Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alim Akhtar | 7409 | 71.41% | 7 | 14.89% |
Chanho Park | 1449 | 13.96% | 12 | 25.53% |
Eric Biggers | 916 | 8.83% | 2 | 4.26% |
Peter Griffin | 471 | 4.54% | 4 | 8.51% |
Bart Van Assche | 35 | 0.34% | 6 | 12.77% |
Kiwoong Kim | 24 | 0.23% | 2 | 4.26% |
Wei Yongjun | 13 | 0.13% | 1 | 2.13% |
Peter Wang | 11 | 0.11% | 1 | 2.13% |
Christoph Hellwig | 9 | 0.09% | 1 | 2.13% |
Asutosh Das | 9 | 0.09% | 1 | 2.13% |
Will McVicker | 7 | 0.07% | 1 | 2.13% |
Can Guo | 6 | 0.06% | 1 | 2.13% |
Bean Huo | 3 | 0.03% | 1 | 2.13% |
Krzysztof Kozlowski | 3 | 0.03% | 1 | 2.13% |
Santosh Yaraganavi | 3 | 0.03% | 1 | 2.13% |
Stanley Chu | 3 | 0.03% | 1 | 2.13% |
Uwe Kleine-König | 2 | 0.02% | 1 | 2.13% |
Colin Ian King | 2 | 0.02% | 2 | 4.26% |
Lee Jones | 1 | 0.01% | 1 | 2.13% |
Total | 10376 | 47 |
// SPDX-License-Identifier: GPL-2.0-only /* * UFS Host Controller driver for Exynos specific extensions * * Copyright (C) 2014-2015 Samsung Electronics Co., Ltd. * Author: Seungwon Jeon <essuuj@gmail.com> * Author: Alim Akhtar <alim.akhtar@samsung.com> * */ #include <asm/unaligned.h> #include <crypto/aes.h> #include <linux/arm-smccc.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/mfd/syscon.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <ufs/ufshcd.h> #include "ufshcd-pltfrm.h" #include <ufs/ufshci.h> #include <ufs/unipro.h> #include "ufs-exynos.h" #define DATA_UNIT_SIZE 4096 /* * Exynos's Vendor specific registers for UFSHCI */ #define HCI_TXPRDT_ENTRY_SIZE 0x00 #define PRDT_PREFECT_EN BIT(31) #define HCI_RXPRDT_ENTRY_SIZE 0x04 #define HCI_1US_TO_CNT_VAL 0x0C #define CNT_VAL_1US_MASK 0x3FF #define HCI_UTRL_NEXUS_TYPE 0x40 #define HCI_UTMRL_NEXUS_TYPE 0x44 #define HCI_SW_RST 0x50 #define UFS_LINK_SW_RST BIT(0) #define UFS_UNIPRO_SW_RST BIT(1) #define UFS_SW_RST_MASK (UFS_UNIPRO_SW_RST | UFS_LINK_SW_RST) #define HCI_DATA_REORDER 0x60 #define HCI_UNIPRO_APB_CLK_CTRL 0x68 #define UNIPRO_APB_CLK(v, x) (((v) & ~0xF) | ((x) & 0xF)) #define HCI_AXIDMA_RWDATA_BURST_LEN 0x6C #define HCI_GPIO_OUT 0x70 #define HCI_ERR_EN_PA_LAYER 0x78 #define HCI_ERR_EN_DL_LAYER 0x7C #define HCI_ERR_EN_N_LAYER 0x80 #define HCI_ERR_EN_T_LAYER 0x84 #define HCI_ERR_EN_DME_LAYER 0x88 #define HCI_V2P1_CTRL 0x8C #define IA_TICK_SEL BIT(16) #define HCI_CLKSTOP_CTRL 0xB0 #define REFCLKOUT_STOP BIT(4) #define MPHY_APBCLK_STOP BIT(3) #define REFCLK_STOP BIT(2) #define UNIPRO_MCLK_STOP BIT(1) #define UNIPRO_PCLK_STOP BIT(0) #define CLK_STOP_MASK (REFCLKOUT_STOP | REFCLK_STOP |\ UNIPRO_MCLK_STOP | MPHY_APBCLK_STOP|\ UNIPRO_PCLK_STOP) /* HCI_MISC is also known as HCI_FORCE_HCS */ #define HCI_MISC 0xB4 #define REFCLK_CTRL_EN BIT(7) #define UNIPRO_PCLK_CTRL_EN BIT(6) #define UNIPRO_MCLK_CTRL_EN BIT(5) #define HCI_CORECLK_CTRL_EN BIT(4) #define CLK_CTRL_EN_MASK (REFCLK_CTRL_EN |\ UNIPRO_PCLK_CTRL_EN |\ UNIPRO_MCLK_CTRL_EN) /* Device fatal error */ #define DFES_ERR_EN BIT(31) #define DFES_DEF_L2_ERRS (UIC_DATA_LINK_LAYER_ERROR_RX_BUF_OF |\ UIC_DATA_LINK_LAYER_ERROR_PA_INIT) #define DFES_DEF_L3_ERRS (UIC_NETWORK_UNSUPPORTED_HEADER_TYPE |\ UIC_NETWORK_BAD_DEVICEID_ENC |\ UIC_NETWORK_LHDR_TRAP_PACKET_DROPPING) #define DFES_DEF_L4_ERRS (UIC_TRANSPORT_UNSUPPORTED_HEADER_TYPE |\ UIC_TRANSPORT_UNKNOWN_CPORTID |\ UIC_TRANSPORT_NO_CONNECTION_RX |\ UIC_TRANSPORT_BAD_TC) /* FSYS UFS Shareability */ #define UFS_WR_SHARABLE BIT(2) #define UFS_RD_SHARABLE BIT(1) #define UFS_SHARABLE (UFS_WR_SHARABLE | UFS_RD_SHARABLE) #define UFS_SHAREABILITY_OFFSET 0x710 /* Multi-host registers */ #define MHCTRL 0xC4 #define MHCTRL_EN_VH_MASK (0xE) #define MHCTRL_EN_VH(vh) (vh << 1) #define PH2VH_MBOX 0xD8 #define MH_MSG_MASK (0xFF) #define MH_MSG(id, msg) ((id << 8) | (msg & 0xFF)) #define MH_MSG_PH_READY 0x1 #define MH_MSG_VH_READY 0x2 #define ALLOW_INQUIRY BIT(25) #define ALLOW_MODE_SELECT BIT(24) #define ALLOW_MODE_SENSE BIT(23) #define ALLOW_PRE_FETCH GENMASK(22, 21) #define ALLOW_READ_CMD_ALL GENMASK(20, 18) /* read_6/10/16 */ #define ALLOW_READ_BUFFER BIT(17) #define ALLOW_READ_CAPACITY GENMASK(16, 15) #define ALLOW_REPORT_LUNS BIT(14) #define ALLOW_REQUEST_SENSE BIT(13) #define ALLOW_SYNCHRONIZE_CACHE GENMASK(8, 7) #define ALLOW_TEST_UNIT_READY BIT(6) #define ALLOW_UNMAP BIT(5) #define ALLOW_VERIFY BIT(4) #define ALLOW_WRITE_CMD_ALL GENMASK(3, 1) /* write_6/10/16 */ #define ALLOW_TRANS_VH_DEFAULT (ALLOW_INQUIRY | ALLOW_MODE_SELECT | \ ALLOW_MODE_SENSE | ALLOW_PRE_FETCH | \ ALLOW_READ_CMD_ALL | ALLOW_READ_BUFFER | \ ALLOW_READ_CAPACITY | ALLOW_REPORT_LUNS | \ ALLOW_REQUEST_SENSE | ALLOW_SYNCHRONIZE_CACHE | \ ALLOW_TEST_UNIT_READY | ALLOW_UNMAP | \ ALLOW_VERIFY | ALLOW_WRITE_CMD_ALL) #define HCI_MH_ALLOWABLE_TRAN_OF_VH 0x30C #define HCI_MH_IID_IN_TASK_TAG 0X308 #define PH_READY_TIMEOUT_MS (5 * MSEC_PER_SEC) enum { UNIPRO_L1_5 = 0,/* PHY Adapter */ UNIPRO_L2, /* Data Link */ UNIPRO_L3, /* Network */ UNIPRO_L4, /* Transport */ UNIPRO_DME, /* DME */ }; /* * UNIPRO registers */ #define UNIPRO_DME_POWERMODE_REQ_LOCALL2TIMER0 0x7888 #define UNIPRO_DME_POWERMODE_REQ_LOCALL2TIMER1 0x788c #define UNIPRO_DME_POWERMODE_REQ_LOCALL2TIMER2 0x7890 #define UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER0 0x78B8 #define UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER1 0x78BC #define UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER2 0x78C0 /* * UFS Protector registers */ #define UFSPRSECURITY 0x010 #define NSSMU BIT(14) #define UFSPSBEGIN0 0x200 #define UFSPSEND0 0x204 #define UFSPSLUN0 0x208 #define UFSPSCTRL0 0x20C #define CNTR_DIV_VAL 40 static void exynos_ufs_auto_ctrl_hcc(struct exynos_ufs *ufs, bool en); static void exynos_ufs_ctrl_clkstop(struct exynos_ufs *ufs, bool en); static inline void exynos_ufs_enable_auto_ctrl_hcc(struct exynos_ufs *ufs) { exynos_ufs_auto_ctrl_hcc(ufs, true); } static inline void exynos_ufs_disable_auto_ctrl_hcc(struct exynos_ufs *ufs) { exynos_ufs_auto_ctrl_hcc(ufs, false); } static inline void exynos_ufs_disable_auto_ctrl_hcc_save( struct exynos_ufs *ufs, u32 *val) { *val = hci_readl(ufs, HCI_MISC); exynos_ufs_auto_ctrl_hcc(ufs, false); } static inline void exynos_ufs_auto_ctrl_hcc_restore( struct exynos_ufs *ufs, u32 *val) { hci_writel(ufs, *val, HCI_MISC); } static inline void exynos_ufs_gate_clks(struct exynos_ufs *ufs) { exynos_ufs_ctrl_clkstop(ufs, true); } static inline void exynos_ufs_ungate_clks(struct exynos_ufs *ufs) { exynos_ufs_ctrl_clkstop(ufs, false); } static int exynos7_ufs_drv_init(struct device *dev, struct exynos_ufs *ufs) { return 0; } static int exynosauto_ufs_drv_init(struct device *dev, struct exynos_ufs *ufs) { struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; /* IO Coherency setting */ if (ufs->sysreg) { return regmap_update_bits(ufs->sysreg, ufs->shareability_reg_offset, UFS_SHARABLE, UFS_SHARABLE); } attr->tx_dif_p_nsec = 3200000; return 0; } static int exynosauto_ufs_post_hce_enable(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; /* Enable Virtual Host #1 */ ufshcd_rmwl(hba, MHCTRL_EN_VH_MASK, MHCTRL_EN_VH(1), MHCTRL); /* Default VH Transfer permissions */ hci_writel(ufs, ALLOW_TRANS_VH_DEFAULT, HCI_MH_ALLOWABLE_TRAN_OF_VH); /* IID information is replaced in TASKTAG[7:5] instead of IID in UCD */ hci_writel(ufs, 0x1, HCI_MH_IID_IN_TASK_TAG); return 0; } static int exynosauto_ufs_pre_link(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; int i; u32 tx_line_reset_period, rx_line_reset_period; rx_line_reset_period = (RX_LINE_RESET_TIME * ufs->mclk_rate) / NSEC_PER_MSEC; tx_line_reset_period = (TX_LINE_RESET_TIME * ufs->mclk_rate) / NSEC_PER_MSEC; ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x40); for_each_ufs_rx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_CLK_PRD, i), DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_CLK_PRD_EN, i), 0x0); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_LINERESET_VALUE2, i), (rx_line_reset_period >> 16) & 0xFF); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_LINERESET_VALUE1, i), (rx_line_reset_period >> 8) & 0xFF); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_LINERESET_VALUE0, i), (rx_line_reset_period) & 0xFF); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x2f, i), 0x79); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x84, i), 0x1); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x25, i), 0xf6); } for_each_ufs_tx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_CLK_PRD, i), DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate)); /* Not to affect VND_TX_LINERESET_PVALUE to VND_TX_CLK_PRD */ ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_CLK_PRD_EN, i), 0x02); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_LINERESET_PVALUE2, i), (tx_line_reset_period >> 16) & 0xFF); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_LINERESET_PVALUE1, i), (tx_line_reset_period >> 8) & 0xFF); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_LINERESET_PVALUE0, i), (tx_line_reset_period) & 0xFF); /* TX PWM Gear Capability / PWM_G1_ONLY */ ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x04, i), 0x1); } ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x0); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_LOCAL_TX_LCC_ENABLE), 0x0); ufshcd_dme_set(hba, UIC_ARG_MIB(0xa011), 0x8000); return 0; } static int exynosauto_ufs_pre_pwr_change(struct exynos_ufs *ufs, struct ufs_pa_layer_attr *pwr) { struct ufs_hba *hba = ufs->hba; /* PACP_PWR_req and delivered to the remote DME */ ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 12000); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 32000); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 16000); return 0; } static int exynosauto_ufs_post_pwr_change(struct exynos_ufs *ufs, struct ufs_pa_layer_attr *pwr) { struct ufs_hba *hba = ufs->hba; u32 enabled_vh; enabled_vh = ufshcd_readl(hba, MHCTRL) & MHCTRL_EN_VH_MASK; /* Send physical host ready message to virtual hosts */ ufshcd_writel(hba, MH_MSG(enabled_vh, MH_MSG_PH_READY), PH2VH_MBOX); return 0; } static int exynos7_ufs_pre_link(struct exynos_ufs *ufs) { struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; u32 val = attr->pa_dbg_opt_suite1_val; struct ufs_hba *hba = ufs->hba; int i; exynos_ufs_enable_ov_tm(hba); for_each_ufs_tx_lane(ufs, i) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x297, i), 0x17); for_each_ufs_rx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x362, i), 0xff); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x363, i), 0x00); } exynos_ufs_disable_ov_tm(hba); for_each_ufs_tx_lane(ufs, i) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HIBERN8_CONTROL, i), 0x0); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_TXPHY_CFGUPDT), 0x1); udelay(1); ufshcd_dme_set(hba, UIC_ARG_MIB(attr->pa_dbg_opt_suite1_off), val | (1 << 12)); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_SKIP_RESET_PHY), 0x1); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_SKIP_LINE_RESET), 0x1); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_LINE_RESET_REQ), 0x1); udelay(1600); ufshcd_dme_set(hba, UIC_ARG_MIB(attr->pa_dbg_opt_suite1_off), val); return 0; } static int exynos7_ufs_post_link(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; int i; exynos_ufs_enable_ov_tm(hba); for_each_ufs_tx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x28b, i), 0x83); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x29a, i), 0x07); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x277, i), TX_LINERESET_N(exynos_ufs_calc_time_cntr(ufs, 200000))); } exynos_ufs_disable_ov_tm(hba); exynos_ufs_enable_dbg_mode(hba); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_SAVECONFIGTIME), 0xbb8); exynos_ufs_disable_dbg_mode(hba); return 0; } static int exynos7_ufs_pre_pwr_change(struct exynos_ufs *ufs, struct ufs_pa_layer_attr *pwr) { unipro_writel(ufs, 0x22, UNIPRO_DBG_FORCE_DME_CTRL_STATE); return 0; } static int exynos7_ufs_post_pwr_change(struct exynos_ufs *ufs, struct ufs_pa_layer_attr *pwr) { struct ufs_hba *hba = ufs->hba; int lanes = max_t(u32, pwr->lane_rx, pwr->lane_tx); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_RXPHY_CFGUPDT), 0x1); if (lanes == 1) { exynos_ufs_enable_dbg_mode(hba); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 0x1); exynos_ufs_disable_dbg_mode(hba); } return 0; } /* * exynos_ufs_auto_ctrl_hcc - HCI core clock control by h/w * Control should be disabled in the below cases * - Before host controller S/W reset * - Access to UFS protector's register */ static void exynos_ufs_auto_ctrl_hcc(struct exynos_ufs *ufs, bool en) { u32 misc = hci_readl(ufs, HCI_MISC); if (en) hci_writel(ufs, misc | HCI_CORECLK_CTRL_EN, HCI_MISC); else hci_writel(ufs, misc & ~HCI_CORECLK_CTRL_EN, HCI_MISC); } static void exynos_ufs_ctrl_clkstop(struct exynos_ufs *ufs, bool en) { u32 ctrl = hci_readl(ufs, HCI_CLKSTOP_CTRL); u32 misc = hci_readl(ufs, HCI_MISC); if (en) { hci_writel(ufs, misc | CLK_CTRL_EN_MASK, HCI_MISC); hci_writel(ufs, ctrl | CLK_STOP_MASK, HCI_CLKSTOP_CTRL); } else { hci_writel(ufs, ctrl & ~CLK_STOP_MASK, HCI_CLKSTOP_CTRL); hci_writel(ufs, misc & ~CLK_CTRL_EN_MASK, HCI_MISC); } } static int exynos_ufs_get_clk_info(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; struct list_head *head = &hba->clk_list_head; struct ufs_clk_info *clki; unsigned long pclk_rate; u32 f_min, f_max; u8 div = 0; int ret = 0; if (list_empty(head)) goto out; list_for_each_entry(clki, head, list) { if (!IS_ERR(clki->clk)) { if (!strcmp(clki->name, "core_clk")) ufs->clk_hci_core = clki->clk; else if (!strcmp(clki->name, "sclk_unipro_main")) ufs->clk_unipro_main = clki->clk; } } if (!ufs->clk_hci_core || !ufs->clk_unipro_main) { dev_err(hba->dev, "failed to get clk info\n"); ret = -EINVAL; goto out; } ufs->mclk_rate = clk_get_rate(ufs->clk_unipro_main); pclk_rate = clk_get_rate(ufs->clk_hci_core); f_min = ufs->pclk_avail_min; f_max = ufs->pclk_avail_max; if (ufs->opts & EXYNOS_UFS_OPT_HAS_APB_CLK_CTRL) { do { pclk_rate /= (div + 1); if (pclk_rate <= f_max) break; div++; } while (pclk_rate >= f_min); } if (unlikely(pclk_rate < f_min || pclk_rate > f_max)) { dev_err(hba->dev, "not available pclk range %lu\n", pclk_rate); ret = -EINVAL; goto out; } ufs->pclk_rate = pclk_rate; ufs->pclk_div = div; out: return ret; } static void exynos_ufs_set_unipro_pclk_div(struct exynos_ufs *ufs) { if (ufs->opts & EXYNOS_UFS_OPT_HAS_APB_CLK_CTRL) { u32 val; val = hci_readl(ufs, HCI_UNIPRO_APB_CLK_CTRL); hci_writel(ufs, UNIPRO_APB_CLK(val, ufs->pclk_div), HCI_UNIPRO_APB_CLK_CTRL); } } static void exynos_ufs_set_pwm_clk_div(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; ufshcd_dme_set(hba, UIC_ARG_MIB(CMN_PWM_CLK_CTRL), attr->cmn_pwm_clk_ctrl); } static void exynos_ufs_calc_pwm_clk_div(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; const unsigned int div = 30, mult = 20; const unsigned long pwm_min = 3 * 1000 * 1000; const unsigned long pwm_max = 9 * 1000 * 1000; const int divs[] = {32, 16, 8, 4}; unsigned long clk = 0, _clk, clk_period; int i = 0, clk_idx = -1; clk_period = UNIPRO_PCLK_PERIOD(ufs); for (i = 0; i < ARRAY_SIZE(divs); i++) { _clk = NSEC_PER_SEC * mult / (clk_period * divs[i] * div); if (_clk >= pwm_min && _clk <= pwm_max) { if (_clk > clk) { clk_idx = i; clk = _clk; } } } if (clk_idx == -1) { ufshcd_dme_get(hba, UIC_ARG_MIB(CMN_PWM_CLK_CTRL), &clk_idx); dev_err(hba->dev, "failed to decide pwm clock divider, will not change\n"); } attr->cmn_pwm_clk_ctrl = clk_idx & PWM_CLK_CTRL_MASK; } long exynos_ufs_calc_time_cntr(struct exynos_ufs *ufs, long period) { const int precise = 10; long pclk_rate = ufs->pclk_rate; long clk_period, fraction; clk_period = UNIPRO_PCLK_PERIOD(ufs); fraction = ((NSEC_PER_SEC % pclk_rate) * precise) / pclk_rate; return (period * precise) / ((clk_period * precise) + fraction); } static void exynos_ufs_specify_phy_time_attr(struct exynos_ufs *ufs) { struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; struct ufs_phy_time_cfg *t_cfg = &ufs->t_cfg; t_cfg->tx_linereset_p = exynos_ufs_calc_time_cntr(ufs, attr->tx_dif_p_nsec); t_cfg->tx_linereset_n = exynos_ufs_calc_time_cntr(ufs, attr->tx_dif_n_nsec); t_cfg->tx_high_z_cnt = exynos_ufs_calc_time_cntr(ufs, attr->tx_high_z_cnt_nsec); t_cfg->tx_base_n_val = exynos_ufs_calc_time_cntr(ufs, attr->tx_base_unit_nsec); t_cfg->tx_gran_n_val = exynos_ufs_calc_time_cntr(ufs, attr->tx_gran_unit_nsec); t_cfg->tx_sleep_cnt = exynos_ufs_calc_time_cntr(ufs, attr->tx_sleep_cnt); t_cfg->rx_linereset = exynos_ufs_calc_time_cntr(ufs, attr->rx_dif_p_nsec); t_cfg->rx_hibern8_wait = exynos_ufs_calc_time_cntr(ufs, attr->rx_hibern8_wait_nsec); t_cfg->rx_base_n_val = exynos_ufs_calc_time_cntr(ufs, attr->rx_base_unit_nsec); t_cfg->rx_gran_n_val = exynos_ufs_calc_time_cntr(ufs, attr->rx_gran_unit_nsec); t_cfg->rx_sleep_cnt = exynos_ufs_calc_time_cntr(ufs, attr->rx_sleep_cnt); t_cfg->rx_stall_cnt = exynos_ufs_calc_time_cntr(ufs, attr->rx_stall_cnt); } static void exynos_ufs_config_phy_time_attr(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; struct ufs_phy_time_cfg *t_cfg = &ufs->t_cfg; int i; exynos_ufs_set_pwm_clk_div(ufs); exynos_ufs_enable_ov_tm(hba); for_each_ufs_rx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_FILLER_ENABLE, i), ufs->drv_data->uic_attr->rx_filler_enable); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_LINERESET_VAL, i), RX_LINERESET(t_cfg->rx_linereset)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_BASE_NVAL_07_00, i), RX_BASE_NVAL_L(t_cfg->rx_base_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_BASE_NVAL_15_08, i), RX_BASE_NVAL_H(t_cfg->rx_base_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_GRAN_NVAL_07_00, i), RX_GRAN_NVAL_L(t_cfg->rx_gran_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_GRAN_NVAL_10_08, i), RX_GRAN_NVAL_H(t_cfg->rx_gran_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_OV_SLEEP_CNT_TIMER, i), RX_OV_SLEEP_CNT(t_cfg->rx_sleep_cnt)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_OV_STALL_CNT_TIMER, i), RX_OV_STALL_CNT(t_cfg->rx_stall_cnt)); } for_each_ufs_tx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_LINERESET_P_VAL, i), TX_LINERESET_P(t_cfg->tx_linereset_p)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HIGH_Z_CNT_07_00, i), TX_HIGH_Z_CNT_L(t_cfg->tx_high_z_cnt)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HIGH_Z_CNT_11_08, i), TX_HIGH_Z_CNT_H(t_cfg->tx_high_z_cnt)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_BASE_NVAL_07_00, i), TX_BASE_NVAL_L(t_cfg->tx_base_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_BASE_NVAL_15_08, i), TX_BASE_NVAL_H(t_cfg->tx_base_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_GRAN_NVAL_07_00, i), TX_GRAN_NVAL_L(t_cfg->tx_gran_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_GRAN_NVAL_10_08, i), TX_GRAN_NVAL_H(t_cfg->tx_gran_n_val)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_OV_SLEEP_CNT_TIMER, i), TX_OV_H8_ENTER_EN | TX_OV_SLEEP_CNT(t_cfg->tx_sleep_cnt)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_MIN_ACTIVATETIME, i), ufs->drv_data->uic_attr->tx_min_activatetime); } exynos_ufs_disable_ov_tm(hba); } static void exynos_ufs_config_phy_cap_attr(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; int i; exynos_ufs_enable_ov_tm(hba); for_each_ufs_rx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_HS_G1_SYNC_LENGTH_CAP, i), attr->rx_hs_g1_sync_len_cap); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_HS_G2_SYNC_LENGTH_CAP, i), attr->rx_hs_g2_sync_len_cap); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_HS_G3_SYNC_LENGTH_CAP, i), attr->rx_hs_g3_sync_len_cap); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_HS_G1_PREP_LENGTH_CAP, i), attr->rx_hs_g1_prep_sync_len_cap); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_HS_G2_PREP_LENGTH_CAP, i), attr->rx_hs_g2_prep_sync_len_cap); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_HS_G3_PREP_LENGTH_CAP, i), attr->rx_hs_g3_prep_sync_len_cap); } if (attr->rx_adv_fine_gran_sup_en == 0) { for_each_ufs_rx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_ADV_GRANULARITY_CAP, i), 0); if (attr->rx_min_actv_time_cap) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL( RX_MIN_ACTIVATETIME_CAPABILITY, i), attr->rx_min_actv_time_cap); if (attr->rx_hibern8_time_cap) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAP, i), attr->rx_hibern8_time_cap); } } else if (attr->rx_adv_fine_gran_sup_en == 1) { for_each_ufs_rx_lane(ufs, i) { if (attr->rx_adv_fine_gran_step) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_ADV_GRANULARITY_CAP, i), RX_ADV_FINE_GRAN_STEP( attr->rx_adv_fine_gran_step)); if (attr->rx_adv_min_actv_time_cap) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL( RX_ADV_MIN_ACTIVATETIME_CAP, i), attr->rx_adv_min_actv_time_cap); if (attr->rx_adv_hibern8_time_cap) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_ADV_HIBERN8TIME_CAP, i), attr->rx_adv_hibern8_time_cap); } } exynos_ufs_disable_ov_tm(hba); } static void exynos_ufs_establish_connt(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; enum { DEV_ID = 0x00, PEER_DEV_ID = 0x01, PEER_CPORT_ID = 0x00, TRAFFIC_CLASS = 0x00, }; /* allow cport attributes to be set */ ufshcd_dme_set(hba, UIC_ARG_MIB(T_CONNECTIONSTATE), CPORT_IDLE); /* local unipro attributes */ ufshcd_dme_set(hba, UIC_ARG_MIB(N_DEVICEID), DEV_ID); ufshcd_dme_set(hba, UIC_ARG_MIB(N_DEVICEID_VALID), true); ufshcd_dme_set(hba, UIC_ARG_MIB(T_PEERDEVICEID), PEER_DEV_ID); ufshcd_dme_set(hba, UIC_ARG_MIB(T_PEERCPORTID), PEER_CPORT_ID); ufshcd_dme_set(hba, UIC_ARG_MIB(T_CPORTFLAGS), CPORT_DEF_FLAGS); ufshcd_dme_set(hba, UIC_ARG_MIB(T_TRAFFICCLASS), TRAFFIC_CLASS); ufshcd_dme_set(hba, UIC_ARG_MIB(T_CONNECTIONSTATE), CPORT_CONNECTED); } static void exynos_ufs_config_smu(struct exynos_ufs *ufs) { u32 reg, val; exynos_ufs_disable_auto_ctrl_hcc_save(ufs, &val); /* make encryption disabled by default */ reg = ufsp_readl(ufs, UFSPRSECURITY); ufsp_writel(ufs, reg | NSSMU, UFSPRSECURITY); ufsp_writel(ufs, 0x0, UFSPSBEGIN0); ufsp_writel(ufs, 0xffffffff, UFSPSEND0); ufsp_writel(ufs, 0xff, UFSPSLUN0); ufsp_writel(ufs, 0xf1, UFSPSCTRL0); exynos_ufs_auto_ctrl_hcc_restore(ufs, &val); } static void exynos_ufs_config_sync_pattern_mask(struct exynos_ufs *ufs, struct ufs_pa_layer_attr *pwr) { struct ufs_hba *hba = ufs->hba; u8 g = max_t(u32, pwr->gear_rx, pwr->gear_tx); u32 mask, sync_len; enum { SYNC_LEN_G1 = 80 * 1000, /* 80us */ SYNC_LEN_G2 = 40 * 1000, /* 44us */ SYNC_LEN_G3 = 20 * 1000, /* 20us */ }; int i; if (g == 1) sync_len = SYNC_LEN_G1; else if (g == 2) sync_len = SYNC_LEN_G2; else if (g == 3) sync_len = SYNC_LEN_G3; else return; mask = exynos_ufs_calc_time_cntr(ufs, sync_len); mask = (mask >> 8) & 0xff; exynos_ufs_enable_ov_tm(hba); for_each_ufs_rx_lane(ufs, i) ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(RX_SYNC_MASK_LENGTH, i), mask); exynos_ufs_disable_ov_tm(hba); } static int exynos_ufs_pre_pwr_mode(struct ufs_hba *hba, struct ufs_pa_layer_attr *dev_max_params, struct ufs_pa_layer_attr *dev_req_params) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); struct phy *generic_phy = ufs->phy; struct ufs_host_params host_params; int ret; if (!dev_req_params) { pr_err("%s: incoming dev_req_params is NULL\n", __func__); ret = -EINVAL; goto out; } ufshcd_init_host_params(&host_params); ret = ufshcd_negotiate_pwr_params(&host_params, dev_max_params, dev_req_params); if (ret) { pr_err("%s: failed to determine capabilities\n", __func__); goto out; } if (ufs->drv_data->pre_pwr_change) ufs->drv_data->pre_pwr_change(ufs, dev_req_params); if (ufshcd_is_hs_mode(dev_req_params)) { exynos_ufs_config_sync_pattern_mask(ufs, dev_req_params); switch (dev_req_params->hs_rate) { case PA_HS_MODE_A: case PA_HS_MODE_B: phy_calibrate(generic_phy); break; } } /* setting for three timeout values for traffic class #0 */ ufshcd_dme_set(hba, UIC_ARG_MIB(DL_FC0PROTTIMEOUTVAL), 8064); ufshcd_dme_set(hba, UIC_ARG_MIB(DL_TC0REPLAYTIMEOUTVAL), 28224); ufshcd_dme_set(hba, UIC_ARG_MIB(DL_AFC0REQTIMEOUTVAL), 20160); return 0; out: return ret; } #define PWR_MODE_STR_LEN 64 static int exynos_ufs_post_pwr_mode(struct ufs_hba *hba, struct ufs_pa_layer_attr *pwr_req) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); struct phy *generic_phy = ufs->phy; int gear = max_t(u32, pwr_req->gear_rx, pwr_req->gear_tx); int lanes = max_t(u32, pwr_req->lane_rx, pwr_req->lane_tx); char pwr_str[PWR_MODE_STR_LEN] = ""; /* let default be PWM Gear 1, Lane 1 */ if (!gear) gear = 1; if (!lanes) lanes = 1; if (ufs->drv_data->post_pwr_change) ufs->drv_data->post_pwr_change(ufs, pwr_req); if ((ufshcd_is_hs_mode(pwr_req))) { switch (pwr_req->hs_rate) { case PA_HS_MODE_A: case PA_HS_MODE_B: phy_calibrate(generic_phy); break; } snprintf(pwr_str, PWR_MODE_STR_LEN, "%s series_%s G_%d L_%d", "FAST", pwr_req->hs_rate == PA_HS_MODE_A ? "A" : "B", gear, lanes); } else { snprintf(pwr_str, PWR_MODE_STR_LEN, "%s G_%d L_%d", "SLOW", gear, lanes); } dev_info(hba->dev, "Power mode changed to : %s\n", pwr_str); return 0; } static void exynos_ufs_specify_nexus_t_xfer_req(struct ufs_hba *hba, int tag, bool is_scsi_cmd) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); u32 type; type = hci_readl(ufs, HCI_UTRL_NEXUS_TYPE); if (is_scsi_cmd) hci_writel(ufs, type | (1 << tag), HCI_UTRL_NEXUS_TYPE); else hci_writel(ufs, type & ~(1 << tag), HCI_UTRL_NEXUS_TYPE); } static void exynos_ufs_specify_nexus_t_tm_req(struct ufs_hba *hba, int tag, u8 func) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); u32 type; type = hci_readl(ufs, HCI_UTMRL_NEXUS_TYPE); switch (func) { case UFS_ABORT_TASK: case UFS_QUERY_TASK: hci_writel(ufs, type | (1 << tag), HCI_UTMRL_NEXUS_TYPE); break; case UFS_ABORT_TASK_SET: case UFS_CLEAR_TASK_SET: case UFS_LOGICAL_RESET: case UFS_QUERY_TASK_SET: hci_writel(ufs, type & ~(1 << tag), HCI_UTMRL_NEXUS_TYPE); break; } } static int exynos_ufs_phy_init(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; struct phy *generic_phy = ufs->phy; int ret = 0; if (ufs->avail_ln_rx == 0 || ufs->avail_ln_tx == 0) { ufshcd_dme_get(hba, UIC_ARG_MIB(PA_AVAILRXDATALANES), &ufs->avail_ln_rx); ufshcd_dme_get(hba, UIC_ARG_MIB(PA_AVAILTXDATALANES), &ufs->avail_ln_tx); WARN(ufs->avail_ln_rx != ufs->avail_ln_tx, "available data lane is not equal(rx:%d, tx:%d)\n", ufs->avail_ln_rx, ufs->avail_ln_tx); } phy_set_bus_width(generic_phy, ufs->avail_ln_rx); ret = phy_init(generic_phy); if (ret) { dev_err(hba->dev, "%s: phy init failed, ret = %d\n", __func__, ret); return ret; } ret = phy_power_on(generic_phy); if (ret) goto out_exit_phy; return 0; out_exit_phy: phy_exit(generic_phy); return ret; } static void exynos_ufs_config_unipro(struct exynos_ufs *ufs) { struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; struct ufs_hba *hba = ufs->hba; if (attr->pa_dbg_clk_period_off) ufshcd_dme_set(hba, UIC_ARG_MIB(attr->pa_dbg_clk_period_off), DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate)); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTRAILINGCLOCKS), ufs->drv_data->uic_attr->tx_trailingclks); if (attr->pa_dbg_opt_suite1_off) ufshcd_dme_set(hba, UIC_ARG_MIB(attr->pa_dbg_opt_suite1_off), attr->pa_dbg_opt_suite1_val); if (attr->pa_dbg_opt_suite2_off) ufshcd_dme_set(hba, UIC_ARG_MIB(attr->pa_dbg_opt_suite2_off), attr->pa_dbg_opt_suite2_val); } static void exynos_ufs_config_intr(struct exynos_ufs *ufs, u32 errs, u8 index) { switch (index) { case UNIPRO_L1_5: hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_PA_LAYER); break; case UNIPRO_L2: hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_DL_LAYER); break; case UNIPRO_L3: hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_N_LAYER); break; case UNIPRO_L4: hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_T_LAYER); break; case UNIPRO_DME: hci_writel(ufs, DFES_ERR_EN | errs, HCI_ERR_EN_DME_LAYER); break; } } static int exynos_ufs_setup_clocks(struct ufs_hba *hba, bool on, enum ufs_notify_change_status status) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); if (!ufs) return 0; if (on && status == PRE_CHANGE) { if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL) exynos_ufs_disable_auto_ctrl_hcc(ufs); exynos_ufs_ungate_clks(ufs); } else if (!on && status == POST_CHANGE) { exynos_ufs_gate_clks(ufs); if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL) exynos_ufs_enable_auto_ctrl_hcc(ufs); } return 0; } static int exynos_ufs_pre_link(struct ufs_hba *hba) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); /* hci */ exynos_ufs_config_intr(ufs, DFES_DEF_L2_ERRS, UNIPRO_L2); exynos_ufs_config_intr(ufs, DFES_DEF_L3_ERRS, UNIPRO_L3); exynos_ufs_config_intr(ufs, DFES_DEF_L4_ERRS, UNIPRO_L4); exynos_ufs_set_unipro_pclk_div(ufs); /* unipro */ exynos_ufs_config_unipro(ufs); /* m-phy */ exynos_ufs_phy_init(ufs); if (!(ufs->opts & EXYNOS_UFS_OPT_SKIP_CONFIG_PHY_ATTR)) { exynos_ufs_config_phy_time_attr(ufs); exynos_ufs_config_phy_cap_attr(ufs); } exynos_ufs_setup_clocks(hba, true, PRE_CHANGE); if (ufs->drv_data->pre_link) ufs->drv_data->pre_link(ufs); return 0; } static void exynos_ufs_fit_aggr_timeout(struct exynos_ufs *ufs) { u32 val; /* Select function clock (mclk) for timer tick */ if (ufs->opts & EXYNOS_UFS_OPT_TIMER_TICK_SELECT) { val = hci_readl(ufs, HCI_V2P1_CTRL); val |= IA_TICK_SEL; hci_writel(ufs, val, HCI_V2P1_CTRL); } val = exynos_ufs_calc_time_cntr(ufs, IATOVAL_NSEC / CNTR_DIV_VAL); hci_writel(ufs, val & CNT_VAL_1US_MASK, HCI_1US_TO_CNT_VAL); } static int exynos_ufs_post_link(struct ufs_hba *hba) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); struct phy *generic_phy = ufs->phy; struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; exynos_ufs_establish_connt(ufs); exynos_ufs_fit_aggr_timeout(ufs); hci_writel(ufs, 0xa, HCI_DATA_REORDER); hci_writel(ufs, ilog2(DATA_UNIT_SIZE), HCI_TXPRDT_ENTRY_SIZE); hci_writel(ufs, ilog2(DATA_UNIT_SIZE), HCI_RXPRDT_ENTRY_SIZE); hci_writel(ufs, (1 << hba->nutrs) - 1, HCI_UTRL_NEXUS_TYPE); hci_writel(ufs, (1 << hba->nutmrs) - 1, HCI_UTMRL_NEXUS_TYPE); hci_writel(ufs, 0xf, HCI_AXIDMA_RWDATA_BURST_LEN); if (ufs->opts & EXYNOS_UFS_OPT_SKIP_CONNECTION_ESTAB) ufshcd_dme_set(hba, UIC_ARG_MIB(T_DBG_SKIP_INIT_HIBERN8_EXIT), true); if (attr->pa_granularity) { exynos_ufs_enable_dbg_mode(hba); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_GRANULARITY), attr->pa_granularity); exynos_ufs_disable_dbg_mode(hba); if (attr->pa_tactivate) ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), attr->pa_tactivate); if (attr->pa_hibern8time && !