ONE_POINT_TRIMMING) return temp_code - data->temp_error1 + EXYNOS_FIRST_POINT_TRIM; return (temp_code - data->temp_error1) * (EXYNOS_SECOND_POINT_TRIM - EXYNOS_FIRST_POINT_TRIM) / (data->temp_error2 - data->temp_error1) + EXYNOS_FIRST_POINT_TRIM; } static void sanitize_temp_error(struct exynos_tmu_data *data, u32 trim_info) { u16 tmu_temp_mask = (data->soc == SOC_ARCH_EXYNOS7) ? EXYNOS7_TMU_TEMP_MASK : EXYNOS_TMU_TEMP_MASK; data->temp_error1 = trim_info & tmu_temp_mask; data->temp_error2 = ((trim_info >> EXYNOS_TRIMINFO_85_SHIFT) & EXYNOS_TMU_TEMP_MASK); if (!data->temp_error1 || (data->min_efuse_value > data->temp_error1) || (data->temp_error1 > data->max_efuse_value)) data->temp_error1 = data->efuse_value & EXYNOS_TMU_TEMP_MASK; if (!data->temp_error2) data->temp_error2 = (data->efuse_value >> EXYNOS_TRIMINFO_85_SHIFT) & EXYNOS_TMU_TEMP_MASK; } static int exynos_tmu_initialize(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); unsigned int status; int ret = 0; mutex_lock(&data->lock); clk_enable(data->clk); if (!IS_ERR(data->clk_sec)) clk_enable(data->clk_sec); status = readb(data->base + EXYNOS_TMU_REG_STATUS); if (!status) { ret = -EBUSY; } else { data->tmu_initialize(pdev); data->tmu_clear_irqs(data); } if (!IS_ERR(data->clk_sec)) clk_disable(data->clk_sec); clk_disable(data->clk); mutex_unlock(&data->lock); return ret; } static int exynos_thermal_zone_configure(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct thermal_zone_device *tzd = data->tzd; int ret, temp; ret = thermal_zone_get_crit_temp(tzd, &temp); if (ret) { /* FIXME: Remove this special case */ if (data->soc == SOC_ARCH_EXYNOS5433) return 0; dev_err(&pdev->dev, "No CRITICAL trip point defined in device tree!\n"); return ret; } mutex_lock(&data->lock); clk_enable(data->clk); data->tmu_set_crit_temp(data, temp / MCELSIUS); clk_disable(data->clk); mutex_unlock(&data->lock); return 0; } static u32 get_con_reg(struct exynos_tmu_data *data, u32 con) { if (data->soc == SOC_ARCH_EXYNOS4412 || data->soc == SOC_ARCH_EXYNOS3250) con |= (EXYNOS4412_MUX_ADDR_VALUE << EXYNOS4412_MUX_ADDR_SHIFT); con &= ~(EXYNOS_TMU_REF_VOLTAGE_MASK << EXYNOS_TMU_REF_VOLTAGE_SHIFT); con |= data->reference_voltage << EXYNOS_TMU_REF_VOLTAGE_SHIFT; con &= ~(EXYNOS_TMU_BUF_SLOPE_SEL_MASK << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT); con |= (data->gain << EXYNOS_TMU_BUF_SLOPE_SEL_SHIFT); con &= ~(EXYNOS_TMU_TRIP_MODE_MASK << EXYNOS_TMU_TRIP_MODE_SHIFT); con |= (EXYNOS_NOISE_CANCEL_MODE << EXYNOS_TMU_TRIP_MODE_SHIFT); return con; } static void exynos_tmu_control(struct platform_device *pdev, bool on) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); mutex_lock(&data->lock); clk_enable(data->clk); data->tmu_control(pdev, on); data->enabled = on; clk_disable(data->clk); mutex_unlock(&data->lock); } static void exynos_tmu_update_bit(struct exynos_tmu_data *data, int reg_off, int bit_off, bool enable) { u32 interrupt_en; interrupt_en = readl(data->base + reg_off); if (enable) interrupt_en |= BIT(bit_off); else interrupt_en &= ~BIT(bit_off); writel(interrupt_en, data->base + reg_off); } static void exynos_tmu_update_temp(struct