Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Carlo Caione | 2391 | 63.91% | 1 | 1.85% |
Dmitry Rokosov | 214 | 5.72% | 6 | 11.11% |
Greg Kroah-Hartman | 195 | 5.21% | 3 | 5.56% |
Julien Masson | 177 | 4.73% | 1 | 1.85% |
Yu Tu | 155 | 4.14% | 6 | 11.11% |
Andreas Färber | 141 | 3.77% | 1 | 1.85% |
Ben Dooks | 73 | 1.95% | 8 | 14.81% |
Helmut Klein | 62 | 1.66% | 1 | 1.85% |
Loys Ollivier | 54 | 1.44% | 1 | 1.85% |
Yixun Lan | 48 | 1.28% | 1 | 1.85% |
Pavel Krasavin | 39 | 1.04% | 1 | 1.85% |
Martin Blumenstingl | 38 | 1.02% | 5 | 9.26% |
Heiner Kallweit | 35 | 0.94% | 4 | 7.41% |
Jiri Slaby (SUSE) | 20 | 0.53% | 1 | 1.85% |
John Ogness | 17 | 0.45% | 1 | 1.85% |
Thomas Gleixner | 16 | 0.43% | 1 | 1.85% |
Sebastian Andrzej Siewior | 14 | 0.37% | 1 | 1.85% |
Neil Armstrong | 14 | 0.37% | 1 | 1.85% |
Lad Prabhakar | 10 | 0.27% | 1 | 1.85% |
Dmitry Safonov | 9 | 0.24% | 1 | 1.85% |
Lucas Tanure | 5 | 0.13% | 1 | 1.85% |
Uwe Kleine-König | 3 | 0.08% | 1 | 1.85% |
Colin Ian King | 3 | 0.08% | 1 | 1.85% |
Christophe Jaillet | 3 | 0.08% | 1 | 1.85% |
Jiri Slaby | 2 | 0.05% | 1 | 1.85% |
Thomas Rohloff | 1 | 0.03% | 1 | 1.85% |
Ilpo Järvinen | 1 | 0.03% | 1 | 1.85% |
Julia Lawall | 1 | 0.03% | 1 | 1.85% |
Total | 3741 | 54 |
// SPDX-License-Identifier: GPL-2.0 /* * Based on meson_uart.c, by AMLOGIC, INC. * * Copyright (C) 2014 Carlo Caione <carlo@caione.org> */ #include <linux/clk.h> #include <linux/console.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/serial.h> #include <linux/serial_core.h> #include <linux/tty.h> #include <linux/tty_flip.h> /* Register offsets */ #define AML_UART_WFIFO 0x00 #define AML_UART_RFIFO 0x04 #define AML_UART_CONTROL 0x08 #define AML_UART_STATUS 0x0c #define AML_UART_MISC 0x10 #define AML_UART_REG5 0x14 /* AML_UART_CONTROL bits */ #define AML_UART_TX_EN BIT(12) #define AML_UART_RX_EN BIT(13) #define AML_UART_TWO_WIRE_EN BIT(15) #define AML_UART_STOP_BIT_LEN_MASK (0x03 << 16) #define AML_UART_STOP_BIT_1SB (0x00 << 16) #define AML_UART_STOP_BIT_2SB (0x01 << 16) #define AML_UART_PARITY_TYPE BIT(18) #define AML_UART_PARITY_EN BIT(19) #define AML_UART_TX_RST BIT(22) #define AML_UART_RX_RST BIT(23) #define AML_UART_CLEAR_ERR BIT(24) #define AML_UART_RX_INT_EN BIT(27) #define AML_UART_TX_INT_EN BIT(28) #define AML_UART_DATA_LEN_MASK (0x03 << 20) #define AML_UART_DATA_LEN_8BIT (0x00 << 20) #define AML_UART_DATA_LEN_7BIT (0x01 << 20) #define AML_UART_DATA_LEN_6BIT (0x02 << 20) #define AML_UART_DATA_LEN_5BIT (0x03 << 20) /* AML_UART_STATUS bits */ #define AML_UART_PARITY_ERR BIT(16) #define AML_UART_FRAME_ERR BIT(17) #define AML_UART_TX_FIFO_WERR BIT(18) #define AML_UART_RX_EMPTY BIT(20) #define AML_UART_TX_FULL BIT(21) #define AML_UART_TX_EMPTY BIT(22) #define AML_UART_XMIT_BUSY BIT(25) #define AML_UART_ERR (AML_UART_PARITY_ERR | \ AML_UART_FRAME_ERR | \ AML_UART_TX_FIFO_WERR) /* AML_UART_MISC bits */ #define AML_UART_XMIT_IRQ(c) (((c) & 0xff) << 8) #define AML_UART_RECV_IRQ(c) ((c) & 0xff) /* AML_UART_REG5 bits */ #define AML_UART_BAUD_MASK 0x7fffff #define AML_UART_BAUD_USE BIT(23) #define