Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Zeng Xin | 3027 | 100.00% | 1 | 100.00% |
Total | 3027 | 1 |
// SPDX-License-Identifier: GPL-2.0-only /* Copyright(c) 2024 Intel Corporation */ #include <linux/anon_inodes.h> #include <linux/container_of.h> #include <linux/device.h> #include <linux/file.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/pci.h> #include <linux/sizes.h> #include <linux/types.h> #include <linux/uaccess.h> #include <linux/vfio_pci_core.h> #include <linux/qat/qat_mig_dev.h> /* * The migration data of each Intel QAT VF device is encapsulated into a * 4096 bytes block. The data consists of two parts. * The first is a pre-configured set of attributes of the VF being migrated, * which are only set when it is created. This can be migrated during pre-copy * stage and used for a device compatibility check. * The second is the VF state. This includes the required MMIO regions and * the shadow states maintained by the QAT PF driver. This part can only be * saved when the VF is fully quiesced and be migrated during stop-copy stage. * Both these 2 parts of data are saved in hierarchical structures including * a preamble section and several raw state sections. * When the pre-configured part of the migration data is fully retrieved from * user space, the preamble section are used to validate the correctness of * the data blocks and check the version compatibility. The raw state sections * are then used to do a device compatibility check. * When the device transits from RESUMING state, the VF states are extracted * from the raw state sections of the VF state part of the migration data and * then loaded into the device. */ struct qat_vf_migration_file { struct file *filp; /* protects migration region context */ struct mutex lock; bool disabled; struct qat_vf_core_device *qat_vdev; ssize_t filled_size; }; struct qat_vf_core_device { struct vfio_pci_core_device core_device; struct qat_mig_dev *mdev; /* protects migration state */ struct mutex state_mutex; enum vfio_device_mig_state mig_state; struct qat_vf_migration_file *resuming_migf; struct qat_vf_migration_file *saving_migf; }; static int qat_vf_pci_open_device(struct vfio_device *core_vdev) { struct qat_vf_core_device *qat_vdev = container_of(core_vdev, struct qat_vf_core_device, core_device.vdev); struct vfio_pci_core_device *vdev = &qat_vdev->core_device; int ret; ret = vfio_pci_core_enable(vdev); if (ret) return ret; ret = qat_vfmig_open(qat_vdev->mdev); if (ret) { vfio_pci_core_disable(vdev); return ret; } qat_vdev->mig_state = VFIO_DEVICE_STATE_RUNNING; vfio_pci_core_finish_enable(vdev); return 0; } static void qat_vf_disable_fd(struct qat_vf_migration_file *migf) { mutex_lock(&migf->lock); migf->disabled = true; migf->filp->f_pos = 0; migf->filled_size = 0; mutex_unlock(&migf->lock); } static void qat_vf_disable_fds(struct qat_vf_core_device *qat_vdev) { if (qat_vdev->resuming_migf) { qat_vf_disable_fd(qat_vdev->resuming_migf); fput(qat_vdev->resuming_migf->filp); qat_vdev->resuming_migf = NULL; } if (qat_vdev->saving_migf) { qat_vf_disable_fd(qat_vdev->saving_migf); fput(qat_vdev->saving_migf->filp); qat_vdev->saving_migf = NULL; } } static void qat_vf_pci_close_device(struct vfio_device *core_vdev) { struct qat_vf_core_device *qat_vdev = container_of(core_vdev, struct qat_vf_core_device, core_device.vdev); qat_vfmig_close(qat_vdev->mdev); qat_vf_disable_fds(qat_vdev); vfio_pci_core_close_device(core_vdev); } static long qat_vf_precopy_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct qat_vf_migration_file *migf = filp->private_data; struct qat_vf_core_device *qat_vdev = migf->qat_vdev; struct qat_mig_dev *mig_dev = qat_vdev->mdev; struct vfio_precopy_info info; loff_t *pos = &filp->f_pos; unsigned long minsz; int ret = 0; if (cmd != VFIO_MIG_GET_PRECOPY_INFO) return -ENOTTY; minsz = offsetofend(struct vfio_precopy_info, dirty_bytes); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz) return -EINVAL; mutex_lock(&qat_vdev->state_mutex); if (qat_vdev->mig_state != VFIO_DEVICE_STATE_PRE_COPY && qat_vdev->mig_state != VFIO_DEVICE_STATE_PRE_COPY_P2P) { mutex_unlock(&qat_vdev->state_mutex); return -EINVAL; } mutex_lock(&migf->lock); if (migf->disabled) { ret = -ENODEV; goto out; } if (*pos > mig_dev->setup_size) { ret = -EINVAL; goto out; } info.dirty_bytes = 0; info.initial_bytes = mig_dev->setup_size - *pos; out: mutex_unlock(&migf->lock); mutex_unlock(&qat_vdev->state_mutex); if (ret) return ret; return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } static ssize_t qat_vf_save_read(struct file *filp, char __user *buf, size_t len, loff_t *pos) { struct qat_vf_migration_file *migf = filp->private_data; struct qat_mig_dev *mig_dev = migf->qat_vdev->mdev; ssize_t done = 0; loff_t *offs; int ret; if (pos) return -ESPIPE; offs = &filp->f_pos; mutex_lock(&migf->lock); if (*offs > migf->filled_size || *offs < 0) { done = -EINVAL; goto out_unlock; } if (migf->disabled) { done = -ENODEV; goto out_unlock; } len = min_t(size_t, migf->filled_size - *offs, len); if (len) { ret = copy_to_user(buf, mig_dev->state + *offs, len); if (ret) { done = -EFAULT; goto out_unlock; } *offs += len; done = len; } out_unlock: mutex_unlock(&migf->lock); return done; } static int qat_vf_release_file(struct inode *inode, struct file *filp) { struct qat_vf_migration_file *migf = filp->private_data; qat_vf_disable_fd(migf); mutex_destroy(&migf->lock); kfree(migf); return 0; } static const struct file_operations qat_vf_save_fops = { .owner = THIS_MODULE, .read = qat_vf_save_read, .unlocked_ioctl = qat_vf_precopy_ioctl, .compat_ioctl = compat_ptr_ioctl, .release = qat_vf_release_file, .llseek = no_llseek, }; static int qat_vf_save_state(struct qat_vf_core_device *qat_vdev, struct qat_vf_migration_file *migf) { int ret; ret = qat_vfmig_save_state(qat_vdev->mdev); if (ret) return ret; migf->filled_size = qat_vdev->mdev->state_size; return 0; } static int qat_vf_save_setup(struct qat_vf_core_device *qat_vdev, struct qat_vf_migration_file *migf) { int ret; ret = qat_vfmig_save_setup(qat_vdev->mdev); if (ret) return ret; migf->filled_size = qat_vdev->mdev->setup_size; return 0; } /* * Allocate a file handler for user space and then save the migration data for * the device being migrated. If this is called in the pre-copy stage, save the * pre-configured device data. Otherwise, if this is called in the stop-copy * stage, save the device state. In both cases, update the data size which can * then be read from user space. */ static struct qat_vf_migration_file * qat_vf_save_device_data(struct qat_vf_core_device *qat_vdev, bool pre_copy) { struct qat_vf_migration_file *migf; int ret; migf = kzalloc(sizeof(*migf), GFP_KERNEL); if (!migf) return ERR_PTR(-ENOMEM); migf->filp = anon_inode_getfile("qat_vf_mig", &qat_vf_save_fops, migf, O_RDONLY); ret = PTR_ERR_OR_ZERO(migf->filp); if (ret) { kfree(migf); return ERR_PTR(ret); } stream_open(migf->filp->f_inode, migf->filp); mutex_init(&migf->lock); if (pre_copy) ret = qat_vf_save_setup(qat_vdev, migf); else ret = qat_vf_save_state(qat_vdev, migf); if (ret) { fput(migf->filp); return ERR_PTR(ret); } migf->qat_vdev = qat_vdev; return