(ufs->opts & EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER)) ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), attr->pa_hibern8time); } if (ufs->opts & EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER) { if (!attr->pa_granularity) ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), &attr->pa_granularity); if (!attr->pa_hibern8time) ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &attr->pa_hibern8time); /* * not wait for HIBERN8 time to exit hibernation */ ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), 0); if (attr->pa_granularity < 1 || attr->pa_granularity > 6) { /* Valid range for granularity: 1 ~ 6 */ dev_warn(hba->dev, "%s: pa_granularity %d is invalid, assuming backwards compatibility\n", __func__, attr->pa_granularity); attr->pa_granularity = 6; } } phy_calibrate(generic_phy); if (ufs->drv_data->post_link) ufs->drv_data->post_link(ufs); return 0; } static int exynos_ufs_parse_dt(struct device *dev, struct exynos_ufs *ufs) { struct device_node *np = dev->of_node; struct exynos_ufs_uic_attr *attr; int ret = 0; ufs->drv_data = device_get_match_data(dev); if (ufs->drv_data && ufs->drv_data->uic_attr) { attr = ufs->drv_data->uic_attr; } else { dev_err(dev, "failed to get uic attributes\n"); ret = -EINVAL; goto out; } ufs->sysreg = syscon_regmap_lookup_by_phandle(np, "samsung,sysreg"); if (IS_ERR(ufs->sysreg)) ufs->sysreg = NULL; else { if (of_property_read_u32_index(np, "samsung,sysreg", 1, &ufs->shareability_reg_offset)) { dev_warn(dev, "can't get an offset from sysreg. Set to default value\n"); ufs->shareability_reg_offset = UFS_SHAREABILITY_OFFSET; } } ufs->pclk_avail_min = PCLK_AVAIL_MIN; ufs->pclk_avail_max = PCLK_AVAIL_MAX; attr->rx_adv_fine_gran_sup_en = RX_ADV_FINE_GRAN_SUP_EN; attr->rx_adv_fine_gran_step = RX_ADV_FINE_GRAN_STEP_VAL; attr->rx_adv_min_actv_time_cap = RX_ADV_MIN_ACTV_TIME_CAP; attr->pa_granularity = PA_GRANULARITY_VAL; attr->pa_tactivate = PA_TACTIVATE_VAL; attr->pa_hibern8time = PA_HIBERN8TIME_VAL; out: return ret; } static inline void exynos_ufs_priv_init(struct ufs_hba *hba, struct exynos_ufs *ufs) { ufs->hba = hba; ufs->opts = ufs->drv_data->opts; ufs->rx_sel_idx = PA_MAXDATALANES; if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX) ufs->rx_sel_idx = 0; hba->priv = (void *)ufs; hba->quirks = ufs->drv_data->quirks; } #ifdef CONFIG_SCSI_UFS_CRYPTO /* * Support for Flash Memory Protector (FMP), which is the inline encryption * hardware on Exynos and Exynos-based SoCs. The interface to this hardware is * not compatible with the standard UFS crypto. It requires that encryption be * configured in the PRDT using a nonstandard extension. */ enum fmp_crypto_algo_mode { FMP_BYPASS_MODE = 0, FMP_ALGO_MODE_AES_CBC = 1, FMP_ALGO_MODE_AES_XTS = 2, }; enum fmp_crypto_key_length { FMP_KEYLEN_256BIT = 1, }; /** * struct fmp_sg_entry - nonstandard format of PRDT entries when FMP is enabled * * @base: The standard PRDT entry, but with nonstandard bitfields in the high * bits of the 'size' field, i.e. the last 32-bit word. When these * nonstandard bitfields are zero, the data segment won't be encrypted or * decrypted. Otherwise they specify the algorithm and key length with * which the data segment will be encrypted or decrypted. * @file_iv: The initialization vector (IV) with all bytes reversed * @file_enckey: The first half of the AES-XTS key with all bytes reserved * @file_twkey: The second half of the AES-XTS key with all bytes reserved * @disk_iv: Unused * @reserved: Unused */ struct fmp_sg_entry { struct ufshcd_sg_entry base; __be64 file_iv[2]; __be64 file_enckey[4]; __be64 file_twkey[4]; __be64 disk_iv[2]; __be64 reserved[2]; }; #define SMC_CMD_FMP_SECURITY \ ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, ARM_SMCCC_SMC_64, \ ARM_SMCCC_OWNER_SIP, 0x1810) #define SMC_CMD_SMU \ ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, ARM_SMCCC_SMC_64, \ ARM_SMCCC_OWNER_SIP, 0x1850) #define SMC_CMD_FMP_SMU_RESUME \ ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, ARM_SMCCC_SMC_64, \ ARM_SMCCC_OWNER_SIP, 0x1860) #define SMU_EMBEDDED 0 #define SMU_INIT 0 #define CFG_DESCTYPE_3 3 static void exynos_ufs_fmp_init(struct ufs_hba *hba, struct exynos_ufs *ufs) { struct blk_crypto_profile *profile = &hba->crypto_profile; struct arm_smccc_res res; int err; /* * Check for the standard crypto support bit, since it's available even * though the rest of the interface to FMP is nonstandard. * * This check should have the effect of preventing the driver from * trying to use FMP on old Exynos SoCs that don't have FMP. */ if (!(ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES) & MASK_CRYPTO_SUPPORT)) return; /* * The below sequence of SMC calls to enable FMP can be found in the * downstream driver source for gs101 and other Exynos-based SoCs. It * is the only way to enable FMP that works on SoCs such as gs101 that * don't make the FMP registers accessible to Linux. It probably works * on other Exynos-based SoCs too, and might even still be the only way * that works. But this hasn't been properly tested, and this code is * mutually exclusive with exynos_ufs_config_smu(). So for now only * enable FMP support on SoCs with EXYNOS_UFS_OPT_UFSPR_SECURE. */ if (!(ufs->opts & EXYNOS_UFS_OPT_UFSPR_SECURE)) return; /* * This call (which sets DESCTYPE to 0x3 in the FMPSECURITY0 register) * is needed to make the hardware use the larger PRDT entry size. */ BUILD_BUG_ON(sizeof(struct fmp_sg_entry) != 128); arm_smccc_smc(SMC_CMD_FMP_SECURITY, 0, SMU_EMBEDDED, CFG_DESCTYPE_3, 0, 0, 0, 0, &res); if (res.a0) { dev_warn(hba->dev, "SMC_CMD_FMP_SECURITY failed on init: %ld. Disabling FMP support.\n", res.a0); return; } ufshcd_set_sg_entry_size(hba, sizeof(struct fmp_sg_entry)); /* * This is needed to initialize FMP. Without it, errors occur when * inline encryption is used. */ arm_smccc_smc(SMC_CMD_SMU, SMU_INIT, SMU_EMBEDDED, 0, 0, 0, 0, 0, &res); if (res.a0) { dev_err(hba->dev, "SMC_CMD_SMU(SMU_INIT) failed: %ld. Disabling FMP support.\n", res.a0); return; } /* Advertise crypto capabilities to the block layer. */ err = devm_blk_crypto_profile_init(hba->dev, profile, 0); if (err) { /* Only ENOMEM should be possible here. */ dev_err(hba->dev, "Failed to initialize crypto profile: %d\n", err); return; } profile->max_dun_bytes_supported = AES_BLOCK_SIZE; profile->dev = hba->dev; profile->modes_supported[BLK_ENCRYPTION_MODE_AES_256_XTS] = DATA_UNIT_SIZE; /* Advertise crypto support to ufshcd-core. */ hba->caps |= UFSHCD_CAP_CRYPTO; /* Advertise crypto quirks to ufshcd-core. */ hba->quirks |= UFSHCD_QUIRK_CUSTOM_CRYPTO_PROFILE | UFSHCD_QUIRK_BROKEN_CRYPTO_ENABLE | UFSHCD_QUIRK_KEYS_IN_PRDT; } static void exynos_ufs_fmp_resume(struct ufs_hba *hba) { struct arm_smccc_res res; if (!(hba->caps & UFSHCD_CAP_CRYPTO)) return; arm_smccc_smc(SMC_CMD_FMP_SECURITY, 0, SMU_EMBEDDED, CFG_DESCTYPE_3, 0, 0, 0, 0, &res); if (res.a0) dev_err(hba->dev, "SMC_CMD_FMP_SECURITY failed on resume: %ld\n", res.a0); arm_smccc_smc(SMC_CMD_FMP_SMU_RESUME, 0, SMU_EMBEDDED, 0, 0, 0, 0, 0, &res); if (res.a0) dev_err(hba->dev, "SMC_CMD_FMP_SMU_RESUME failed: %ld\n", res.a0); } static inline __be64 fmp_key_word(const u8 *key, int j) { return cpu_to_be64(get_unaligned_le64( key + AES_KEYSIZE_256 - (j + 1) * sizeof(u64))); } /* Fill the PRDT for a request according to the given encryption context. */ static int exynos_ufs_fmp_fill_prdt(struct ufs_hba *hba, const struct bio_crypt_ctx *crypt_ctx, void *prdt, unsigned int num_segments) { struct fmp_sg_entry *fmp_prdt = prdt; const u8 *enckey = crypt_ctx->bc_key->raw; const u8 *twkey = enckey + AES_KEYSIZE_256; u64 dun_lo = crypt_ctx->bc_dun[0]; u64 dun_hi = crypt_ctx->bc_dun[1]; unsigned int i; /* If FMP wasn't enabled, we shouldn't get any encrypted requests. */ if (WARN_ON_ONCE(!(hba->caps & UFSHCD_CAP_CRYPTO))) return -EIO; /* Configure FMP on each segment of the request. */ for (i = 0; i < num_segments; i++) { struct fmp_sg_entry *prd = &fmp_prdt[i]; int j; /* Each segment must be exactly one data unit. */ if (prd->base.size != cpu_to_le32(DATA_UNIT_SIZE - 1)) { dev_err(hba->dev, "data segment is misaligned for FMP\n"); return -EIO; } /* Set the algorithm and key length. */ prd->base.size |= cpu_to_le32((FMP_ALGO_MODE_AES_XTS << 28) | (FMP_KEYLEN_256BIT << 26)); /* Set the IV. */ prd->file_iv[0] = cpu_to_be64(dun_hi); prd->file_iv[1] = cpu_to_be64(dun_lo); /* Set the key. */ for (j = 0; j < AES_KEYSIZE_256 / sizeof(u64); j++) { prd->file_enckey[j] = fmp_key_word(enckey, j); prd->file_twkey[j] = fmp_key_word(twkey, j); } /* Increment the data unit number. */ dun_lo++; if (dun_lo == 0) dun_hi++; } return 0; } #else /* CONFIG_SCSI_UFS_CRYPTO */ static void exynos_ufs_fmp_init(struct ufs_hba *hba, struct exynos_ufs *ufs) { } static void exynos_ufs_fmp_resume(struct ufs_hba *hba) { } #define exynos_ufs_fmp_fill_prdt NULL #endif /* !CONFIG_SCSI_UFS_CRYPTO */ static int exynos_ufs_init(struct ufs_hba *hba) { struct device *dev = hba->dev; struct platform_device *pdev = to_platform_device(dev); struct exynos_ufs *ufs; int ret; ufs = devm_kzalloc(dev, sizeof(*ufs), GFP_KERNEL); if (!ufs) return -ENOMEM; /* exynos-specific hci */ ufs->reg_hci = devm_platform_ioremap_resource_byname(pdev, "vs_hci"); if (IS_ERR(ufs->reg_hci)) { dev_err(dev, "cannot ioremap for hci vendor register\n"); return PTR_ERR(ufs->reg_hci); } /* unipro */ ufs->reg_unipro = devm_platform_ioremap_resource_byname(pdev, "unipro"); if (IS_ERR(ufs->reg_unipro)) { dev_err(dev, "cannot ioremap for unipro register\n"); return PTR_ERR(ufs->reg_unipro); } /* ufs protector */ ufs->reg_ufsp = devm_platform_ioremap_resource_byname(pdev, "ufsp"); if (IS_ERR(ufs->reg_ufsp)) { dev_err(dev, "cannot ioremap for ufs protector register\n"); return PTR_ERR(ufs->reg_ufsp); } ret = exynos_ufs_parse_dt(dev, ufs); if (ret) { dev_err(dev, "failed to get dt info.