AML_UART_BAUD_XTAL BIT(24) #define AML_UART_BAUD_XTAL_DIV2 BIT(27) #define AML_UART_PORT_NUM 12 #define AML_UART_PORT_OFFSET 6 #define AML_UART_POLL_USEC 5 #define AML_UART_TIMEOUT_USEC 10000 static struct uart_driver meson_uart_driver_ttyAML; static struct uart_driver meson_uart_driver_ttyS; static struct uart_port *meson_ports[AML_UART_PORT_NUM]; struct meson_uart_data { struct uart_driver *uart_driver; bool has_xtal_div2; }; static void meson_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) { } static unsigned int meson_uart_get_mctrl(struct uart_port *port) { return TIOCM_CTS; } static unsigned int meson_uart_tx_empty(struct uart_port *port) { u32 val; val = readl(port->membase + AML_UART_STATUS); val &= (AML_UART_TX_EMPTY | AML_UART_XMIT_BUSY); return (val == AML_UART_TX_EMPTY) ? TIOCSER_TEMT : 0; } static void meson_uart_stop_tx(struct uart_port *port) { u32 val; val = readl(port->membase + AML_UART_CONTROL); val &= ~AML_UART_TX_INT_EN; writel(val, port->membase + AML_UART_CONTROL); } static void meson_uart_stop_rx(struct uart_port *port) { u32 val; val = readl(port->membase + AML_UART_CONTROL); val &= ~AML_UART_RX_EN; writel(val, port->membase + AML_UART_CONTROL); } static void meson_uart_shutdown(struct uart_port *port) { unsigned long flags; u32 val; free_irq(port->irq, port); uart_port_lock_irqsave(port, &flags); val = readl(port->membase + AML_UART_CONTROL); val &= ~AML_UART_RX_EN; val &= ~(AML_UART_RX_INT_EN | AML_UART_TX_INT_EN); writel(val, port->membase + AML_UART_CONTROL); uart_port_unlock_irqrestore(port, flags); } static void meson_uart_start_tx(struct uart_port *port) { struct tty_port *tport = &port->state->port; unsigned char ch; u32 val; if (uart_tx_stopped(port)) { meson_uart_stop_tx(port); return; } while (!(readl(port->membase + AML_UART_STATUS) & AML_UART_TX_FULL)) { if (port->x_char) { writel(port->x_char, port->membase + AML_UART_WFIFO); port->icount.tx++; port->x_char = 0; continue; } if (!uart_fifo_get(port, &ch)) break; writel(ch, port->membase + AML_UART_WFIFO); } if (!kfifo_is_empty(&tport->xmit_fifo)) { val = readl(port->membase + AML_UART_CONTROL); val |= AML_UART_TX_INT_EN; writel(val, port->membase + AML_UART_CONTROL); } if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) uart_write_wakeup(port); } static void meson_receive_chars(struct uart_port *port) { struct tty_port *tport = &port->state->port; char flag; u32 ostatus, status, ch, mode; do { flag = TTY_NORMAL; port->icount.rx++; ostatus = status = readl(port->membase + AML_UART_STATUS); if (status & AML_UART_ERR) { if (status & AML_UART_TX_FIFO_WERR) port->icount.overrun++; else if (status & AML_UART_FRAME_ERR) port->icount.frame++; else if (status & AML_UART_PARITY_ERR) port->icount.frame++; mode = readl(port->membase + AML_UART_CONTROL); mode |= AML_UART_CLEAR_ERR; writel(mode, port->membase + AML_UART_CONTROL); /* It doesn't clear to 0 automatically */ mode &= ~AML_UART_CLEAR_ERR; writel(mode, port->membase + AML_UART_CONTROL); status &= port->read_status_mask; if (status & AML_UART_FRAME_ERR) flag = TTY_FRAME; else if (status & AML_UART_PARITY_ERR) flag = TTY_PARITY; } ch = readl(port->membase + AML_UART_RFIFO); ch &= 0xff; if ((ostatus & AML_UART_FRAME_ERR) && (ch == 0)) { port->icount.brk++; flag = TTY_BREAK; if (uart_handle_break(port)) continue; } if (uart_prepare_sysrq_char(port, ch)) continue; if ((status & port->ignore_status_mask) == 0) tty_insert_flip_char(tport, ch, flag); if (status & AML_UART_TX_FIFO_WERR) tty_insert_flip_char(tport, 0, TTY_OVERRUN); } while (!