migf; } static ssize_t qat_vf_resume_write(struct file *filp, const char __user *buf, size_t len, loff_t *pos) { struct qat_vf_migration_file *migf = filp->private_data; struct qat_mig_dev *mig_dev = migf->qat_vdev->mdev; loff_t end, *offs; ssize_t done = 0; int ret; if (pos) return -ESPIPE; offs = &filp->f_pos; if (*offs < 0 || check_add_overflow((loff_t)len, *offs, &end)) return -EOVERFLOW; if (end > mig_dev->state_size) return -ENOMEM; mutex_lock(&migf->lock); if (migf->disabled) { done = -ENODEV; goto out_unlock; } ret = copy_from_user(mig_dev->state + *offs, buf, len); if (ret) { done = -EFAULT; goto out_unlock; } *offs += len; migf->filled_size += len; /* * Load the pre-configured device data first to check if the target * device is compatible with the source device. */ ret = qat_vfmig_load_setup(mig_dev, migf->filled_size); if (ret && ret != -EAGAIN) { done = ret; goto out_unlock; } done = len; out_unlock: mutex_unlock(&migf->lock); return done; } static const struct file_operations qat_vf_resume_fops = { .owner = THIS_MODULE, .write = qat_vf_resume_write, .release = qat_vf_release_file, .llseek = no_llseek, }; static struct qat_vf_migration_file * qat_vf_resume_device_data(struct qat_vf_core_device *qat_vdev) { struct qat_vf_migration_file *migf; int ret; migf = kzalloc(sizeof(*migf), GFP_KERNEL); if (!migf) return ERR_PTR(-ENOMEM); migf->filp = anon_inode_getfile("qat_vf_mig", &qat_vf_resume_fops, migf, O_WRONLY); ret = PTR_ERR_OR_ZERO(migf->filp); if (ret) { kfree(migf); return ERR_PTR(ret); } migf->qat_vdev = qat_vdev; migf->filled_size = 0; stream_open(migf->filp->f_inode, migf->filp); mutex_init(&migf->lock); return migf; } static int qat_vf_load_device_data(struct qat_vf_core_device *qat_vdev) { return qat_vfmig_load_state(qat_vdev->mdev); } static struct file *qat_vf_pci_step_device_state(struct qat_vf_core_device *qat_vdev, u32 new) { u32 cur = qat_vdev->mig_state; int ret; /* * As the device is not capable of just stopping P2P DMAs, suspend the * device completely once any of the P2P states are reached. * When it is suspended, all its MMIO registers can still be operated * correctly, jobs submitted through ring are queued while no jobs are * processed by the device. The MMIO states can be safely migrated to * the target VF during stop-copy stage and restored correctly in the * target VF. All queued jobs can be resumed then. */ if ((cur == VFIO_DEVICE_STATE_RUNNING && new == VFIO_DEVICE_STATE_RUNNING_P2P) || (cur == VFIO_DEVICE_STATE_PRE_COPY && new == VFIO_DEVICE_STATE_PRE_COPY_P2P)) { ret = qat_vfmig_suspend(qat_vdev->mdev); if (ret) return ERR_PTR(ret); return NULL; } if ((cur == VFIO_DEVICE_STATE_RUNNING_P2P && new == VFIO_DEVICE_STATE_RUNNING) || (cur == VFIO_DEVICE_STATE_PRE_COPY_P2P && new == VFIO_DEVICE_STATE_PRE_COPY)) { qat_vfmig_resume(qat_vdev->mdev); return NULL; } if ((cur == VFIO_DEVICE_STATE_RUNNING_P2P && new == VFIO_DEVICE_STATE_STOP) || (cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_RUNNING_P2P)) return NULL; if (cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_STOP_COPY) { struct qat_vf_migration_file *migf; migf = qat_vf_save_device_data(qat_vdev, false); if (IS_ERR(migf)) return ERR_CAST(migf); get_file(migf->filp); qat_vdev->saving_migf = migf; return migf->filp; } if (cur == VFIO_DEVICE_STATE_STOP && new == VFIO_DEVICE_STATE_RESUMING) { struct qat_vf_migration_file *migf; migf = qat_vf_resume_device_data(qat_vdev); if (IS_ERR(migf)) return ERR_CAST(migf); get_file(migf->filp); qat_vdev->resuming_migf = migf; return migf->filp; } if ((cur == VFIO_DEVICE_STATE_STOP_COPY && new == VFIO_DEVICE_STATE_STOP) || (cur == VFIO_DEVICE_STATE_PRE_COPY && new == VFIO_DEVICE_STATE_RUNNING) || (cur == VFIO_DEVICE_STATE_PRE_COPY_P2P && new == VFIO_DEVICE_STATE_RUNNING_P2P)) { qat_vf_disable_fds(qat_vdev); return NULL; } if ((cur == VFIO_DEVICE_STATE_RUNNING && new == VFIO_DEVICE_STATE_PRE_COPY) || (cur == VFIO_DEVICE_STATE_RUNNING_P2P && new == VFIO_DEVICE_STATE_PRE_COPY_P2P)) { struct qat_vf_migration_file *migf; migf = qat_vf_save_device_data(qat_vdev, true); if (IS_ERR(migf)) return ERR_CAST(migf); get_file(migf->filp); qat_vdev->saving_migf = migf; return migf->filp; } if (cur == VFIO_DEVICE_STATE_PRE_COPY_P2P && new == VFIO_DEVICE_STATE_STOP_COPY) { struct qat_vf_migration_file *migf = qat_vdev->saving_migf; if (!migf) return ERR_PTR(-EINVAL); ret = qat_vf_save_state(qat_vdev, migf); if (ret) return ERR_PTR(ret); return NULL; } if (cur == VFIO_DEVICE_STATE_RESUMING && new == VFIO_DEVICE_STATE_STOP) { ret = qat_vf_load_device_data(qat_vdev); if (ret) return ERR_PTR(ret); qat_vf_disable_fds(qat_vdev); return NULL; } /* vfio_mig_get_next_state() does not use arcs other than the above */ WARN_ON(true); return ERR_PTR(-EINVAL); } static void qat_vf_reset_done(struct qat_vf_core_device *qat_vdev) { qat_vdev->mig_state = VFIO_DEVICE_STATE_RUNNING; qat_vfmig_reset(qat_vdev->mdev); qat_vf_disable_fds(qat_vdev); } static struct file *qat_vf_pci_set_device_state(struct vfio_device *vdev, enum vfio_device_mig_state new_state) { struct qat_vf_core_device *qat_vdev = container_of(vdev, struct qat_vf_core_device, core_device.vdev); enum vfio_device_mig_state next_state; struct file *res = NULL; int ret; mutex_lock(&qat_vdev->state_mutex); while (new_state != qat_vdev->mig_state) { ret = vfio_mig_get_next_state(vdev, qat_vdev->mig_state, new_state, &next_state); if (ret) { res = ERR_PTR(ret); break; } res = qat_vf_pci_step_device_state(qat_vdev, next_state); if (IS_ERR(res)) break; qat_vdev->mig_state = next_state; if (WARN_ON(res && new_state != qat_vdev->mig_state)) { fput(res); res = ERR_PTR(-EINVAL); break; } } mutex_unlock(&qat_vdev->state_mutex); return res; } static int qat_vf_pci_get_device_state(struct vfio_device *vdev, enum vfio_device_mig_state *curr_state) { struct qat_vf_core_device *qat_vdev = container_of(vdev, struct qat_vf_core_device, core_device.vdev); mutex_lock(&qat_vdev->state_mutex); *curr_state = qat_vdev->mig_state; mutex_unlock(&qat_vdev->state_mutex); return 0; } static int qat_vf_pci_get_data_size(struct vfio_device *vdev, unsigned long *stop_copy_length) { struct qat_vf_core_device *qat_vdev = container_of(vdev, struct qat_vf_core_device, core_device.vdev); mutex_lock(&qat_vdev->state_mutex); *stop_copy_length = qat_vdev->mdev->state_size; mutex_unlock(&qat_vdev->state_mutex); return 0; } static const struct vfio_migration_ops qat_vf_pci_mig_ops = { .migration_set_state = qat_vf_pci_set_device_state, .migration_get_state = qat_vf_pci_get_device_state, .migration_get_data_size = qat_vf_pci_get_data_size, }; static void qat_vf_pci_release_dev(struct vfio_device *core_vdev) { struct qat_vf_core_device *qat_vdev = container_of(core_vdev, struct qat_vf_core_device, core_device.vdev); qat_vfmig_cleanup(qat_vdev->mdev); qat_vfmig_destroy(qat_vdev->mdev); mutex_destroy(&qat_vdev->state_mutex); vfio_pci_core_release_dev(core_vdev); } static int qat_vf_pci_init_dev(struct vfio_device *core_vdev) { struct qat_vf_core_device *qat_vdev = container_of(core_vdev, struct qat_vf_core_device, core_device.vdev); struct qat_mig_dev *mdev; struct pci_dev *parent; int