\n"); goto out; } ufs->phy = devm_phy_get(dev, "ufs-phy"); if (IS_ERR(ufs->phy)) { ret = PTR_ERR(ufs->phy); dev_err(dev, "failed to get ufs-phy\n"); goto out; } exynos_ufs_priv_init(hba, ufs); exynos_ufs_fmp_init(hba, ufs); if (ufs->drv_data->drv_init) { ret = ufs->drv_data->drv_init(dev, ufs); if (ret) { dev_err(dev, "failed to init drv-data\n"); goto out; } } ret = exynos_ufs_get_clk_info(ufs); if (ret) goto out; exynos_ufs_specify_phy_time_attr(ufs); if (!(ufs->opts & EXYNOS_UFS_OPT_UFSPR_SECURE)) exynos_ufs_config_smu(ufs); hba->host->dma_alignment = DATA_UNIT_SIZE - 1; return 0; out: hba->priv = NULL; return ret; } static int exynos_ufs_host_reset(struct ufs_hba *hba) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); unsigned long timeout = jiffies + msecs_to_jiffies(1); u32 val; int ret = 0; exynos_ufs_disable_auto_ctrl_hcc_save(ufs, &val); hci_writel(ufs, UFS_SW_RST_MASK, HCI_SW_RST); do { if (!(hci_readl(ufs, HCI_SW_RST) & UFS_SW_RST_MASK)) goto out; } while (time_before(jiffies, timeout)); dev_err(hba->dev, "timeout host sw-reset\n"); ret = -ETIMEDOUT; out: exynos_ufs_auto_ctrl_hcc_restore(ufs, &val); return ret; } static void exynos_ufs_dev_hw_reset(struct ufs_hba *hba) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); hci_writel(ufs, 0 << 0, HCI_GPIO_OUT); udelay(5); hci_writel(ufs, 1 << 0, HCI_GPIO_OUT); } static void exynos_ufs_pre_hibern8(struct ufs_hba *hba, u8 enter) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; if (!enter) { if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL) exynos_ufs_disable_auto_ctrl_hcc(ufs); exynos_ufs_ungate_clks(ufs); if (ufs->opts & EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER) { static const unsigned int granularity_tbl[] = { 1, 4, 8, 16, 32, 100 }; int h8_time = attr->pa_hibern8time * granularity_tbl[attr->pa_granularity - 1]; unsigned long us; s64 delta; do { delta = h8_time - ktime_us_delta(ktime_get(), ufs->entry_hibern8_t); if (delta <= 0) break; us = min_t(s64, delta, USEC_PER_MSEC); if (us >= 10) usleep_range(us, us + 10); } while (1); } } } static void exynos_ufs_post_hibern8(struct ufs_hba *hba, u8 enter) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); if (!enter) { u32 cur_mode = 0; u32 pwrmode; if (ufshcd_is_hs_mode(&ufs->dev_req_params)) pwrmode = FAST_MODE; else pwrmode = SLOW_MODE; ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &cur_mode); if (cur_mode != (pwrmode << 4 | pwrmode)) { dev_warn(hba->dev, "%s: power mode change\n", __func__); hba->pwr_info.pwr_rx = (cur_mode >> 4) & 0xf; hba->pwr_info.pwr_tx = cur_mode & 0xf; ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); } if (!(ufs->opts & EXYNOS_UFS_OPT_SKIP_CONNECTION_ESTAB)) exynos_ufs_establish_connt(ufs); } else { ufs->entry_hibern8_t = ktime_get(); exynos_ufs_gate_clks(ufs); if (ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL) exynos_ufs_enable_auto_ctrl_hcc(ufs); } } static int exynos_ufs_hce_enable_notify(struct ufs_hba *hba, enum ufs_notify_change_status status) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); int ret = 0; switch (status) { case PRE_CHANGE: /* * The maximum segment size must be set after scsi_host_alloc() * has been called and before LUN scanning starts * (ufshcd_async_scan()). Note: this callback may also be called * from other functions than ufshcd_init(). */ hba->host->max_segment_size = DATA_UNIT_SIZE; if (ufs->drv_data->pre_hce_enable) { ret = ufs->drv_data->pre_hce_enable(ufs); if (ret) return ret; } ret = exynos_ufs_host_reset(hba); if (ret) return ret; exynos_ufs_dev_hw_reset(hba); break; case POST_CHANGE: exynos_ufs_calc_pwm_clk_div(ufs); if (!(ufs->opts & EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL)) exynos_ufs_enable_auto_ctrl_hcc(ufs); if (ufs->drv_data->post_hce_enable) ret = ufs->drv_data->post_hce_enable(ufs); break; } return ret; } static int exynos_ufs_link_startup_notify(struct ufs_hba *hba, enum ufs_notify_change_status status) { int ret = 0; switch (status) { case PRE_CHANGE: ret = exynos_ufs_pre_link(hba); break; case POST_CHANGE: ret = exynos_ufs_post_link(hba); break; } return ret; } static int exynos_ufs_pwr_change_notify(struct ufs_hba *hba, enum ufs_notify_change_status status, struct ufs_pa_layer_attr *dev_max_params, struct ufs_pa_layer_attr *dev_req_params) { int ret = 0; switch (status) { case PRE_CHANGE: ret = exynos_ufs_pre_pwr_mode(hba, dev_max_params, dev_req_params); break; case POST_CHANGE: ret = exynos_ufs_post_pwr_mode(hba, dev_req_params); break; } return ret; } static void exynos_ufs_hibern8_notify(struct ufs_hba *hba, enum uic_cmd_dme enter, enum ufs_notify_change_status notify) { switch ((u8)notify) { case PRE_CHANGE: exynos_ufs_pre_hibern8(hba, enter); break; case POST_CHANGE: exynos_ufs_post_hibern8(hba, enter); break; } } static int exynos_ufs_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op, enum ufs_notify_change_status status) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); if (status == PRE_CHANGE) return 0; if (!ufshcd_is_link_active(hba)) phy_power_off(ufs->phy); return 0; } static int exynos_ufs_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) { struct exynos_ufs *ufs = ufshcd_get_variant(hba); if (!ufshcd_is_link_active(hba)) phy_power_on(ufs->phy); exynos_ufs_config_smu(ufs); exynos_ufs_fmp_resume(hba); return 0; } static int exynosauto_ufs_vh_link_startup_notify(struct ufs_hba *hba, enum ufs_notify_change_status status) { if (status == POST_CHANGE) { ufshcd_set_link_active(hba); ufshcd_set_ufs_dev_active(hba); } return 0; } static int exynosauto_ufs_vh_wait_ph_ready(struct ufs_hba *hba) { u32 mbox; ktime_t start, stop; start = ktime_get(); stop = ktime_add(start, ms_to_ktime(PH_READY_TIMEOUT_MS)); do { mbox = ufshcd_readl(hba, PH2VH_MBOX); /* TODO: Mailbox message protocols between the PH and VHs are * not implemented yet. This will be supported later */ if ((mbox & MH_MSG_MASK) == MH_MSG_PH_READY) return 0; usleep_range(40, 50); } while (ktime_before(ktime_get(), stop)); return -ETIME; } static int exynosauto_ufs_vh_init(struct ufs_hba *hba) { struct device *dev = hba->dev; struct platform_device *pdev = to_platform_device(dev); struct exynos_ufs *ufs; int ret; ufs = devm_kzalloc(dev, sizeof(*ufs), GFP_KERNEL); if (!ufs) return -ENOMEM; /* exynos-specific hci */ ufs->reg_hci = devm_platform_ioremap_resource_byname(pdev, "vs_hci"); if (IS_ERR(ufs->reg_hci)) { dev_err(dev, "cannot ioremap for hci vendor register\n"); return PTR_ERR(ufs->reg_hci); } ret = exynosauto_ufs_vh_wait_ph_ready(hba); if (ret) return ret; ufs->drv_data = device_get_match_data(dev); if (!ufs->drv_data) return -ENODEV; exynos_ufs_priv_init(hba, ufs); return 0; } static int fsd_ufs_pre_link(struct exynos_ufs *ufs) { struct exynos_ufs_uic_attr *attr = ufs->drv_data->uic_attr; struct ufs_hba *hba = ufs->hba; int i; ufshcd_dme_set(hba, UIC_ARG_MIB(attr->pa_dbg_clk_period_off), DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate)); ufshcd_dme_set(hba, UIC_ARG_MIB(0x201), 