(readl(port->membase + AML_UART_STATUS) & AML_UART_RX_EMPTY)); tty_flip_buffer_push(tport); } static irqreturn_t meson_uart_interrupt(int irq, void *dev_id) { struct uart_port *port = (struct uart_port *)dev_id; uart_port_lock(port); if (!(readl(port->membase + AML_UART_STATUS) & AML_UART_RX_EMPTY)) meson_receive_chars(port); if (!(readl(port->membase + AML_UART_STATUS) & AML_UART_TX_FULL)) { if (readl(port->membase + AML_UART_CONTROL) & AML_UART_TX_INT_EN) meson_uart_start_tx(port); } uart_unlock_and_check_sysrq(port); return IRQ_HANDLED; } static const char *meson_uart_type(struct uart_port *port) { return (port->type == PORT_MESON) ? "meson_uart" : NULL; } /* * This function is called only from probe() using a temporary io mapping * in order to perform a reset before setting up the device. Since the * temporarily mapped region was successfully requested, there can be no * console on this port at this time. Hence it is not necessary for this * function to acquire the port->lock. (Since there is no console on this * port at this time, the port->lock is not initialized yet.) */ static void meson_uart_reset(struct uart_port *port) { u32 val; val = readl(port->membase + AML_UART_CONTROL); val |= (AML_UART_RX_RST | AML_UART_TX_RST | AML_UART_CLEAR_ERR); writel(val, port->membase + AML_UART_CONTROL); val &= ~(AML_UART_RX_RST | AML_UART_TX_RST | AML_UART_CLEAR_ERR); writel(val, port->membase + AML_UART_CONTROL); } static int meson_uart_startup(struct uart_port *port) { unsigned long flags; u32 val; int ret = 0; uart_port_lock_irqsave(port, &flags); val = readl(port->membase + AML_UART_CONTROL); val |= AML_UART_CLEAR_ERR; writel(val, port->membase + AML_UART_CONTROL); val &= ~AML_UART_CLEAR_ERR; writel(val, port->membase + AML_UART_CONTROL); val |= (AML_UART_RX_EN | AML_UART_TX_EN); writel(val, port->membase + AML_UART_CONTROL); val |= (AML_UART_RX_INT_EN | AML_UART_TX_INT_EN); writel(val, port->membase + AML_UART_CONTROL); val = (AML_UART_RECV_IRQ(1) | AML_UART_XMIT_IRQ(port->fifosize / 2)); writel(val, port->membase + AML_UART_MISC); uart_port_unlock_irqrestore(port, flags); ret = request_irq(port->irq, meson_uart_interrupt, 0, port->name, port); return ret; } static void meson_uart_change_speed(struct uart_port *port, unsigned long baud) { const struct meson_uart_data *private_data = port->private_data; u32 val = 0; while (!meson_uart_tx_empty(port)) cpu_relax(); if (port->uartclk == 24000000) { unsigned int xtal_div = 3; if (private_data && private_data->has_xtal_div2) { xtal_div = 2; val |= AML_UART_BAUD_XTAL_DIV2; } val |= DIV_ROUND_CLOSEST(port->uartclk / xtal_div, baud) - 