ret, vf_id; core_vdev->migration_flags = VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY; core_vdev->mig_ops = &qat_vf_pci_mig_ops; ret = vfio_pci_core_init_dev(core_vdev); if (ret) return ret; mutex_init(&qat_vdev->state_mutex); parent = pci_physfn(qat_vdev->core_device.pdev); vf_id = pci_iov_vf_id(qat_vdev->core_device.pdev); if (vf_id < 0) { ret = -ENODEV; goto err_rel; } mdev = qat_vfmig_create(parent, vf_id); if (IS_ERR(mdev)) { ret = PTR_ERR(mdev); goto err_rel; } ret = qat_vfmig_init(mdev); if (ret) goto err_destroy; qat_vdev->mdev = mdev; return 0; err_destroy: qat_vfmig_destroy(mdev); err_rel: vfio_pci_core_release_dev(core_vdev); return ret; } static const struct vfio_device_ops qat_vf_pci_ops = { .name = "qat-vf-vfio-pci", .init = qat_vf_pci_init_dev, .release = qat_vf_pci_release_dev, .open_device = qat_vf_pci_open_device, .close_device = qat_vf_pci_close_device, .ioctl = vfio_pci_core_ioctl, .read = vfio_pci_core_read, .write = vfio_pci_core_write, .mmap = vfio_pci_core_mmap, .request = vfio_pci_core_request, .match = vfio_pci_core_match, .bind_iommufd = vfio_iommufd_physical_bind, .unbind_iommufd = vfio_iommufd_physical_unbind, .attach_ioas = vfio_iommufd_physical_attach_ioas, .detach_ioas = vfio_iommufd_physical_detach_ioas, }; static struct qat_vf_core_device *qat_vf_drvdata(struct pci_dev *pdev) { struct vfio_pci_core_device *core_device = pci_get_drvdata(pdev); return container_of(core_device, struct qat_vf_core_device, core_device); } static void qat_vf_pci_aer_reset_done(struct pci_dev *pdev) { struct qat_vf_core_device *qat_vdev = qat_vf_drvdata(pdev); if (!qat_vdev->mdev) return; mutex_lock(&qat_vdev->state_mutex); qat_vf_reset_done(qat_vdev); mutex_unlock(&qat_vdev->state_mutex); } static int qat_vf_vfio_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct device *dev = &pdev->dev; struct qat_vf_core_device *qat_vdev; int ret; qat_vdev = vfio_alloc_device(qat_vf_core_device, core_device.vdev, dev, &qat_vf_pci_ops); if (IS_ERR(qat_vdev)) return PTR_ERR(qat_vdev); pci_set_drvdata(pdev, &qat_vdev->core_device); ret = vfio_pci_core_register_device(&qat_vdev->core_device); if (ret) goto out_put_device; return 0; out_put_device: vfio_put_device(&qat_vdev->core_device.vdev); return ret; } static void qat_vf_vfio_pci_remove(struct pci_dev *pdev) { struct qat_vf_core_device *qat_vdev = qat_vf_drvdata(pdev); vfio_pci_core_unregister_device(&qat_vdev->core_device); vfio_put_device(&qat_vdev->core_device.vdev); } static const struct pci_device_id qat_vf_vfio_pci_table[] = { /* Intel QAT GEN4 4xxx VF device */ { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_INTEL, 0x4941) }, { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_INTEL, 0x4943) }, { PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_INTEL, 0x4945) }, {} }; MODULE_DEVICE_TABLE(pci, qat_vf_vfio_pci_table); static const struct pci_error_handlers qat_vf_err_handlers = { .reset_done = qat_vf_pci_aer_reset_done, .error_detected = vfio_pci_core_aer_err_detected, }; static struct pci_driver qat_vf_vfio_pci_driver = { .name = "qat_vfio_pci", .id_table = qat_vf_vfio_pci_table, .probe = qat_vf_vfio_pci_probe, .remove = qat_vf_vfio_pci_remove, .err_handler = &qat_vf_err_handlers, .driver_managed_dma = true, }; module_pci_driver(qat_vf_vfio_pci_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Xin Zeng <xin.zeng@intel.com>"); MODULE_DESCRIPTION("QAT VFIO PCI - VFIO PCI driver with live migration support for Intel(R) QAT GEN4 device family"); MODULE_IMPORT_NS(CRYPTO_QAT);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1