exynos_tmu_data *data, int reg_off, int bit_off, u8 temp) { u16 tmu_temp_mask; u32 th; tmu_temp_mask = (data->soc == SOC_ARCH_EXYNOS7) ? EXYNOS7_TMU_TEMP_MASK : EXYNOS_TMU_TEMP_MASK; th = readl(data->base + reg_off); th &= ~(tmu_temp_mask << bit_off); th |= temp_to_code(data, temp) << bit_off; writel(th, data->base + reg_off); } static void exynos4210_tmu_set_low_temp(struct exynos_tmu_data *data, u8 temp) { /* * Failing thresholds are not supported on Exynos 4210. * We use polling instead. */ } static void exynos4210_tmu_set_high_temp(struct exynos_tmu_data *data, u8 temp) { temp = temp_to_code(data, temp); writeb(temp, data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL0 + 4); exynos_tmu_update_bit(data, EXYNOS_TMU_REG_INTEN, EXYNOS_TMU_INTEN_RISE0_SHIFT + 4, true); } static void exynos4210_tmu_disable_low(struct exynos_tmu_data *data) { /* Again, this is handled by polling. */ } static void exynos4210_tmu_disable_high(struct exynos_tmu_data *data) { exynos_tmu_update_bit(data, EXYNOS_TMU_REG_INTEN, EXYNOS_TMU_INTEN_RISE0_SHIFT + 4, false); } static void exynos4210_tmu_set_crit_temp(struct exynos_tmu_data *data, u8 temp) { /* * Hardware critical temperature handling is not supported on Exynos 4210. * We still set the critical temperature threshold, but this is only to * make sure it is handled as soon as possible. It is just a normal interrupt. */ temp = temp_to_code(data, temp); writeb(temp, data->base + EXYNOS4210_TMU_REG_TRIG_LEVEL0 + 12); exynos_tmu_update_bit(data, EXYNOS_TMU_REG_INTEN, EXYNOS_TMU_INTEN_RISE0_SHIFT + 12, true); } static void exynos4210_tmu_initialize(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); sanitize_temp_error(data, readl(data->base + EXYNOS_TMU_REG_TRIMINFO)); writeb(0, data->base + EXYNOS4210_TMU_REG_THRESHOLD_TEMP); } static void exynos4412_tmu_set_low_temp(struct exynos_tmu_data *data, u8 temp) { exynos_tmu_update_temp(data, EXYNOS_THD_TEMP_FALL, 0, temp); exynos_tmu_update_bit(data, EXYNOS_TMU_REG_INTEN, EXYNOS_TMU_INTEN_FALL0_SHIFT, true); } static void exynos4412_tmu_set_high_temp(struct exynos_tmu_data *data, u8 temp) { exynos_tmu_update_temp(data, EXYNOS_THD_TEMP_RISE, 8, temp); exynos_tmu_update_bit(data, EXYNOS_TMU_REG_INTEN, EXYNOS_TMU_INTEN_RISE0_SHIFT + 4, true); } static void exynos4412_tmu_disable_low(struct exynos_tmu_data *data) { exynos_tmu_update_bit(data, EXYNOS_TMU_REG_INTEN, EXYNOS_TMU_INTEN_FALL0_SHIFT, false); } static void exynos4412_tmu_set_crit_temp(struct exynos_tmu_data *data, u8 temp) { exynos_tmu_update_temp(data, EXYNOS_THD_TEMP_RISE, 24, temp); exynos_tmu_update_bit(data, EXYNOS_TMU_REG_CONTROL, EXYNOS_TMU_THERM_TRIP_EN_SHIFT, true); } static void exynos4412_tmu_initialize(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); unsigned int trim_info, ctrl; if (data->soc == SOC_ARCH_EXYNOS3250 || data->soc == SOC_ARCH_EXYNOS4412 || data->soc == SOC_ARCH_EXYNOS5250) { if (data->soc == SOC_ARCH_EXYNOS3250) { ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON1); ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE; writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON1); } ctrl = readl(data->base + EXYNOS_TMU_TRIMINFO_CON2); ctrl |= EXYNOS_TRIMINFO_RELOAD_ENABLE; writel(ctrl, data->base + EXYNOS_TMU_TRIMINFO_CON2); } /* On exynos5420 the triminfo register is in the shared space */ if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) trim_info = readl(data->base_second + EXYNOS_TMU_REG_TRIMINFO); else trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO); sanitize_temp_error(data, trim_info); } static void exynos5433_tmu_set_low_temp(struct exynos_tmu_data *data, u8 temp) { exynos_tmu_update_temp(data, EXYNOS5433_THD_TEMP_FALL3_0, 0, temp); exynos_tmu_update_bit(data, EXYNOS5433_TMU_REG_INTEN, EXYNOS_TMU_INTEN_FALL0_SHIFT, true); } static void exynos5433_tmu_set_high_temp(struct exynos_tmu_data *data, u8 temp) { exynos_tmu_update_temp(data, EXYNOS5433_THD_TEMP_RISE3_0, 8, temp); exynos_tmu_update_bit(data, EXYNOS5433_TMU_REG_INTEN, EXYNOS7_TMU_INTEN_RISE0_SHIFT + 1, true); } static void exynos5433_tmu_disable_low(struct exynos_tmu_data *data) { exynos_tmu_update_bit(data, EXYNOS5433_TMU_REG_INTEN, EXYNOS_TMU_INTEN_FALL0_SHIFT, false); } static void exynos5433_tmu_disable_high(struct exynos_tmu_data *data) { exynos_tmu_update_bit(data, EXYNOS5433_TMU_REG_INTEN, EXYNOS7_TMU_INTEN_RISE0_SHIFT + 1, false); } static void exynos5433_tmu_set_crit_temp(struct exynos_tmu_data *data, u8 temp) { exynos_tmu_update_temp(data, EXYNOS5433_THD_TEMP_RISE7_4, 24, temp); exynos_tmu_update_bit(data, EXYNOS_TMU_REG_CONTROL, EXYNOS_TMU_THERM_TRIP_EN_SHIFT, true); exynos_tmu_update_bit(data, EXYNOS5433_TMU_REG_INTEN, EXYNOS7_TMU_INTEN_RISE0_SHIFT + 7, true); } static void exynos5433_tmu_initialize(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); unsigned int trim_info; int sensor_id, cal_type; trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO); sanitize_temp_error(data, trim_info); /* Read the temperature sensor id */ sensor_id = (trim_info & EXYNOS5433_TRIMINFO_SENSOR_ID_MASK) >> EXYNOS5433_TRIMINFO_SENSOR_ID_SHIFT; dev_info(&pdev->dev, "Temperature sensor ID: 0x%x\n", sensor_id); /* Read the calibration mode */ writel(trim_info, data->base + EXYNOS_TMU_REG_TRIMINFO); cal_type = (trim_info & EXYNOS5433_TRIMINFO_CALIB_SEL_MASK) >> EXYNOS5433_TRIMINFO_CALIB_SEL_SHIFT; switch (cal_type) { case EXYNOS5433_TRIMINFO_TWO_POINT_TRIMMING: data->cal_type = TYPE_TWO_POINT_TRIMMING; break; case EXYNOS5433_TRIMINFO_ONE_POINT_TRIMMING: default: data->cal_type = TYPE_ONE_POINT_TRIMMING; break; } dev_info(&pdev->dev, "Calibration type is %d-point calibration\n", cal_type ? 2 : 1); } static void exynos7_tmu_set_low_temp(struct exynos_tmu_data *data, u8 temp) { exynos_tmu_update_temp(data, EXYNOS7_THD_TEMP_FALL7_6 + 12, 0, temp); exynos_tmu_update_bit(data, EXYNOS7_TMU_REG_INTEN, EXYNOS_TMU_INTEN_FALL0_SHIFT + 0, true); } static void exynos7_tmu_set_high_temp(struct exynos_tmu_data *data, u8 temp) { exynos_tmu_update_temp(data, EXYNOS7_THD_TEMP_RISE7_6 + 12, 16, temp); exynos_tmu_update_bit(data, EXYNOS7_TMU_REG_INTEN, EXYNOS7_TMU_INTEN_RISE0_SHIFT + 1, true); } static void exynos7_tmu_disable_low(struct exynos_tmu_data *data) { exynos_tmu_update_bit(data, EXYNOS7_TMU_REG_INTEN, EXYNOS_TMU_INTEN_FALL0_SHIFT + 0, false); } static void exynos7_tmu_disable_high(struct exynos_tmu_data *data) { exynos_tmu_update_bit(data, EXYNOS7_TMU_REG_INTEN, EXYNOS7_TMU_INTEN_RISE0_SHIFT + 1, false); } static void exynos7_tmu_set_crit_temp(struct exynos_tmu_data *data, u8 temp) { /* * Like Exynos 4210, Exynos 7 does not seem to support critical temperature * handling in hardware. Again, we still set a separate interrupt for it. */ exynos_tmu_update_temp(data, EXYNOS7_THD_TEMP_RISE7_6 + 0, 16, temp); exynos_tmu_update_bit(data, EXYNOS7_TMU_REG_INTEN, EXYNOS7_TMU_INTEN_RISE0_SHIFT + 7, true); } static void exynos7_tmu_initialize(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); unsigned int trim_info; trim_info = readl(data->base + EXYNOS_TMU_REG_TRIMINFO); sanitize_temp_error(data, trim_info); } static void exynos4210_tmu_control(struct platform_device *pdev, bool on) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); unsigned int con; con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL)); if (on) con |= BIT(EXYNOS_TMU_CORE_EN_SHIFT); else con &= ~BIT(EXYNOS_TMU_CORE_EN_SHIFT); writel(con, data->base + EXYNOS_TMU_REG_CONTROL); } static void exynos5433_tmu_control(struct platform_device *pdev, bool on) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); unsigned int con, pd_det_en; con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL)); if (on) con |= BIT(EXYNOS_TMU_CORE_EN_SHIFT); else con &= ~BIT(EXYNOS_TMU_CORE_EN_SHIFT); pd_det_en = on ? EXYNOS5433_PD_DET_EN : 0; writel(pd_det_en, data->base + EXYNOS5433_TMU_PD_DET_EN); writel(con, data->base + EXYNOS_TMU_REG_CONTROL); } static void exynos7_tmu_control(struct platform_device *pdev, bool on) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); unsigned int con; con = get_con_reg(data, readl(data->base + EXYNOS_TMU_REG_CONTROL)); if (on) { con |= BIT(EXYNOS_TMU_CORE_EN_SHIFT); con |= BIT(EXYNOS7_PD_DET_EN_SHIFT); } else { con &= ~BIT(EXYNOS_TMU_CORE_EN_SHIFT); con &= ~BIT(EXYNOS7_PD_DET_EN_SHIFT); } writel(con, data->base + EXYNOS_TMU_REG_CONTROL); } static int exynos_get_temp(struct thermal_zone_device *tz, int *temp) { struct exynos_tmu_data *data = thermal_zone_device_priv(tz); int value, ret = 0; if (!data || !data->tmu_read) return -EINVAL; else if (!data->enabled) /* * Called too early, probably * from thermal_zone_of_sensor_register(). */ return -EAGAIN; mutex_lock(&data->lock); clk_enable(data->clk); value = data->tmu_read(data); if (value < 0) ret = value; else *temp = code_to_temp(data, value) * MCELSIUS; clk_disable(data->clk); mutex_unlock(&data->lock); return ret; } #ifdef CONFIG_THERMAL_EMULATION static u32 get_emul_con_reg(struct exynos_tmu_data *data, unsigned int val, int temp) { if (temp) { temp /= MCELSIUS; val &= ~(EXYNOS_EMUL_TIME_MASK << EXYNOS_EMUL_TIME_SHIFT); val |= (EXYNOS_EMUL_TIME << EXYNOS_EMUL_TIME_SHIFT); if (data->soc == SOC_ARCH_EXYNOS7) { val &= ~(EXYNOS7_EMUL_DATA_MASK << EXYNOS7_EMUL_DATA_SHIFT); val |= (temp_to_code(data, temp) << EXYNOS7_EMUL_DATA_SHIFT) | EXYNOS_EMUL_ENABLE; } else { val &= ~(EXYNOS_EMUL_DATA_MASK << EXYNOS_EMUL_DATA_SHIFT); val |= (temp_to_code(data, temp) << EXYNOS_EMUL_DATA_SHIFT) | EXYNOS_EMUL_ENABLE; } } else { val &= ~EXYNOS_EMUL_ENABLE; } return val; } static void exynos4412_tmu_set_emulation(struct exynos_tmu_data *data, int temp) { unsigned int val; u32 emul_con; if (data->soc == SOC_ARCH_EXYNOS5260) emul_con = EXYNOS5260_EMUL_CON; else if (data->soc == SOC_ARCH_EXYNOS5433) emul_con = EXYNOS5433_TMU_EMUL_CON; else if (data->soc == SOC_ARCH_EXYNOS7) emul_con = EXYNOS7_TMU_REG_EMUL_CON; else emul_con = EXYNOS_EMUL_CON; val = readl(data->base + emul_con); val = get_emul_con_reg(data, val, temp); writel(val, data->base + emul_con); } static int exynos_tmu_set_emulation(struct thermal_zone_device *tz, int temp) { struct exynos_tmu_data *data = thermal_zone_device_priv(tz); int ret = -EINVAL; if (data->soc == SOC_ARCH_EXYNOS4210) goto out; if (temp && temp < MCELSIUS) goto out; mutex_lock(&data->lock); clk_enable(data->clk); data->tmu_set_emulation(data, temp); clk_disable(data->clk); mutex_unlock(&data->lock); return 0; out: return ret; } #else #define exynos4412_tmu_set_emulation NULL static int exynos_tmu_set_emulation(struct thermal_zone_device *tz, int temp) { return -EINVAL; } #endif /* CONFIG_THERMAL_EMULATION */ static int exynos4210_tmu_read(struct exynos_tmu_data *data) { int ret = readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP); /* "temp_code" should range between 75 and 175 */ return (ret < 75 || ret > 175) ? -ENODATA : ret; } static int exynos4412_tmu_read(struct exynos_tmu_data *data) { return readb(data->base + EXYNOS_TMU_REG_CURRENT_TEMP); } static int exynos7_tmu_read(struct exynos_tmu_data *data) { return readw(data->base + EXYNOS_TMU_REG_CURRENT_TEMP) & EXYNOS7_TMU_TEMP_MASK; } static irqreturn_t exynos_tmu_threaded_irq(int irq, void *id) { struct exynos_tmu_data *data = id; thermal_zone_device_update(data->tzd, THERMAL_EVENT_UNSPECIFIED); mutex_lock(&data->lock); clk_enable(data->clk); /* TODO: take action based on particular interrupt */ data->tmu_clear_irqs(data); clk_disable(data->clk); mutex_unlock(&data->lock); return IRQ_HANDLED; } static void exynos4210_tmu_clear_irqs(struct exynos_tmu_data *data) { unsigned int val_irq; u32 tmu_intstat, tmu_intclear; if (data->soc == SOC_ARCH_EXYNOS5260) { tmu_intstat = EXYNOS5260_TMU_REG_INTSTAT; tmu_intclear = EXYNOS5260_TMU_REG_INTCLEAR; } else if (data->soc == SOC_ARCH_EXYNOS7) { tmu_intstat = EXYNOS7_TMU_REG_INTPEND; tmu_intclear = EXYNOS7_TMU_REG_INTPEND; } else if (data->soc == SOC_ARCH_EXYNOS5433) { tmu_intstat = EXYNOS5433_TMU_REG_INTPEND; tmu_intclear = EXYNOS5433_TMU_REG_INTPEND; } else { tmu_intstat = EXYNOS_TMU_REG_INTSTAT; tmu_intclear = EXYNOS_TMU_REG_INTCLEAR; } val_irq = readl(data->base + tmu_intstat); /* * Clear the interrupts. Please note that the documentation for * Exynos3250, Exynos4412, Exynos5250 and Exynos5260 incorrectly * states that INTCLEAR register has a different placing of bits * responsible for FALL IRQs than INTSTAT register. Exynos5420 * and Exynos5440 documentation is correct (Exynos4210 doesn't * support FALL IRQs at all). */ writel(val_irq, data->base + tmu_intclear); } static const struct of_device_id exynos_tmu_match[] = { { .compatible = "samsung,exynos3250-tmu", .data = (const void *)SOC_ARCH_EXYNOS3250, }, { .compatible = "samsung,exynos4210-tmu", .data = (const void *)SOC_ARCH_EXYNOS4210, }, { .compatible = "samsung,exynos4412-tmu", .data = (const void *)SOC_ARCH_EXYNOS4412, }, { .compatible = "samsung,exynos5250-tmu", .data = (const void *)SOC_ARCH_EXYNOS5250, }, { .compatible = "samsung,exynos5260-tmu", .data = (const void *)SOC_ARCH_EXYNOS5260, }, { .compatible = "samsung,exynos5420-tmu", .data = (const void *)SOC_ARCH_EXYNOS5420, }, { .compatible = "samsung,exynos5420-tmu-ext-triminfo", .data = (const void *)SOC_ARCH_EXYNOS5420_TRIMINFO, }, { .compatible = "samsung,exynos5433-tmu", .data = (const void *)SOC_ARCH_EXYNOS5433, }, { .compatible = "samsung,exynos7-tmu", .data = (const void *)SOC_ARCH_EXYNOS7, }, { }, }; MODULE_DEVICE_TABLE(of, exynos_tmu_match); static int exynos_map_dt_data(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); struct resource res; if (!data || !pdev->dev.of_node) return -ENODEV; data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0); if (data->irq <= 0) { dev_err(&pdev->dev, "failed to get IRQ\n"); return -ENODEV; } if (of_address_to_resource(pdev->dev.of_node, 0, &res)) { dev_err(&pdev->dev, "failed to get Resource 0\n"); return -ENODEV; } data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res)); if (!data->base) { dev_err(&pdev->dev, "Failed to ioremap memory\n"); return -EADDRNOTAVAIL; } data->soc = (uintptr_t)of_device_get_match_data(&pdev->dev); switch (data->soc) { case SOC_ARCH_EXYNOS4210: data->tmu_set_low_temp = exynos4210_tmu_set_low_temp; data->tmu_set_high_temp = exynos4210_tmu_set_high_temp; data->tmu_disable_low = exynos4210_tmu_disable_low; data->tmu_disable_high = exynos4210_tmu_disable_high; data->tmu_set_crit_temp = exynos4210_tmu_set_crit_temp; data->tmu_initialize = exynos4210_tmu_initialize; data->tmu_control = exynos4210_tmu_control; data->tmu_read = exynos4210_tmu_read; data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; data->gain = 15; data->reference_voltage = 7; data->efuse_value = 55; data->min_efuse_value = 40; data->max_efuse_value = 100; break; case SOC_ARCH_EXYNOS3250: case SOC_ARCH_EXYNOS4412: case SOC_ARCH_EXYNOS5250: case SOC_ARCH_EXYNOS5260: case SOC_ARCH_EXYNOS5420: case SOC_ARCH_EXYNOS5420_TRIMINFO: data->tmu_set_low_temp = exynos4412_tmu_set_low_temp; data->tmu_set_high_temp = exynos4412_tmu_set_high_temp; data->tmu_disable_low = exynos4412_tmu_disable_low; data->tmu_disable_high = exynos4210_tmu_disable_high; data->tmu_set_crit_temp = exynos4412_tmu_set_crit_temp; data->tmu_initialize = exynos4412_tmu_initialize; data->tmu_control = exynos4210_tmu_control; data->tmu_read = exynos4412_tmu_read; data->tmu_set_emulation = exynos4412_tmu_set_emulation; data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; data->gain = 8; data->reference_voltage = 16; data->efuse_value = 55; if (data->soc != SOC_ARCH_EXYNOS5420 && data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO) data->min_efuse_value = 40; else data->min_efuse_value = 0; data->max_efuse_value = 100; break; case SOC_ARCH_EXYNOS5433: data->tmu_set_low_temp = exynos5433_tmu_set_low_temp; data->tmu_set_high_temp = exynos5433_tmu_set_high_temp; data->tmu_disable_low = exynos5433_tmu_disable_low; data->tmu_disable_high = exynos5433_tmu_disable_high; data->tmu_set_crit_temp = exynos5433_tmu_set_crit_temp; data->tmu_initialize = exynos5433_tmu_initialize; data->tmu_control = exynos5433_tmu_control; data->tmu_read = exynos4412_tmu_read; data->tmu_set_emulation = exynos4412_tmu_set_emulation; data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; data->gain = 8; if (res.start == EXYNOS5433_G3D_BASE) data->reference_voltage = 23; else data->reference_voltage = 16; data->efuse_value = 75; data->min_efuse_value = 40; data->max_efuse_value = 150; break; case SOC_ARCH_EXYNOS7: data->tmu_set_low_temp = exynos7_tmu_set_low_temp; data->tmu_set_high_temp = exynos7_tmu_set_high_temp; data->tmu_disable_low = exynos7_tmu_disable_low; data->tmu_disable_high = exynos7_tmu_disable_high; data->tmu_set_crit_temp = exynos7_tmu_set_crit_temp; data->tmu_initialize = exynos7_tmu_initialize; data->tmu_control = exynos7_tmu_control; data->tmu_read = exynos7_tmu_read; data->tmu_set_emulation = exynos4412_tmu_set_emulation; data->tmu_clear_irqs = exynos4210_tmu_clear_irqs; data->gain = 9; data->reference_voltage = 17; data->efuse_value = 75; data->min_efuse_value = 15; data->max_efuse_value = 100; break; default: dev_err(&pdev->dev, "Platform not supported\n"); return -EINVAL; } data->cal_type = TYPE_ONE_POINT_TRIMMING; /* * Check if the TMU shares some registers and then try to map the * memory of common registers. */ if (data->soc != SOC_ARCH_EXYNOS5420_TRIMINFO) return 0; if (of_address_to_resource(pdev->dev.of_node, 1, &res)) { dev_err(&pdev->dev, "failed to get Resource 1\n"); return -ENODEV; } data->base_second = devm_ioremap(&pdev->dev, res.start, resource_size(&res)); if (!data->base_second) { dev_err(&pdev->dev, "Failed to ioremap memory\n"); return -ENOMEM; } return 0; } static int exynos_set_trips(struct thermal_zone_device *tz, int low, int high) { struct exynos_tmu_data *data = thermal_zone_device_priv(tz); mutex_lock(&data->lock); clk_enable(data->clk); if (low > INT_MIN) data->tmu_set_low_temp(data, low / MCELSIUS); else data->tmu_disable_low(data); if (high < INT_MAX) data->tmu_set_high_temp(data, high / MCELSIUS); else data->tmu_disable_high(data); clk_disable(data->clk); mutex_unlock(&data->lock); return 0; } static const struct thermal_zone_device_ops exynos_sensor_ops = { .get_temp = exynos_get_temp, .set_emul_temp = exynos_tmu_set_emulation, .set_trips = exynos_set_trips, }; static int exynos_tmu_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct exynos_tmu_data *data; int ret; data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; platform_set_drvdata(pdev, data); mutex_init(&data->lock); /* * Try enabling the regulator if found * TODO: Add regulator as an SOC feature, so that regulator enable * is a compulsory call. */ ret = devm_regulator_get_enable_optional(dev, "vtmu"); switch (ret) { case 0: case -ENODEV: break; case -EPROBE_DEFER: return -EPROBE_DEFER; default: dev_err(dev, "Failed to get enabled regulator: %d\n", ret); return ret; } ret = exynos_map_dt_data(pdev); if (ret) return ret; data->clk = devm_clk_get(dev, "tmu_apbif"); if (IS_ERR(data->clk)) return dev_err_probe(dev, PTR_ERR(data->clk), "Failed to get clock\n"); data->clk_sec = devm_clk_get(dev, "tmu_triminfo_apbif"); if (IS_ERR(data->clk_sec)) { if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) return dev_err_probe(dev, PTR_ERR(data->clk_sec), "Failed to get triminfo clock\n"); } else { ret = clk_prepare(data->clk_sec); if (ret) { dev_err(dev, "Failed to get clock\n"); return ret; } } ret = clk_prepare(data->clk); if (ret) { dev_err(dev, "Failed to get clock\n"); goto err_clk_sec; } switch (data->soc) { case SOC_ARCH_EXYNOS5433: case SOC_ARCH_EXYNOS7: data->sclk = devm_clk_get(dev, "tmu_sclk"); if (IS_ERR(data->sclk)) { ret = dev_err_probe(dev, PTR_ERR(data->sclk), "Failed to get sclk\n"); goto err_clk; } else { ret = clk_prepare_enable(data->sclk); if (ret) { dev_err(dev, "Failed to enable sclk\n"); goto err_clk; } } break; default: break; } ret = exynos_tmu_initialize(pdev); if (ret) { dev_err(dev, "Failed to initialize TMU\n"); goto err_sclk; } data->tzd = devm_thermal_of_zone_register(dev, 0, data, &exynos_sensor_ops); if (IS_ERR(data->tzd)) { ret = dev_err_probe(dev, PTR_ERR(data->tzd), "Failed to register sensor\n"); goto err_sclk; } ret = exynos_thermal_zone_configure(pdev); if (ret) { dev_err(dev, "Failed to configure the thermal zone\n"); goto err_sclk; } ret = devm_request_threaded_irq(dev, data->irq, NULL, exynos_tmu_threaded_irq, IRQF_TRIGGER_RISING | IRQF_SHARED | IRQF_ONESHOT, dev_name(dev), data); if (ret) { dev_err(dev, "Failed to request irq: %d\n", data->irq); goto err_sclk; } exynos_tmu_control(pdev, true); return 0; err_sclk: clk_disable_unprepare(data->sclk); err_clk: clk_unprepare(data->clk); err_clk_sec: if (!IS_ERR(data->clk_sec)) clk_unprepare(data->clk_sec); return ret; } static void exynos_tmu_remove(struct platform_device *pdev) { struct exynos_tmu_data *data = platform_get_drvdata(pdev); exynos_tmu_control(pdev, false); clk_disable_unprepare(data->sclk); clk_unprepare(data->clk); if (!IS_ERR(data->clk_sec)) clk_unprepare(data->clk_sec); } #ifdef CONFIG_PM_SLEEP static int exynos_tmu_suspend(struct device *dev) { exynos_tmu_control(to_platform_device(dev), false); return 0; } static int exynos_tmu_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); exynos_tmu_initialize(pdev); exynos_tmu_control(pdev, true); return 0; } static SIMPLE_DEV_PM_OPS(exynos_tmu_pm, exynos_tmu_suspend, exynos_tmu_resume); #define EXYNOS_TMU_PM (&exynos_tmu_pm) #else #define EXYNOS_TMU_PM NULL #endif static struct platform_driver exynos_tmu_driver = { .driver = { .name = "exynos-tmu", .pm = EXYNOS_TMU_PM, .of_match_table = exynos_tmu_match, }, .probe = exynos_tmu_probe, .remove_new = exynos_tmu_remove, }; module_platform_driver(exynos_tmu_driver); MODULE_DESCRIPTION("Exynos TMU Driver"); MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:exynos-tmu");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1