1; val |= AML_UART_BAUD_XTAL; } else { val = DIV_ROUND_CLOSEST(port->uartclk / 4, baud) - 1; } val |= AML_UART_BAUD_USE; writel(val, port->membase + AML_UART_REG5); } static void meson_uart_set_termios(struct uart_port *port, struct ktermios *termios, const struct ktermios *old) { unsigned int cflags, iflags, baud; unsigned long flags; u32 val; uart_port_lock_irqsave(port, &flags); cflags = termios->c_cflag; iflags = termios->c_iflag; val = readl(port->membase + AML_UART_CONTROL); val &= ~AML_UART_DATA_LEN_MASK; switch (cflags & CSIZE) { case CS8: val |= AML_UART_DATA_LEN_8BIT; break; case CS7: val |= AML_UART_DATA_LEN_7BIT; break; case CS6: val |= AML_UART_DATA_LEN_6BIT; break; case CS5: val |= AML_UART_DATA_LEN_5BIT; break; } if (cflags & PARENB) val |= AML_UART_PARITY_EN; else val &= ~AML_UART_PARITY_EN; if (cflags & PARODD) val |= AML_UART_PARITY_TYPE; else val &= ~AML_UART_PARITY_TYPE; val &= ~AML_UART_STOP_BIT_LEN_MASK; if (cflags & CSTOPB) val |= AML_UART_STOP_BIT_2SB; else val |= AML_UART_STOP_BIT_1SB; if (cflags & CRTSCTS) { if (port->flags & UPF_HARD_FLOW) val &= ~AML_UART_TWO_WIRE_EN; else termios->c_cflag &= ~CRTSCTS; } else { val |= AML_UART_TWO_WIRE_EN; } writel(val, port->membase + AML_UART_CONTROL); baud = uart_get_baud_rate(port, termios, old, 50, 4000000); meson_uart_change_speed(port, baud); port->read_status_mask = AML_UART_TX_FIFO_WERR; if (iflags & INPCK) port->read_status_mask |= AML_UART_PARITY_ERR | AML_UART_FRAME_ERR; port->ignore_status_mask = 0; if (iflags & IGNPAR) port->ignore_status_mask |= AML_UART_PARITY_ERR | AML_UART_FRAME_ERR; uart_update_timeout(port, termios->c_cflag, baud); uart_port_unlock_irqrestore(port, flags); } static int meson_uart_verify_port(struct uart_port *port, struct serial_struct *ser) { int ret = 0; if (port->type != PORT_MESON) ret = -EINVAL; if (port->irq != ser->irq) ret = -EINVAL; if (ser->baud_base < 9600) ret = -EINVAL; return ret; } static void meson_uart_release_port(struct uart_port *port) { devm_iounmap(port->dev, port->membase); port->membase = NULL; devm_release_mem_region(port->dev, port->mapbase, port->mapsize); } static int meson_uart_request_port(struct uart_port *port) { if (!devm_request_mem_region(port->dev, port->mapbase, port->mapsize, dev_name(port->dev))) { dev_err(port->dev, "Memory region busy\n"); return -EBUSY; } port->membase = devm_ioremap(port->dev, port->mapbase, port->mapsize); if (!port->membase) return -ENOMEM; return 0; } static void meson_uart_config_port(struct uart_port *port, int flags) { if (flags & UART_CONFIG_TYPE) { port->type = PORT_MESON; meson_uart_request_port(port); } } #ifdef CONFIG_CONSOLE_POLL /* * Console polling routines for writing and reading from the uart while * in an interrupt or debug context (i.e. kgdb). */ static int meson_uart_poll_get_char(struct uart_port *port) { u32 c; unsigned long flags; uart_port_lock_irqsave(port, &flags); if (readl(port->membase + AML_UART_STATUS) & AML_UART_RX_EMPTY) c = NO_POLL_CHAR; else c = readl(port->membase + AML_UART_RFIFO); uart_port_unlock_irqrestore(port, flags); return