0x12); ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x40); for_each_ufs_tx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0xAA, i), DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x8F, i), 0x3F); } for_each_ufs_rx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x12, i), DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x5C, i), 0x38); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x0F, i), 0x0); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x65, i), 0x1); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x69, i), 0x1); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x21, i), 0x0); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x22, i), 0x0); } ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x0); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_AUTOMODE_THLD), 0x4E20); ufshcd_dme_set(hba, UIC_ARG_MIB(attr->pa_dbg_opt_suite1_off), 0x2e820183); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_LOCAL_TX_LCC_ENABLE), 0x0); exynos_ufs_establish_connt(ufs); return 0; } static int fsd_ufs_post_link(struct exynos_ufs *ufs) { int i; struct ufs_hba *hba = ufs->hba; u32 hw_cap_min_tactivate; u32 peer_rx_min_actv_time_cap; u32 max_rx_hibern8_time_cap; ufshcd_dme_get(hba, UIC_ARG_MIB_SEL(0x8F, 4), &hw_cap_min_tactivate); /* HW Capability of MIN_TACTIVATE */ ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &peer_rx_min_actv_time_cap); /* PA_TActivate */ ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &max_rx_hibern8_time_cap); /* PA_Hibern8Time */ if (peer_rx_min_actv_time_cap >= hw_cap_min_tactivate) ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), peer_rx_min_actv_time_cap + 1); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), max_rx_hibern8_time_cap + 1); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_MODE), 0x01); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_SAVECONFIGTIME), 0xFA); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_DBG_MODE), 0x00); ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x40); for_each_ufs_rx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x35, i), 0x05); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x73, i), 0x01); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x41, i), 0x02); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x42, i), 0xAC); } ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x0); return 0; } static int fsd_ufs_pre_pwr_change(struct exynos_ufs *ufs, struct ufs_pa_layer_attr *pwr) { struct ufs_hba *hba = ufs->hba; ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), 0x1); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), 0x1); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 12000); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 32000); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 16000); unipro_writel(ufs, 12000, UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER0); unipro_writel(ufs, 32000, UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER1); unipro_writel(ufs, 16000, UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER2); return 0; } static inline u32 get_mclk_period_unipro_18(struct exynos_ufs *ufs) { return (16 * 1000 * 1000000UL / ufs->mclk_rate); } static int gs101_ufs_pre_link(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; int i; u32 tx_line_reset_period, rx_line_reset_period; rx_line_reset_period = (RX_LINE_RESET_TIME * ufs->mclk_rate) / NSEC_PER_MSEC; tx_line_reset_period = (TX_LINE_RESET_TIME * ufs->mclk_rate) / NSEC_PER_MSEC; unipro_writel(ufs, get_mclk_period_unipro_18(ufs), COMP_CLK_PERIOD); ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x40); for_each_ufs_rx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_CLK_PRD, i), DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_CLK_PRD_EN, i), 0x0); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_LINERESET_VALUE2, i), (rx_line_reset_period >> 16) & 0xFF); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_LINERESET_VALUE1, i), (rx_line_reset_period >> 8) & 0xFF); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_RX_LINERESET_VALUE0, i), (rx_line_reset_period) & 0xFF); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x2f, i), 0x69); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x84, i), 0x1); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x25, i), 0xf6); } for_each_ufs_tx_lane(ufs, i) { ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_CLK_PRD, i), DIV_ROUND_UP(NSEC_PER_SEC, ufs->mclk_rate)); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_CLK_PRD_EN, i), 0x02); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_LINERESET_PVALUE2, i), (tx_line_reset_period >> 16) & 0xFF); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_LINERESET_PVALUE1, i), (tx_line_reset_period >> 8) & 0xFF); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VND_TX_LINERESET_PVALUE0, i), (tx_line_reset_period) & 0xFF); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x04, i), 1); ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(0x7F, i), 0); } ufshcd_dme_set(hba, UIC_ARG_MIB(0x200), 0x0); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_LOCAL_TX_LCC_ENABLE), 0x0); ufshcd_dme_set(hba, UIC_ARG_MIB(N_DEVICEID), 0x0); ufshcd_dme_set(hba, UIC_ARG_MIB(N_DEVICEID_VALID), 0x1); ufshcd_dme_set(hba, UIC_ARG_MIB(T_PEERDEVICEID), 0x1); ufshcd_dme_set(hba, UIC_ARG_MIB(T_CONNECTIONSTATE), CPORT_CONNECTED); ufshcd_dme_set(hba, UIC_ARG_MIB(0xA006), 0x8000); return 0; } static int gs101_ufs_post_link(struct exynos_ufs *ufs) { struct ufs_hba *hba = ufs->hba; exynos_ufs_enable_dbg_mode(hba); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_SAVECONFIGTIME), 0x3e8); exynos_ufs_disable_dbg_mode(hba); return 0; } static int gs101_ufs_pre_pwr_change(struct exynos_ufs *ufs, struct ufs_pa_layer_attr *pwr) { struct ufs_hba *hba = ufs->hba; ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 12000); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 32000); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 16000); unipro_writel(ufs, 8064, UNIPRO_DME_POWERMODE_REQ_LOCALL2TIMER0); unipro_writel(ufs, 28224, UNIPRO_DME_POWERMODE_REQ_LOCALL2TIMER1); unipro_writel(ufs, 20160, UNIPRO_DME_POWERMODE_REQ_LOCALL2TIMER2); unipro_writel(ufs, 12000, UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER0); unipro_writel(ufs, 32000, UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER1); unipro_writel(ufs, 16000, UNIPRO_DME_POWERMODE_REQ_REMOTEL2TIMER2); return 0; } static const struct ufs_hba_variant_ops ufs_hba_exynos_ops = { .name = "exynos_ufs", .init = exynos_ufs_init, .hce_enable_notify = exynos_ufs_hce_enable_notify, .link_startup_notify = exynos_ufs_link_startup_notify, .pwr_change_notify = exynos_ufs_pwr_change_notify, .setup_clocks = exynos_ufs_setup_clocks, .setup_xfer_req = exynos_ufs_specify_nexus_t_xfer_req, .setup_task_mgmt = exynos_ufs_specify_nexus_t_tm_req, .hibern8_notify = exynos_ufs_hibern8_notify, .suspend = exynos_ufs_suspend, .resume = exynos_ufs_resume, .fill_crypto_prdt = exynos_ufs_fmp_fill_prdt, }; static struct ufs_hba_variant_ops ufs_hba_exynosauto_vh_ops = { .name = "exynosauto_ufs_vh", .init = exynosauto_ufs_vh_init, .link_startup_notify = exynosauto_ufs_vh_link_startup_notify, }; static int exynos_ufs_probe(struct platform_device *pdev) { int err; struct device *dev = &pdev->dev; const struct ufs_hba_variant_ops *vops = &ufs_hba_exynos_ops; const struct exynos_ufs_drv_data *drv_data = device_get_match_data(dev); if (drv_data && drv_data->vops) vops = drv_data->vops; err = ufshcd_pltfrm_init(pdev, vops); if (err) dev_err(dev, "ufshcd_pltfrm_init() failed %d\n", err); return err; } static void exynos_ufs_remove(struct platform_device *pdev) { struct ufs_hba *hba = platform_get_drvdata(pdev); struct exynos_ufs *ufs = ufshcd_get_variant(hba); pm_runtime_get_sync(&(pdev)->dev); ufshcd_remove(hba); phy_power_off(ufs->phy); phy_exit(ufs->phy); } static struct exynos_ufs_uic_attr exynos7_uic_attr = { .tx_trailingclks = 0x10, .tx_dif_p_nsec = 3000000, /* unit: ns */ .tx_dif_n_nsec = 1000000, /* unit: ns */ .tx_high_z_cnt_nsec = 20000, /* unit: ns */ .tx_base_unit_nsec = 100000, /* unit: ns */ .tx_gran_unit_nsec = 4000, /* unit: ns */ .tx_sleep_cnt = 1000, /* unit: ns */ .tx_min_activatetime = 0xa, .rx_filler_enable = 0x2, .rx_dif_p_nsec = 1000000, /* unit: ns */ .rx_hibern8_wait_nsec = 4000000, /* unit: ns */ .rx_base_unit_nsec = 100000, /* unit: ns */ .rx_gran_unit_nsec = 4000, /* unit: ns */ .rx_sleep_cnt = 1280, /* unit: ns */ .rx_stall_cnt = 320, /* unit: ns */ .rx_hs_g1_sync_len_cap = SYNC_LEN_COARSE(0xf), .rx_hs_g2_sync_len_cap = SYNC_LEN_COARSE(0xf), .rx_hs_g3_sync_len_cap = SYNC_LEN_COARSE(0xf), .rx_hs_g1_prep_sync_len_cap = PREP_LEN(0xf), .rx_hs_g2_prep_sync_len_cap = PREP_LEN(0xf), .rx_hs_g3_prep_sync_len_cap = PREP_LEN(0xf), .pa_dbg_clk_period_off = PA_DBG_CLK_PERIOD, .pa_dbg_opt_suite1_val = 0x30103, .pa_dbg_opt_suite1_off = PA_DBG_OPTION_SUITE, }; static const struct exynos_ufs_drv_data exynosauto_ufs_drvs = { .uic_attr = &exynos7_uic_attr, .quirks = UFSHCD_QUIRK_PRDT_BYTE_GRAN | UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR | UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR | UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING, .opts = EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL | EXYNOS_UFS_OPT_SKIP_CONFIG_PHY_ATTR | EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX, .drv_init = exynosauto_ufs_drv_init, .post_hce_enable = exynosauto_ufs_post_hce_enable, .pre_link = exynosauto_ufs_pre_link, .pre_pwr_change = exynosauto_ufs_pre_pwr_change, .post_pwr_change = exynosauto_ufs_post_pwr_change, }; static const struct exynos_ufs_drv_data exynosauto_ufs_vh_drvs = { .vops = &ufs_hba_exynosauto_vh_ops, .quirks = UFSHCD_QUIRK_PRDT_BYTE_GRAN | UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR | UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR | UFSHCI_QUIRK_BROKEN_HCE | UFSHCD_QUIRK_BROKEN_UIC_CMD | UFSHCD_QUIRK_SKIP_PH_CONFIGURATION | UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING, .opts = EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX, }; static const struct exynos_ufs_drv_data exynos_ufs_drvs = { .uic_attr = &exynos7_uic_attr, .quirks = UFSHCD_QUIRK_PRDT_BYTE_GRAN | UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR | UFSHCI_QUIRK_BROKEN_HCE | UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR | UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR | UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL | UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING, .opts = EXYNOS_UFS_OPT_HAS_APB_CLK_CTRL | EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL | EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX | EXYNOS_UFS_OPT_SKIP_CONNECTION_ESTAB | EXYNOS_UFS_OPT_USE_SW_HIBERN8_TIMER, .drv_init = exynos7_ufs_drv_init, .pre_link = exynos7_ufs_pre_link, .post_link = exynos7_ufs_post_link, .pre_pwr_change = exynos7_ufs_pre_pwr_change, .post_pwr_change = exynos7_ufs_post_pwr_change, }; static struct exynos_ufs_uic_attr gs101_uic_attr = { .tx_trailingclks = 0xff, .tx_dif_p_nsec = 3000000, /* unit: ns */ .tx_dif_n_nsec = 1000000, /* unit: ns */ .tx_high_z_cnt_nsec = 20000, /* unit: ns */ .tx_base_unit_nsec = 100000, /* unit: ns */ .tx_gran_unit_nsec = 4000, /* unit: ns */ .tx_sleep_cnt = 1000, /* unit: ns */ .tx_min_activatetime = 0xa, .rx_filler_enable = 0x2, .rx_dif_p_nsec = 1000000, /* unit: ns */ .rx_hibern8_wait_nsec = 4000000, /* unit: ns */ .rx_base_unit_nsec = 100000, /* unit: ns */ .rx_gran_unit_nsec = 4000, /* unit: ns */ .rx_sleep_cnt = 1280, /* unit: ns */ .rx_stall_cnt = 320, /* unit: ns */ .rx_hs_g1_sync_len_cap = SYNC_LEN_COARSE(0xf), .rx_hs_g2_sync_len_cap = SYNC_LEN_COARSE(0xf), .rx_hs_g3_sync_len_cap = SYNC_LEN_COARSE(0xf), .rx_hs_g1_prep_sync_len_cap = PREP_LEN(0xf), .rx_hs_g2_prep_sync_len_cap = PREP_LEN(0xf), .rx_hs_g3_prep_sync_len_cap = PREP_LEN(0xf), .pa_dbg_opt_suite1_val = 0x90913C1C, .pa_dbg_opt_suite1_off = PA_GS101_DBG_OPTION_SUITE1, .pa_dbg_opt_suite2_val = 0xE01C115F, .pa_dbg_opt_suite2_off = PA_GS101_DBG_OPTION_SUITE2, }; static struct exynos_ufs_uic_attr fsd_uic_attr = { .tx_trailingclks = 0x10, .tx_dif_p_nsec = 3000000, /* unit: ns */ .tx_dif_n_nsec = 1000000, /* unit: ns */ .tx_high_z_cnt_nsec = 20000, /* unit: ns */ .tx_base_unit_nsec = 100000, /* unit: ns */ .tx_gran_unit_nsec = 4000, /* unit: ns */ .tx_sleep_cnt = 1000, /* unit: ns */ .tx_min_activatetime = 0xa, .rx_filler_enable = 0x2, .rx_dif_p_nsec = 1000000, /* unit: ns */ .rx_hibern8_wait_nsec = 4000000, /* unit: ns */ .rx_base_unit_nsec = 100000, /* unit: ns */ .rx_gran_unit_nsec = 4000, /* unit: ns */ .rx_sleep_cnt = 1280, /* unit: ns */ .rx_stall_cnt = 320, /* unit: ns */ .rx_hs_g1_sync_len_cap = SYNC_LEN_COARSE(0xf), .rx_hs_g2_sync_len_cap = SYNC_LEN_COARSE(0xf), .rx_hs_g3_sync_len_cap = SYNC_LEN_COARSE(0xf), .rx_hs_g1_prep_sync_len_cap = PREP_LEN(0xf), .rx_hs_g2_prep_sync_len_cap = PREP_LEN(0xf), .rx_hs_g3_prep_sync_len_cap = PREP_LEN(0xf), .pa_dbg_clk_period_off = PA_DBG_CLK_PERIOD, .pa_dbg_opt_suite1_val = 0x2E820183, .pa_dbg_opt_suite1_off = PA_DBG_OPTION_SUITE, }; static const struct exynos_ufs_drv_data fsd_ufs_drvs = { .uic_attr = &fsd_uic_attr, .quirks = UFSHCD_QUIRK_PRDT_BYTE_GRAN | UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR | UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR | UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING | UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR, .opts = EXYNOS_UFS_OPT_HAS_APB_CLK_CTRL | EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL | EXYNOS_UFS_OPT_SKIP_CONFIG_PHY_ATTR | EXYNOS_UFS_OPT_BROKEN_RX_SEL_IDX, .pre_link = fsd_ufs_pre_link, .post_link = fsd_ufs_post_link, .pre_pwr_change = fsd_ufs_pre_pwr_change, }; static const struct exynos_ufs_drv_data gs101_ufs_drvs = { .uic_attr = &gs101_uic_attr, .quirks = UFSHCD_QUIRK_PRDT_BYTE_GRAN | UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR | UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR | UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR | UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL | UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING, .opts = EXYNOS_UFS_OPT_BROKEN_AUTO_CLK_CTRL | EXYNOS_UFS_OPT_SKIP_CONFIG_PHY_ATTR | EXYNOS_UFS_OPT_UFSPR_SECURE | EXYNOS_UFS_OPT_TIMER_TICK_SELECT, .drv_init = exynosauto_ufs_drv_init, .pre_link = gs101_ufs_pre_link, .post_link = gs101_ufs_post_link, .pre_pwr_change = gs101_ufs_pre_pwr_change, }; static const struct of_device_id exynos_ufs_of_match[] = { { .compatible = "google,gs101-ufs", .data = &gs101_ufs_drvs }, { .compatible = "samsung,exynos7-ufs", .data = &exynos_ufs_drvs }, { .compatible = "samsung,exynosautov9-ufs", .data = &exynosauto_ufs_drvs }, { .compatible = "samsung,exynosautov9-ufs-vh", .data = &exynosauto_ufs_vh_drvs }, { .compatible = "tesla,fsd-ufs", .data = &fsd_ufs_drvs }, {}, }; MODULE_DEVICE_TABLE(of, exynos_ufs_of_match); static const struct dev_pm_ops exynos_ufs_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(ufshcd_system_suspend, ufshcd_system_resume) SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL) .prepare = ufshcd_suspend_prepare, .complete = ufshcd_resume_complete, }; static struct platform_driver exynos_ufs_pltform = { .probe = exynos_ufs_probe, .remove_new = exynos_ufs_remove, .driver = { .name = "exynos-ufshc", .pm = &exynos_ufs_pm_ops, .of_match_table = exynos_ufs_of_match, }, }; module_platform_driver(exynos_ufs_pltform); MODULE_AUTHOR("Alim Akhtar <alim.akhtar@samsung.com>"); MODULE_AUTHOR("Seungwon Jeon <essuuj@gmail.com>"); MODULE_DESCRIPTION("Exynos UFS HCI Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1