c; } static void meson_uart_poll_put_char(struct uart_port *port, unsigned char c) { unsigned long flags; u32 reg; int ret; uart_port_lock_irqsave(port, &flags); /* Wait until FIFO is empty or timeout */ ret = readl_poll_timeout_atomic(port->membase + AML_UART_STATUS, reg, reg & AML_UART_TX_EMPTY, AML_UART_POLL_USEC, AML_UART_TIMEOUT_USEC); if (ret == -ETIMEDOUT) { dev_err(port->dev, "Timeout waiting for UART TX EMPTY\n"); goto out; } /* Write the character */ writel(c, port->membase + AML_UART_WFIFO); /* Wait until FIFO is empty or timeout */ ret = readl_poll_timeout_atomic(port->membase + AML_UART_STATUS, reg, reg & AML_UART_TX_EMPTY, AML_UART_POLL_USEC, AML_UART_TIMEOUT_USEC); if (ret == -ETIMEDOUT) dev_err(port->dev, "Timeout waiting for UART TX EMPTY\n"); out: uart_port_unlock_irqrestore(port, flags); } #endif /* CONFIG_CONSOLE_POLL */ static const struct uart_ops meson_uart_ops = { .set_mctrl = meson_uart_set_mctrl, .get_mctrl = meson_uart_get_mctrl, .tx_empty = meson_uart_tx_empty, .start_tx = meson_uart_start_tx, .stop_tx = meson_uart_stop_tx, .stop_rx = meson_uart_stop_rx, .startup = meson_uart_startup, .shutdown = meson_uart_shutdown, .set_termios = meson_uart_set_termios, .type = meson_uart_type, .config_port = meson_uart_config_port, .request_port = meson_uart_request_port, .release_port = meson_uart_release_port, .verify_port = meson_uart_verify_port, #ifdef CONFIG_CONSOLE_POLL .poll_get_char = meson_uart_poll_get_char, .poll_put_char = meson_uart_poll_put_char, #endif }; #ifdef CONFIG_SERIAL_MESON_CONSOLE static void meson_uart_enable_tx_engine(struct uart_port *port) { u32 val; val = readl(port->membase + AML_UART_CONTROL); val |= AML_UART_TX_EN; writel(val, port->membase + AML_UART_CONTROL); } static void meson_console_putchar(struct uart_port *port, unsigned char ch) { if (!port->membase) return; while (readl(port->membase + AML_UART_STATUS) & AML_UART_TX_FULL) cpu_relax(); writel(ch, port->membase + AML_UART_WFIFO); } static void meson_serial_port_write(struct uart_port *port, const char *s, u_int count) { unsigned long flags; int locked = 1; u32 val, tmp; if (oops_in_progress) locked = uart_port_trylock_irqsave(port, &flags); else uart_port_lock_irqsave(port, &flags); val = readl(port->membase + AML_UART_CONTROL); tmp = val & ~(AML_UART_TX_INT_EN | AML_UART_RX_INT_EN); writel(tmp, port->membase + AML_UART_CONTROL); uart_console_write(port, s, count, meson_console_putchar); writel(val, port->membase + AML_UART_CONTROL); if (locked) uart_port_unlock_irqrestore(port, flags); } static void meson_serial_console_write(struct console *co, const char *s, u_int count) { struct uart_port *port; port = meson_ports[co->index]; if (!port) return; meson_serial_port_write(port, s, count); } static int meson_serial_console_setup(struct console *co, char *options) { struct uart_port *port; int baud = 115200; int bits = 8; int parity = 'n'; int flow = 'n'; if (co->index < 0 || co->index >= AML_UART_PORT_NUM) return -EINVAL; port = meson_ports[co->index]; if (!port || !port->membase) return -ENODEV; meson_uart_enable_tx_engine(port); if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); return uart_set_options(port, co, baud, parity, bits, flow); } #define MESON_SERIAL_CONSOLE(_devname) \ static struct console meson_serial_console_##_devname = { \ .name = __stringify(_devname), \ .write = meson_serial_console_write, \ .device = uart_console_device, \ .setup = meson_serial_console_setup, \ .flags = CON_PRINTBUFFER, \ .index = -1, \ .data = &meson_uart_driver_##_devname, \ } MESON_SERIAL_CONSOLE(ttyAML); MESON_SERIAL_CONSOLE(ttyS); static void meson_serial_early_console_write(struct console *co, const char *s, u_int count) { struct earlycon_device *dev = co->data; meson_serial_port_write(&dev->port, s, count); } static int __init meson_serial_early_console_setup(struct earlycon_device *device, const char *opt) { if (!device->port.membase) return -ENODEV; meson_uart_enable_tx_engine(&device->port); device->con->write = meson_serial_early_console_write; return 0; } OF_EARLYCON_DECLARE(meson, "amlogic,meson-ao-uart", meson_serial_early_console_setup); OF_EARLYCON_DECLARE(meson, "amlogic,meson-s4-uart", meson_serial_early_console_setup); #define MESON_SERIAL_CONSOLE_PTR(_devname) (&meson_serial_console_##_devname) #else #define MESON_SERIAL_CONSOLE_PTR(_devname) (NULL) #endif #define MESON_UART_DRIVER(_devname) \ static struct uart_driver meson_uart_driver_##_devname = { \ .owner = THIS_MODULE, \ .driver_name = "meson_uart", \ .dev_name = __stringify(_devname), \ .nr = AML_UART_PORT_NUM, \ .cons = MESON_SERIAL_CONSOLE_PTR(_devname), \ } MESON_UART_DRIVER(ttyAML); MESON_UART_DRIVER(ttyS); static int meson_uart_probe_clocks(struct platform_device *pdev, struct uart_port *port) { struct clk *clk_xtal = NULL; struct clk *clk_pclk = NULL; struct clk *clk_baud = NULL; clk_pclk = devm_clk_get_enabled(&pdev->dev, "pclk"); if (IS_ERR(clk_pclk)) return PTR_ERR(clk_pclk); clk_xtal = devm_clk_get_enabled(&pdev->dev, "xtal"); if (IS_ERR(clk_xtal)) return PTR_ERR(clk_xtal); clk_baud = devm_clk_get_enabled(&pdev->dev, "baud"); if (IS_ERR(clk_baud)) return PTR_ERR(clk_baud); port->uartclk = clk_get_rate(clk_baud); return 0; } static struct uart_driver *meson_uart_current(const struct meson_uart_data *pd) { return (pd && pd->uart_driver) ? pd->uart_driver : &meson_uart_driver_ttyAML; } static int meson_uart_probe(struct platform_device *pdev) { const struct meson_uart_data *priv_data; struct uart_driver *uart_driver; struct resource *res_mem; struct uart_port *port; u32 fifosize = 64; /* Default is 64, 128 for EE UART_0 */ int ret = 0; int irq; bool has_rtscts; if (pdev->dev.of_node) pdev->id = of_alias_get_id(pdev->dev.of_node, "serial"); if (pdev->id < 0) { int id; for (id = AML_UART_PORT_OFFSET; id < AML_UART_PORT_NUM; id++) { if (!meson_ports[id]) { pdev->id = id; break; } } } if (pdev->id < 0 || pdev->id >= AML_UART_PORT_NUM) return -EINVAL; res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res_mem) return -ENODEV; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; of_property_read_u32(pdev->dev.of_node, "fifo-size", &fifosize); has_rtscts = of_property_read_bool(pdev->dev.of_node, "uart-has-rtscts"); if (meson_ports[pdev->id]) { return dev_err_probe(&pdev->dev, -EBUSY, "port %d already allocated\n", pdev->id); } port = devm_kzalloc(&pdev->dev, sizeof(struct uart_port), GFP_KERNEL); if (!port) return -ENOMEM; ret = meson_uart_probe_clocks(pdev, port); if (ret) return ret; priv_data = device_get_match_data(&pdev->dev); uart_driver = meson_uart_current(priv_data); if (!uart_driver->state) { ret = uart_register_driver(uart_driver); if (ret) return dev_err_probe(&pdev->dev, ret, "can't register uart driver\n"); } port->iotype = UPIO_MEM; port->mapbase = res_mem->start; port->mapsize = resource_size(res_mem); port->irq = irq; port->flags = UPF_BOOT_AUTOCONF | UPF_LOW_LATENCY; if (has_rtscts) port->flags |= UPF_HARD_FLOW; port->has_sysrq = IS_ENABLED(CONFIG_SERIAL_MESON_CONSOLE); port->dev = &pdev->dev; port->line = pdev->id; port->type = PORT_MESON; port->x_char = 0; port->ops = &meson_uart_ops; port->fifosize = fifosize; port->private_data = (void *)priv_data; meson_ports[pdev->id] = port; platform_set_drvdata(pdev, port); /* reset port before registering (and possibly registering console) */ if (meson_uart_request_port(port) >= 0) { meson_uart_reset(port); meson_uart_release_port(port); } ret = uart_add_one_port(uart_driver, port); if (ret) meson_ports[pdev->id] = NULL; return ret; } static void meson_uart_remove(struct platform_device *pdev) { struct uart_driver *uart_driver; struct uart_port *port; port = platform_get_drvdata(pdev); uart_driver = meson_uart_current(port->private_data); uart_remove_one_port(uart_driver, port); meson_ports[pdev->id] = NULL; for (int id = 0; id < AML_UART_PORT_NUM; id++) if (meson_ports[id]) return; /* No more available uart ports, unregister uart driver */ uart_unregister_driver(uart_driver); } static struct meson_uart_data meson_g12a_uart_data = { .has_xtal_div2 = true, }; static struct meson_uart_data meson_a1_uart_data = { .uart_driver = &meson_uart_driver_ttyS, .has_xtal_div2 = false, }; static struct meson_uart_data meson_s4_uart_data = { .uart_driver = &meson_uart_driver_ttyS, .has_xtal_div2 = true, }; static const struct of_device_id meson_uart_dt_match[] = { { .compatible = "amlogic,meson6-uart" }, { .compatible = "amlogic,meson8-uart" }, { .compatible = "amlogic,meson8b-uart" }, { .compatible = "amlogic,meson-gx-uart" }, { .compatible = "amlogic,meson-g12a-uart", .data = (void *)&meson_g12a_uart_data, }, { .compatible = "amlogic,meson-s4-uart", .data = (void *)&meson_s4_uart_data, }, { .compatible = "amlogic,meson-a1-uart", .data = (void *)&meson_a1_uart_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, meson_uart_dt_match); static struct platform_driver meson_uart_platform_driver = { .probe = meson_uart_probe, .remove_new = meson_uart_remove, .driver = { .name = "meson_uart", .of_match_table = meson_uart_dt_match, }, }; module_platform_driver(meson_uart_platform_driver); MODULE_AUTHOR("Carlo Caione <carlo@caione.org>"); MODULE_DESCRIPTION("Amlogic Meson serial port driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1